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Abstract

With increasing computer capacity numerical ocean models are used with higher and higher
resolution. The hydrostatic approximation will no longer be valid and the influence of
nonhydrostatic pressure effects should be considered. Internal waves may be generated,
directly or indirectly, by the wind or the tide. Nonhydrostatic pressure effects will be im-
portant for propagating nