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Summary 

Sjögren’s syndrome (SS) is a systemic rheumatic disease, in which the salivary and lacrimal 
glands are the principal targets of a pathological autoimmune reaction. Clinically, SS is 
manifested by keratoconjunctivitis sicca (dry eyes) and xerostomia (dry mouth). 
Histopathologically, the disease is characterized by persistent focal mononuclear cell 
infiltration in the salivary glands. Traditionally, loss of secretory capacity, degree of lymphoid 
infiltration and production of specific autoantibodies were anticipated to correlate with each 
other and indicate disease state and disease severity. The correctness of this assumption was, 
however, difficult to prove. 

The aim of the first study was to clarify the chronology of the SS disease course and to 
describe possible interrelationships between sialoadenitis and hyposalivation. We could 
confirm that the SS in non-obese diabetic (NOD) mice is characterized by at least two distinct 
phases. In our study, inflammation of the salivary glands preceded the onset of hyposalivation 
with a considerable amount of time. Interestingly, the onset of hyposalivation was not 
associated with a significantly higher degree of inflammation. Significant alterations in 
cytokines in serum and saliva paralleled the transition from the pre-clinical to the overt 
disease state. 

The purpose of the second study was to acquire knowledge on 87 immunologically relevant 
proteins measured in serum and 75 proteins analyzed in saliva. Thirty-eight biomarkers 
analyzed in serum and 34 proteins in saliva from NOD mice were significantly altered when 
compared to Balb/c mice. Eighteen biomarkers in serum and 3 chemokines in saliva had the 
potential to predict individual strain-membership with 80-100% accuracy. Computation of a 
correlation network led to the conclusion that processes related to the adaptive immune 
system promote SS with a strong implication of T-helper (TH)2 related proteins in 
hyposalivation. In addition, the SS-related disease manifestations appeared to be associated 
with different immunological processes and did not correlate with each other. Cluster of 
differentiation (CD)40, CD40L, interleukin-18, granulocyte chemotactic protein-2 (GCP-2) 
and anti-muscarinic M3 receptor immunoglobulin G3, may, however, interrelate the different 
aspects of SS. The study further established saliva as an attractive biofluid for biomarker 
discovery in SS and provides a basis for the comparison and selection of potential drug targets 
and diagnostic markers. 

The third study was conducted to investigate a potential immunomodulatory effect of heat-
shock protein 60kDa (Hsp60) and Hsp60-derived peptide aa437-460 (aa437-460) 
immunization on spontaneous experimental SS. Administration of Hsp60 and aa437-460 
significantly reduced SS-related histopathology compared to the untreated NOD controls. In 
addition, 50% of Hsp60 and 33% of aa437-460 injected mice retained normal exocrine 
function. Both treatments induced similar changes in the biomarker profiles, which indicated 
decreased inflammatory chemotaxis and strengthened anti-inflammatory regulatory pathways. 
Successful prevention of hyposalivation was accompanied by quantitative alterations in 36 
biomarkers, of which 19 inflammatory mediators declined to levels comparable to the 
measurements obtained in Balb/c mice. Molecules involved in inflammatory chemotaxis, 
neovascularization and regulatory pathways coined the differences displayed by the biomarker 
profiles. In addition, specific biomarker signatures had the capability to accurately predict the 
received treatment, treatment efficacy and impaired exocrine function.  

Common to all three studies were the appearing independence of the different aspects of SS 
and the valuable information we could extract from biomarker analyses especially in saliva. 
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Background 

On science 

In the broadest sense, science refers to any systematic knowledge or practice. Applying a 

more restrictive definition, science refers to a system of acquiring knowledge applying the 

scientific method. The scientific method is based on the collection of data through observation 

and experimentation, and the formulation and testing of hypotheses. The organized body of 

knowledge gained through such research is as well referred to as science. Scientists shall 

never claim absolute knowledge of nature or the behavior of the subject of study, as a 

scientific theory is empirical and always open to falsification.  

 
I am being scientific; illustration by Sam Brown (www.explodingdog.com) 

The two major principles applied in science are the principle of reductionism and the principle 

of holism. Until today the scientific method has primarily tended towards reductionism what 

led to enormous scientific advances since the age of enlightenment. In many ways 
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reductionism also liberates us from the annoyance of complexity. Descartes argued in 1637 

that the world is like a machine, its pieces like clockwork mechanisms. The machine could be 

understood by taking its pieces apart, studying them, and by putting them back together one 

would grasp the larger context [1]. Reductionism in science is based on the philosophical 

position that a complex system is nothing but the sum of its parts. Metaphorically, one 

reduces complexity to causal principles. Complex systems can therefore be accounted for with 

a hierarchy of organizations, of which each higher level can be described by the levels lower 

in the hierarchy [2]. While it is widely accepted that mathematics underlie most aspects of 

physics and physics provide the basis for chemistry and so forth, at levels of organization with 

higher amounts of complexity, formed from assemblies of large numbers of interacting 

components, such statements may become controversial [3].  

Aristotle concisely summarized holism by stating, “The whole is more than the sum of its 

parts” what implies that complex systems are inherently irreducible and a holistic approach is 

needed to understand them. Promoted by the revolution in information technology and the 

recent developments of powerful bioanalytical platforms, system-based approaches have 

emerged within the field of bioscience [4, 5]. System biology promotes integration rather than 

reduction, driven by the ultimate goal to display a complete and accurate model of a 

biological system at a given time. Intuitively and intellectually, one may conclude that both, 

hypothesis-driven component focused research, and discovery-oriented systematic approaches 

are needed to properly account for a specific system state. The challenges in the years to come 

will also consist of finding ways to bridge between these two principles of research [4, 5]. 

On immunity 

“The story of immunity is the story of the self. The immune system, like the brain, creates, 

records and protects our individuality” Irun R. Cohen [6]. 

The immune system greatly defines us as a species and an individual of this species by 

defining what is allowed to reside within us. It protects our body against pathogens, rejects 

foreign tissue and eliminates tumor cells [7]. In addition, the immune system is involved in 

body maintenance and paves the path for reconstruction, which follows non-lethal injury [7].  

Immunology is a relatively new science, having its origins in Edward Jenner’s discovery 

made in 1796. He described that cowpox had the capacity to induce protection against human 

smallpox [8]. The causal relationship between a specific pathogen and a specific infectious 
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disease, however, was only defined at the end of the 19th century. The triumph of vaccination 

in fighting infectious diseases led to emergence of the research discipline termed immunology 

[7].  

 
You are not immune; Illustration by Sam Brown (www.explodingdog.com) 

Immunology covers the study of all aspects of the immune system in all organisms and in 

states of health and disease. Malfunctions of the immune system include hypersensitivities, 

immune deficiency, allograft rejection and autoimmune diseases [7]. The latter are addressed 

in further detail in the following chapters. 

It should be recognized, that every organism has an immune system capable of protecting it 

from specific forms of harm. Nevertheless, the different species maintain immune systems of 

different complexity, often involving layered defense mechanisms with varying specificities. 

Most simply, surface barriers such as physical barriers e.g. skin, chemical barriers e.g. 

alterations in the pH and biological barriers e.g. commensal flora competing with potential 

pathogens for resources, prevent pathogens from invading the body [7].  
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Innate immunity 

The next layer of defense, termed the innate immune system, exists in nearly all forms of life 

and elicits an immediate immune response in case surface barriers have been breached. The 

symptoms of inflammation that are redness, heat, swelling, pain and loss of function indicate 

the activation of the innate immune system. These clinical manifestations reflect vasodilation 

of local blood vessels in favor of the recruitment of immune cells to sites of injury. In 

addition, the complement cascade is activated, representing the mobilization of the humoral 

component of the innate immune response. Elevation of the body temperature is mainly 

caused by endogenous pyrogens such as tumor necrosis factor (TNF)-α, interleukin (IL)-1 and 

IL-6, which in their turn initiate the acute-phase response approximately 90 minutes after the 

onset of a systemic inflammatory reaction [7]. In many cases, the invading pathogens can be 

recognized and eliminated through preformed nonspecific effectors. Subsequently, processes 

mediating tissue repair replace the inflammatory reaction. 

In other cases, although the innate immune system lacks fine specificity, certain cells such as 

macrophages, neutrophils and dendritic cells (DCs) recognize common microbe-associated 

molecular patterns through receptors located on their cell membranes or in their intracellular 

compartments [7]. In mammals, Toll-like receptor (TLR)4 binds lipopolysaccharide (LPS), an 

important component of the outer membrane of Gram-negative bacteria [9]. TLR engagement 

triggers the production of chemokines and cytokines and the expression of co-stimulatory 

molecules. The expression of the latter is crucial to initiate an adaptive immune response 

through a process referred to as antigen presentation [7]. In addition to the cell types already 

mentioned, mast cells, eosinophils and basophils belong to the cell types categorized as innate 

leukocytes [7]. At the interface of the innate and adaptive immune system, minor subsets of 

innate-like lymphocytes (B-1 cells, γ:δ T-cells and natural killer [NK] T-cells) have been 

described [7]. They only express a limited diversity of receptors and are mainly confined to 

specific locations in the body. Furthermore, they are not required to undergo clonal expansion 

before responding efficiently to the antigens they recognize. However, their exact role in host 

defense and immunological disorders is still a matter of speculation. Common to all processes 

belonging to the innate immune system is the lack of adaptation subsequently to a pathogen 

encounter and their incapability of generating a noteworthy immunological memory [7].  
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Adaptive immunity 

The adaptive immune system is thought to have arisen in the first jawed vertebrates. It is 

composed of highly specialized cells and processes, which become activated when pathogens 

evade the innate immune system. Compared to the innate immune response, the adaptive 

immune system provides the individual with the ability to selectively recognize and remember 

specific pathogens and to mount a more potent immune response each time the pathogen is 

reencountered (immunological memory) [7]. T-cells and B-cells are the two cell types 

involved in specific antigen recognition and capable of generating immunological memory. 

Both subsets use different, but structurally similar molecules, which specifically bind a certain 

antigen. The antigen-recognition molecules of T-cells are membrane bound and referred to as 

T-cell receptors (TCRs). Antigen-recognition molecules on B-cells are membrane bound 

immunoglobulins (Ig’s) and are referred to as B-cell receptors (BCRs) [7]. Ig’s can also be 

secreted by highly differentiated B-cell subsets (plasma cells, plasma blasts). Secreted Ig’s, 

also known as antibodies, form the humoral component of the adaptive immune response. The 

large repertoire of the TCRs and the BCRs is based on the mechanism of V(D)J 

recombination (an irreversible genetic recombination of antigen receptor gene segments). 

BCRs are furthermore modified by mutations, known as somatic hypermutations, of the 

variable regions within the Ig. These two mechanisms allow a small number of genes to 

generate a vast number of different antigen receptors, which has theoretically been estimated 

at 1018 for T-cells and 5x1013 for B-cells [7]. Because the gene rearrangements lead to 

irreversible changes in the DNA, all of the progeny of one specific T- or B-cell will inherit 

genes encoding the same receptor specificities.  

The activation of T-cells is dependent upon recognition of considered “non-self” protein 

fragments (peptides) presented within a protein structure, termed the major histocompatibility 

complex (MHC) [10]. MHC class I molecules present peptides derived from proteins 

synthesized in the cytosol (e.g. viruses). MHC class II molecules stably bind peptides from 

proteins degraded in the endocytic vesicles (e.g. phagocytized bacteria). MHC class I and 

MHC class II are differentially recognized by the co-receptor molecules cluster of 

differentiation (CD)8 and CD4, respectively [7]. At the same time the expression of CD4 and 

CD8 categorizes T-cells into two major subsets, the CD8+ and CD4+ T-cells. CD8+ T-cells are 

mainly cytotoxic T-cells specialized to release preformed cytotoxins e.g. perforin and 

granzymes. Tightly focused at the site of contact between the two cells, cytotoxins either 

perforate the membrane or induce apoptosis of the target cells [7]. Whereas MHC class 
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I/peptide complexes can be expressed on nearly all cells, MHC class II molecules are almost 

exclusively expressed on professional antigen presenting cells. CD4+ T-cells recognize the 

MHC class II/peptide complexes on antigen presenting cells and are specialized to activate 

other immune effector cells, e.g. B-cells and macrophages, to act against the antigen they are 

presenting [7].  

B-cells, through their BCR, have the unique capability of recognizing their cognate antigen in 

its native form. Alike other professional antigen presenting cells, B-cells present protein 

antigens in form of peptide/MHC class II complexes to CD4+ T-cells. Upon ligation, T-cells 

secrete cytokines, providing B-cells with so-called T-cell help. These cytokines trigger B-cell 

proliferation, isotype switching to IgG, IgA, and IgE, and promote differentiation towards 

plasma cells and memory B-cells. Many B-cells are dependent on the co-stimulatory signals 

provided by T-cells. However, other antigens, such as repeating carbohydrate epitopes, are 

considered to be T-cell independent, meaning they deliver all necessary signals to the B-cells 

to become activated. B-cells recognizing T-cell independent antigens require extensive BCR 

cross-linking to mount an immune response, which is characterized by only few or no somatic 

mutations, limitations in Ig class switching and weak memory. Indeed, T-cell independent 

immune reactions comprise many characteristics initially associated with the innate immune 

system [7]. 

The goal of every immune response must be the survival of an infection by either eliminating 

or confining the specific pathogen in a manner so it cannot inflict harm on the host any 

longer. At the same time, damages on the surrounding tissue have to be limited. The immune 

system also needs to ensure the restoration of tissue homeostasis, whenever possible, without 

causing secondary effects such as fibrosis. These multiple tasks require the generation of fine-

tuned and controlled immune responses.  
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Mediators of the immune system 

Cytokines 

The term cytokine is used for a diverse group of soluble proteins and peptides that act as 

humoral regulators at nano- to picomolar concentrations [7]. Under normal and pathological 

conditions they modulate the functional activities of individual cells and tissues. Their 

mechanisms of action may be classified as autocrine (acts on the cytokine secreting cell 

itself), juxtacrine (involving specific cell-to-cell contacts), paracrine (effect is restricted to the 

immediate vicinity of the cytokine secreting cell) and endocrine (diffuses to distant regions of 

the body) [7]. Because cytokines are characterized by redundancy, pleiotropism, synergism, 

and antagonism and can be secreted by a wide range of cell-types, the initial concept of "one 

producer cell - one cytokine - one target cell" has been falsified for practically every cytokine 

investigated. Generalizing the functions of cytokines is also impossible because beside their 

central role in immune system, not all their functions are restricted to immune reactions. They 

are, furthermore, involved in several developmental processes such as embryogenesis and 

hematopoiesis [7].  

Nonetheless, classification according to structural homology has been able to subdivide 

cytokines in several, sometimes rather large families: 1) the hematopoietins, e.g. many ILs 

and growth factors such as the granulocyte macrophage-colony stimulating factor (GM-CSF), 

2) the interferons (IFNs) and 3) the TNF superfamily e.g. TNF-α, CD40L, FasL and B-cell 

activating factor (BAFF) [11], 4) the more recently discovered IL-17 family e.g. IL-17 [12] 

and 5) the chemokines [13]. Accordingly, their specific receptors can be grouped similarly: 1) 

The class I cytokine receptors recognizing the hematopoietins, 2) the class II cytokine 

receptors binding IFN-α, -β, -γ and IL-10 superfamily and so forth [7]. However, cytokines, 

which are sharing structural similarities, may, but often do not, exert similar biological 

functions. Nevertheless, hematopoietins and IFNs, all signal through similar pathways, 

involving members of the Janus family of cytoplasmatic tyrosine kinases (JAK) and signal 

transduction and activators of transcription (STAT). Because the JAK and STAT protein 

families are comprised of different members, they can be individually activated to achieve 

very specific effects [7]. 

Based on the cytokines secreted, T-helper (TH) cells are currently subdivided into three 

distinct functional effector subsets, termed TH1, TH2 and TH17 [12, 14, 15] (Figure 1). They 

differentiate from not yet committed TH0 cells in response to exposure to specific cytokines. 
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Such stimuli are followed by the induction of independent patterns of gene transcription. TH1 

cells tend to be involved in host defense against intracellular pathogens and thought to 

perpetuate autoimmune responses [12, 14]. TH1 cell differentiation from TH0 cells is 

dependent on IFN-γ and IL-12. In their turn, TH1 cells produce IL-2 and IFN-γ. TH2 cells on 

the other hand tend to engage in immune responses, which depend on a substantial humoral 

component to eliminate the pathogen [12, 14]. Key molecules of a TH2 dominated immune 

response are IL-4, IL-5 and IL-13. TH1 and TH2 cells counteract each other, mainly because 

their respective cytokines can exert an inhibitory effect on the opposite TH cell subset [12, 

14].  

Hence, an optimal scenario, before the emergence of TH17 and regulatory T-cells (Treg) cell 

subsets, seemed to consist of a well balanced TH1 and TH2 response, tailored in accordance 

with the encountered immune challenge [14]. Indeed, considering the limited knowledge 

about cytokines at the time the TH1/TH2 model was developed [14] and despite its flaws, the 

TH1/TH2 paradigm showed remarkable durability and still conserved some of its validity [16].  

  
Figure 1) T-helper cell differentiation and regulation. Green arrows and black indicate 
induction, while red lines indicate inhibition. Transcription factors for particular lineages are 
placed in the nucleus. Differentiation of CD4+ T-cell lineages: Peripheral naive CD4+ T-cell 
precursor cells (THp) can differentiate into three subsets of effector T-cells (TH1, TH2 and 
TH17) and several subsets of Tregs, including induced Treg cells (iTreg), Tr1 cells and TH3 cells. 
Naturally occurring Treg cells (nTreg) are generated from CD4+ thymic T-cell precursors. The 
differentiation of these subsets is governed by selective cytokines and transcription factors, 
and each subset accomplishes specialized functions. Figures fully borrowed from L. Steinman 
[12] and E. Betelli et al. [17]. 

More recently the TH1/TH2 paradigm has been challenged by the emergence of the TH17 

subset producing IL-17 (IL-17A), IL-17F and IL-22 [12, 15]. A major role of IL-17 has now 

been described in various models of immune mediated tissue injury related with host defense 

against microorganisms and organ-specific autoimmunity [15, 17]. IL-6, transforming growth 
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factor (TGF)-β and IL-23 induce the differentiation, survival and expansion of TH17 cells, 

whereas the major cytokines produced in a TH1 and TH2 context, IFN-γ and IL-4, 

respectively, antagonize TH17 related immune responses [18]. Furthermore, reciprocal 

interactions involving TH17 cells have been reported when studying the differentiation of a 

class of Tregs termed forkhead box P3 (Foxp3)+ Tregs. This process involves IL-6 and TGF-β 

(Figure 1). TGF-β, initially thought of as anti-inflammatory, was proposed to function as a 

critical regulator of both tissue-damaging TH17 cells when collaborating with IL-6, and as an 

inducer of anti-inflammatory Tregs when acting in absence of IL-6 [17] (Figure 1). The 

mechanism by which Tregs limit effector responses in vivo, however, remains poorly 

understood. Crucial however, seems the secretion of anti-inflammatory cytokines, such as 

TGF-β and IL-10 by Tregs [19, 20]. In addition, Tregs may reduce the ability of DCs to 

subsequently activate effector T-cells [21].  

It is certain, that the current concept of how cytokines and T-cell subsets achieve an 

appropriate balance between protection from “non-self”, while sparing the “self” from self 

inflicted damage, will continue to increase in terms of size and complexity. Even though T-

cell populations have received most attention over the recent years, it is important to 

remember that virtually all populations of cells, especially in close proximity of the 

inflammation, may contribute in one or another way to the outcome of the immune reaction.  

Chemokines 

Chemokines are a family of 8-10kDa small, secreted proteins, mainly involved in leukocyte 

chemoattraction during the initiation and orientation of the innate and adaptive immune 

response. Beside their role in inflammation, chemokines are of importance in regulating cell 

trafficking in states of tissue development and tissue homeostasis [7, 13]. This large family of 

related molecules is classified according to structural properties related to the number and 

position of conserved cysteine residues. C-C motif (CC) and C-X-C motif (CXC) chemokines 

are the two major, and C motif (XC) and C-X3-C motif (CX3C) the two minor chemokine 

subfamilies [22] (Figure 2). Accordingly, the different subfamilies bind to specific receptors, 

all belonging to the G-protein-coupled receptor superfamily. Most chemokines can bind to 

several receptors [13], named according to the subfamily of chemokines they recognize e.g. 

CCR for CC chemokines, CXCR for CXC chemokines an so fourth [22]. Indeed, redundancy 

in chemokine-ligand/chemokine-receptor interactions seems evident (Figure 2). However, 

these interaction charts are mainly based on results obtained in vitro and it is probable that 
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this apparent redundancy is artificial in nature and absent in vivo. Further knowledge 

regarding subtle regulatory mechanisms, such as contribution of chemokine receptors to 

lymphocyte extravasation and serial usage of different chemokine receptors, might help to 

break this seeming redundancy [13]. Although the main task of cytokines is to orchestrate 

leukocyte recruitment, they also exhibit other cytokine-like activities including regulation of 

angiogenesis [23], fibrosis [24] and apoptosis [25].  

 
Figure 2) Human chemokines, encoded by 43 genes, are classified into four families on the 
basis of structural differences. Chemokines can also be classified as pro-inflammatory (red), 
homeostatic (green) and those with mixed function (yellow). Chemokines bind to a subfamily 
of seven-transmembrane G-protein-coupled receptors, which at present include 18 receptors 
that are classified as CCR, CXCR, CX3CR and XCR on the basis of the class of chemokines 
they are able to bind. Their main expression pattern on leukocytes is listed in the right 
column. To show the connection between receptors and cell types a notation inspired by 
electronic circuit representation has been used. To connect receptors to target cells, follow a 
horizontal line and turn on a vertical one at each node; the rhombs (diamond shapes) 
aggregate vertical lines to the cell type. Figure fully borrowed from A. Mantovani et al. [13]. 
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Growth factors 

The term growth factor refers to proteins capable of stimulating cellular proliferation and 

cellular differentiation. Growth factors play a crucial role in a variety of cellular processes. 

For example, the vascular endothelial growth factor (VEGF) family consists of important 

signaling proteins involved in both vasculogenesis (the de novo formation of the embryonic 

circulatory system) and angiogenesis (the growth of blood vessels from pre-existing 

vasculature) [26]. The term growth factor became interchangeable with the term cytokine, 

when it became apparent that lymphocytes were also using some signaling proteins originally 

identified in hematopoietic context [27]. However, the term growth factor implies a positive 

effect on cell division, whereas cytokine is a neutral term with respect to whether a molecule 

does or does not affect cell proliferation. 

Peptide hormones 

It is known that hormones can suppress or activate the immune system depending on the 

specific context [28]. In opposition to cytokines, which can be produced by a wide variety of 

cells, specialized cells, mainly residing within endocrine glands, such as the pancreas, form 

peptide hormones. However, also non-endocrine glands, such as adipose tissue, produce 

peptide hormones e.g. leptin [29]. In addition, it should be taken into account that 

mononuclear cells express receptors specific for neurotransmitters, another class of signaling 

molecules mainly produced by highly differentiated cells [30]. Unfortunately however, the 

crosstalk between the nervous and the immune system is poorly explored [31]. 
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On autoimmunity, immune tolerance and autoimmune diseases 

Autoimmunity refers to the capacity of somatically generated antigen receptors to recognize 

self-molecules. Through the process of recognition, self-molecules can become self-antigens 

or autoantigens [6, 7]. The classical view on the relationship between autoimmunity and 

autoimmune diseases is based on the assumption that autoimmunity cannot be physiological. 

Hence, a healthy immune system must be free from autoimmunity. Several clues are used by 

the immune system to distinguish self-ligands from non-self ligands, e.g. the encounter with 

the ligand while the lymphocyte is still immature and the exposure to high and constant 

concentration of the ligand in absence of co-stimulatory signals. The latter is usually 

dependent on the activation state of the innate immune system [7]. This view defines 

autoimmunity in general as a random accident, which has no purpose and is always forbidden 

[32]. Autoimmune diseases, in such a case, must either be caused by a failure in eliminating 

an autoimmune clone during its development, through the mutation of a mature clone, which 

accidentally resulted in the recognition of a self-molecule, or be initiated by mechanisms of 

molecular mimicry. The absence of an autoimmune disease would therefore be marked by the 

absence of autoreactive clones. Such clones, because they evidently arise through random 

generation of TCRs and BCRs must all be deleted. Following this train of thought, the only 

specific cure for an autoimmune disease is the elimination of autoreactive cells. F.M. Burnet 

and P.B. Medawar were awarded the 1960 Nobel Prize for the discovery of acquired immune 

tolerance also known as the clonal deletion theory [32].  

Despite the plausibility of the clonal deletion theory, it became evident that the concept could 

neither always fit the state of a healthy immune system nor explain certain basic phenomena 

from autoimmune diseases [6, 7]. Nevertheless, autoimmune diseases are the result of a loss 

in immunological tolerance, which is the ability to appropriately respond to self-molecules. 

The exact conception of the nature, origin and maintenance of the immunological tolerance is 

still elusive, but several theories have been proposed, complementing, and in certain aspects 

opposing the clonal deletion theory e.g. the clonal anergy theory [33, 34] and the idiotype-

anti-idiotype network theory [35]. Furthermore, hypotheses involving specific regulatory cell 

populations with the function to limit or downregulate pathogenic autoimmune reactions are 

under intense investigation [19, 36].  

Today, one may imagine the existence of two types of autoimmunity: On one hand natural or 

physiological autoimmunity and on the other hand pathological autoimmunity. The latter is 
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manifested as a disease caused by an immune reaction specifically directed against self-

antigens (autoimmune disease) [6, 37].  

Indeed, autoimmunity might be an intrinsic and essential part of the healthy immune system, 

vital to its development and function especially in the context of immunological tolerance. 

According to I.R. Cohen, physiological autoimmunity should be viewed as an organized 

entity of a few key self-molecules [38]. The entity was termed the “immunological 

homunculus” analogous to the concept of the neurological homunculus, which refers to a 

functional map of the body in the brain [6]. Applying the same concept, the immunological 

self-determinants forming the immunological homunculus would define the borders between 

the self and the non-self. Indeed, the immune system consists of a relatively high number of 

autoreactive T- and B-cells, which recognize a relatively small number of immune-, 

maintenance- and tissue molecules [39-41]. Accepting the principle of natural autoimmunity 

has far reaching consequences as it implies that our immune system possesses a dynamic 

picture of the self. Such a picture would be drawn by the components involved in the 

maintenance of physiological autoimmunity [38]. Autoimmunity would no longer only be an 

aberration, but specific self-molecules would have the central role in shaping the immune 

response in accordance with the system’s state. Thereby they are subjected to strict anti-

autoimmune regulation [42]. These self-determinants and their corresponding counterparts of 

the immune system would be crucial in preventing the conversion of autoimmunity into an 

autoimmune disease. Hence, autoimmune diseases would arise from a divergence between the 

actual tissue state and the immune system’s perception of the situation and be marked by 

insufficient anti-autoimmune regulation against key self-molecules. Treatment of autoimmune 

diseases should be designed to reinitiate healthy immune regulation, which in its turn would 

be followed by reinstatement of physiological autoimmunity [36]. Administration of self-

antigens taking into account dose, dose schedule, anatomical site and context can prevent or 

in some cases induce remission of autoimmune diseases in murine models [43-45]. Similar 

results can be achieved by antigen unspecific stimulation of regulatory mechanisms [46]. 

The number of medically defined autoimmune diseases is relatively small and the different 

diseases mostly present distinct clinical and immunological signatures, which involve specific 

sets of self-antigens. Nevertheless, the lack of an knowledge regarding causative mechanisms 

renders disease classification difficult [47]. Nonetheless, autoimmune diseases can be 

clustered into organ-specific autoimmune diseases e.g. insulin-dependent diabetes mellitus 

(IDDM), primarily affecting the insulin producing pancreatic islets, and into systemic 
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autoimmune diseases, which can affect many and very diverse tissues of the body. The latter 

category includes diseases such as scleroderma, rheumatoid arthritis (RA), systemic lupus 

erythematosus (SLE) and Sjögren’s syndrome (SS). It is important to notice that in several 

medical conditions described above, not only inappropriate destruction, but also inappropriate 

healing may contribute significantly to the pathogenesis [16]. Both processes are closely 

connected to the immune system and the state of inflammation. It is evident that the most 

difficult task of the immune system is the establishment of effective host-defense against 

foreign pathogens as well as against cancer cells while sparing healthy tissue and insuring 

proper instauration of tissue homeostasis. 
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Heat-shock protein 60kDa and the regulation of inflammation 

Classical anti-inflammatory drugs which can be grouped into corticosteroids, cytotoxic drugs 

and fungal and bacterial derivatives are very broad in their actions [7] and opportunistic 

infection are common complications of immunosuppressive therapies. Recent treatment 

strategies specifically induce the blockade of several pro-inflammatory cytokine pathways, 

such as TNF-α [48] and IL-1 [49]. However, none of these strategies reverse the pro-

inflammatory process and still harbor the risk of opportunistic infections [50, 51]. Indeed, it is 

obvious that patients suffering from autoimmune diseases would greatly benefit from 

restoration of immunological tolerance. Among other agents, heat-shock protein 60kDa 

(Hsp60) [52] and anti-CD3 [19] are representatives of a new category of biological agents 

endowed with the unique capacity to promote immunological tolerance in absence of long-

termed and generalized immunosuppression. 

Heat-shock proteins (HSPs) are ubiquitously expressed molecular chaperones, which have 

crucial housekeeping functions in both prokaryotic and eukaryotic cells by ensuring proper 

folding of proteins [53]. The expression of HSPs is markedly upregulated under conditions of 

cellular stress, such as an infection, inflammation and exposure of the cell to toxins. HSPs 

were also proven to be highly immunogenic [53]. Analyses of the T-cell response against 

Mycobacterium tuberculosis demonstrated that 10-20% of the response was directed against 

M. tuberculosis Hsp60 [54]. Exceptionally conserved throughout evolution, molecular 

mimicry between HSPs from microbial and HSPs form mammalian origin was suspected to 

underlie several autoimmune and inflammatory conditions such as RA [55] and 

atherosclerosis [56]. Hsp60 was also identified to be the crucial component in Bacille 

Calmette-Guérin mediated inhibition of IDDM in NOD mice [57]. Subsequently, a peptide 

vaccine (DiaPep277, aa437-460), based on eukaryotic Hsp60, has been developed for the 

treatment of IDDM and is currently tested in phase II clinical trials [58]. In contrast, HSPs 

remain a poorly investigated field in SS [59]. However, molecular mimicry does not seem to 

be the only origin of Hsp60 autoimmunity. Interestingly, despite multiple checkpoints, which 

could ensure central tolerance to self-Hsp60, healthy individuals maintain T- and B-cells 

recognizing exclusively self-Hsp60 [41]. In addition, abundant thymic overexpression of 

Hsp60 could not abolish T-cell responses to Hsp60 [60].  

It is most probable that T-cells recognizing self-Hsp60 receive yet undefined survival signals 

during negative selection in the thymus. As postulated by I.R. Cohen, Hsp60 belongs to a set 
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of conserved self-antigens at the core of physiological autoimmunity, which he termed the 

immunological homunculus [6]. After entering the periphery, the lack of clonal exclusion in 

the thymus must be compensated by mechanisms of peripheral tolerance. Several lines of 

evidence indicate that under certain conditions CD4+ T-cells specific for Hsp60 self-epitopes 

critically regulate inflammation [52].  

Therapeutic and preventive effects, irrespective of the specific autoimmune condition studied, 

have been attributed to the capacity of Hsp60 to trigger anti-inflammatory and regulatory 

mechanisms. Importantly, it seems that the protective effects of Hsp60 do not require an 

antigenic relationship between Hsp60 and the disease causing antigen [52]. Disease severities 

of RA and more recently of juvenile idiopathic arthritis have been related to the extent of 

Hsp60 induced propagation and activation of Tregs [61, 62]. Hsp60 and the Hsp60 derived 

peptide aa437-460, via TLR2 signaling, altered inflammatory chemotaxis and downregulated 

T-cell migration in vitro [63, 64]. Tregs, identified to be innately responsive to Hsp60, are 

supposedly rendered more effective in downregulating CD4 and CD8 effector responses after 

Hsp60 and aa437-460 engagement [20]. In addition, Hsp60 may regulate TH1/TH2 

transcription factors and cytokine expression [65].  

Research efforts also expanded the focus from Hsp60 specific T-cells to antigen presenting 

cells, including macrophages and DCs. Antigen presenting cells may thereby directly interact 

with endogenous Hsp60 through identified receptors such as CD14, CD40, CD36, CD91, 

lectin-type oxidized low-density lipoprotein (LDL) receptor, TLR2 and TLR4, and other yet 

unidentified cell specific surface receptors [66]. If proven correct, self-HSPs would represent 

an interface between the innate and the adaptive immune system. However, the proclaimed 

induction of pro-inflammatory cytokine secretion, mediated by self-HSPs, has been suspected 

to originate from LPS contamination of the HSP preparations [67]. Nevertheless, subsequent 

studies were able to identify specific effects of mammalian HSPs, which could not be 

assigned to microbial HSPs. These effects seemed to be regulatory and anti-inflammatory in 

nature [52]. In summary, compared to microbial Hsp60, its mammalian counterpart may, 

instead of promoting a pro-inflammatory response, pave the path for a regulatory response 

through the adaptive arm of the immune system. 
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Biomarker discovery 

A biomarker is a substance or measurement that is indicative for a certain state of a living 

organism [68, 69]. Identification of specific biomarkers of autoimmunity and tolerance 

represents a major goal of clinical immunology [70]. At first, biomarkers should provide the 

physician with information about the patient’s individual disease risk or benefit his diagnosis. 

Biomarkers may further predict the disease course or point the physician towards the use of a 

specific treatment. Repeated measuring of adequate biomarkers may further allow to follow-

up on treatments responses.  

A validated biomarker, possessing one or several properties described above, reduces the 

often not graspable complexity behind the process it indicates, to a rather simple 

measurement. For, example, a high concentration of LDL combines complexities related to 

factors such as genetic background, metabolism, inflammation and state of blood vessels 

walls, to an indicator of atherosclerosis [71]. Compared to defined infectious diseases, where 

the presence of a defined causative agent facilitates such enterprise, the diagnosis and 

classification of autoimmune diseases remains largely based on clinical examination 

combined with traditional laboratory tests [47].  

Due to accessibility and the lack of extraction procedures, biological fluids are the targets of 

choice for the detection of biomarkers [68, 69]. The rationale, however, is strongly dependent 

on the assumption that the tissue of interest is in close contact with the biological fluid. In 

such a case alterations in the tissue-state would be prone to be reflected in the spectrum and 

amount of proteins liberated into the biofluid [68]. The recent development of sophisticated, 

large-scale and high-throughput genomic and proteomic platforms created unprecedented 

possibilities to identify novel biomarker signatures for autoimmune diseases [5, 68, 69]. The 

ultimate goals of such studies are to improve diagnosis, to assess individual risk, to predict 

and characterize the response to treatment and the identification of possible targets for 

therapeutic treatment intervention. However, there is an obvious gap between theory and 

reality, which is clearly illustrated when comparing the enormous amount of data acquired 

through genomic and proteomic methods focusing on body fluids and the rare emergence of 

new, clinically applicable biomarkers [68]. Technologies applied to biomarker discovery are 

either, at least theoretically, unbiased platforms e.g. mass spectrometry or biased 

technologies, such as bead-based multiplex immunoassays, antigen array and antibody array 

platforms [70]. The inherent bias in the latter category is due to the use of existing capture 
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agents such as purified proteins, peptides or antibodies. The choice of technology needs to be 

dictated by the hypothesis that is being tested and the availability of specific reagents [70]. 

Which technology platform most accurately mirrors the true situation is often difficult to 

estimate, highlighting the importance of appropriate and uniform guidelines for quality 

assurance and quality control. One important task in the future consists in the creation of 

bioinformatics for the analysis of disparate data sets such as transcript profiles, protein 

profiles, and cell-surface phenotypes [70, 72]. 
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Sjögren’s syndrome 

Overview 

SS is a chronic autoimmune disease mainly affecting the exocrine glands. Nearly all patients 

complain of a persistent feeling of dry mouth (xerostomia) and dry eyes (keratoconjunctivitis 

sicca) [73, 74]. These symptoms can be confirmed by objective tests, which show significant 

functional impairment of the salivary and lacrimal glands. Histological evaluation of these 

glands show large and persistent infiltrates of mononuclear cells, so-called foci. These consist 

of mainly T-cells and fewer B-cells. Beside lymphoid infiltration, acinar epithelial cell 

atrophy and progressing fibrosis can be observed. 

Affecting approximately 0.3-0.6% of the total population, SS is considered a very common 

rheumatic disease. With a ratio of 9:1 SS exhibits one of the highest female to male ratios of 

all autoimmune diseases. SS may extend from an autoimmune exocrinopathy to the 

manifestation of diverse extraglandular symptoms, such as involvement of the 

musculoskeletal, pulmonary, gastrointestinal, hepatobiliary, hematologic, vascular, 

dermatologic, renal and nervous system. Furthermore, the risk of developing non-Hodgkin’s 

lymphoma is thought to be increased 16 fold compared to the general population [75].  

SS may occur alone, then defined as primary SS (pSS), or in association with another defined 

autoimmune disease, e.g. SLE, RA or scleroderma, and is then defined as secondary SS (sSS). 

As true for most autoimmune diseases, the etiology of SS is at present unknown. However, 

environmental factors set against an appropriate genetic background may be capable of 

triggering SS.  

Traditionally, the loss of secretory capacity has been thought to be the direct consequence of 

glandular tissue being destroyed or replaced by infiltrating cells. The correctness of this 

assumption was, however, challenged by frequently observed discrepancies between the 

extent of destroyed glandular tissue and the remaining salivary secretion capacity. Processes 

disturbing the physiological cascade of saliva production and secretion have been proposed as 

a possible explanation for this phenomenon [76]. 

History, epidemiology, diagnosis and patient classification 

In 1933 Henrik Sjögren, a Swedish ophthalmologist, presented his doctoral dissertation 

entitled “Zur Kenntnis der Keratoconjunctivitis sicca” [77]. He reported detailed clinical and 
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histological findings in women presenting xerostomia and keratoconjunctivitis sicca. Together 

with RA, SS is one of the most frequent autoimmune diseases and occurs in large parts of the 

world. The disease can appear at any age with a significant peak incidence between 40-50 

years of age. 

As there is no single test for the diagnosis of SS, different classification criteria have been 

proposed. Depending on the applied classification criteria, the prevalence of SS reaches from 

0.5% of the adult female population, when applying the Californian Fox Criteria [78], to 1-3% 

of the total population, when using the European Community Criteria [79] or the American-

European Consensus Group criteria (AECG) [47]. However, most studies act on the 

assumption of a prevalence of 0.3-0.6% of the total population. All three methods of 

classification listed above are based on the following disease manifestations: 1) subjective 

feeling of dry mouth and dry eyes, 2) objective ocular and oral signs of dryness, 3) defined 

focal lymphoid infiltrates within the salivary glands and 4) the presence of specific 

autoantibodies. 

Clinical manifestations of Sjögren’s syndrome 

Beside general discomfort, dry mouth is accompanied by problems in swallowing, speaking 

and alterations in taste, and the lack of tears by photosensitivity and fluctuating vision [80]. 

Indeed, deficiencies in saliva quantity and quality have a negative impact on dental and oral 

health. Dental caries, mucositis, oral candidiasis and swelling of the salivary glands are the 

most frequent oral signs of SS and edentulous patients are common [81]. Increased levels of 

acidogenic and aciduric microorganisms were found in most patients with SS [82]. 

Consequently, prevention of caries and oral infections is strongly indicated and drugs with 

anti-cholinergic side effects, e.g. anti-depressants and anti-histamines, should be avoided. 

Beside sicca symptoms, pain and especially fatigue contribute to the significant decrease in 

quality of life and a worsened psychological status in SS patients compared to the general 

population [83].  

Treatment of patients with Sjögren’s syndrome 

Treatments applied today provide merely marginal symptomatic relief [84] and patients with 

SS have to face a life with the disease. Keeping the mouth moistened, using water followed 

by a saline mixture, is the simplest solution to treat xerostomia. Extensive use, however, may 

remove the small amounts of mucous saliva, resulting in the dilution of protective agents 

present in saliva e.g. mucins. Dry eyes can be treated with protective measures, ocular wetting 
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agents and occasionally with local application of cyclosporine [85] and IFN-α [86]. To 

stimulate salivary flow, oral administration of muscarinic receptor agonists (pilocarpine 

hydrochloride or cevimeline) [87] were shown to significantly improve local and systemic 

symptoms of SS.  

Drugs acting as muscarinic agonists have become accepted for the treatment of SS [88, 89]. 

However, the effectiveness of these depends upon intact receptor structures and parenchyma. 

Another potential treatment involves the administration of intravenous immunoglobulin 

(IVIG) [90]. Antiidiotypic antibodies, being part of IVIG, remove the inhibitory activity of 

anti-muscarinic M3 receptor (M3R), an antibody potentially involved in the pathogenesis of 

SS, in vitro [91].  

Hydroxychloroquine [92] and nandrolone [93] also improved systemic symptoms of SS, 

whereas the usage of cyclosporine was rather ineffective [85]. Depletion of mature B-cells 

using anti-CD20 antibodies, first tested in small patient groups, which developed lymphoma 

[94, 95] or manifested severe systemic symptoms [96], also ameliorated several symptoms in 

a more representative SS cohort [97]. The use of TNF-α antagonists for the treatment of SS 

was not sustained since promising results could not be confirmed [98, 99]. 

Unfortunately, all therapies applied today are inadequate to cure SS and regrettably, the 

number of clinical studies addressing SS is significantly lower than for most other, as 

common, autoimmune diseases. 

Etiology of Sjögren’s syndrome 

A possible scenario for the emergence of SS comprises a viral infection of the target organs 

[100-102]. Subsequently, the immune attack, initially serving the purpose of host-defense, 

may, through molecular mimicry, be converted into a pathological immune reaction, which 

directly targets self-molecules.  

Another concept follows the perception that autoimmune diseases arise from a divergence 

between the actual tissue state and the immune system’s perception of the situation [38]. 

Autoimmune diseases, in such a case, would be marked by insufficient anti-autoimmune 

regulation against key self-molecules.  

As for other autoimmune diseases, a genetic predisposition for SS seems to exist [103]. 

Analyses of HLA-DR and HLA-DQ gene segments in patients with SS, revealed an increased 

prevalence of haplotypes B, Drw52 and DR3 [104]. However, better correlations were found 
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between HLA-DR haplotypes and the presence of anti-Ro and anti-La than with disease 

severity or disease development [104]. Recently, a variant of the minor histocompatibility 

antigen HA-1 was associated with reduced risk of pSS [105]. In contrast, no association with 

polymorphisms in Fas and FasL [106], IL-10, TNF-α, IL-1 receptor antagonist (IL-1RA) 

[107], cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) [108], TNF-α R2 [109] and 

CCR7 [110] was observed.  

The infectious agents which have received most attention in the field of SS are Epstein-Barr 

virus [100], human T-cell leukemia virus-1 [101] and hepatitis C virus (HCV) [102]. 

Association of SS with all these candidates remained, however, rather weak. Sialoadenitis, 

now considered as extrahepatic manifestation of chronic HCV infection, received some 

attention in the newly proposed AECG, in which HCV infection is listed as an illegibility 

criterion in clinical studies investigating SS [47]. A more recent study identified a Coxsackie 

virus as a potential agent involved in the induction or maintenance of SS in a Greek 

population [111]. However, the results could not be validated in a French patient cohort [112]. 

Konttinen et al. speculated that due to their anatomical localization and their short excretory 

ducts, the small exocrine glands should be considered as a locus minoris resistentiae, where 

apoptotic acinar cells may be unconventionally displayed to the immune system [113]. 

Interestingly, autoantigens associated with SS (Ro52, Ro60 and La48) are nuclear proteins, 

which are redistributed and exposed on the cellular surface during apoptosis [114].  

Microarray-based investigations of the salivary gland tissue transcriptome in SS patients [115, 

116] and in congenic mouse models of SS [117, 118] showed an activated type I and type II 

IFN system. Such activation, potentially originating from a viral infection, may be 

perpetuated by RNA-containing immune complexes, in their turn activating plasmacytoid 

DCs to prolong IFN-α production at the tissue level [119]. The finding that U1 snRNA and 

hY1RNA have the capacity to induce IFN-α further argues for the existence of such a vicious 

circle [120]. 

Female predominance and the late onset of SS directed the attention towards sex hormones 

and their role in the etiology of SS. In general, androgenic hormones have been considered to 

protect from autoimmunity and it has been proposed that women with SS are androgen 

deficient [121]. Whereas neither estrogen receptor-α nor estrogen receptor-β deficient mice 

develop SS, another model of estrogen deficiency, the aromatase-knockout (ArKO) mouse 

develops a lymphoproliferative autoimmune disease resembling SS [122]. Microchimerism of 
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fetal cells may also play a role in generating an autoimmune potential in women who have 

been pregnant [123]. 

Experiments in non-obese diabetic (NOD) mice, which exhibited severe combined 

immunodeficiency (SCID) [124] and inhibitor of DNA binding 3 (Id3) deficient mice [125] 

indicate a possible relationship between defective organ development and the initiation of 

pathological immune reaction targeting the salivary glands. Interestingly, in the latter model, 

depletion of B-cells ameliorated the SS-related symptoms [126]. 

The salivary glands in Sjögren’s syndrome 

A scheme of possible events taking place in the salivary glands of SS patients is proposed in 

(Figure 3). Primarily for diagnostic purposes, a salivary gland biopsy is evaluated for the 

presence and frequency of focal cellular aggregates, defined as clusters of at least 50 

mononuclear cells [127].  

 
Figure 3) Proposed scheme of events related to the initiation and pathogenesis of SS. Figure 
adapted from N. Delaleu et al. [84]. 
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The infiltrates consist of T-cells, B-cells, DCs [119, 128] and macrophages [129]. Similar 

infiltrates were also found in other organs e.g. the lacrimal glands, the lungs, the thyroid gland 

or the liver obtained from patients with SS [74]. Analyses of gene expression profiles in 

salivary gland tissue from SS patients confirmed the presence of many aspects of chronic 

inflammation [115, 116]. Recent studies reported that approximately one in four SS patients 

exhibit ectopic germinal center (GC)-like structures in the minor salivary glands, a feature 

which might be associated with a more severe disease [130]. To what extent GC-like 

structures in the salivary glands overtake processes normally assigned to GC in the secondary 

lymphoid tissue remains to be proven. Furthermore, GC-like structures have been associated 

with the occurrence of lymphoproliferative disorders in SS [131]. However, similar signs of 

ectopic lymphoid tissue formation and lymphoid neogenesis also occur in synovia from RA 

patients [132], in thyroid glands of Hashimoto’s thyroiditis [133] and in gut mucosa in 

relation with infectious agents e.g. Helicobacter pylori [134]. 

Endothelial cells 

Lymphocyte migration is partly mediated by vascular cell adhesion molecule (VCAM)-1 and 

peripheral node addressin (PNAd) expressed on vascular endothelium (Figure 4). Inhibition of 

these two molecules or their ligands (α4-integrin, L-selectin and lymphocyte function-

associated antigen-1 [LFA-1]) showed a nearly complete block of lymphocyte migration into 

the lacrimal glands in NOD mice [135]. In contrast, mucosal addressin cell adhesion 

molecule-1, E-selectin or P-selectin did not seem to contribute to monocyte migration into 

lacrimal glands in NOD mice [135]. 

Epithelial cells 

The glandular epithelium in SS seems to be activated [136, 137], resulting in local production 

of several pro-inflammatory cytokines [138]. In addition, the presence of chemokines in 

epithelial cells has also been reported [139, 140]. Furthermore, epithelial cells of SS patients 

also express TLRs, which argue for a role of these cells in the disease [141, 142]. 

Nevertheless, whether epithelial cell activation is an initiating event or a secondary 

phenomenon requires further investigation. Epithelial cells also express Fas, FasL and BCL-2 

associated X protein (Bax), suggesting apoptosis as a mechanism of acinar cell destruction 

[143, 144]. However, despite aberrant expression of pro-apoptotic molecules, apoptosis might 

be a rare event in acinar and ductal cells of patients with SS [145]. Increased matrix 

metalloproteinase (MMP)-2, MMP-3 and MMP-9 activity was associated with changes in the 



38 

structural organization in the basal lamina and the apical surface of acini observed in patients 

with SS [146, 147]. 

 
Figure 4) An important feature in the regulation of lymphocyte recirculation is the ability of 
lymphocytes to recognize and bind to the surface of endothelial cells before migrating 
through the vessel into surrounding tissue. (1) Circulating lymphocytes enter high endothelial 
venules. (2) Initial transient tethering and rolling: most lymphocyte adhesion molecules such 
as L-selectin are found on the tips of the lymphocytes microvilli where they can easily contact 
the endothelium by binding glycosylation dependent cell adhesion molecule (GlyCAM)-1 or 
CD34. (3) Appropriate activating factors: chemokines such as CXCL13 encountered in the 
local environment render possible a first lymphocyte activation step which facilitates firm 
adhesion. Activated integrins LFA-1 and VLA-4 on lymphocytes interact with intercellular 
adhesion molecules (ICAMs) and VCAMs. (4) Lymphocyte diapedesis: migration through 
endothelium, from circulation to tissue, a process probably also directed by chemokines. (5) 
Migrated lymphocytes contribute to the local immune response. Figure adapted from N. 
Delaleu et al. [84]. 

T-cells 

Mononuclear cell infiltrates consist of up to 80% T-cells, representing a CD4+ to CD8+ T-cell 

ratio of more than two. Most CD4+ T-cells are of a primed memory phenotype (CD45R0+) 

and over 50% of all T-cells express CD40/CD40L [148]. In context with T-cell activation, 

HLA-DR and IL-2R were found on a large fraction of T-cells [136, 149]. Analyses of 
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complementarity-determining regions (CDR)3 showed some conserved amino acid motifs, 

suggesting a relatively limited number of recognized antigens [150]. High proportions of T-

cells express Fas and/or members of the B-cell lymphoma 2 (BCL-2) family [151]. However, 

it was also reported that neither Fas/FasL induced apoptosis nor apoptosis implicating the 

Bax/Bcl-2 pathway occur more often among infiltrating mononuclear cells in SS compared to 

control individuals [145, 152]. Analyses of circulating Treg population showed inconsistent 

results [153, 154], whereas in numbers they may be underrepresented in the salivary glands 

[154].  

Cytokines and chemokines in Sjögren’s syndrome 

As crucial modulators of the immune system, cytokines represent potential drug targets. The 

therapeutic impact of agents neutralizing the pro-inflammatory cytokine TNF-α in patients 

with RA is indeed remarkable [48] and proves the coherence of this rationale. Cytokine 

profiles have been studied in blood and salivary gland tissues from patients with SS [138, 155, 

156] and in mouse models for SS [157]. However, because cytokines are characterized by 

redundancy, pleiotropism, synergism, and antagonism, the interpretation of cytokine-related 

data is often difficult. Applying the by now expanded concept of TH1/TH2 cytokines and 

autoimmunity, it has been postulated that TH2 cytokines may be predominant in an early 

phase of SS, while TH1 cytokines would be associated with a later stage of the disease [158]. 

In opposition stands the proposed principle, that the decrease in salivary flow, which is 

thought to follow the emergence of glandular inflammation [159], might be associated with 

TH2 cytokines [160-162]. In NOD mice the development of sialoadenitis and hyposalivation 

seems to critically depend on IFN-γ [163], whereas transition between the pre-clinical and the 

overt disease state, manifested by the onset of hyposalivation, has been associated with IL-4 

[160, 161] and the STAT6 pathway [162]. The revision of the TH1/TH2 paradigm was caused 

by the emergence of a T-helper cell subset termed TH17, producing IL-17 (IL-17A), IL-17F 

and IL-22 [15]. A major role of IL-17 has been described in various models of immune 

mediated tissue injury and autoimmune diseases, e.g. RA [15]. Interestingly, a recent study, 

also reported an activated TH17/IL-23 system in patients with SS [164].  

Chemokines are small secreted proteins implicated in leukocyte chemoattraction, 

angiogenesis, fibrosis and malignancy [13]. Despite their uncontested potential as candidates 

for therapeutic intervention therapies, few studies examined chemokines in SS [155]. The 

chemokines CXCL13, CXCL12 and CCL21 were expressed in acinar and ductal epithelium 
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cells from patients with pSS and sSS [165]. However, in NOD mice injection of anti-CXCL12 

antibodies was effective in preventing diabetes and insulitis, but did not affect the SS-like 

disease [166].  

Generation of the patient’s individual cytokine and chemokine profile, using a bead-based 

multiplex immunoassay, revealed biomarker signatures in serum potentially indicating the 

presence or absence of GC-like structures in the salivary glands [155]. Among 25 biomarkers, 

discriminant function analysis identified BAFF, CCL11 and IFN-γ levels to discriminate best 

between patients with and without GC-like structure formation [155]. 

B-cells 

Phenotypical analyses of B-cells from patients with SS revealed decreased numbers of 

circulating CD27+ memory B-cells [167, 168], which selectively overexpressed CXCR3 and 

CXCR4 [169]. In contrast, the fraction of CD27+ memory B-cells within the glands was 

enlarged [168]. Extensive analyses of mature B-cell subsets (Bm1-Bm5) in blood further 

showed altered proportions of most mature B-cell subsets in pSS compared to healthy donors 

and patients with RA [170].  

The percentage of B-cells expressing mutated V(H) genes was significantly higher in B-cells 

isolated from parotid glands compared to B-cells in circulation [171]. Furthermore, V(L) gene 

analysis of B-cells isolated from the glands revealed biased usage of V(L) chain genes [172]. 

However, if these alterations result from disturbed B-cell maturation and abnormal selection 

processes or if the biased repertoire reflects a normal antigen-driven local immune response is 

unclear. Polyclonal B-cell activation may develop into an oligo- or monoclonal B-cell 

expansion during disease progression. Such expansion may provide a basis for the initiation 

of a malignant lymphoproliferative disease [173, 174]. 

B-cell activating factor  

BAFF, a relatively new member of the TNF superfamily, is regulated by IFN-γ and has 

received considerable attention in the field of SS after it was reported that mice transgenic for 

BAFF develop a secondary pathology reminiscent of SS [175]. Closer investigation of the 

BAFF system in the field of B-cell biology demonstrated the need of an obligate survival 

signal for both, maturing and fully differentiated B-cells [11]. Taken together, BAFF is 

suggested to lower the threshold required for B-cell survival what may allow autoreactive B-

cells to escape from apoptosis and to exhibit their autoimmune potential [11]. 
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In patients with SS, elevated levels of circulating BAFF were reported to correlate with 

increased autoantibody titers [176]. Increased BAFF expression was furthermore observed 

within salivary glands of patients with SS [177], together with a significantly lower rate of 

apoptosis among the BAFF expressing cells [178]. BAFF levels were also increased after the 

discontinuation of an anti-CD20 therapy what may promote the reemergence of autoreactive 

B-cells [179]. Counteracting the BAFF triggered repopulation of the periphery with 

pathogenic autoreactive B-cells may therefore further improve the success of B-cell depletion 

in SS [97]. 

Autoantibodies in Sjögren’s syndrome 

Patients with pSS often present increased levels of polyclonal IgG in the serum [74]. 

Augmented production of IgM and IgG compared to IgA was further detected within labial 

salivary glands from patients with SS [180]. Autoantibodies specific for Ro (SSA) and La 

(SSB) are associated with SS and of major importance in SS diagnosis and patient 

classification [47]. 60-80% of the patients present anti-Ro and 40-60% anti-La antibodies in 

the serum [74]. Studies have shown that reciprocal spreading to the Ro52, Ro60 and La 

polypeptides occurs following immunization with a single component [181, 182]. 

Intermolecular epitope spreading suggests little tolerance to Ro and La in the B-cell and the 

T-cell compartment [183, 184]. Even though the role of Ro and La in the pathogenesis of SS 

is still elusive, recent research efforts reanimated the discussion, if Ro52 might directly 

contribute to the induction of autoimmune T- and B-cells in SS [185]. In addition, 

immunization of Balb/c mice with specific Ro peptides recapitulated the serological pattern, 

pathological findings and salivary gland dysfunction of SS [186]. 

Rheumatoid factor (RF) is produced in approximately 60% of the patients [187], whereas 

anti-cyclic citrullinated peptide (CCP) antibodies are rarely found in patients with SS [188]. 

Other antibodies found in patients with SS are anti-α-fodrin [189, 190] and anti-phospholipid 

antibodies [191]. The latter antibody could not be associated with any of the typical clinical 

manifestations of SS [192] and anti-α-fodrin autoantibodies are a controversial issue, since 

the original findings were difficult to verify [193]. 

Despite sizable research especially on anti-Ro and anti-La, the role of autoantibodies in the 

pathogenesis of SS remains ambiguous. Additional research efforts are necessary to reveal, if 

autoantibodies may be more than just bystanders of a T-cell mediated autoimmune disease as 

it has been proposed initially. Research initiatives, which identified autoantibodies inhibiting 
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neuronal innervation of acinar cells in the process of saliva secretion, are considered a major 

advance and these studies assigned for the first time a specific pathogenic role to an 

autoantibody in SS [194, 195]. 

Mechanisms mediating salivary gland dysfunction 

The original model to explain impaired salivary secretion in SS suggested the loss of 

glandular epithelial cells, secondary to apoptosis and T-cell mediated cell death, as the main 

reason for hyposalivation [196]. However, the frequently observed lack of correlation 

between the amount of destroyed glandular tissue and the often disproportional decrease in 

salivary flow [197] is difficult to fit into this model. In addition, glandular tissue from SS 

patients retains a certain functionality when tested in vitro [198]. Subsequent studies 

investigated immune-mediated mechanisms, which could cause chronic inhibition of the 

secretory function prior to glandular destruction and atrophy (Figure 5). A model of SS 

pathogenesis comprising mechanisms of glandular dysfunction [76] is further supported by 

the observation that certain mouse strains retain full secretory function despite severe 

glandular inflammation [199].  

Acinar cell innervation and humoral immunity 

The secretion of water and electrolytes from acinar cells is directly induced by acetylcholine 

and substance P released by the innervating parasympathic nerve ends [200]. In the salivary 

glands M1R and M3R are the predominant acetylcholine receptor subtypes, whereas M3 is 

predominant in the lacrimal glands [201]. Moreover, experiments in knockout mice revealed 

the crucial role of the M3R in the process of saliva secretion [202]. 

NOD Igµnull mice lack functional B-cells and despite the focal appearance of T-cells in the 

salivary glands NOD Igµnull mice failed to develop hyposalivation [194]. Reversible induction 

of hyposalivation through serum transfer from old NOD mice and IgG fractions from SS 

patients in these mice [194] further supports the notion of a contribution of serum components 

to the pathogenesis of SS. Functional analyses demonstrated that IgG fractions from patients 

with pSS reduced the carbachol-evoked increase in Ca2+ in murine and human acinar cells 

[195]. Due to the laborious method, however, both tests described above may be inadequate to 

screen large patient cohorts. The use of M3R tranfectants in combination with flow cytometry 

[203] or the application of newly developed enzyme-linked immunosorbant assays (ELISAs) 
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[204], may represent an alternative to further investigate the role and diagnostic value of anti-

M3R antibodies in SS.  

 
Figure 5) Proposed mechanisms mediating glandular destruction and dysfunction in SS. (1) 
Altered apoptosis of glandular epithelial cells. (2) Antibodies targeting the M3R may directly 
be related to impairment of the salivary glands by inhibiting neuronal innervation of acinar 
cells. (3) Aquaporins (AQPs) are suggested to play a major role in water transport through 
cell membranes. AQP-1 expression was decreased in myoepithelial cell from patients with SS. 
(4) AQP-5 expression may be decreased in acinar cells from patients with SS. Figure adapted 
from N. Delaleu et al. [73]. 

Acetylcholine ligation to M3R has also been shown to protect cells from apoptosis in vitro 

[205]. Inhibition of anti-apoptotic effects mediated trough M3R signaling could potentially 

link functional quiescence with cellular destruction. In addition, it should be taken into 

account that mononuclear cells express muscarinic receptors, secrete acetylcholine and 

encode the synthesizing choline acetyltransferase and the degrading acetylcholine esterase 

[30].  
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Aquaporins 

Aquaporins (AQP) are transmembrane proteins, which form channels in the cell membrane 

and increase the water permeability of the lipid bi-layer by up to 100 fold [206]. Different 

isoforms exist and show specific cellular and subcellular distributions in salivary and lacrimal 

glands. AQP-5 is located in the apical membrane of acinar cells, AQP-3 is present within the 

basal membrane of acinar cells and AQP-1 is expressed on myoepithelial cells [207]. 

Monoclonal anti-M3R antibodies had the potential to prevent translocation of AQPs to the 

plasma membrane [208]. Since then, AQPs have been suspected to contribute to the loss of 

exocrine gland secretory function in SS. Mice deficient of AQP-5 exhibit an approximate 

decrease of 65% in salivary secretion capacity compared to wild-type mice [209]. However, 

analysis of AQP-5 distribution within the glandular tissue from SS patients showed 

controversial results [210, 211]. AQP-1 expression was decreased by 38% in salivary glands 

of patients with SS suggesting a possible insufficient AQP-1 dependent water flow across 

myoepithelial cells [212].  

Inflammatory mediators 

Cytokines such as IL-1β may disturb the process of saliva secretion by inhibiting the release 

of acetylcholine from cholinergic nerves [213, 214]. Evidence against interferences of such 

kind was, however, presented recently. The study showed no relation between concanavalin 

A-induced cytokine production and acetylcholine evoked Ca2+ mobilization [215].  
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Model organisms in Sjögren’s syndrome research 

A model organism is a species, which can be studied extensively to explain a biological 

phenomenon observed in another species. One thereby anticipates that discoveries made in the 

model organism can provide information about the organism of primary interest. Model 

organisms are chosen based for several traits such as genetic background, possibilities for 

experimental and genetic manipulation, size, generation time, accessibility and potential 

economical benefit. In immunological research, the classical model vertebrate, the mouse, is 

the most widely studied.  

The use of murine models in SS research allows to follow the progression of the disease in a 

controlled environment [199]. Genetically altered strains enable the close investigation of a 

specific protein, a certain cell type or a certain mechanism and how it may contribute to the 

aspects of the disease. Furthermore, studying potential treatments regarding their capacity to 

modulate SS may lead to better therapies in the future.  

Ideally, a model for SS should present a high disease penetrance rate and exhibit clinical, 

histopathological and immunological features of the human disease. 

Spontaneous models of Sjögren’s syndrome 

Mouse strains which naturally develop an autoimmune condition resembling SS were first 

described in 1968 [216]. Subsequently, numerous studies confirmed the existence of focal 

inflammation within the lacrimal and salivary glands from strains traditionally studied for 

SLE. These include NZB, NZB/NZW [216] and the MRL mouse with its substrains [217]. 

Later a SS-like disease has also been described in NOD mice [218], NFS/sld mice [219] and 

IQI/Jic mice [220]. The fact that these models develop SS spontaneously mimics the complex 

situation found in patients. However, such complexity is challenging and may often hinder the 

formulation of clear-cut answers regarding the contribution of a single process. Nevertheless, 

the overall functioning principles cannot easily be predicted by studying the properties of its 

isolated components because they may strongly rely on each other or arise from the 

interaction of numerous constituents. 

NZB and NZB/NZW F1 mice 

In NZB/NZW F1 mice, glandular inflammation is more pronounced in females compared to 

males, whereas this phenomenon is generally less apparent in NZB mice [216, 221]. These 
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reports established the NZB/NZW F1 mouse as a model of progressive focal sialoadenitis 

[222, 223], in which, however, glandular function and the presence of SS related 

autoantibodies have not yet been explored.  

MRL/+ and MRL/lpr mice 

In 1982 MRL mice were first reported to present periductal lymphoid infiltrates in the 

salivary glands [224]. Subsequently, a system to quantify the inflammation in the salivary 

glands was introduced [225]. Like in humans, aberrant antigen presentation by glandular 

ductal epithelium in close proximity to lymphoid infiltrates is thought to perpetuate activation 

of CD4+ T-cells. MRL/+ and MRL/lpr mice differ with respect to a mutation involving the 

Fas gene [226]. However, negative selection in thymus does not seem to be impaired [227] 

and despite a defective genetic background, MRL/lpr mice express a detectable amount of 

apoptosis-related Fas protein on lymphoid cells [228]. Nevertheless, defective apoptosis 

related to the /lpr mutation [228] resulted in increased susceptibility and severity of the 

disease, most likely through acceleration of the disease course.  

Immunohistochemical analyses suggested local activation of T-cells [225, 229] and their 

importance was further confirmed in T-cell transfer experiments [230]. Inflammatory lesions 

in autoimmune MRL/lpr mice are sites of local IFN-γ production [229] and B-cells produced 

IgA and IgM RF in salivary glands [231].  

A differentiated, age-related pattern of cytokines has been suggested to influence the 

development and progression of the autoimmune sialoadenitis in MRL/lpr mice. IL-1β and 

TNF gene transcripts were detected in the salivary glands before the onset of sialoadenitis, 

whereas IL-6 mRNA expression was detected at the time of onset [232]. Furthermore, 

perpetuation of autoimmune sialoadenitis in MRL/lpr mice was described in conjunction with 

low expression of TGF-β and IL-10 [233]. 

Nevertheless, despite female predominance and the rare occurrence of anti-Ro, the clinical 

hallmark of SS, hyposalivation, is absent in this model. 

NFS/sld mice 

The NFS/sld mouse provides a model for pSS, in which aberrant immune responses against α-

fodrin are facilitated [219]. A defect in salivary gland development leads to the cleavage of 

the structural protein fodrin by caspase. Subsequent to neonatal thymectomy, 3d-Tx NFS/sld 
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mice develop T-cell dominated infiltrates in the salivary and lacrimal glands. Sera from 

patients with SS were suggested to contain antibodies specific for fodrin 125kDa [189], 

however, the specificity of these autoantibodies for SS was not as high as originally thought 

[193]. In addition, secondary to the SS-like disease, 3d-Tx NFS/sld mice developed severe 

autoimmune lesions involving arthritis and interstitial pneumonia, as they aged [234]. 

IQI/Jic mice 

Moreover, IQI/Jic mice have been suggested as an animal model for SS [220]. Focal 

infiltration of lymphocytes with parenchymal destruction was noted in the lacrimal and 

salivary glands. Sialoadenitis progressed over time and seemed more prominent in females 

than in males. IQI/Jic mice also developed inflammatory lesions in multiple organs, such as 

the lungs, pancreas and kidney [235]. Kallikrein-13 (Klk-13) has recently been suggested to 

play a role as an autoantigen in the disease development in IQI/Jic mice [236]. 

Non-obese diabetic mice  

The NOD strain descends from a cataract-prone strain of outbred Jcl:ICR mice and is 

considered the best characterized model for SS and IDDM. Although some genetic loci 

related to diabetes (idd-loci) may contribute to the inflammatory changes in the exocrine 

glands, it seems that diabetes and SS develop independently from each other [237]. Diabetes 

in NOD mice is restricted to the expression of MHC I-Ag7, whereas NOD.B10.H2b mice, 

which are resistant against diabetes, still exhibit sialoadenitis and hyposalivation [238]. 

Nevertheless, these mice still presented perivascular inflammatory infiltrates and in some 

cases insulitis [239]. In addition, the extent and cellular composition of the glandular 

inflammation still remains to be explored.  

NOD mice in which the MHC H2g7 haplotype was exchanged for an H2q or H2p haplotype 

were also investigated [240]. In summary, the exchange of the H2 haplotype did not affect the 

frequency of sialoadenitis, although disease severity varied among the strains. In contrast, the 

development of insulitis was almost completely inhibited [240]. Interestingly, introduction of 

the H2q haplotype directed the autoimmune response towards production of lupus-types of 

autoantibodies and a higher incidence of kidney involvement. The latter phenomenon was 

also reported in relation with immunomodulatory treatments, capable of preventing diabetes 

in NOD mice [241]. 
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Nonetheless, the parental NOD strain remains the best characterized model for SS and 

represents a complex model involving genetics, sensitivity to exogenous factors and defects in 

central and peripheral tolerance [242]. The extensive general and diabetes related knowledge 

about the immune system of the NOD mouse might benefit SS-related research in the future. 

Intrinsic alteration in immune tolerance may further contribute to the reported susceptibility 

of the strain to develop autoimmune thyroiditis [243], SLE [241], myasthenia gravis [244] and 

autoimmune encephalomyelitis [242] as a result of specific manipulations. 

Focal lymphoid infiltration in the submandibular salivary glands can be observed from 

approximately 8 weeks of age onwards and they are similar in structure and cellular 

composition as the infiltrates in humans [199]. In NOD mice, alike in humans, chronological 

order of glandular inflammation, glandular dysfunction and glandular destruction, and the 

relation between histopathological manifestations and hyposalivation, still remain matters of 

speculation.  

In diabetes, several lines of evidence indicate that progression from early insulitis to overt 

diabetes is promoted by the loss of immunoregulatory cells, such as Tregs and invariant NK T-

cells within the islets [43]. Unfortunately, little is known about the role of such cells in the 

progression of SS. However, NOD mice deficient for E2F transcription factor 1 (E2f1), a 

regulator of T-cell proliferation, differentiation, and apoptosis, have a profound decrease in 

CD4+CD25+ Tregs and seem highly predisposed to IDDM and SS [245].  

Another possible link between SS and IDDM in NOD mice may involve common 

autoantigens. Disruption of the islet cell autoantigen 69kDa (ICA69) gene in NOD mice, a 

self-antigen associated with diabetes, which is expressed in the pancreas, but also in the 

exocrine glands, greatly reduced SS-related histopathology and glandular hypofunction [246]. 

T- and B-cell autoreactivity to ICA69 was detected in patients with pSS. In addition, 

immunotherapy, using a high-affinity peptide targeting ICA69-specific T-cells, reduced overt 

SS in wild-type NOD mice. However, a study based on a larger cohort of patients failed to 

confirm a role or true frequency of ICA69 autoimmunity in human SS [247]. 

In contrast to diabetes, experiments in NOD Igµnull mice revealed no crucial role for B-cells in 

the initiation phase of SS. Instead, the lack of functional B-cells circumvents the onset of 

hyposalivation in these mice [194]. Similar to SS in humans, AQP-5 may contribute to the 

reduced saliva secretion observed in NOD mice [248]. 
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Protection from IDDM in NOD mice has been associated with a shift from a TH1 to a TH2 

cytokine expression profile in β-cell specific autoreactive T-cells, which were observed as a 

result of appropriate treatment or genetic modification [43]. Subsequent studies indicated, 

however, that compartmentalization into disease promoting TH1 and protective TH2 cytokines 

may represent an oversimplification, which cannot always be applied to the pathogenesis of 

IDDM [249].  

Cytokines in the exocrine glands in NOD mice have been analyzed [250, 251] and local 

expression of IL-10 and IL-12 mRNA during the disease was reported. In addition, the 

presence of IL-1β, IL-2, IFN-γ and TNF-α was reported and IL-10 mRNA expression was 

associated with detectable expression of IL-2 and IFN-γ [250, 251]. The roles of TH1 and TH2 

cytokines in the pathogenesis of SS were assessed in NOD IL-4-/-[161], NOD.B10-H2b IL4-/- 

[160], NOD.B10-H2(b).C STAT6-/- [162], NOD IFN-γ-/- and NOD IFN-γ R-/- [163] mice. IL-

4-/- alike STAT6-/- deficient NOD mice retained salivary secretion rates similar to Balb/c mice 

and failed to produce M3R antibodies of the IgG1 isotype, despite the development of 

sialoadenitis [160, 162]. NOD IFN-γ-/- and NOD IFN-γ R-/- mice did not develop 

inflammation in the salivary glands and retained normal salivary secretion capacity, while the 

inflammation within the lacrimal glands persisted [163]. Interestingly, the strains defective for 

IFN-γ or IFN-γ R did no longer exhibit the alterations in glandular organogenesis, which were 

reported in the parental strain [163]. 

Congenic mice, in which NOD specific genetic loci were introduced on either a B6 [237] or a 

B10 [117] background, were generated to investigate the importance of specific gene regions 

in SS. Both strains were extensively analyzed regarding changes in gene expression [117, 

118]. Especially the C57BL/6.NOD-Aec1Aec2 strain may represent a valuable mouse model 

for SS [118, 164, 237, 252]. Nevertheless, the background strain C57BL/6 develops 

spontaneous organ-specific autoimmune lesions in the salivary glands and multiple other 

organs and produces a wide variety of autoantibodies [253]. These phenomena render it more 

difficult to draw conclusions regarding disease causing and disease promoting gene segments. 

Similar accounts for B10 mice, which, independently from genetic manipulation, 

spontaneously develop sialoadenitis [117]. Unfortunately this latter model has not yet been 

assessed for salivary gland hypofunction [117]. 
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Transgenic and knock-out models of Sjögren’s syndrome 

Cytokines 

By promoting growth and effectiveness of Tregs, IL-2 plays a crucial role in the maintenance 

of immunological self-tolerance. Inhibition of circulating IL-2 led to the aggravation of 

diverse autoimmune manifestations in NOD mice [243]. IL-2 and IL-2Rα deficient C57BL/6 

mice develop sialoadenitis, hyposalivation and histopathological manifestations related to 

other autoimmune diseases [254]. In conclusion, the impact of IL-2 indicates that in 

conditions with decreased regulatory cell populations the salivary glands are prone to exhibit 

autoimmune manifestations.  

C57BL/6 mice transgenic for IL-10 exhibit progressive histopathology and hyposalivation 

evocative of SS [255]. However, IL-10 gene transfer into NOD mice partially suppressed the 

appearance of SS-like features [256], what indicates a dual role of IL-10 in SS.  

Two research groups developed mice transgenic for BAFF, of which one has been assessed 

for SS pathogenesis. Both strains showed severe autoimmune manifestations resembling SLE 

including circulating immune complexes, anti-DNA antibodies, and immunoglobulin 

deposition in the kidneys [257, 258]. The strain investigated for SS presented lymphoid 

infiltrates in the salivary glands together with an approximate 70% decrease in salivary 

secretion capacity [175]. Major proportions of the infiltrating cells were classified as B-cells 

displaying a marginal zone (MZ)-like phenotype, which appeared to be crucial for the 

development of the SS-like disease in this strain [259]. Smaller populations were classified as 

B-1 cells [175]. Disruption of the TNF-α gene in BAFF transgenic mice revealed a crucial 

role of the anti-tumor activity of TNF-α in this model [260]. 

A resent study investigated the role of IL-14α, in the pathogenesis of SS [261]. IL-

14α overexpression in C57BL/6 mice was accompanied by increased numbers of B-1 cells, 

followed by sialoadenitis and the development of CD5+ B-cell lymphoma. Unfortunately, 

salivary gland function was not evaluated and SS related antibodies were not found. In 

addition to SS-like features, IL-14α transgenic mice exhibit immune-complex mediated 

nephritis [261].  

TGF-ß1 is a multifunctional molecule, which has regulatory effects on many developmental, 

physiological and immunological processes. Animals homozygous for the mutated TGF-ß1 

allele present a syndrome marked by mixed inflammatory cell responses and tissue necrosis 
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leading to organ failure and death [262]. The syndrome also includes inflammation of the 

exocrine glands, in about 50% of the animals. The inflammation could be prevented by 

systemic injections of synthetic fibronectin peptides and subsequent reversal of the acinar and 

ductal alterations suggest that salivary gland development is not impaired in the absence of 

TGF-β1 [263]. 

Id3-/- knock-out mice 

Id proteins are inhibitors of basic helix-loop-helix transcription factors and act as positive and 

negative regulators of proliferation and differentiation of immune and non-immune cells, both 

in embryonic and developed tissue [264]. The immune system of Id3-/- mice is characterized 

by alteration in humoral immune reactions, MZ B-cell development, B-cell precursor survival 

and both MHC I and MHC II restricted positive and negative selection [265]. Tissues such as 

salivary glands, which undergo epithelial-mesenchymal interactions, seem to have a tendency 

to express Id genes. Id3 is, furthermore, implicated in angiogenesis in normal and tumor tissue 

[264, 266]. In the Id3-/- model, T-cell dominated focal inflammation developed between 6 and 

12 months, together with production of anti-Ro and anti-La. These mice, however, showed 

severe exocrine gland dysfunction at 6 to 18 weeks already, long before the appearance of 

focal mononuclear cell infiltration in the exocrine glands [125]. Nevertheless, the notion that a 

single gene disruption triggers distinct pathological changes, almost exclusively limited to the 

salivary and lacrimal glands, encourages the investigation of possible interrelationships 

between organ development and the initiation of autoimmune diseases. Interestingly, 

depletion of B-cells ameliorated the disease symptoms of SS in these mice [126]. 

Aromatase-deficient mice 

Estrogen is a crucial factor regulating gender differences of the immune system. The reported 

effects of estrogen are, however, contradictory [267, 268]. Whereas neither estrogen receptor-

α nor estrogen receptor-β deficient mice develop SS, another model for estrogen deficiency, 

ArKO mice develop a lymphoproliferative autoimmune disease resembling SS in parallel with 

B-cell infiltration in the kidneys and enlargement of the spleen [122].  

R1Δ/R2n mice 

Mice with a T-cell specific loss of phosphoinositide 3-kinase class IA (PI3K Ia) develop 

inflammation resembling SS in addition to lymphoid infiltration in the lungs, liver and 

intestines [269]. Whereas secretory function was not addressed in detail, the authors reported 
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decreased Tregs in the periphery and increased anti-Ro and anti-La antibodies as a result of the 

genetic modification.  

Models of experimentally induced Sjögren’s syndrome 

Carbonic anhydrase 

Patients with autoimmune diseases including patients with SS may produce autoantibodies 

against carbonic anhydrase II (CAII) [270]. Indeed, experimental sialoadenitis was induced 

through CAII immunization in PL/J mice [271]. PL/J mice with different H-2 haplotypes, 

bearing H-2s and H-2u, were also susceptible to CAII-induced sialoadenitis [271]. However, 

further studies are required to be able to estimate the resemblance of this model with SS in 

humans. 

Ro peptide 

Repeated intraperitoneal injection of Ro peptides emulsified in complete Freund’s adjuvant 

(CFA) and incomplete Freund’s adjuvant (IFA) recapitulated SS in Balb/c mice [186]. These 

mice showed decreased salivary gland function, SS-like histopathology and production of 

anti-Ro and anti-La at 38 weeks of age [186]. Oral feeding of Ro or Ro peptide could, in 

addition, partly prevent the induction of the SS-like disease through the immunization 

protocol described above [45]. These findings reanimate the discussion, whether 

autoreactivity towards Ro, due to molecular mimicry or aberrant expression, may play a role 

in the etiology of SS.  

Murine cytomegalovirus  

To elaborate a possible viral etiology of SS, four different murine strains (B6, Fas-deficient 

B6-lpr/lpr, B6-tnfr1-/-, and B6-tnfr1-/--lpr/lpr) were infected intraperitoneally with murine 

cytomegalovirus (MCMV) [272]. Beside sialoadenitis, B6-lpr/lpr mice, developed anti-Ro 

and anti-La antibodies. Apoptotic cells were detected during the acute, but not during the 

chronic phase of the inflammation. Both Fas- and TNF RI-mediated apoptosis seemed to 

contribute to the clearance of MCMV infected cells in salivary glands. Indeed, such defects 

may lead to a post-infectious, chronic inflammation resembling the histopathology of SS. In a 

subsequent study, FasL mutant B6-gld/gld mice were infected with MCMV to evaluate the 

therapeutic value of FasL expression by local gene transfer using recombinant adenoviral 

vectors [273]. Despite high levels of FasL expression after injection of recombinant vectors, 
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less than 5% of ductal and acinar cells were TdT-mediated dUTP-biotin nick end labeling 

(TUNEL) positive. Nevertheless, a significant reduction in the number of inflammatory foci 

and tissue destruction in salivary glands was observed as a result of local FasL gene transfer 

[273]. 

 
None of this makes sense; Illustration by Sam Brown (www.explodingdog.com) 
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Aim of the studies 

Paper I 

The aim of the study was to characterize the chronology of the disease course of SS in NOD 

mice and to study possible interrelationships between salivary gland inflammation and 

hyposalivation. In addition, ten cytokines were analyzed in saliva and serum to identify 

alterations in cytokine patters associated with a specific disease stage.  

Paper II 

The aim of the study was to expand the knowledge regarding 87 analytes in serum and 75 

proteins in saliva. Based on direct comparison with Balb/c mice we intended to identify 

differentially expressed proteins and investigate their potential to discriminate between the 

disease model and the control strain. This pool of data should also allow computation of a 

correlation network, representing associations of biomarkers with relevant clinical features of 

SS in non-diabetic NOD mice, both systemically and locally.  

Paper III 

The aim of the study was to investigate a potential immunomodulatory effect of Hsp60 and 

aa437-460 on spontaneous experimental SS. Comprehensive biomarker profiles were 

generated to identify biomarker signatures related to the treatment, treatment efficacy and 

exocrine function. 
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Material and Methods 

Mice (Paper I-III) 

Animals studied in Paper I, female NOD and Balb/c mice, were purchased from Taconic 

(Bomholtgård, Denmark). The animals were maintained under standard animal-housing 

conditions at the Section for Physiology, Department of Biomedicine, University of Bergen, 

Norway. In Paper II & III, female NOD/LtJ (stock #001976) and Balb/cJ (stock #000651) 

mice (The Jackson Laboratory, Bar Harbor, ME, USA) were housed in sterilized individually 

ventilated cages at the same animal facility alluded to above. Mice were fed with autoclaved 

RM1 pellets, (Special Diet Service, Witham, UK). All handling procedures were carried out 

in a laminar flow hood. All studies have been approved by the Committee for research on 

animals/Forsøksdyrutvalget, Project #79-04/BBB and Project #12-05/BBB, respectively.  

Immunization (Paper II & III) 

In Paper II, at 7 weeks of age, 22 NOD mice and 20 Balb/c mice were injected 

subcutaneously with 25 µl IFA emulsified in PBS. In Paper III, additional 32 female NOD 

mice (16/group) were immunized subcutaneously with 50 µl of one of the following agents 

emulsified 1:1 in IFA: 50 µg low-endotoxin (< 0.05 endotoxin units/µg) human recombinant 

Hsp60 (#ESP-540G; Stressgen, Ann Arbor, MI, USA) [274] or 100 µg of aa437-460 

(VLGGGVALLRVIPALDSLTPANED) synthesized using 9H-fluoren-9-ylmethoxycarbonyl 

based solid-phase peptide synthesis (Fmoc SPPS) at Invitrogen (Carlsbad, CA, USA). The 

peptide was purified using high-performance liquid chromatography (HPLC) to ensure > 95% 

purity.  

Assessment of diabetes (Paper I-III) 

In Paper I, serum glucose levels were measured the day of euthanasia using Reflotron Plus 

Glucose test kit (Roche Diagnostics, Laval, Quebec, Canada). In Paper II & III, from 10 

weeks onwards NOD mice were screened weekly for diabetes. Two repetitive measurements 

of glucosuria (Figure 6) (> 50 mg/dl; Keto-Diabur-Test strips, Roche, Mannheim; Germany) 

were considered to represent onset of diabetes and confirmed by measurement of blood 

glucose levels (> 300 mg/dl; Ascensia microfill, Bayer healthcare, Mishawaka, IN, USA). At 

week 20 and 21, all mice were screened for hyperglycemia. 
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Figure 6) Urine collection for the screening for glucosuria in mice. The procedure is carried 
out in a laminar flow hood. 

Measuring salivary secretion capacity (Paper I-III) 

Mice were fasted for a minimum of 2 hours, but given water ad libitum and anesthetized with 

an intramuscular injection of ketamine/medetomidine (0.01 ml/g bodyweight). In Paper I, 

after stimulation of secretion by pilocarpine (#P6503; Sigma, St. Louis, MO, USA) in saline 

(0.5 µg/g bodyweight) administered via the femoral artery, saliva was collected with capillary 

tubes for 10 minutes, and the volume was determined. The samples were stored at -80°C until 

analyzed. In Paper II & III, salivary secretion was induced by intraperitoneal injection of 0.5 

µg pilocarpine per gram bodyweight (#P6503; Sigma) and collected during 10 minutes 

(Figure 7). Pre-weighted tubes were weighted again after collection to determine the amount 

of saliva (1 µg = 1 µl). Protease inhibitor cocktail (#P8340; Sigma) was added at a 

concentration of 1:500 and samples were kept at -80°C until analysis. 
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Figure 7) Saliva collection and measurement of the salivary flow rate in anesthetized mice 
subsequent to the intraperitoneal injection of pilocarpine.  

Blood sampling and organ collection (Paper I-III) 

Blood was collected from the saphenous vein from non-anesthetized mice and by heart 

puncture on the day of euthanasia. The blood was allowed to clot and centrifuged at 800 g to 

obtain serum. In Paper I, submandibular and sublingual salivary glands were surgically 

removed, snap-frozen in isopentane by liquid nitrogen and stored at -80°C. In Paper II & III, 

organs were fixed in 4% formalin before embedding in paraffin, sectioning and staining with 

haematoxylin and eosin (H&E). Sections obtained from the kidneys were also stained using 

the periodic acid-Schiff (PAS) staining technique. 

Histopathology and quantification of inflammation (Paper I-III) 

Histopathological evaluations in Paper I are based on frozen tissue and in Paper II & III on 

paraffin embedded tissue. H&E staining was carried out to determine the degree of 

inflammation. In Paper I, submandibular and sublingual salivary glands were snap-frozen in 

isopentane by liquid nitrogen, and stored at -80°C. Five µm thick sections were cut using a 

cryostat (Leica Instruments, Nussloch, Germany) and placed onto SuperFrost Plus glass slides 

(Menzel, Braunschweig, Germany). Salivary gland sections were evaluated and analyzed 
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using a Leica DMLB light microscope connected to a ColorView III-camera and AnalySIS 

software (Soft Imaging System GmbH, Munster, Germany), to determine the focus score (FS; 

number of foci of 50 or more mononuclear cells/mm2 of glandular tissue), and the ratio index 

(RI; area of inflammation/area of glandular tissue). In Paper II & III, FS and RI were 

determined as followed: three independent H&E stained sections of each salivary gland were 

qualitatively evaluated; the section displaying the highest degree of inflammation was 

recorded as a multiple image composite, displaying the whole surface of the gland (80x 

magnification); total glandular area and the individual size of each focus were 

morphometrically analyzed (Lucia, Laboratory Imaging, Hostivař, Praha). To determine the 

insulitis score (IS), at least five H&E stained tissue sections of the pancreas were analyzed in 

a blindly fashion. On average, 32 islets (Paper I) and 46 islets (Paper II) per mouse were 

evaluated in a blinded manner and scored as described by E.H. Leiter [275]. Sections of the 

kidneys, thyroid gland, thymus, heart, lungs, liver, stomach, small and large intestine, 

appendix and the skin were also stained with H&E. 

Immunohistochemistry (Paper I) 

Immunostaining was performed by the AvidinBiotinComplex using the following antibodies: 

for T-cells (CD4), rat IgG2b,k, clone GK1.5 (R&D Systems, Abingdon, UK); for B-cells 

(B220), rat IgG2b, clone RA3-6B2 (R&D Systems); for proliferating cells (Ki-67) rat IgG2a, 

clone TEC-3; and for follicular DCs (FDC), rat IgG2c, clone FDC-M1 (BD Biosciences, San 

Jose, CA, USA). Briefly, following fixation in cold acetone, endogenous peroxidase 

(Blocking kit) and biotin were blocked (Avidin D and Biotin blocking solution, Vector 

Laboratories, Burlingame, CA, USA). Non-specific binding was inhibited by normal rabbit 

serum. Diaminobenzidine was used as chromogen. Unless otherwise specified, all reagents 

were purchased from DAKO (Glostrup, Denmark). 

Multiple analyte profiles (Paper I-III) 

In Paper I, serum and saliva samples obtained from the mice were analyzed using a bead-

based multiplex sandwich immunofluorescence assay (#LMC0001; BioSource, Nivelles, 

Belgium), as recommended by the manufacturer, measured on a Luminex 100 system 

(Luminex Corporation, Austin, TX) and analyzed using StarStation software (Applied 

Cytometry Systems, Dinnington, Sheffield, UK). 
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In Paper II & III, a similar bead-based multiplex assay (Figure 8) was applied to generate 

multi-analyte profiles (MAPs) from serum and saliva from the 12 non-diabetic NOD and 12 

Balb/c mice comprising 82 analytes for serum and 75 for saliva. MAPs were generated for 

every individual non-diabetic NOD mouse assessed for SS (n = 36) and 12 Balb/c, which 

were randomly selected from the original cohort of 20 PBS/IFA injected Balb/c mice. Results 

were obtained using a multiplex sandwich immunofluorescence assay based on color-coded 

and antibody coated beads, carried out at Rules Based Medicine Inc. (Austin, TX, USA). 

Using an automated system for liquid handling, each sample was introduced into the capture 

microsphere multiplex of the MAP. After incubation, multiplexed cocktails of biotinylated, 

reporter antibodies were added, developed with a streptavidin-phycoerythrin solution and 

analyzed using a Luminex 100 instrument (Luminex Corporation). For each multiplex, 8-

point calibrators and 3-level controls were included. Antibodies used in the MAP to recognize 

and quantify the specific autoantibodies were directed against all Ig isotypes. 

 
Figure 8) Bead-based multiplex immunoassay A) The combination of two unique dye 
intensities allows the labeling of up to 100 sets of color-coded microspheres each possessing 
a unique spectral signature. Each color-class of beads is subsequently labeled with capture 
antibodies. Subsequent to a classical sandwich immuno-assay procedure, a Luminex analyzer 
is used to measure the quantity of each analyte included in the assay. Fluidics based on the 
principle of flow cytometry cause the stream of suspended microspheres to line up in a single 
file prior to passing the detection chamber. One laser classifies the microparticle and 
determines the analyte that is being detected and the second laser determines the magnitude 
of the streptavidin-phycoerythrin-derived signal, which is in direct proportion to the amount 
of bound analyte. Figure adapted from www.rndsystems.com. 

Quantification of anti-M3R antibodies (Paper II & III) 

Levels of anti-M3R autoantibodies were measured as described previously [160]. In brief, 

aliquots of 2 x 105 Chinese hamster ovary cells, transfected with pcDNA5/FRT/V5-His 

MsM3R-Flp-In cells, were incubated for 1.5 hours at 4°C with 10 µl of serum before 
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incubation with one of the following FITC-conjugated goat anti-mouse detection antibodies 

purchased from Southern Biotech (Birmingham, AL, USA) diluted 1:50: isotype control, goat 

IgG (#0110-02); IgG H+L (#1031-02); IgG1 F(ab’)2, (#1072-02); IgG2b F(ab’)2 (#1092-02); 

IgG2c F(ab’)2 (#1079-02) and IgG3 F(ab’)2, (#1102-02). The cells were analyzed using a 

FACSCalibur flow cytometer using Cell Quest software (BD Biosciences) and FlowJo (Tree 

star Inc., Ashland, OR, USA). 

Statistical analyses 

Paper I: Data were analyzed using one-way analysis of variance followed by the Bonferroni 

posttest for selected groups (modified unpaired Student’s 2-tailed t-test for multiple group 

comparisons). To normalize skewed distributions and improve the homogeneity of variance, 

cytokine data were log-transformed prior to all statistical analyses. To determine the linear 

relationship between 2 variables, values were compared using Pearson’s correlation test (2-

tailed). Correlation analyses were restricted to NOD mice and data sets in which a scientific 

reason for a causal connection was given. P values less than 0.05 were considered significant. 

Statistical analyses were performed using GraphPad Prism 4.0 software (GraphPad Software 

Inc., San Diego, CA, USA).  

Paper II: Means were compared using independent Student’s t-test (2-tailed). Bivariate linear 

associations, used to generate the correlation matrices, were computed using 2-tailed Pearson 

correlation (r). Strain-membership prediction was assessed by discriminant analyses (DA) and 

subsequent cross-validated (leave-one-out) group prediction. The quality of the DA function 

is expressed by its canonical correlation (R*).  

Principal component analyses (PCA) were computed from MAPs obtained from NOD mice 

with the purpose to uncover the latent structure within protein families. Protein family 

membership was defined based on the Protein ANalysis THrough Evolutionary Relationships 

(PANTHER) classification system (http://www.pantherdb.org). PCA seeks a linear 

combination of variables so that the maximum variance is extracted from the variables. It then 

removes this variance and seeks a second linear combination and so forth. Loadings above 0.6 

were considered as defining parts of the component. For proper model specification, variables 

being either differently expressed between the two strains (P < 0.05) and/or significantly 

correlated (r > 0.6; P < 0.05) with one of the disease parameters were included. As a rotation 

method Varimax was chosen. The number of components was determined by the Kaiser 

criterion (Eigenvalue > 1.0). An explanatory criterion (> 80%) was applied, in addition, for 
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growth factors and cytokines in serum. Variables being the defining parts of a component 

were also combined for DA and entered simultaneously. In serum no data was missing and in 

saliva missing values were excluded pair-wise from all analyses except PCA and DA. All 

analyses were computed using SPSS 13 (SPSS Inc., Chicago, IL, USA). 

Paper III: Means were compared to the specific reference group using 1-way Anova and 

Dunnett’s post-test (2-tail), accounting for multiple group comparison. Due to comparison of 

all pairs, salivary flow means were analyzed using Bonferroni’s posttest. Prior to original and 

cross-validated (leave-one-out) group prediction the discriminant potential of the respective 

variables was computed using DA. Variables were entered simultaneously or in a forward 

stepwise manner, using Wiki’s lamda as the inclusion/exclusion criteria. Relative risk and 

incidences were compared using Fisher’s exact test (2-tail). P values less than 0.05 were 

considered significant. Statistical analyses were computed in SPSS 13 (SPSS Inc.) and Prism 

4.0 (GraphPad Software Inc.). 
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Summary of the results 

Paper I 

NOD mice retained stable salivary secretion during the period of time in which the major 

histopathological changes in the salivary glands took place. The significant decrease in 

salivary secretion capacity occurring between 17 weeks and 24 weeks of age, was, in contrast, 

not accompanied by significant changes in the degree of salivary gland inflammation. T- and 

B-cells marked the chronic inflammatory cell infiltrates within the salivary glands and in one 

third of the mice early signs of ectopic lymphoid organization were observed. Significant 

quantitative changes in IL-2, IL-5, and GM-CSF in serum and in IL-4 and TNF-α in saliva 

occurred within the time period characterized by the onset of hyposalivation. Correlation 

analyses revealed a negative association between salivary secretion and the levels of IL-4, 

IFN-γ and TNF-α in saliva obtained from NOD mice, while correlation between salivary flow 

rates and parameters of glandular inflammation were consistently weak. 

Paper II 

A total of 162 analytes, for which often only scant or no information in SS has been 

published, was analyzed in serum and saliva from NOD and Balb/c mice. The application of 

multiplex technology significantly diminished the sample volume required and enabled the 

investigation of the analytes’ connectivity through correlation networks. At 21 weeks of age 

all NOD mice presented glandular inflammation and impaired salivary secretion. The latter, 

when applied as a discriminant function, classified 100% of the mice according to their strain 

membership, confirming the onset of overt SS in all NOD mice. In addition, subsets of NOD 

mice presented histopathological changes in the kidneys and the lungs reminiscent of SS-

related extraglandular disease manifestations.  

Thirty-eight biomarkers in serum and 34 in saliva obtained from NOD mice were significantly 

different from Balb/c mice, which served as reference strain. Eighteen biomarkers in serum 

and 3 chemokines measured in saliva had the capacity to predict strain membership with 80-

100% accuracy. The extraction of principal components reduced the size of the correlation 

matrix considerably, from 9’604 to 1’994 coefficients. Correlation networks revealed a 

complete lack of original variables or components correlating with salivary flow and either FS 

or RI. This lack was also obvious when analyzing inter-component correlations. In contrast, 
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there were some components associated with either salivary flow or glandular inflammation 

having positive or negative interrelationships with components related to autoantibody levels. 

Among components associated with salivary flow, an antagonistic interplay between cytokine 

Sa-C-3 (associated with decreased salivary flow) and all three components extracted from 

serum (positively associated with salivary flow) became apparent. Components associated 

with FS and/or RI correlated strongly with each other, indicating a process in which cytokine 

Sa-C-2 and CXCL Sa-C-2 opposed acute-phase reactant Sa-C-1 and secreted IgA. In addition, 

cytokine Se-C-2 and coagulation factor Sa-C-2 played a dual role by combining the positively 

associated IL-1α and von Willebrand factor (vWF) with the negatively associated CD40L and 

fibrinogen, respectively.  

Paper III 

Immunizing NOD mice with Hsp60 and aa437-460 at 7 weeks of age significantly reduced 

SS-related histopathology compared to PBS/IFA injected NOD controls. At 21 weeks of age, 

salivary secretion in PBS/IFA injected NOD controls was decreased by 42% compared to 

Balb/c and DA confirmed the onset of hyposalivation in all PBS/IFA injected NOD controls. 

Mean salivary flow was higher in Hsp60 immunized mice and similar in the aa437-460 

injected group. Nevertheless, we observed an obvious dichotomy regarding salivary secretion 

capacity in both treated groups. Evidentially, they could be separated by choosing the highest 

salivary flow rate measured in PBS/IFA injected NOD controls as a threshold. Notably, 

salivary flow rates of mice immunized with Hsp60 or aa437-460 with salivary flow rates 

above the threshold did no longer present impaired salivary secretion compared to Balb/c 

mice. 

Importantly, except salivary secretion capacity, treated mice with retained salivary flow (n = 6 

Hsp60 and n = 4 aa437-460 treated) and treated mice with decreased salivary flow (n = 6 

Hsp60 and n = 8 aa437-460 treated) were very similar with respect to FS, RI and IS. In 

addition, we did not identify significant alterations in the frequency of extraglandular disease 

manifestations in response to the two treatments investigated. Both treatments induced similar 

changes in biomarker profiles. Notably, circulating inducible protein-10 (IP-10) and eotaxin 

decreased significantly as a consequence of the treatment. In contrast, anti-M3R IgG1, IL-10 

and leptin discriminated most accurately between the different treatment groups and, in 

addition, the PBS/IFN injected NOD controls (hitrate: 86.1% original and cross-validated). 
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Successful prevention of hyposalivation (treated mice with retained salivary flow) was 

accompanied by quantitative alterations in 36 biomarkers when compared to treated mice with 

decreased salivary flow. Nineteen inflammatory mediators, measured in the treated mice with 

retained salivary flow, thereby declined to levels comparable to Balb/c. Low salivary VEGF-

A was the best individual predictor of successful treatment, whereas high VEGF-A indicated 

the onset of hyposalivation despite Hsp60 or aa437-460 administration (hitrate 87.5% original 

and cross-validated). Expanding the model by including circulating apolipoprotein A1 (Apo 

A1) and secreted macrophage-colony stimulating factor (M-CSF) further improved prediction 

accuracy (hitrate: 91.7% original, 95.8% cross-validated). DA were also computed to identify 

sets of biomarkers with the highest potential to discriminate between normal and decreased 

salivary secretion capacity, irrespective treatment-group membership and strain. As most 

accurate single predictor granulocyte chemotactic protein-2 (GCP-2) in saliva was identified 

(hitrate 81.3%, original and cross-validated). A forward stepwise model combining salivary 

GCP-2 with circulating IL-1α and salivary myeloperoxidase (MPO), myoglobin and 

macrophage inflammatory protein (MIP)-3β resulted in 93.8% accurately classified cases, 

original and cross-validated. 

 
It might be useful one day; Illustration by Sam Brown (www.explodingdog.com) 
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General discussion 

The clinical symptoms of SS are thought to develop late in the disease course; thus, in most 

patients, SS is most likely diagnosed at an advanced stage [74]. Investigation of the SS 

disease course in humans is ethically difficult due to the lack of a non-invasive method for the 

quantification of salivary gland inflammation. Consistent with the results reported by other 

investigators [159], our results described in Paper I suggest that hyposalivation in NOD mice 

follow the emergence of focal lymphoid infiltration with a certain delay in time. 

Conventionally, the extent of impairment in exocrine function has been anticipated to be the 

direct outcome of the degree of glandular inflammation replacing and destroying parenchyma. 

Nevertheless, despite the soundness of the hypothesis, the frequently observed lack of 

correlation between the amount of destroyed glandular tissue and the disproportional decrease 

in salivary flow [197] was difficult to fit into this model. Consequently, processes disturbing 

the physiological cascade of saliva production and secretion have been proposed as a possible 

explanation for this phenomenon [76]. A model of SS pathogenesis acknowledging the 

existence of other pathogenic mechanisms than the sole destruction of glandular epithelium is 

further supported by several murine models of SS. MRL/lpr mice retain a stable salivary flow 

rate over time despite pronounced inflammation in the salivary glands and several other 

features of human SS [199]. The absence of overt SS in presence of sialoadenitis was, 

furthermore, described in NOD IL-4-/- [161], NOD.B10-H2b IL-4-/- [160] and NOD.B10-

H2(b).C STAT6-/- mice [162].  

One conclusion, common to all three studies combined in this thesis, is the apparent 

autonomy of the major SS-related disease manifestations. Results summarized in Paper I 

indicate that the development of hyposalivation is independent from a significant quantitative 

increase in glandular inflammation. In Paper II we describe the complete lack of original 

variables and extracted components correlating with salivary flow and either FS or RI. This 

lack was also evident when analyzing inter-component correlations. In Paper III, the effective 

protection from hyposalivation was associated almost exclusively with changes reflected by 

the MAP. At the same time we found neither protection nor manifestation of hyposalivation to 

be related to the quantitative degree of glandular inflammation. 

The findings in all three studies also support the notion that alterations within the salivary 

gland tissue are prone to be reflected in the spectrum and amount of proteins liberated into 

saliva. The identification of a set of biomarkers in human saliva, similar to the 3 chemokines 
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we described in Paper II, predicting the presence or absence of SS with high accuracy, or as 

described in Paper III, specific biomarker signatures capable of predicting treatment efficacy 

and capable to distinguish normal from impaired salivary secretion, would represent a major 

advance in the field. Due to the non-invasive collection method and the lack of extraction 

procedures, saliva based approaches are more applicable in clinical practice for prognostic, 

diagnostic and follow-up purposes than methods requiring salivary gland biopsies [47, 68, 

115]. Importantly, as described in Paper II, we could exclude a general concentration effect 

on biomarker quantities measured in saliva in relation with lower fluid secretion. This 

conclusion was based on the observation that in a non-inflammatory situation, represented by 

Balb/c mice, the average correlation coefficient of all analytes and analytes included in the 

modeling process did not show any sign of a negative association with salivary flow. Saliva, 

because it is directly collected from the site of inflammation, is most probably superior to 

measurement in serum in reflecting the immunological situation in the salivary glands [276]. 

The findings regarding extraglandular autoimmune manifestations in Paper II and Paper III 

also support this hypothesis.  

However, the presence of SS-unrelated histopathology and other subclinical autoimmune 

disease features remain a common problem of several murine models of SS [117, 199]. Such 

divergence from an “ideal” SS-specific situation may lead to false conclusions drawn from 

measurements in serum. Due to the complexity of this biofluid, one may also conclude that 

biomarker profiles solely relying on serum or plasma require considerable validation efforts to 

prove their specificity and sensitivity for a specific autoimmune disease such as SS [5, 68]. 

Nevertheless, analyzing the SS patient’s individual cytokine and chemokine profile in serum, 

using a bead-based multiplex immunoassay similar to the technology applied in Paper I-III, 

revealed that biomarker signatures in serum might indeed be able to indicate specific 

histopathological situations in the salivary gland. In this study, among 25 biomarkers, BAFF, 

CCL11 and IFN-γ levels discriminated best between patients with and without GC-like 

structures [155]. 

The formation of GC-like follicles in non-lymphoid organs has been suggested to indicate a 

more severe disease and through histopathological and immunohistochemical screening such 

structures were found in approximately every forth patient with SS [130]. Interestingly, in 

Paper I, the early signs of lymphoid organization in the salivary glands, defined by distinct 

areas of T-cells and B-cells, proliferating cells and FDCs, were associated with higher FS. 
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However, to what extent such structures overtake functional tasks normally assigned to 

secondary lymphoid organs remains to be proven.  

In Paper I we describe significant alterations in circulating IL-2, IL-5, and GM-CSF and 

secreted IL-4 and TNF-α occurring during the same period of time as the onset of 

hyposalivation. In contrast, no significant increase in glandular inflammation was observed 

within this specific period. By promoting growth and suppressor functions of Tregs, IL-2 is 

crucial in the maintenance of immunological self-tolerance. Neutralization of circulating IL-2 

led to aggravation of diverse autoimmune manifestations in NOD mice [243] and deletion of 

IL-2 and IL-2Rα in C57BL/6J mice caused the emergence of sialoadenitis, hyposalivation and 

SS-unrelated histopathological manifestations [254]. Even though the role of regulatory 

processes in the progression and perpetuation of SS is still elusive, the results published in 

Paper III indicate that lower salivary gland inflammation and especially the prevention of 

hyposalivation depends on the efficacy of Hsp60 and aa437-460 to strengthen regulatory 

processes.  

Although recent studies indicated that absence of IL-5 could induce a shift toward adaptive 

immune responses [277, 278], the decrease in circulating IL-5 reported in Paper I is difficult 

to interpret. Murine IL-5 acts on B-cells and contributes to the maintenance and 

differentiation of B-1a cells [279]. In atherosclerosis, natural autoantibodies secreted by B-1a 

cells recognizing LDL may exert a protective effect by preventing the implication of the 

adaptive immune system against this particular antigen [277, 280]. The significant negative 

correlation of secreted IL-5 with salivary flow reported in Paper II and of IL-4 with salivary 

secretion rates in Paper I further corroborates with the notion of TH2 cytokines and B-cells in 

the pathogenesis of SS [160, 161]. Most importantly, depletion of the patient’s B-cells, using 

anti-CD20 antibodies, was shown to ameliorate several symptoms of the disease [97]. TNF-α 

was upregulated in saliva during the overt stage (Paper I) and significantly decreased in NOD 

mice protected from hyposalivation (Paper III). The therapeutic impact of agents neutralizing 

TNF-α in patients with RA is indeed remarkable [48], however, the use of TNF-α antagonists 

in SS was discontinued since initial promising results could not be confirmed [99].  

In Paper II we present data on a considerable number of immunologically relevant proteins, 

for which often only little or no information in SS has been published. The possibility of 

multiplexing analytes significantly diminished the required sample volume and enabled 

investigation of the analytes’ connectivity through correlation networks [5]. Compared to a 
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component-focused experimental study design, such a study cannot be as conclusive in 

defining the role of a single protein. It rather represents a novel way of analyzing the 

implication of multiple molecules in a specific condition, also by utilizing the explanatory 

power of interrelationships, which define a specific system state [4]. Most system states in 

fact, arise from and strongly rely on the interactions of their numerous constituents [5]. 

Analyses of protein levels instead of mRNA expression data could rule out certain factors of 

uncertainty such as mRNA stability and correlation between mRNA levels and the 

corresponding protein levels. A recent study combining global mRNA expression analyses 

with 2-D gel electrophoresis coupled with mass spectrometry to analyze pooled saliva 

obtained from SS patients for the purpose of biomarker identification reported poor 

correlations between levels of transcripts and protein quantities [281]. The same study 

identified 42 proteins, significantly altered when comparing pooled saliva from SS patients 

with healthy controls [281]. Technologies and techniques in the field of quantitative mass 

spectrometry are evolving at a fast pace, now allowing first identifications of peptides, which 

could be of interest for preliminary validation steps [69]. Nonetheless, identification of 

immunological regulators, operating at nano- to picomolar concentrations using mass 

spectrometry, still represents a great challenge, as abundant proteins may mask the 

immunological modulators in the biofluid of interest [69]. The gold standard for such 

quantitative measurements is still the application of immunoassays as a result of their 

unmatched sensitivity provided by antibodies [68].  

Stable-isotope protein tagging or subtractive proteomics may, however, harbor the potential to 

significantly improve the number of immune system related proteins identified by mass 

spectrometry [69]. Nevertheless, the two approaches, antibody-based biomarker identification 

and mass spectrometry-based global proteome profiling, may well complement one another in 

delineating SS-specific disease signatures. Both technologies, however, need further 

technological advances to obtain a more complete coverage of crucial immune mediators and 

of the whole proteome, which consists of at least 100’000 constituents [69, 70]. Certain 

molecules of proven importance in the pathogenesis of SS, such as BAFF [175] and IFNs 

[119], were not part of our MAP. Storage of data in a structured format represents one option 

of including results from future studies in existing databases or correlation networks and 

would enable exciting new possibilities for automated and integrative biological research [5, 

70]. Standardizing reagents, assays, data storage, and normalization techniques are mandatory 

to achieve such possibilities in the future [70]. 
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In line with the results described in Paper I the data acquired in Paper II also argues against 

close interrelationships between the different SS-related disease manifestations. Only RI and 

anti-La/SSB correlated directly with each other and the segregation between proteins being 

either associated with hyposalivation or glandular inflammation was absolute. The 

chemokines, which were associated with higher salivary flow (MIP-1α and monocyte 

chemoattractant protein [MCP]-5) are considered TH1 related chemokines and are negatively 

regulated by STAT6 [282]. In contrast, the STAT6 dependent TH2 associated chemokines 

[282, 283] eotaxin and macrophage-derived chemokine (MDC) were associated with 

decreased salivary flow. Normalization of secreted MDC quantities to levels comparable with 

Balb/c mice was, in addition, observed in relation with the treatment-induced protection from 

hyposalivation described in Paper III. Both, eotaxin and MDC are produced by TH2-

promoting DC cell types upon engagement of CD40/CD40L [284] and these two molecules 

were associated with low salivary secretion capacity in the correlation network as well. 

Interestingly, CD40 and CD40L are expressed on salivary gland epithelial cells and 

infiltrating lymphocytes in biopsies obtained from SS patients [285].  

The observed correlation between CD40/CD40L and anti-M3R IgG3 levels may be associated 

with the primary role of CD40 and CD40L which is related to B-cell survival, B-cell 

proliferation, Ab production and Ab isotype switching [286]. In Paper II, all antibody 

isotypes against M3R were upregulated, with, perhaps most importantly, the positive 

associations between M3R IgG3 and secretory CD40, CD40L, IL-18, GCP-2 and MMP-9. 

IgG2 subclasses and IgG3 are generally considered to be significantly more potent in 

mediating pathogenic effects than IgG1 [287]. In contrast to other isotypes, the effect of IgG3 

is FcR independent and strictly related to complement activation, a component of the immune 

system recently related to SS pathology [252]. In addition, IgG3 can form complexes through 

self-association and generate cryoglobulins [287], a feature in SS [74]. However, previous 

studies concluded IgG1 to be the crucial isotype in anti-M3R antibody mediated 

hyposalivation due to its absence in STAT6 [162] and IL4 [160] deficient NOD related 

strains. In contrast, in Paper III, the induction of anti-M3R IgG1 was strongly related to 

immunization with Hsp60. However, in Paper III, the alterations in anti-M3R IgG1 levels 

were not related to the manifestation or protection from hyposalivation. 

Beside B-cell fate, CD40/CD40L ligation plays a central role in converting a tolerogenic 

antigen presentation into a pathogenic immune activation [288]. In conditions with chronic 

inflammation, CD40 and other inflammatory mediators can exert adverse effects on tissue 
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renewal and repair processes [289]. Indeed, we found specific growth factors e.g. epidermal 

growth factor (EGF) to be negatively correlated with CD40/CD40L and secreted 

autoantibodies.  

Furthermore, negatively correlated with CD40/CD40L was circulating IL-10, whose anti-

inflammatory properties may apply to our model, since in Paper II increased circulating IL-10 

did correlate with higher salivary flow and lower autoantibody concentrations in saliva. This 

observation is in line with the reported benefit of IL-10 gene transfer, which could suppress 

the emergence of certain SS-related manifestations in NOD mice [256]. However, IL-10 in 

saliva was associated with glandular inflammation, and the findings reported in Paper III did 

not mirror the conception of increased IL-10 secretion by Tregs in favor of immunosuppression 

[20]. These findings reinforce the results obtained in IL-10 transgenic mice, which developed 

progressive histopathology and hyposalivation, evocative of SS [255].  

With the exception of vWF, increased concentrations of proteins in saliva related to acute 

tissue injury were all associated with a lower degree of glandular inflammation. These events 

may be followed later on by inflammatory cell invasion into the glandular tissue and/or may 

mirror an imbalance between processes restoring homeostasis and factors promoting chronic 

inflammation. Higher levels of IL-1 family members correlated with both worsening of 

hyposalivation and increased glandular inflammation. GCP-2, inducible through IL-1β [290], 

was, alike IL-1β, associated with glandular inflammation. The levels of all these pro-

inflammatory proteins (IL-1α, IL-1β and GCP-2) declined in treated mice with retained 

salivary flow to levels comparable with Balb/c mice (Paper III). Leukemia inhibitory factor 

(LIF), also inducible through IL-1β [291], which was included in a component together with 

IL-1β and IL-10, has been shown to have parallels with IL-1, TNF-α and IL-6 related to the 

perpetuation of inflammation in RA [291]. Alike anti-TNF-α the inhibition of IL-1 pathway 

using recombinant IL-1RA has become an accepted treatment strategy in RA [292]. 

Unfortunately, clinical or experimental studies using IL-1RA in SS are still lacking. 

Among the biomarkers analyzed in saliva, GCP-2, IP-10 and regulation upon activation, 

normal T-cell expressed and secreted (RANTES), revealed the highest potential to distinguish 

between NOD and Balb/c. In addition, in Paper III, GCP-2, individually or combined with 4 

other analytes, accurately predict impaired salivary secretion capacity irrespective of 

treatment group-membership and strain. For clarification, GCP-2 is expressed at neutrophil 
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and macrophage dominated inflammatory sites, IP-10 is related to TH1 immune responses, 

and RANTES is involved in TH1 and TH2 immune responses [293].  

GCP-2 and IP-10 have opposite roles in angiogenesis [23], an aspect which, despite the 

recognized importance of neovascularization in promoting the influx of inflammatory cells 

[294], has not yet been addressed in SS. Proteins, such as GCP-2, VEGF, EGF, IL-1, VCAM-

1 and MMP-9, which were significantly increased in NOD mice compared to Balb/c (Paper 

II), are involved in angiogenesis [294]. In addition, also angiostatic molecules, such as IP-10, 

tissue inhibitor of metalloproteinase (TIMP)-1 and endostatin-1 [294] were also altered 

(Paper II). In Paper III, low VEGF-A, a key molecule mediating vascularization [26], was the 

primary predictor indicating the success or failure in preventing hyposalivation followed by 

low M-CSF, which is alike thrombopoietin (TPO) and oncostatin M (OSM), an inducer of 

VEGF-A [295]. Other molecules implicated in the process of neovascularization, which were 

decreased in saliva in concordance with prevention of hyposalivation in treated mice are, 

MMP-9, fibroblast growth factor (FGF)-9 [294], as well as all CXCR2 ligands measured 

(GCP-2, melanoma growth stimulatory-activity protein [GRO] and MIP-2) [13, 23]. The 

importance of neovascularization is greatly recognized in RA and has been explored as a 

target for therapeutic intervention [296]. Anti-VEGF therapies are also important in the 

treatment of certain cancers [297] and in age-related macular degeneration [298]. Anti-VEGF 

therapies can either involve monoclonal antibodies or orally available small molecules that 

inhibit the tyrosine kinases stimulated by VEGF [297]. Unfortunately, the issue of pathogenic 

neovascularization has not yet been addressed as a pathogenic mechanism in SS.  

The study presented in Paper III describes the first preventive antigen-specific intervention, 

successfully ameliorating spontaneous experimental SS. Despite the antigenic relationships 

between Hsp60 and antigens specifically related to SS are unknown, we provide further 

evidence that immune responses to Hsp60 are relevant in the control of pathogenic 

autoimmunity [52]. In line with the notion that Hsp60 and aa437-460 treatment can alter 

chemotaxis of T-cells in vitro [63, 64], decreased inflammation was associated with lower 

serum levels of chemoattractants for TH1 and TH2 cells [13] even 14 weeks after 

immunization. In addition, MCP-1 and MCP-3, to which monocytes and plasmacytoid DCs 

are most responsive [13], were also reduced in serum as a result of the treatment.  

Disease severity of RA and juvenile idiopathic arthritis have been related to the extent of 

Hsp60 induced propagation and activation of Tregs [61, 62]. Suggested key molecule involved 



72 

in this process is IL-10, which may be secreted upon Hsp60 signaling through TLR2 [20]. As 

described above, our findings, however, do not support a general anti-inflammatory role of 

IL-10 in SS. In contrast, increased salivary IL-2 and the observed modulation of leptin as an 

effect of Hsp60 and aa437-460 immunization support the notion of strengthened regulatory 

processes as a result of the treatments. Compared to IL-2, the adipokine leptin exerts a 

reciprocal effect on effector and Treg populations [29]. Besides Tregs, IL-17 cells raised 

considerable attention in the field of autoimmune diseases [12, 15] and a major role of IL-17 

has now been described in various models of immune mediated tissue injury related with host 

defense against microorganisms and organ-specific autoimmunity [15, 17]. Even though 

results in Paper II showed an increase of IL-17 in saliva from NOD mice, the treatment 

interventions described in Paper III were not accompanied by detectable alterations in IL-17, 

neither in saliva nor in serum. Recent results suggest that the TH17/IL-23 system is activated 

in SS patients and C57BL/6.NOD-Aec1Aec2 mice during the overt disease state. Functional 

associations between IL-17/IL-23 expression and specific clinical manifestations have, 

however, not yet been identified [164]. 

In Paper III, prevention of hyposalivation was achieved in a substantial number of mice at 

least for the duration of the experiment. Nevertheless, future studies need to elucidate if NOD 

mice can permanently be protected from developing hyposalivation and if such treatments 

may also be able to induce remission of SS. Refinement of treatment regimes, as it has been 

shown recently for diabetes using tandem repeated aa437-460 [299], may further increase the 

percentage of mice protected from hyposalivation. 

As in Paper II, the MAPs generated a comprehensive, but not all-embracing overview of the 

serum and salivary proteome in Paper III. The purpose of the analyses in this study was also 

to characterize the different disease phenotypes, which resulted from the treatments. The 

biomarker signature associated with successful prevention of hyposalivation in NOD mice 

was primarily coined by the decrease and normalization of multiple chemokine levels and 

proteins related to angiogenesis. Such modulation was potentially promoted by the 

simultaneous decrease in TNF-α and IL-7, both key antagonist of Treg induced 

immunoregulation [300]. Based on these variables, forward stepwise DA identified a model in 

which the combination of VEGF-A and M-CSF in saliva and Apo A1 levels in serum 

predicted the prevention of hyposalivation with 96% accuracy. 
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Downregulation of CD40, IL-10 and IL-11 [301] may further suggest TH2 associated 

responses to be modulated by the treatment. An effect of Hsp60 on B-cells through innate 

signaling pathways has been reported [302] and may also contribute to the modulation of 

autoimmune diseases with a confirmed or potential B-cell aspect. Nevertheless, in Paper III 

the levels of most autoantibodies remained unaffected. Another encouraging aspect of our 

study regards the capacity of GCP-2 which individually or combined with 4 other analytes, 

accurately predict impaired salivary flow. 

As alluded to already, we did not find significant associations between extraglandular disease 

manifestations and the biomarker profiles. Similarly, we did not identify significant 

alterations in extraglandular disease manifestations as a result of the two treatments 

investigated in Paper III. Nevertheless, it would be of interest to investigate in further detail 

the involvement of kidneys and lungs in both experimental and human SS [303-305]. The 

development of malignancy in one mouse remains difficult to interpret, as lymphoma develop 

rather frequently in old NOD mice [306]. There are conflicting data about whether there is an 

increased risk for lymphoma and solid malignancies with anti-TNF therapies for RA [292]. 

Nevertheless, anti-inflammatory treatment need to be critically reviewed regarding alterations 

induced, which could create immune privileges for tumor cells and microbial pathogens or 

host-defense related immunity. 
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Conclusions 

In analogy with the proposed specific aims, the following conclusions can be drawn: 

• The development of major focal inflammation in the salivary glands precedes the 

onset of hyposalivation with a considerable amount of time. 

• The onset of hyposalivation, which marks the onset of overt SS, can occur without a 

significant increase in salivary gland inflammation.  

• Changes in cytokine patterns in serum and saliva coincide with the transition from pre-

clinical to overt disease. 

• Processes related to the adaptive immune system seem to promote SS with a strong 

association between TH2 related proteins and the severity of hyposalivation. 

• The different disease manifestations of SS appear to be greatly autonomous from each 

other and they are associated with different immunological processes.  

• CD40, CD40L, IL-18, GCP-2 and anti-M3R IgG3 may represent a pivotal point, which 

intersects the different aspects of SS pathology.  

• Saliva represents an attractive biofluid for biomarker discovery in SS. 

• Immunization with Hsp60 led to inhibition of SS in NOD mice. 

• The Hsp60-derived peptide aa437-460, currently tested in phase II clinical trials for 

the treatment of IDDM, mimicked in general lines the beneficial effects of Hsp60. 

• Successful prevention of hyposalivation was related to a significant decrease in 

inflammatory mediators related to pathological neovascularization, inflammatory 

chemotaxis and cell activation. 

• Comprehensive analyses revealed specific biomarker signatures capable to predict the 

treatment received, treatment efficacy and impaired exocrine function. 

• MAP analyses provide a basis for the comparison and selection of potential drug 

targets and diagnostic markers and allow the characterization of treatment responses. 
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Future perspectives 

Although several hypotheses have been proposed over the last years, the etiology and several 

aspects regarding the pathogenesis of SS are still elusive. Unfortunately, all therapies applied 

today are inadequate to cure SS and regrettably, the number of clinical studies addressing SS 

is significantly lower compared to most other, as common, autoimmune diseases.  

In all three studies here presented, we found direct evidence that the immunological processes 

mediating the different SS-related disease manifestations are considerably independent from 

each other. Stratification of the disease course in patients with SS and the close investigation 

of the interrelationships between the different aspects of disease are important goals for the 

future. Given the limits of the current disease assessment, the development of non-invasive 

precise methods for the quantification of salivary gland inflammation would greatly facilitate 

such studies. In mice specific biomarker signatures had, on an individual scale, the potential 

to discriminate “sick” from “healthy”, successful prevention of hyposalivation from 

ineffective treatment of hyposalivation and intact salivary secretion capacity from impaired 

salivary secretion. It is unclear if these successful pilot studies conducted in an experimental 

model will translate into similar findings in an outbred human population. However, the 

methodology regarding MAP, data analyses and last but not least the results here presented 

will hopefully encourage researchers to conduct similar studies in samples collected from SS 

patients. 

Promoted by the revolution in information technology, advanced analytical platforms, such as 

multiplex immunoassays, mass spectrometry and mRNA microarrays, take an important place 

in today’s biomedical research. As reflected in this work and research efforts undertaken by 

other groups, such methodologies have to some extent been applied in SS. We believe that 

discovery-driven studies such as the one presented in Paper II, can widen the horizon and 

inspire new hypothesis-focused research. Bridging between these two approaches represents a 

great challenge for the years to come, which may, however, be rewarded with a more 

integrated perspective on immunology and autoimmune diseases.  

The enigma of the initiating event leading to the accumulations of mononuclear cells in the 

exocrine glands characteristic for SS has not yet been solved and the hunt for “the causing 

agent” over the last decades has yet left most questions unanswered. The paradigm of 

insufficient immune regulation against key self-molecules being at the origin of the 
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conversion from physiological autoimmunity into an autoimmune disease led to the 

emergence of new concepts for the treatment of autoimmune diseases. As indicated by our 

study investigating the immunomodulatory potential of Hsp60 and aa437-460, one may 

assume that these and similar biologics, which strengthen regulatory mechanisms, may lead to 

valuable alternatives for the treatment of SS. Such agents are often extensively studied and 

successfully applied in other autoimmune conditions than SS and appear to not induce long-

term immunosuppression. More frequent interdisciplinary collaborations may indeed take us 

all one crucial step towards a deeper understanding of SS and more appropriate measures for 

the treatment of SS. 

 
No one lets me know what I think; Illustration by Sam Brown (www.explodingdog.com) 



77 

Acknowledgements 

I wish to express my gratitude to my supervisor, Professor Roland Jonsson, for the offer to 

become part of his group and providing me with the opportunity to pursue an academic 

career. Foremost I thank him for his trust and for always believing in me. He provided me 

with the confidence and the freedom to follow my own ideas and prepared me well to meet 

the challenges which I encountered along the way. Of no less importance, his and Kate 

Frøland’s generosity and their famous hospitality made me feel welcomed in Norway.  

For their valuable contributions I wish to thank all the scientists who were co-authors on the 

papers included in this thesis: Malin V. Jonsson, Karl A. Brokstad, Ellen Berggreen, Kathrine 

Skarstein, Heike Immervoll, Janet Cornelius and Ana C. Madureira.  

I express my appreciation to Kate Frøland for excellent administrative assistance, Marianne 

Eidsheim and Gry Bernes for excellent technical assistance and all members of the present 

and former staff of the Broegelmann Research Laboratory for creating a stimulating research 

environment. Special thanks thereby go to the persons I shared the office with: Hiwa Målen, 

Petra Vogelsang, Elisabeth Nginamau and Trond Ove Hjelmervik. Trond Ove, thank you for 

joining me on the trip to the Favelas and the Ilha Grande in Brazil, we had a great time. 

Overseas, I thank Janet, Cuong and Bruff for their hospitality, their crash course on “how 

things are in States” and for showing me an unforgettable time in Florida.  

I thank all the scientists who introduced me to research and encouraged me to follow this path 

before I came to Norway: Daniel Lottaz, Markus Koller, Bernhard Guggenheim, Rudolf 

Gmür and especially Matthias Bickel and Matthias Zehnder. 

I also thank the persons who taught me the skill of planning and conducting experiments in a 

laboratory and of whom many became precious friends. Their teachings were indeed reliable 

companions along the way. Thank you Jacqueline, for your infinite generosity and always 

being there for me over the past 15 years. Johanna, thank you for your friendship and your 

legendary invitations. Hans, thank you for sharing your seemingly infinite knowledge in so 

many fields and providing me with so much inspiration. 

Special thanks also to my friends back home, who did not let me loose contact with 

Switzerland and its great opportunities for climbing and skiing. Richard, thank you for being 

my loyal friend and Rahel, I shall not forget what you have been, given and done for me. 



78 

My experience in Norway would not have been as enriching without my friends in Bergen 

and Stavanger and the great family of the climbers inhabiting these two towns. Thanks to all 

of you. Ronny you were always a true friend to me throughout these years and our excursions 

to find new boulder stones on Sotra and in Stavanger were a great escape from the “serious”. I 

am also very grateful for Ragnhild’s and Rudolf’s and Monica’s and Erling’s hospitality, who 

welcomed me to their homes and into their families. 

To my angel Sibel, your name means what you are to me “so beautiful”. Your most beautiful 

heart, your most beautiful mind, your beautiful being, I love you with all my heart. 

Last but not least I would like to thank my father, my brother and especially my mother. My 

deepest thanks go to her for having been there for me from the first moment on and ever 

since. You taught me so much and I am proud of being your son.  

 
Cyborg Fb 7c, Sirevåg, Stavanger, Norway. Photographer: Ronny Sjøthun  

Bergen, 13th march 2008 

 



79 

References 

1. Descartes R: Discours de la méthode pour bien conduire sa raison, et chercher la 
verité dans les sciences. London: Cambridge University Press; 1637. 

2. Dawkins R: The Blind Watchmaker. London: Penguin Books; 2006. 
3. Kauffman S: Beyond reductionism: Reinventing the sacred. Zygon® 2007, 42:903-

914. 
4. Ideker T, Galitski T, Hood L: A new approach to decoding life: systems biology. 

Annu Rev Genomics Hum Genet 2001, 2:343-372. 
5. van der Greef J, Martin S, Juhasz P, Adourian A, Plasterer T, Verheij ER, McBurney 

RN: The art and practice of systems biology in medicine: mapping patterns of 
relationships. J Proteome Res 2007, 6:1540-1559. 

6. Cohen IR: Tending Adam's garden; evolving the cognitive immune self. London: 
Elsevier Academic Press; 2004. 

7. Janeway CA, Travers P, Walport M, Schlomchik M: Immunobiology: the 
immunesystem in health and disease, 6th edn. New York: Garland Science 
Publishing; 2005. 

8. Jenner E: An inquiry into the causes and effects of the variolæ vaccinæ, a disease 
discovered in some of the western counties of England, particularly 
Gloucestershire, and known by the name of the cow pox. London: Sampson Low; 
1798. 

9. Leulier F, Lemaitre B: Toll-like receptors--taking an evolutionary approach. Nat 
Rev Genet 2008, 9:165-178. 

10. Zinkernagel RM, Doherty PC: The discovery of MHC restriction. Immunol Today 
1997, 18:14-17. 

11. Mackay F, Schneider P, Rennert P, Browning J: BAFF AND APRIL: a tutorial on B 
cell survival. Annu Rev Immunol 2003, 21:231-264. 

12. Steinman L: A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 
hypothesis of T cell-mediated tissue damage. Nat Med 2007, 13:139-145. 

13. Mantovani A, Bonecchi R, Locati M: Tuning inflammation and immunity by 
chemokine sequestration: decoys and more. Nat Rev Immunol 2006, 6:907-918. 

14. Mosmann TR, Coffman RL: TH1 and TH2 cells: different patterns of lymphokine 
secretion lead to different functional properties. Annu Rev Immunol 1989, 7:145-
173. 

15. Weaver CT, Hatton RD, Mangan PR, Harrington LE: IL-17 family cytokines and the 
expanding diversity of effector T cell lineages. Annu Rev Immunol 2007, 25:821-
852. 

16. Wynn TA: Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 
2004, 4:583-594. 

17. Bettelli E, Oukka M, Kuchroo VK: T(H)-17 cells in the circle of immunity and 
autoimmunity. Nat Immunol 2007, 8:345-350. 



80 

18. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver 
CT: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct 
from the T helper type 1 and 2 lineages. Nat Immunol 2005, 6:1123-1132. 

19. Chatenoud L, Bluestone JA: CD3-specific antibodies: a portal to the treatment of 
autoimmunity. Nat Rev Immunol 2007, 7:622-632. 

20. Zanin-Zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR: Heat shock 
protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 
signaling. J Clin Invest 2006, 116:2022-2032. 

21. Sakaguchi S: Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells 
in immunological tolerance to self and non-self. Nat Immunol 2005, 6:345-352. 

22. Zlotnik A, Yoshie O: Chemokines: a new classification system and their role in 
immunity. Immunity 2000, 12:121-127. 

23. Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MP: CXC chemokines 
in angiogenesis. Cytokine Growth Factor Rev 2005, 16:593-609. 

24. Strieter RM, Gomperts BN, Keane MP: The role of CXC chemokines in pulmonary 
fibrosis. J Clin Invest 2007, 117:549-556. 

25. Charo IF, Ransohoff RM: The many roles of chemokines and chemokine receptors 
in inflammation. N Engl J Med 2006, 354:610-621. 

26. Holmes DI, Zachary I: The vascular endothelial growth factor (VEGF) family: 
angiogenic factors in health and disease. Genome Biol 2005, 6:209. 

27. Fleetwood AJ, Cook AD, Hamilton JA: Functions of granulocyte-macrophage 
colony-stimulating factor. Crit Rev Immunol 2005, 25:405-428. 

28. Webster JI, Tonelli L, Sternberg EM: Neuroendocrine regulation of immunity. 
Annu Rev Immunol 2002, 20:125-163. 

29. De Rosa V, Procaccini C, Cali G, Pirozzi G, Fontana S, Zappacosta S, La Cava A, 
Matarese G: A key role of leptin in the control of regulatory T cell proliferation. 
Immunity 2007, 26:241-255. 

30. Tayebati SK, El-Assouad D, Ricci A, Amenta F: Immunochemical and 
immunocytochemical characterization of cholinergic markers in human 
peripheral blood lymphocytes. J Neuroimmunol 2002, 132:147-155. 

31. Steinman L: Elaborate interactions between the immune and nervous systems. Nat 
Immunol 2004, 5:575-581. 

32. Burnet FM: The Nobel Lectures in Immunology. The Nobel Prize for Physiology 
or Medicine, 1960. Immunologic recognition of self. Scand J Immunol 1991, 33:3-
13. 

33. Cambier JC, Gauld SB, Merrell KT, Vilen BJ: B-cell anergy: from transgenic 
models to naturally occurring anergic B cells? Nat Rev Immunol 2007, 7:633-643. 

34. Nossal GJ: Clonal anergy of B cells: a flexible, reversible, and quantitative 
concept. J Exp Med 1996, 183:1953-1956. 

35. McGuire KL, Holmes DS: Role of complementary proteins in autoimmunity: an 
old idea re-emerges with new twists. Trends Immunol 2005, 26:367-372. 



81 

36. Chatenoud L: Immune therapies of autoimmune diseases: are we approaching a 
real cure? Curr Opin Immunol 2006, 18:710-717. 

37. Binder CJ, Silverman GJ: Natural antibodies and the autoimmunity of 
atherosclerosis. Springer Semin Immunopathol 2005, 26:385-404. 

38. Cohen IR: The cognitive paradigm and the immunological homunculus. Immunol 
Today 1992, 13:490-494. 

39. Merbl Y, Zucker-Toledano M, Quintana FJ, Cohen IR: Newborn humans manifest 
autoantibodies to defined self molecules detected by antigen microarray 
informatics. J Clin Invest 2007, 117:712-718. 

40. Avrameas S, Ternynck T, Tsonis IA, Lymberi P: Naturally occurring B-cell 
autoreactivity: a critical overview. J Autoimmun 2007, 29:213-218. 

41. Cohen IR: Autoimmunity to chaperonins in the pathogenesis of arthritis and 
diabetes. Annu Rev Immunol 1991, 9:567-589. 

42. Cohen IR, Quintana FJ, Mimran A: Tregs in T cell vaccination: exploring the 
regulation of regulation. J Clin Invest 2004, 114:1227-1232. 

43. Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, 
Eisenbarth GS, Mathis D, Rossini AA, Campbell SE et al: A comprehensive review 
of interventions in the NOD mouse and implications for translation. Immunity 
2005, 23:115-126. 

44. Satpute SR, Durai M, Moudgil KD: Antigen-Specific Tolerogenic and 
Immunomodulatory Strategies for the Treatment of Autoimmune Arthritis. 
Semin Arthritis Rheum 2008. 

45. Kurien BT, Asfa S, Li C, Dorri Y, Jonsson R, Scofield RH: Induction of oral 
tolerance in experimental Sjögren's syndrome autoimmunity. Scand J Immunol 
2005, 61:418-425. 

46. You S, Leforban B, Garcia C, Bach JF, Bluestone JA, Chatenoud L: Adaptive TGF-
beta-dependent regulatory T cells control autoimmune diabetes and are a 
privileged target of anti-CD3 antibody treatment. Proc Natl Acad Sci U S A 2007, 
104:6335-6340. 

47. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, 
Daniels TE, Fox PC, Fox RI, Kassan SS et al: Classification criteria for Sjögren's 
syndrome: a revised version of the European criteria proposed by the American-
European Consensus Group. Ann Rheum Dis 2002, 61:554-558. 

48. Feldmann M: Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev 
Immunol 2002, 2:364-371. 

49. Furst DE: Anakinra: review of recombinant human interleukin-I receptor 
antagonist in the treatment of rheumatoid arthritis. Clin Ther 2004, 26:1960-1975. 

50. Winthrop KL: Risk and prevention of tuberculosis and other serious opportunistic 
infections associated with the inhibition of tumor necrosis factor. Nat Clin Pract 
Rheumatol 2006, 2:602-610. 

51. Curtis JR, Xi J, Patkar N, Xie A, Saag KG, Martin C: Drug-specific and time-
dependent risks of bacterial infection among patients with rheumatoid arthritis 
who were exposed to tumor necrosis factor alpha antagonists. Arthritis Rheum 
2007, 56:4226-4227. 



82 

52. van Eden W, van der Zee R, Prakken B: Heat-shock proteins induce T-cell 
regulation of chronic inflammation. Nat Rev Immunol 2005, 5:318-330. 

53. Srivastava P: Interaction of heat shock proteins with peptides and antigen 
presenting cells: chaperoning of the innate and adaptive immune responses. Annu 
Rev Immunol 2002, 20:395-425. 

54. Kaufmann SH, Vath U, Thole JE, Van Embden JD, Emmrich F: Enumeration of T 
cells reactive with Mycobacterium tuberculosis organisms and specific for the 
recombinant mycobacterial 64-kDa protein. Eur J Immunol 1987, 17:351-357. 

55. Kamphuis S, Albani S, Prakken BJ: Heat-shock protein 60 as a tool for novel 
therapeutic strategies that target the induction of regulatory T cells in human 
arthritis. Expert Opin Biol Ther 2006, 6:579-589. 

56. Wick G: The heat is on: heat-shock proteins and atherosclerosis. Circulation 2006, 
114:870-872. 

57. Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR: Induction and therapy of 
autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa 
heat shock protein. Proc Natl Acad Sci U S A 1990, 87:1576-1580. 

58. Huurman VA, Decochez K, Mathieu C, Cohen IR, Roep BO: Therapy with the 
hsp60 peptide DiaPep277 in C-peptide positive type 1 diabetes patients. Diabetes 
Metab Res Rev 2007, 23:269-275. 

59. Yannopoulos DI, Roncin S, Lamour A, Pennec YL, Moutsopoulos HM, Youinou P: 
Conjunctival epithelial cells from patients with Sjögren's syndrome 
inappropriately express major histocompatibility complex molecules, La(SSB) 
antigen, and heat-shock proteins. J Clin Immunol 1992, 12:259-265. 

60. Birk OS, Douek DC, Elias D, Takacs K, Dewchand H, Gur SL, Walker MD, van der 
Zee R, Cohen IR, Altmann DM: A role of Hsp60 in autoimmune diabetes: analysis 
in a transgenic model. Proc Natl Acad Sci U S A 1996, 93:1032-1037. 

61. Macht LM, Elson CJ, Kirwan JR, Gaston JS, Lamont AG, Thompson JM, Thompson 
SJ: Relationship between disease severity and responses by blood mononuclear 
cells from patients with rheumatoid arthritis to human heat-shock protein 60. 
Immunology 2000, 99:208-214. 

62. Massa M, Passalia M, Manzoni SM, Campanelli R, Ciardelli L, Yung GP, Kamphuis 
S, Pistorio A, Meli V, Sette A et al: Differential recognition of heat-shock protein 
dnaJ-derived epitopes by effector and Treg cells leads to modulation of 
inflammation in juvenile idiopathic arthritis. Arthritis Rheum 2007, 56:1648-1657. 

63. Nussbaum G, Zanin-Zhorov A, Quintana F, Lider O, Cohen IR: Peptide p277 of 
HSP60 signals T cells: inhibition of inflammatory chemotaxis. Int Immunol 2006, 
18:1413-1419. 

64. Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider O: T cells respond to 
heat shock protein 60 via TLR2: activation of adhesion and inhibition of 
chemokine receptors. Faseb J 2003, 17:1567-1569. 

65. Zanin-Zhorov A, Bruck R, Tal G, Oren S, Aeed H, Hershkoviz R, Cohen IR, Lider O: 
Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate 
regulation of Th1/Th2 transcription factors and cytokines. J Immunol 2005, 
174:3227-3236. 



83 

66. Binder RJ, Vatner R, Srivastava P: The heat-shock protein receptors: some answers 
and more questions. Tissue Antigens 2004, 64:442-451. 

67. Tsan MF, Gao B: Cytokine function of heat shock proteins. Am J Physiol Cell 
Physiol 2004, 286:C739-744. 

68. Lescuyer P, Hochstrasser D, Rabilloud T: How shall we use the proteomics toolbox 
for biomarker discovery? J Proteome Res 2007, 6:3371-3376. 

69. Veenstra TD: Global and targeted quantitative proteomics for biomarker 
discovery. J Chromatogr B Analyt Technol Biomed Life Sci 2007, 847:3-11. 

70. Balboni I, Chan SM, Kattah M, Tenenbaum JD, Butte AJ, Utz PJ: Multiplexed 
protein array platforms for analysis of autoimmune diseases. Annu Rev Immunol 
2006, 24:391-418. 

71. Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J, Qizilbash N, 
Peto R, Collins R: Blood cholesterol and vascular mortality by age, sex, and blood 
pressure: a meta-analysis of individual data from 61 prospective studies with 
55,000 vascular deaths. Lancet 2007, 370:1829-1839. 

72. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, 
Avila-Campilo I, Creech M, Gross B et al: Integration of biological networks and 
gene expression data using Cytoscape. Nat Protoc 2007, 2:2366-2382. 

73. Delaleu N, Jonsson R, Koller MM: Sjögren's syndrome. Eur J Oral Sci 2005, 
113:101-113. 

74. Jonsson R, Bowman SJ, Gordon TP: Sjögren's syndrome. In: Arthritis and Allied 
Conditions. Edited by Koopman WJ, 15th edn. Philadelphia: Lippincott Williams & 
Wilkins; 2005: 1681-1705. 

75. Theander E, Henriksson G, Ljungberg O, Mandl T, Manthorpe R, Jacobsson LT: 
Lymphoma and other malignancies in primary Sjögren's syndrome: a cohort 
study on cancer incidence and lymphoma predictors. Ann Rheum Dis 2006, 
65:796-803. 

76. Dawson LJ, Fox PC, Smith PM: Sjögrens syndrome--the non-apoptotic model of 
glandular hypofunction. Rheumatology (Oxford) 2006, 45:792-798. 

77. Sjögren H: Zur Kenntnis der Keratoconjunctivitis Sicca. Acta Ophthalmol 1933, 
11:1-151. 

78. Fox RI, Robinson CA, Curd JG, Kozin F, Howell FV: Sjögren's syndrome. 
Proposed criteria for classification. Arthritis Rheum 1986, 29:577-585. 

79. Vitali C, Bombardieri S, Moutsopoulos HM, Balestrieri G, Bencivelli W, Bernstein 
RM, Bjerrum KB, Braga S, Coll J, de Vita S et al: Preliminary criteria for the 
classification of Sjögren's syndrome. Results of a prospective concerted action 
supported by the European Community. Arthritis Rheum 1993, 36:340-347. 

80. Soto-Rojas AE, Kraus A: The oral side of Sjögren syndrome. Diagnosis and 
treatment. A review. Arch Med Res 2002, 33:95-106. 

81. Pedersen AM, Bardow A, Nauntofte B: Salivary changes and dental caries as 
potential oral markers of autoimmune salivary gland dysfunction in primary 
Sjögren's syndrome. BMC Clin Pathol 2005, 5:4. 



84 

82. Almstahl A, Wikstrom M, Kroneld U: Microflora in oral ecosystems in primary 
Sjögren's syndrome. J Rheumatol 2001, 28:1007-1013. 

83. Champey J, Corruble E, Gottenberg JE, Buhl C, Meyer T, Caudmont C, Berge E, 
Pellet J, Hardy P, Mariette X: Quality of life and psychological status in patients 
with primary Sjögren's syndrome and sicca symptoms without autoimmune 
features. Arthritis Rheum 2006, 55:451-457. 

84. Delaleu N, Jonsson MV, Jonsson R: Disease mechanisms of Sjögren's syndrome. 
Drug Discov Today; Disease Mechanisms 2004, 1:329-336. 

85. Drosos AA, Skopouli FN, Costopoulos JS, Papadimitriou CS, Moutsopoulos HM: 
Cyclosporin A (CyA) in primary Sjögren's syndrome: a double blind study. Ann 
Rheum Dis 1986, 45:732-735. 

86. Cummins MJ, Papas A, Kammer GM, Fox PC: Treatment of primary Sjögren's 
syndrome with low-dose human interferon alfa administered by the oromucosal 
route: combined phase III results. Arthritis Rheum 2003, 49:585-593. 

87. Tsifetaki N, Kitsos G, Paschides CA, Alamanos Y, Eftaxias V, Voulgari PV, Psilas K, 
Drosos AA: Oral pilocarpine for the treatment of ocular symptoms in patients 
with Sjögren's syndrome: a randomised 12 week controlled study. Ann Rheum Dis 
2003, 62:1204-1207. 

88. Petrone D, Condemi JJ, Fife R, Gluck O, Cohen S, Dalgin P: A double-blind, 
randomized, placebo-controlled study of cevimeline in Sjögren's syndrome 
patients with xerostomia and keratoconjunctivitis sicca. Arthritis Rheum 2002, 
46:748-754. 

89. Rosas J, Ramos-Casals M, Ena J, Garcia-Carrasco M, Verdu J, Cervera R, Font J, 
Caballero O, Ingelmo M, Pascual E: Usefulness of basal and pilocarpine-stimulated 
salivary flow in primary Sjögren's syndrome. Correlation with clinical, 
immunological and histological features. Rheumatology (Oxford) 2002, 41:670-675. 

90. Braun-Moscovici Y, Furst DE: Immunoglobulin for rheumatic diseases in the 
twenty-first century: take it or leave it? Curr Opin Rheumatol 2003, 15:237-245. 

91. Cavill D, Waterman SA, Gordon TP: Antiidiotypic antibodies neutralize 
autoantibodies that inhibit cholinergic neurotransmission. Arthritis Rheum 2003, 
48:3597-3602. 

92. Tishler M, Yaron I, Shirazi I, Yaron M: Hydroxychloroquine treatment for 
primary Sjögren's syndrome: its effect on salivary and serum inflammatory 
markers. Ann Rheum Dis 1999, 58:253-256. 

93. Drosos AA, van Vliet-Dascalopoulou E, Andonopoulos AP, Galanopoulou V, 
Skopouli FN, Moutsopoulos HM: Nandrolone decanoate (deca-durabolin) in 
primary Sjögren's syndrome: a double blind pilot study. Clin Exp Rheumatol 
1988, 6:53-57. 

94. Voulgarelis M, Giannouli S, Anagnostou D, Tzioufas AG: Combined therapy with 
rituximab plus cyclophosphamide/doxorubicin/vincristine/prednisone (CHOP) 
for Sjögren's syndrome-associated B-cell aggressive non-Hodgkin's lymphomas. 
Rheumatology (Oxford) 2004, 43:1050-1053. 

95. Somer BG, Tsai DE, Downs L, Weinstein B, Schuster SJ: Improvement in Sjögren's 
syndrome following therapy with rituximab for marginal zone lymphoma. 
Arthritis Rheum 2003, 49:394-398. 



85 

96. Seror R, Sordet C, Guillevin L, Hachulla E, Masson C, Ittah M, Candon S, Le Guern 
V, Aouba A, Sibilia J et al: Tolerance and efficacy of rituximab and changes in 
serum B cell biomarkers in patients with systemic complications of primary 
Sjögren's syndrome. Ann Rheum Dis 2007, 66:351-357. 

97. Devauchelle-Pensec V, Pennec Y, Morvan J, Pers JO, Daridon C, Jousse-Joulin S, 
Roudaut A, Jamin C, Renaudineau Y, Roue IQ et al: Improvement of Sjögren's 
syndrome after two infusions of rituximab (anti-CD20). Arthritis Rheum 2007, 
57:310-317. 

98. Steinfeld SD, Demols P, Appelboom T: Infliximab in primary Sjögren's syndrome: 
one-year followup. Arthritis Rheum 2002, 46:3301-3303. 

99. Mariette X, Ravaud P, Steinfeld S, Baron G, Goetz J, Hachulla E, Combe B, Puechal 
X, Pennec Y, Sauvezie B et al: Inefficacy of infliximab in primary Sjögren's 
syndrome: results of the randomized, controlled Trial of Remicade in Primary 
Sjögren's Syndrome (TRIPSS). Arthritis Rheum 2004, 50:1270-1276. 

100. Pflugfelder SC, Crouse CA, Monroy D, Yen M, Rowe M, Atherton SS: Epstein-Barr 
virus and the lacrimal gland pathology of Sjögren's syndrome. Am J Pathol 1993, 
143:49-64. 

101. Green JE, Hinrichs SH, Vogel J, Jay G: Exocrinopathy resembling Sjögren's 
syndrome in HTLV-1 tax transgenic mice. Nature 1989, 341:72-74. 

102. Haddad J, Deny P, Munz-Gotheil C, Ambrosini JC, Trinchet JC, Pateron D, Mal F, 
Callard P, Beaugrand M: Lymphocytic sialadenitis of Sjögren's syndrome 
associated with chronic hepatitis C virus liver disease. Lancet 1992, 339:321-323. 

103. Bolstad AI, Jonsson R: Genetic aspects of Sjögren's syndrome. Arthritis Res 2002, 
4:353-359. 

104. Nakken B, Jonsson R, Brokstad KA, Omholt K, Nerland AH, Haga HJ, Halse AK: 
Associations of MHC class II alleles in Norwegian primary Sjögren's syndrome 
patients: implications for development of autoantibodies to the Ro52 autoantigen. 
Scand J Immunol 2001, 54:428-433. 

105. Harangi M, Kaminski WE, Fleck M, Orso E, Zeher M, Kiss E, Szekanecz Z, Zilahi E, 
Marienhagen J, Aslanidis C et al: Homozygosity for the 168His variant of the 
minor histocompatibility antigen HA-1 is associated with reduced risk of primary 
Sjögren's syndrome. Eur J Immunol 2005, 35:305-317. 

106. Bolstad AI, Wargelius A, Nakken B, Haga HJ, Jonsson R: Fas and Fas ligand gene 
polymorphisms in primary Sjögren's syndrome. J Rheumatol 2000, 27:2397-2405. 

107. Magnusson V, Nakken B, Bolstad AI, Alarcon-Riquelme ME: Cytokine 
polymorphisms in systemic lupus erythematosus and Sjögren's syndrome. Scand 
J Immunol 2001, 54:55-61. 

108. Gottenberg JE, Loiseau P, Azarian M, Chen C, Cagnard N, Hachulla E, Puechal X, 
Sibilia J, Charron D, Mariette X et al: CTLA-4 +49A/G and CT60 gene 
polymorphisms in primary Sjögren syndrome. Arthritis Res Ther 2007, 9:R24. 

109. Miceli-Richard C, Dieude P, Hachulla E, Puechal X, Cornelis F, Mariette X: Tumour 
necrosis factor receptor 2 (TNFRSF1B) association study in Sjögren's syndrome. 
Ann Rheum Dis 2007, 66:1684-1685. 



86 

110. Kahlmann D, Davalos-Misslitz AC, Ohl L, Stanke F, Witte T, Forster R: Genetic 
variants of chemokine receptor CCR7 in patients with systemic lupus 
erythematosus, Sjögren's syndrome and systemic sclerosis. BMC Genet 2007, 8:33. 

111. Triantafyllopoulou A, Tapinos N, Moutsopoulos HM: Evidence for coxsackievirus 
infection in primary Sjögren's syndrome. Arthritis Rheum 2004, 50:2897-2902. 

112. Gottenberg JE, Pallier C, Ittah M, Lavie F, Miceli-Richard C, Sellam J, Nordmann P, 
Cagnard N, Sibilia J, Mariette X: Failure to confirm coxsackievirus infection in 
primary Sjögren's syndrome. Arthritis Rheum 2006, 54:2026-2028. 

113. Konttinen YT, Kasna-Ronkainen L: Sjögren's syndrome: viewpoint on 
pathogenesis. One of the reasons I was never asked to write a textbook chapter on 
it. Scand J Rheumatol Suppl 2002:15-22. 

114. Ohlsson M, Jonsson R, Brokstad KA: Subcellular redistribution and surface 
exposure of the Ro52, Ro60 and La48 autoantigens during apoptosis in human 
ductal epithelial cells: a possible mechanism in the pathogenesis of Sjögren's 
syndrome. Scand J Immunol 2002, 56:456-469. 

115. Hjelmervik TO, Petersen K, Jonassen I, Jonsson R, Bolstad AI: Gene expression 
profiling of minor salivary glands clearly distinguishes primary Sjögren's 
syndrome patients from healthy control subjects. Arthritis Rheum 2005, 52:1534-
1544. 

116. Gottenberg JE, Cagnard N, Lucchesi C, Letourneur F, Mistou S, Lazure T, Jacques S, 
Ba N, Ittah M, Lepajolec C et al: Activation of IFN pathways and plasmacytoid 
dendritic cell recruitment in target organs of primary Sjögren's syndrome. Proc 
Natl Acad Sci U S A 2006, 103:2770-2775. 

117. Hjelmervik TO, Lindqvist AK, Petersen K, Johannesson M, Stavrum AK, Johansson 
A, Jonsson R, Holmdahl R, Bolstad AI: The influence of the NOD Nss1/Idd5 loci on 
sialadenitis and gene expression in salivary glands of congenic mice. Arthritis Res 
Ther 2007, 9:R99. 

118. Killedar SJ, Eckenrode SE, McIndoe RA, She JX, Nguyen CQ, Peck AB, Cha S: 
Early pathogenic events associated with Sjögren's syndrome (SjS)-like disease of 
the NOD mouse using microarray analysis. Lab Invest 2006, 86:1243-1260. 

119. Båve U, Nordmark G, Lövgren T, Ronnelid J, Cajander S, Eloranta ML, Alm GV, 
Rönnblom L: Activation of the type I interferon system in primary Sjögren's 
syndrome: a possible etiopathogenic mechanism. Arthritis Rheum 2005, 52:1185-
1195. 

120. Lovgren T, Eloranta ML, Kastner B, Wahren-Herlenius M, Alm GV, Ronnblom L: 
Induction of interferon-alpha by immune complexes or liposomes containing 
systemic lupus erythematosus autoantigen- and Sjögren's syndrome autoantigen-
associated RNA. Arthritis Rheum 2006, 54:1917-1927. 

121. Laine M, Porola P, Udby L, Kjeldsen L, Cowland JB, Borregaard N, Hietanen J, 
Stahle M, Pihakari A, Konttinen YT: Low salivary dehydroepiandrosterone and 
androgen-regulated cysteine-rich secretory protein 3 levels in Sjögren's 
syndrome. Arthritis Rheum 2007, 56:2575-2584. 

122. Shim GJ, Warner M, Kim HJ, Andersson S, Liu L, Ekman J, Imamov O, Jones ME, 
Simpson ER, Gustafsson JA: Aromatase-deficient mice spontaneously develop a 



87 

lymphoproliferative autoimmune disease resembling Sjögren's syndrome. Proc 
Natl Acad Sci U S A 2004, 101:12628-12633. 

123. Kuroki M, Okayama A, Nakamura S, Sasaki T, Murai K, Shiba R, Shinohara M, 
Tsubouchi H: Detection of maternal-fetal microchimerism in the inflammatory 
lesions of patients with Sjögren's syndrome. Ann Rheum Dis 2002, 61:1041-1046. 

124. Masago R, Aiba-Masago S, Talal N, Zuluaga FJ, Al-Hashimi I, Moody M, Lau CA, 
Peck AB, Brayer J, Humphreys-Beher MG et al: Elevated proapoptotic Bax and 
caspase 3 activation in the NOD.scid model of Sjögren's syndrome. Arthritis 
Rheum 2001, 44:693-702. 

125. Li H, Dai M, Zhuang Y: A T cell intrinsic role of Id3 in a mouse model for 
primary Sjögren's syndrome. Immunity 2004, 21:551-560. 

126. Hayakawa I, Tedder TF, Zhuang Y: B-lymphocyte depletion ameliorates Sjögren's 
syndrome in Id3 knockout mice. Immunology 2007, 122:73-79. 

127. Greenspan JS, Daniels TE, Talal N, Sylvester RA: The histopathology of Sjögren's 
syndrome in labial salivary gland biopsies. Oral Surg Oral Med Oral Pathol 1974, 
37:217-229. 

128. Aziz KE, McCluskey PJ, Wakefield D: Characterisation of follicular dendritic cells 
in labial salivary glands of patients with primary Sjögren syndrome: comparison 
with tonsillar lymphoid follicles. Ann Rheum Dis 1997, 56:140-143. 

129. Manoussakis MN, Boiu S, Korkolopoulou P, Kapsogeorgou EK, Kavantzas N, Ziakas 
P, Patsouris E, Moutsopoulos HM: Rates of infiltration by macrophages and 
dendritic cells and expression of interleukin-18 and interleukin-12 in the chronic 
inflammatory lesions of Sjögren's syndrome: Correlation with certain features of 
immune hyperactivity and factors associated with high risk of lymphoma 
development. Arthritis Rheum 2007, 56:3977-3988. 

130. Jonsson MV, Skarstein K, Jonsson R, Brun JG: Serological implications of germinal 
center-like structures in Primary Sjögren's syndrome. J Rheumatol 2007, 34:2044-
2049. 

131. Ioannidis JP, Vassiliou VA, Moutsopoulos HM: Long-term risk of mortality and 
lymphoproliferative disease and predictive classification of primary Sjögren's 
syndrome. Arthritis Rheum 2002, 46:741-747. 

132. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O'Fallon WM, Goronzy JJ, 
Weyand CM: Lymphoid neogenesis in rheumatoid synovitis. J Immunol 2001, 
167:1072-1080. 

133. Armengol MP, Juan M, Lucas-Martin A, Fernandez-Figueras MT, Jaraquemada D, 
Gallart T, Pujol-Borrell R: Thyroid autoimmune disease: demonstration of thyroid 
antigen-specific B cells and recombination-activating gene expression in 
chemokine-containing active intrathyroidal germinal centers. Am J Pathol 2001, 
159:861-873. 

134. Mazzucchelli L, Blaser A, Kappeler A, Schärli P, Laissue JA, Baggiolini M, 
Uguccioni M: BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-
associated lymphoid tissue and gastric lymphoma. J Clin Invest 1999, 104:R49-54. 

135. Mikulowska-Mennis A, Xu B, Berberian JM, Michie SA: Lymphocyte migration to 
inflamed lacrimal glands is mediated by vascular cell adhesion molecule-



88 

1/alpha(4)beta(1) integrin, peripheral node addressin/l-selectin, and lymphocyte 
function-associated antigen-1 adhesion pathways. Am J Pathol 2001, 159:671-681. 

136. Jonsson R, Klareskog L, Backman K, Tarkowski A: Expression of HLA-D-locus 
(DP, DQ, DR)-coded antigens, beta 2-microglobulin, and the interleukin 2 
receptor in Sjögren's syndrome. Clin Immunol Immunopathol 1987, 45:235-243. 

137. Kapsogeorgou EK, Moutsopoulos HM, Manoussakis MN: Functional expression of a 
costimulatory B7.2 (CD86) protein on human salivary gland epithelial cells that 
interacts with the CD28 receptor, but has reduced binding to CTLA4. J Immunol 
2001, 166:3107-3113. 

138. Fox RI, Kang HI, Ando D, Abrams J, Pisa E: Cytokine mRNA expression in 
salivary gland biopsies of Sjögren's syndrome. J Immunol 1994, 152:5532-5539. 

139. Salomonsson S, Jonsson MV, Skarstein K, Brokstad KA, Hjelmstrom P, Wahren-
Herlenius M, Jonsson R: Cellular basis of ectopic germinal center formation and 
autoantibody production in the target organ of patients with Sjögren's syndrome. 
Arthritis Rheum 2003, 48:3187-3201. 

140. Xanthou G, Polihronis M, Tzioufas AG, Paikos S, Sideras P, Moutsopoulos HM: 
"Lymphoid" chemokine messenger RNA expression by epithelial cells in the 
chronic inflammatory lesion of the salivary glands of Sjögren's syndrome 
patients: possible participation in lymphoid structure formation. Arthritis Rheum 
2001, 44:408-418. 

141. Spachidou MP, Bourazopoulou E, Maratheftis CI, Kapsogeorgou EK, Moutsopoulos 
HM, Tzioufas AG, Manoussakis MN: Expression of functional Toll-like receptors 
by salivary gland epithelial cells: increased mRNA expression in cells derived 
from patients with primary Sjögren's syndrome. Clin Exp Immunol 2007, 147:497-
503. 

142. Kawakami A, Nakashima K, Tamai M, Nakamura H, Iwanaga N, Fujikawa K, 
Aramaki T, Arima K, Iwamoto N, Ichinose K et al: Toll-like receptor in salivary 
glands from patients with Sjögren's syndrome: functional analysis by human 
salivary gland cell line. J Rheumatol 2007, 34:1019-1026. 

143. Bolstad AI, Eiken HG, Rosenlund B, Alarcon-Riquelme ME, Jonsson R: Increased 
salivary gland tissue expression of Fas, Fas ligand, cytotoxic T lymphocyte-
associated antigen 4, and programmed cell death 1 in primary Sjögren's 
syndrome. Arthritis Rheum 2003, 48:174-185. 

144. Kong L, Ogawa N, McGuff HS, Nakabayashi T, Sakata KM, Masago R, Vela-Roch 
N, Talal N, Dang H: Bcl-2 family expression in salivary glands from patients with 
primary Sjögren's syndrome: involvement of Bax in salivary gland destruction. 
Clin Immunol Immunopathol 1998, 88:133-141. 

145. Ohlsson M, Skarstein K, Bolstad AI, Johannessen AC, Jonsson R: Fas-induced 
apoptosis is a rare event in Sjögren's syndrome. Lab Invest 2001, 81:95-105. 

146. Goicovich E, Molina C, Perez P, Aguilera S, Fernandez J, Olea N, Alliende C, Leyton 
C, Romo R, Leyton L et al: Enhanced degradation of proteins of the basal lamina 
and stroma by matrix metalloproteinases from the salivary glands of Sjögren's 
syndrome patients: correlation with reduced structural integrity of acini and 
ducts. Arthritis Rheum 2003, 48:2573-2584. 



89 

147. Perez P, Goicovich E, Alliende C, Aguilera S, Leyton C, Molina C, Pinto R, Romo R, 
Martinez B, Gonzalez MJ: Differential expression of matrix metalloproteinases in 
labial salivary glands of patients with primary Sjögren's syndrome. Arthritis 
Rheum 2000, 43:2807-2817. 

148. Nakamura H, Kawakami A, Tominaga M, Migita K, Kawabe Y, Nakamura T, Eguchi 
K: Expression of CD40/CD40 ligand and Bcl-2 family proteins in labial salivary 
glands of patients with Sjögren's syndrome. Lab Invest 1999, 79:261-269. 

149. Coll J, Tomas S, Vilella R, Corominas J: Interleukin-2 receptor expression in 
salivary glands of patients with Sjögren's syndrome. J Rheumatol 1995, 22:1488-
1491. 

150. Ohyama Y, Nakamura S, Matsuzaki G, Shinohara M, Hiroki A, Oka M, Nomoto K: 
T-cell receptor V alpha and V beta gene use by infiltrating T cells in labial glands 
of patients with Sjögren's syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol 
Endod 1995, 79:730-737. 

151. Kong L, Ogawa N, Nakabayashi T, Liu GT, D'Souza E, McGuff HS, Guerrero D, 
Talal N, Dang H: Fas and Fas ligand expression in the salivary glands of patients 
with primary Sjögren's syndrome. Arthritis Rheum 1997, 40:87-97. 

152. Ohlsson M, Szodoray P, Loro LL, Johannessen AC, Jonsson R: CD40, CD154, Bax 
and Bcl-2 expression in Sjögren's syndrome salivary glands: a putative anti-
apoptotic role during its effector phases. Scand J Immunol 2002, 56:561-571. 

153. Gottenberg JE, Lavie F, Abbed K, Gasnault J, Le Nevot E, Delfraissy JF, Taoufik Y, 
Mariette X: CD4 CD25high regulatory T cells are not impaired in patients with 
primary Sjögren's syndrome. J Autoimmun 2005, 24:235-242. 

154. Li X, Li X, Qian L, Wang G, Zhang H, Wang X, Chen K, Zhai Z, Li Q, Wang Y et al: 
T Regulatory Cells Are Markedly Diminished in Diseased Salivary Glands of 
Patients with Primary Sjögren's Syndrome. J Rheumatol 2007, 34:2438-2445. 

155. Szodoray P, Alex P, Jonsson MV, Knowlton N, Dozmorov I, Nakken B, Delaleu N, 
Jonsson R, Centola M: Distinct profiles of Sjögren's syndrome patients with 
ectopic salivary gland germinal centers revealed by serum cytokines and BAFF. 
Clin Immunol 2005, 117:168-176. 

156. Konttinen YT, Kemppinen P, Koski H, Li TF, Jumppanen M, Hietanen J, Santavirta S, 
Salo T, Larsson A, Hakala M et al: T(H)1 cytokines are produced in labial salivary 
glands in Sjögren's syndrome, but also in healthy individuals. Scand J Rheumatol 
1999, 28:106-112. 

157. van Blokland SC, Versnel MA: Pathogenesis of Sjögren's syndrome: 
characteristics of different mouse models for autoimmune exocrinopathy. Clin 
Immunol 2002, 103:111-124. 

158. Mitsias DI, Tzioufas AG, Veiopoulou C, Zintzaras E, Tassios IK, Kogopoulou O, 
Moutsopoulos HM, Thyphronitis G: The Th1/Th2 cytokine balance changes with 
the progress of the immunopathological lesion of Sjögren's syndrome. Clin Exp 
Immunol 2002, 128:562-568. 

159. Cha S, Peck AB, Humphreys-Beher MG: Progress in understanding autoimmune 
exocrinopathy using the non-obese diabetic mouse: an update. Crit Rev Oral Biol 
Med 2002, 13:5-16. 



90 

160. Gao J, Killedar S, Cornelius JG, Nguyen C, Cha S, Peck AB: Sjögren's syndrome in 
the NOD mouse model is an interleukin-4 time-dependent, antibody isotype-
specific autoimmune disease. J Autoimmun 2006, 26:90-103. 

161. Brayer JB, Cha S, Nagashima H, Yasunari U, Lindberg A, Diggs S, Martinez J, Goa J, 
Humphreys-Beher MG, Peck AB: IL-4-dependent effector phase in autoimmune 
exocrinopathy as defined by the NOD.IL-4-gene knockout mouse model of 
Sjögren's syndrome. Scand J Immunol 2001, 54:133-140. 

162. Nguyen CQ, Gao JH, Kim H, Saban DR, Cornelius JG, Peck AB: IL-4-STAT6 signal 
transduction-dependent induction of the clinical phase of Sjögren's syndrome-
like disease of the nonobese diabetic mouse. J Immunol 2007, 179:382-390. 

163. Cha S, Brayer J, Gao J, Brown V, Killedar S, Yasunari U, Peck AB: A dual role for 
interferon-gamma in the pathogenesis of Sjögren's syndrome-like autoimmune 
exocrinopathy in the nonobese diabetic mouse. Scand J Immunol 2004, 60:552-565. 

164. Nguyen CQ, Hu MH, Li Y, Stewart C, Peck AB: Salivary gland tissue expression of 
interleukin-23 and interleukin-17 in Sjögren's syndrome: Findings in humans 
and mice. Arthritis Rheum 2008, 58:734-743. 

165. Amft N, Curnow SJ, Scheel-Toellner D, Devadas A, Oates J, Crocker J, Hamburger J, 
Ainsworth J, Mathews J, Salmon M et al: Ectopic expression of the B cell-attracting 
chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles 
contributes to the establishment of germinal center-like structures in Sjögren's 
syndrome. Arthritis Rheum 2001, 44:2633-2641. 

166. Matin K, Salam MA, Akhter J, Hanada N, Senpuku H: Role of stromal-cell derived 
factor-1 in the development of autoimmune diseases in non-obese diabetic mice. 
Immunology 2002, 107:222-232. 

167. Bohnhorst JO, Bjorgan MB, Thoen JE, Jonsson R, Natvig JB, Thompson KM: 
Abnormal B cell differentiation in primary Sjögren's syndrome results in a 
depressed percentage of circulating memory B cells and elevated levels of soluble 
CD27 that correlate with Serum IgG concentration. Clin Immunol 2002, 103:79-
88. 

168. Hansen A, Odendahl M, Reiter K, Jacobi AM, Feist E, Scholze J, Burmester GR, 
Lipsky PE, Dorner T: Diminished peripheral blood memory B cells and 
accumulation of memory B cells in the salivary glands of patients with Sjögren's 
syndrome. Arthritis Rheum 2002, 46:2160-2171. 

169. Hansen A, Reiter K, Ziprian T, Jacobi A, Hoffmann A, Gosemann M, Scholze J, 
Lipsky PE, Dörner T: Dysregulation of chemokine receptor expression and 
function by B cells of patients with primary Sjögren's syndrome. Arthritis Rheum 
2005, 52:2109-2119. 

170. Bohnhorst JO, Bjørgan MB, Thoen JE, Natvig JB, Thompson KM: Bm1-Bm5 
classification of peripheral blood B cells reveals circulating germinal center 
founder cells in healthy individuals and disturbance in the B cell subpopulations 
in patients with primary Sjögren's syndrome. J Immunol 2001, 167:3610-3618. 

171. Hansen A, Jacobi A, Pruss A, Kaufmann O, Scholze J, Lipsky PE, Dorner T: 
Comparison of immunoglobulin heavy chain rearrangements between peripheral 
and glandular B cells in a patient with primary Sjögren's syndrome. Scand J 
Immunol 2003, 57:470-479. 



91 

172. Dorner T, Hansen A, Jacobi A, Lipsky PE: Immunglobulin repertoire analysis 
provides new insights into the immunopathogenesis of Sjögren's syndrome. 
Autoimmun Rev 2002, 1:119-124. 

173. Gottenberg JE, Aucouturier F, Goetz J, Sordet C, Jahn I, Busson M, Cayuela JM, 
Sibilia J, Mariette X: Serum immunoglobulin free light chain assessment in 
rheumatoid arthritis and primary Sjögren's syndrome. Ann Rheum Dis 2007, 
66:23-27. 

174. Bahler DW, Swerdlow SH: Clonal salivary gland infiltrates associated with 
myoepithelial sialadenitis (Sjögren's syndrome) begin as nonmalignant antigen-
selected expansions. Blood 1998, 91:1864-1872. 

175. Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P, Tschopp J, 
Cachero TG, Batten M, Wheway J et al: Association of BAFF/BLyS overexpression 
and altered B cell differentiation with Sjögren's syndrome. J Clin Invest 2002, 
109:59-68. 

176. Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T, Kimberly R: The level of 
BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren's 
syndrome. Ann Rheum Dis 2003, 62:168-171. 

177. Daridon C, Devauchelle V, Hutin P, Le Berre R, Martins-Carvalho C, Bendaoud B, 
Dueymes M, Saraux A, Youinou P, Pers JO: Aberrant expression of BAFF by B 
lymphocytes infiltrating the salivary glands of patients with primary Sjögren's 
syndrome. Arthritis Rheum 2007, 56:1134-1144. 

178. Szodoray P, Jellestad S, Teague MO, Jonsson R: Attenuated apoptosis of B cell 
activating factor-expressing cells in primary Sjögren's syndrome. Lab Invest 2003, 
83:357-365. 

179. Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg JE, Mariette X: Increase of 
B cell-activating factor of the TNF family (BAFF) after rituximab treatment: 
insights into a new regulating system of BAFF production. Ann Rheum Dis 2007, 
66:700-703. 

180. Speight PM, Cruchley A, Williams DM: Quantification of plasma cells in labial 
salivary glands: increased expression of IgM in Sjögren's syndrome. J Oral Pathol 
Med 1990, 19:126-130. 

181. Topfer F, Gordon T, McCluskey J: Intra- and intermolecular spreading of 
autoimmunity involving the nuclear self-antigens La (SS-B) and Ro (SS-A). Proc 
Natl Acad Sci U S A 1995, 92:875-879. 

182. Tseng CE, Chan EK, Miranda E, Gross M, Di Donato F, Buyon JP: The 52-kd 
protein as a target of intermolecular spreading of the immune response to 
components of the SS-A/Ro-SS-B/La complex. Arthritis Rheum 1997, 40:936-944. 

183. Keech CL, Gordon TP, McCluskey J: The immune response to 52-kDa Ro and 60-
kDa Ro is linked in experimental autoimmunity. J Immunol 1996, 157:3694-3699. 

184. Reynolds P, Gordon TP, Purcell AW, Jackson DC, McCluskey J: Hierarchical self-
tolerance to T cell determinants within the ubiquitous nuclear self-antigen La 
(SS-B) permits induction of systemic autoimmunity in normal mice. J Exp Med 
1996, 184:1857-1870. 

185. Espinosa A, Zhou W, Ek M, Hedlund M, Brauner S, Popovic K, Horvath L, 
Wallerskog T, Oukka M, Nyberg F et al: The Sjögren's syndrome-associated 



92 

autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. J 
Immunol 2006, 176:6277-6285. 

186. Scofield RH, Asfa S, Obeso D, Jonsson R, Kurien BT: Immunization with short 
peptides from the 60-kDa Ro antigen recapitulates the serological and 
pathological findings as well as the salivary gland dysfunction of Sjögren's 
syndrome. J Immunol 2005, 175:8409-8414. 

187. Muller K, Manthorpe R, Permin H, Hoier-Madsen M, Oxholm P: Circulating IgM 
rheumatoid factors in patients with primary Sjögren's syndrome. Scand J 
Rheumatol Suppl 1988, 75:265-268. 

188. Gottenberg JE, Mignot S, Nicaise-Rolland P, Cohen-Solal J, Aucouturier F, Goetz J, 
Labarre C, Meyer O, Sibilia J, Mariette X: Prevalence of anti-cyclic citrullinated 
peptide and anti-keratin antibodies in patients with primary Sjögren's syndrome. 
Ann Rheum Dis 2005, 64:114-117. 

189. Haneji N, Nakamura T, Takio K, Yanagi K, Higashiyama H, Saito I, Noji S, Sugino 
H, Hayashi Y: Identification of alpha-fodrin as a candidate autoantigen in 
primary Sjögren's syndrome. Science 1997, 276:604-607. 

190. Watanabe T, Tsuchida T, Kanda N, Mori K, Hayashi Y, Tamaki K: Anti-alpha-
fodrin antibodies in Sjögren syndrome and lupus erythematosus. Arch Dermatol 
1999, 135:535-539. 

191. Asherson RA, Fei HM, Staub HL, Khamashta MA, Hughes GR, Fox RI: 
Antiphospholipid antibodies and HLA associations in primary Sjögren's 
syndrome. Ann Rheum Dis 1992, 51:495-498. 

192. Cervera R, Garcia-Carrasco M, Font J, Ramos M, Reverter JC, Munoz FJ, Miret C, 
Espinosa G, Ingelmo M: Antiphospholipid antibodies in primary Sjögren's 
syndrome: prevalence and clinical significance in a series of 80 patients. Clin Exp 
Rheumatol 1997, 15:361-365. 

193. Zandbelt MM, Vogelzangs J, Van De Putte LB, Van Venrooij WJ, Van Den Hoogen 
FH: Anti-alpha-fodrin antibodies do not add much to the diagnosis of Sjögren's 
syndrome. Arthritis Res Ther 2004, 6:R33-R38. 

194. Robinson CP, Brayer J, Yamachika S, Esch TR, Peck AB, Stewart CA, Peen E, 
Jonsson R, Humphreys-Beher MG: Transfer of human serum IgG to nonobese 
diabetic Igmu null mice reveals a role for autoantibodies in the loss of secretory 
function of exocrine tissues in Sjögren's syndrome. Proc Natl Acad Sci U S A 1998, 
95:7538-7543. 

195. Dawson LJ, Stanbury J, Venn N, Hasdimir B, Rogers SN, Smith PM: Antimuscarinic 
antibodies in primary Sjögren's syndrome reversibly inhibit the mechanism of 
fluid secretion by human submandibular salivary acinar cells. Arthritis Rheum 
2006, 54:1165-1173. 

196. Humphreys-Beher MG, Brayer J, Yamachika S, Peck AB, Jonsson R: An alternative 
perspective to the immune response in autoimmune exocrinopathy: induction of 
functional quiescence rather than destructive autoaggression. Scand J Immunol 
1999, 49:7-10. 

197. Jonsson R, Kroneld U, Backman K, Magnusson B, Tarkowski A: Progression of 
sialadenitis in Sjögren's syndrome. Br J Rheumatol 1993, 32:578-581. 



93 

198. Dawson LJ, Field EA, Harmer AR, Smith PM: Acetylcholine-evoked calcium 
mobilization and ion channel activation in human labial gland acinar cells from 
patients with primary Sjögren's syndrome. Clin Exp Immunol 2001, 124:480-485. 

199. Jonsson MV, Delaleu N, Jonsson R: Animal models of Sjögren's syndrome. Clin 
Rev Allergy Immunol 2007, 32:215-224. 

200. Baum BJ, Dai Y, Hiramatsu Y, Horn VJ, Ambudkar IS: Signaling mechanisms that 
regulate saliva formation. Crit Rev Oral Biol Med 1993, 4:379-384. 

201. Luo W, Latchney LR, Culp DJ: G protein coupling to M1 and M3 muscarinic 
receptors in sublingual glands. Am J Physiol Cell Physiol 2001, 280:C884-896. 

202. Bymaster FP, McKinzie DL, Felder CC, Wess J: Use of M1-M5 muscarinic receptor 
knockout mice as novel tools to delineate the physiological roles of the muscarinic 
cholinergic system. Neurochem Res 2003, 28:437-442. 

203. Gao J, Cha S, Jonsson R, Opalko J, Peck AB: Detection of anti-type 3 muscarinic 
acetylcholine receptor autoantibodies in the sera of Sjögren's syndrome patients 
by use of a transfected cell line assay. Arthritis Rheum 2004, 50:2615-2621. 

204. Marczinovits I, Kovacs L, Gyorgy A, Toth GK, Dorgai L, Molnar J, Pokorny G: A 
peptide of human muscarinic acetylcholine receptor 3 is antigenic in primary 
Sjögren's syndrome. J Autoimmun 2005, 24:47-54. 

205. Budd DC, McDonald J, Emsley N, Cain K, Tobin AB: The C-terminal tail of the 
M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem 2003, 
278:19565-19573. 

206. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen 
S: Aquaporin water channels--from atomic structure to clinical medicine. J 
Physiol 2002, 542:3-16. 

207. Gresz V, Kwon TH, Hurley PT, Varga G, Zelles T, Nielsen S, Case RM, Steward MC: 
Identification and localization of aquaporin water channels in human salivary 
glands. Am J Physiol Gastrointest Liver Physiol 2001, 281:G247-254. 

208. Nguyen KH, Brayer J, Cha S, Diggs S, Yasunari U, Hilal G, Peck AB, Humphreys-
Beher MG: Evidence for antimuscarinic acetylcholine receptor antibody-mediated 
secretory dysfunction in nod mice. Arthritis Rheum 2000, 43:2297-2306. 

209. Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T, Menon 
AG: Salivary acinar cells from aquaporin 5-deficient mice have decreased 
membrane water permeability and altered cell volume regulation. J Biol Chem 
2001, 276:23413-23420. 

210. Steinfeld S, Cogan E, King LS, Agre P, Kiss R, Delporte C: Abnormal distribution 
of aquaporin-5 water channel protein in salivary glands from Sjögren's 
syndrome patients. Lab Invest 2001, 81:143-148. 

211. Beroukas D, Hiscock J, Jonsson R, Waterman SA, Gordon TP: Subcellular 
distribution of aquaporin 5 in salivary glands in primary Sjögren's syndrome. 
Lancet 2001, 358:1875-1876. 

212. Beroukas D, Hiscock J, Gannon BJ, Jonsson R, Gordon TP, Waterman SA: Selective 
down-regulation of aquaporin-1 in salivary glands in primary Sjögren's 
syndrome. Lab Invest 2002, 82:1547-1552. 



94 

213. Main C, Blennerhassett P, Collins SM: Human recombinant interleukin 1 beta 
suppresses acetylcholine release from rat myenteric plexus. Gastroenterology 
1993, 104:1648-1654. 

214. Zoukhri D, Kublin CL: Impaired neurotransmitter release from lacrimal and 
salivary gland nerves of a murine model of Sjögren's syndrome. Invest 
Ophthalmol Vis Sci 2001, 42:925-932. 

215. Dawson LJ, Christmas SE, Smith PM: An investigation of interactions between the 
immune system and stimulus-secretion coupling in mouse submandibular acinar 
cells. A possible mechanism to account for reduced salivary flow rates associated 
with the onset of Sjögren's syndrome. Rheumatology (Oxford) 2000, 39:1226-1233. 

216. Kessler HS: A laboratory model for Sjögren's syndrome. Am J Pathol 1968, 
52:671-685. 

217. Hoffman RW, Alspaugh MA, Waggie KS, Durham JB, Walker SE: Sjögren's 
syndrome in MRL/l and MRL/n mice. Arthritis Rheum 1984, 27:157-165. 

218. Miyagawa J, Hanafusa T, Miyazaki A, Yamada K, Fujino-Kurihara H, Nakajima H, 
Kono N, Nonaka K, Tochino Y, Tarui S: Ultrastructural and immunocytochemical 
aspects of lymphocytic submandibulitis in the non-obese diabetic (NOD) mouse. 
Virchows Arch B Cell Pathol Incl Mol Pathol 1986, 51:215-225. 

219. Haneji N, Hamano H, Yanagi K, Hayashi Y: A new animal model for primary 
Sjögren's syndrome in NFS/sld mutant mice. J Immunol 1994, 153:2769-2777. 

220. Saegusa J, Kubota H: Sialadenitis in IQI/Jic mice: a new animal model of 
Sjögren's syndrome. J Vet Med Sci 1997, 59:897-903. 

221. Kessler HS, Cubberly M, Manski W: Eye changes in autoimmune NZB and NZB x 
NZW mice. Comparison with Sjögren's syndrome. Arch Ophthalmol 1971, 85:211-
219. 

222. Keyes GG, Vickers RA, Kersey JH: Immunopathology of Sjögren-like disease in 
NZB/NZW mice. J Oral Pathol 1977, 6:288-295. 

223. Jonsson R, Tarkowski A, Bäckman K, Klareskog L: Immunohistochemical 
characterization of sialadenitis in NZB X NZW F1 mice. Clin Immunol 
Immunopathol 1987, 42:93-101. 

224. Hang L, Theofilopoulos AN, Dixon FJ: A spontaneous rheumatoid arthritis-like 
disease in MRL/l mice. J Exp Med 1982, 155:1690-1701. 

225. Jonsson R, Tarkowski A, Backman K, Holmdahl R, Klareskog L: Sialadenitis in the 
MRL-l mouse: morphological and immunohistochemical characterization of 
resident and infiltrating cells. Immunology 1987, 60:611-616. 

226. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S: 
Lymphoproliferation disorder in mice explained by defects in Fas antigen that 
mediates apoptosis. Nature 1992, 356:314-317. 

227. Singer GG, Abbas AK: The fas antigen is involved in peripheral but not thymic 
deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1994, 
1:365-371. 

228. Skarstein K, Nerland AH, Eidsheim M, Mountz JD, Jonsson R: Lymphoid cell 
accumulation in salivary glands of autoimmune MRL mice can be due to 
impaired apoptosis. Scand J Immunol 1997, 46:373-378. 



95 

229. Jonsson R, Holmdahl R: Infiltrating mononuclear cells in salivary glands and 
kidneys in autoimmune MRL/Mp-lpr/lpr mice express IL-2 receptor and produce 
interferon-gamma. J Oral Pathol Med 1990, 19:330-334. 

230. Skarstein K, Johannessen AC, Holmdahl R, Jonsson R: Effects of sialadenitis after 
cellular transfer in autoimmune MRL/lpr mice. Clin Immunol Immunopathol 1997, 
84:177-184. 

231. Jonsson R, Pitts A, Mestecky J, Koopman W: Local IgA and IgM rheumatoid factor 
production in autoimmune MRL/lpr mice. Autoimmunity 1991, 10:7-14. 

232. Hamano H, Saito I, Haneji N, Mitsuhashi Y, Miyasaka N, Hayashi Y: Expressions of 
cytokine genes during development of autoimmune sialadenitis in MRL/lpr mice. 
Eur J Immunol 1993, 23:2387-2391. 

233. Mustafa W, Zhu J, Deng G, Diab A, Link H, Frithiof L, Klinge B: Augmented levels 
of macrophage and Th1 cell-related cytokine mRNA in submandibular glands of 
MRL/lpr mice with autoimmune sialoadenitis. Clin Exp Immunol 1998, 112:389-
396. 

234. Hayashi Y, Haneji N, Hamano H, Yanagi K, Takahashi M, Ishimaru N: Effector 
mechanism of experimental autoimmune sialadenitis in the mouse model for 
primary Sjögren's syndrome. Cell Immunol 1996, 171:217-225. 

235. Takada K, Takiguchi M, Konno A, Inaba M: Spontaneous development of multiple 
glandular and extraglandular lesions in aged IQI/Jic mice: a model for primary 
Sjögren's syndrome. Rheumatology (Oxford) 2004, 43:858-862. 

236. Takada K, Takiguchi M, Konno A, Inaba M: Autoimmunity against a tissue 
kallikrein in IQI/Jic Mice: a model for Sjögren's syndrome. J Biol Chem 2005, 
280:3982-3988. 

237. Cha S, Nagashima H, Brown VB, Peck AB, Humphreys-Beher MG: Two NOD Idd-
associated intervals contribute synergistically to the development of autoimmune 
exocrinopathy (Sjögren's syndrome) on a healthy murine background. Arthritis 
Rheum 2002, 46:1390-1398. 

238. Robinson CP, Yamachika S, Bounous DI, Brayer J, Jonsson R, Holmdahl R, Peck AB, 
Humphreys-Beher MG: A novel NOD-derived murine model of primary Sjögren's 
syndrome. Arthritis Rheum 1998, 41:150-156. 

239. Wicker LS, Appel MC, Dotta F, Pressey A, Miller BJ, DeLarato NH, Fischer PA, 
Boltz RC, Jr., Peterson LB: Autoimmune syndromes in major histocompatibility 
complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD 
MHC is dominant for insulitis and cyclophosphamide-induced diabetes. J Exp 
Med 1992, 176:67-77. 

240. Lindqvist AK, Nakken B, Sundler M, Kjellen P, Jonsson R, Holmdahl R, Skarstein K: 
Influence on spontaneous tissue inflammation by the major histocompatibility 
complex region in the nonobese diabetic mouse. Scand J Immunol 2005, 61:119-
127. 

241. Hawke CG, Painter DM, Kirwan PD, Van Driel RR, Baxter AG: Mycobacteria, an 
environmental enhancer of lupus nephritis in a mouse model of systemic lupus 
erythematosus. Immunology 2003, 108:70-78. 

242. Anderson MS, Bluestone JA: The NOD mouse: a model of immune dysregulation. 
Annu Rev Immunol 2005, 23:447-485. 



96 

243. Setoguchi R, Hori S, Takahashi T, Sakaguchi S: Homeostatic maintenance of 
natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and 
induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005, 
201:723-735. 

244. Quintana FJ, Pitashny M, Cohen IR: Experimental autoimmune myasthenia gravis 
in naive non-obese diabetic (NOD/LtJ) mice: susceptibility associated with 
natural IgG antibodies to the acetylcholine receptor. Int Immunol 2003, 15:11-16. 

245. Salam MA, Matin K, Matsumoto N, Tsuha Y, Hanada N, Senpuku H: E2f1 mutation 
induces early onset of diabetes and Sjögren's syndrome in nonobese diabetic 
mice. J Immunol 2004, 173:4908-4918. 

246. Winer S, Astsaturov I, Cheung R, Tsui H, Song A, Gaedigk R, Winer D, Sampson A, 
McKerlie C, Bookman A et al: Primary Sjögren's syndrome and deficiency of 
ICA69. Lancet 2002, 360:1063-1069. 

247. Gordon TP, Cavill D, Neufing P, Zhang YJ, Pietropaolo M: ICA69 autoantibodies in 
primary Sjögren's syndrome. Lupus 2004, 13:483-484. 

248. Soyfoo MS, De Vriese C, Debaix H, Martin-Martinez MD, Mathieu C, Devuyst O, 
Steinfeld SD, Delporte C: Modified aquaporin 5 expression and distribution in 
submandibular glands from NOD mice displaying autoimmune exocrinopathy. 
Arthritis Rheum 2007, 56:2566-2574. 

249. Serreze DV, Chapman HD, Post CM, Johnson EA, Suarez-Pinzon WL, Rabinovitch 
A: Th1 to Th2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, 
rather than the cause, of diabetes resistance elicited by immunostimulation. J 
Immunol 2001, 166:1352-1359. 

250. Yanagi K, Ishimaru N, Haneji N, Saegusa K, Saito I, Hayashi Y: Anti-120-kDa 
alpha-fodrin immune response with Th1-cytokine profile in the NOD mouse 
model of Sjögren's syndrome. Eur J Immunol 1998, 28:3336-3345. 

251. Yamano S, Atkinson JC, Baum BJ, Fox PC: Salivary gland cytokine expression in 
NOD and normal BALB/c mice. Clin Immunol 1999, 92:265-275. 

252. Nguyen CQ, Kim H, Cornelius JG, Peck AB: Development of Sjögren's syndrome 
in nonobese diabetic-derived autoimmune-prone C57BL/6.NOD-Aec1Aec2 mice 
is dependent on complement component-3. J Immunol 2007, 179:2318-2329. 

253. Hayashi Y, Utsuyama M, Kurashima C, Hirokawa K: Spontaneous development of 
organ-specific autoimmune lesions in aged C57BL/6 mice. Clin Exp Immunol 1989, 
78:120-126. 

254. Sharma R, Zheng L, Guo X, Fu SM, Ju ST, Jarjour WN: Novel animal models for 
Sjögren's syndrome: expression and transfer of salivary gland dysfunction from 
regulatory T cell-deficient mice. J Autoimmun 2006, 27:289-296. 

255. Saito I, Haruta K, Shimuta M, Inoue H, Sakurai H, Yamada K, Ishimaru N, 
Higashiyama H, Sumida T, Ishida H et al: Fas ligand-mediated exocrinopathy 
resembling Sjögren's syndrome in mice transgenic for IL-10. J Immunol 1999, 
162:2488-2494. 

256. Kok MR, Yamano S, Lodde BM, Wang J, Couwenhoven RI, Yakar S, Voutetakis A, 
Leroith D, Schmidt M, Afione S et al: Local adeno-associated virus-mediated 
interleukin 10 gene transfer has disease-modifying effects in a murine model of 
Sjögren's syndrome. Hum Gene Ther 2003, 14:1605-1618. 



97 

257. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, Xu W, Parrish-
Novak J, Foster D, Lofton-Day C et al: TACI and BCMA are receptors for a TNF 
homologue implicated in B-cell autoimmune disease. Nature 2000, 404:995-999. 

258. Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, Tschopp 
J, Browning JL: Mice transgenic for BAFF develop lymphocytic disorders along 
with autoimmune manifestations. J Exp Med 1999, 190:1697-1710. 

259. Fletcher CA, Sutherland AP, Groom JR, Batten ML, Ng LG, Gommerman J, Mackay 
F: Development of nephritis but not sialadenitis in autoimmune-prone BAFF 
transgenic mice lacking marginal zone B cells. Eur J Immunol 2006, 36:2504-2514. 

260. Batten M, Fletcher C, Ng LG, Groom J, Wheway J, Laabi Y, Xin X, Schneider P, 
Tschopp J, Mackay CR et al: TNF deficiency fails to protect BAFF transgenic mice 
against autoimmunity and reveals a predisposition to B cell lymphoma. J Immunol 
2004, 172:812-822. 

261. Shen L, Zhang C, Wang T, Brooks S, Ford RJ, Lin-Lee YC, Kasianowicz A, Kumar 
V, Martin L, Liang P et al: Development of autoimmunity in IL-14alpha-
transgenic mice. J Immunol 2006, 177:5676-5686. 

262. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, 
Sporn MB, Ward JM, Karlsson S: Transforming growth factor beta 1 null 
mutation in mice causes excessive inflammatory response and early death. Proc 
Natl Acad Sci U S A 1993, 90:770-774. 

263. McCartney-Francis NL, Mizel DE, Redman RS, Frazier-Jessen M, Panek RB, 
Kulkarni AB, Ward JM, McCarthy JB, Wahl SM: Autoimmune Sjögren's-like 
lesions in salivary glands of TGF-beta1-deficient mice are inhibited by adhesion-
blocking peptides. J Immunol 1996, 157:1306-1312. 

264. Yokota Y: Id and development. Oncogene 2001, 20:8290-8298. 
265. Quong MW, Romanow WJ, Murre C: E protein function in lymphocyte 

development. Annu Rev Immunol 2002, 20:301-322. 
266. Alani RM, Silverthorn CF, Orosz K: Tumor angiogenesis in mice and men. Cancer 

Biol Ther 2004, 3:498-500. 
267. Ahmed SA, Aufdemorte TB, Chen JR, Montoya AI, Olive D, Talal N: Estrogen 

induces the development of autoantibodies and promotes salivary gland lymphoid 
infiltrates in normal mice. J Autoimmun 1989, 2:543-552. 

268. Ishimaru N, Arakaki R, Watanabe M, Kobayashi M, Miyazaki K, Hayashi Y: 
Development of autoimmune exocrinopathy resembling Sjögren's syndrome in 
estrogen-deficient mice of healthy background. Am J Pathol 2003, 163:1481-1490. 

269. Oak JS, Deane JA, Kharas MG, Luo J, Lane TE, Cantley LC, Fruman DA: Sjögren's 
syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-
kinase. Proc Natl Acad Sci U S A 2006, 103:16882-16887. 

270. Inagaki Y, Jinno-Yoshida Y, Hamasaki Y, Ueki H: A novel autoantibody reactive 
with carbonic anhydrase in sera from patients with systemic lupus erythematosus 
and Sjögren's syndrome. J Dermatol Sci 1991, 2:147-154. 

271. Nishimori I, Bratanova T, Toshkov I, Caffrey T, Mogaki M, Shibata Y, Hollingsworth 
MA: Induction of experimental autoimmune sialoadenitis by immunization of 
PL/J mice with carbonic anhydrase II. J Immunol 1995, 154:4865-4873. 



98 

272. Fleck M, Kern ER, Zhou T, Lang B, Mountz JD: Murine cytomegalovirus induces a 
Sjögren's syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum 1998, 
41:2175-2184. 

273. Fleck M, Zhang HG, Kern ER, Hsu HC, Muller-Ladner U, Mountz JD: Treatment of 
chronic sialadenitis in a murine model of Sjögren's syndrome by local fasL gene 
transfer. Arthritis Rheum 2001, 44:964-973. 

274. Gao B, Tsan MF: Recombinant human heat shock protein 60 does not induce the 
release of tumor necrosis factor alpha from murine macrophages. J Biol Chem 
2003, 278:22523-22529. 

275. Leiter EH: The NOD mouse: A model for insulin-dependent diabetes mellitus In: 
Current Protocols in Immunology. Edited by Coligan JE, Kruisbeek AM, Margulies 
DH, Shevach EM, Strober W: John Wiley and Sons, Inc; 1997: 15.19.11-15.19.23. 

276. Hu S, Loo JA, Wong DT: Human saliva proteome analysis and disease biomarker 
discovery. Expert Rev Proteomics 2007, 4:531-538. 

277. Binder CJ, Hartvigsen K, Chang MK, Miller M, Broide D, Palinski W, Curtiss LK, 
Corr M, Witztum JL: IL-5 links adaptive and natural immunity specific for 
epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 2004, 
114:427-437. 

278. Daugherty A, Rateri DL, King VL: IL-5 links adaptive and natural immunity in 
reducing atherosclerotic disease. J Clin Invest 2004, 114:317-319. 

279. Berland R, Wortis HH: Origins and functions of B-1 cells with notes on the role of 
CD5. Annu Rev Immunol 2002, 20:253-300. 

280. Binder CJ, Horkko S, Dewan A, Chang MK, Kieu EP, Goodyear CS, Shaw PX, 
Palinski W, Witztum JL, Silverman GJ: Pneumococcal vaccination decreases 
atherosclerotic lesion formation: molecular mimicry between Streptococcus 
pneumoniae and oxidized LDL. Nat Med 2003, 9:736-743. 

281. Hu S, Wang J, Meijer J, Ieong S, Xie Y, Yu T, Zhou H, Henry S, Vissink A, Pijpe J et 
al: Salivary proteomic and genomic biomarkers for primary Sjögren's syndrome. 
Arthritis Rheum 2007, 56:3588-3600. 

282. Fulkerson PC, Zimmermann N, Hassman LM, Finkelman FD, Rothenberg ME: 
Pulmonary chemokine expression is coordinately regulated by STAT1, STAT6, 
and IFN-gamma. J Immunol 2004, 173:7565-7574. 

283. Lloyd CM, Delaney T, Nguyen T, Tian J, Martinez AC, Coyle AJ, Gutierrez-Ramos 
JC: CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-
derived chemokine in mediating pulmonary T helper lymphocyte type 2 
recruitment after serial antigen challenge in vivo. J Exp Med 2000, 191:265-274. 

284. Lebre MC, Burwell T, Vieira PL, Lora J, Coyle AJ, Kapsenberg ML, Clausen BE, De 
Jong EC: Differential expression of inflammatory chemokines by Th1- and Th2-
cell promoting dendritic cells: a role for different mature dendritic cell 
populations in attracting appropriate effector cells to peripheral sites of 
inflammation. Immunol Cell Biol 2005, 83:525-535. 

285. Dimitriou ID, Kapsogeorgou EK, Moutsopoulos HM, Manoussakis MN: CD40 on 
salivary gland epithelial cells: high constitutive expression by cultured cells from 
Sjögren's syndrome patients indicating their intrinsic activation. Clin Exp 
Immunol 2002, 127:386-392. 



99 

286. Clark LB, Foy TM, Noelle RJ: CD40 and its ligand. Adv Immunol 1996, 63:43-78. 
287. Baudino L, Azeredo da Silveira S, Nakata M, Izui S: Molecular and cellular basis 

for pathogenicity of autoantibodies: lessons from murine monoclonal 
autoantibodies. Springer Semin Immunopathol 2006, 28:175-184. 

288. Quezada SA, Bennett K, Blazar BR, Rudensky AY, Sakaguchi S, Noelle RJ: Analysis 
of the underlying cellular mechanisms of anti-CD154-induced graft tolerance: the 
interplay of clonal anergy and immune regulation. J Immunol 2005, 175:771-779. 

289. Peguet-Navarro J, Dalbiez-Gauthier C, Moulon C, Berthier O, Reano A, Gaucherand 
M, Banchereau J, Rousset F, Schmitt D: CD40 ligation of human keratinocytes 
inhibits their proliferation and induces their differentiation. J Immunol 1997, 
158:144-152. 

290. Zachlederova M, Jarolim P: Gene expression profiles of microvascular endothelial 
cells after stimuli implicated in the pathogenesis of vasoocclusion. Blood Cells Mol 
Dis 2003, 30:70-81. 

291. Okamoto H, Yamamura M, Morita Y, Harada S, Makino H, Ota Z: The synovial 
expression and serum levels of interleukin-6, interleukin-11, leukemia inhibitory 
factor, and oncostatin M in rheumatoid arthritis. Arthritis Rheum 1997, 40:1096-
1105. 

292. Furst DE, Breedveld FC, Kalden JR, Smolen JS, Burmester GR, Sieper J, Emery P, 
Keystone EC, Schiff MH, Mease P et al: Updated consensus statement on biological 
agents for the treatment of rheumatic diseases, 2007. Ann Rheum Dis 2007, 66 
Suppl 3:iii2-22. 

293. Olson TS, Ley K: Chemokines and chemokine receptors in leukocyte trafficking. 
Am J Physiol Regul Integr Comp Physiol 2002, 283:R7-28. 

294. Bodolay E, Koch AE, Kim J, Szegedi G, Szekanecz Z: Angiogenesis and 
chemokines in rheumatoid arthritis and other systemic inflammatory rheumatic 
diseases. J Cell Mol Med 2002, 6:357-376. 

295. Minamino K, Adachi Y, Okigaki M, Ito H, Togawa Y, Fujita K, Tomita M, Suzuki Y, 
Zhang Y, Iwasaki M et al: Macrophage colony-stimulating factor (M-CSF), as well 
as granulocyte colony-stimulating factor (G-CSF), accelerates neovascularization. 
Stem Cells 2005, 23:347-354. 

296. Szekanecz Z, Gaspar L, Koch AE: Angiogenesis in rheumatoid arthritis. Front 
Biosci 2005, 10:1739-1753. 

297. Lien S, Lowman HB: Therapeutic anti-VEGF antibodies. Handb Exp Pharmacol 
2008:131-150. 

298. Andreoli CM, Miller JW: Anti-vascular endothelial growth factor therapy for 
ocular neovascular disease. Curr Opin Ophthalmol 2007, 18:502-508. 

299. Jin L, Zhu A, Wang Y, Chen Q, Xiong Q, Li J, Sun Y, Li T, Cao R, Wu J et al: A 
Th1-Recognized Peptide P277, When Tandemly Repeated, Enhances a Th2 
Immune Response toward Effective Vaccines against Autoimmune Diabetes in 
Nonobese Diabetic Mice. J Immunol 2008, 180:58-63. 

300. van Amelsfort JM, van Roon JA, Noordegraaf M, Jacobs KM, Bijlsma JW, Lafeber 
FP, Taams LS: Proinflammatory mediator-induced reversal of CD4+,CD25+ 



100 

regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum 
2007, 56:732-742. 

301. Curti A, Ratta M, Corinti S, Girolomoni G, Ricci F, Tazzari P, Siena M, Grande A, 
Fogli M, Tura S et al: Interleukin-11 induces Th2 polarization of human CD4(+) T 
cells. Blood 2001, 97:2758-2763. 

302. Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, Mor F, Carmi P, Zanin-Zhorov A, 
Lider O, Cohen IR: Heat shock protein 60 activates B cells via the TLR4-MyD88 
pathway. J Immunol 2005, 175:3594-3602. 

303. Parambil JG, Myers JL, Lindell RM, Matteson EL, Ryu JH: Interstitial lung disease 
in primary Sjögren syndrome. Chest 2006, 130:1489-1495. 

304. Tu WH, Shearn MA, Lee JC, Hopper J, Jr.: Interstitial nephritis in Sjögren's 
syndrome. Ann Intern Med 1968, 69:1163-1170. 

305. Moutsopoulos HM, Balow JE, Lawley TJ, Stahl NI, Antonovych TT, Chused TM: 
Immune complex glomerulonephritis in sicca syndrome. Am J Med 1978, 64:955-
960. 

306. Prochazka M, Gaskins HR, Shultz LD, Leiter EH: The nonobese diabetic scid 
mouse: model for spontaneous thymomagenesis associated with 
immunodeficiency. Proc Natl Acad Sci U S A 1992, 89:3290-3294. 

 
 


	Paper2DelaleuN.pdf
	Abstract
	Introduction
	Methods
	Results
	Conclusion

	Introduction
	Materials and methods
	Animals and assessment of diabetes
	Measurement of stimulated salivary flow
	Blood sampling and organ collection
	Evaluation of salivary gland inflammation and insulitis in the pancreas
	Multi-analyte profiles from serum and saliva
	Quantification of anti-M3R antibodies
	Statistical analyses

	Results
	Autoimmune disease manifestations
	Univariate analyses
	Multivariate analyses
	Salivary flow
	Glandular inflammation
	Autoantibodies
	Associations among components

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Additional files
	Acknowledgements
	References

	Paper2DelaleuNsupplementary.pdf
	ar2375supplementarydataARTresub.pdf
	ar2375supplementarydataARTresub.2.pdf

	Paper3DelaleuN.pdf
	Paper3ms.pdf
	Paper3tables.pdf
	Paper3figures.pdf
	Paper3supplementary.pdf


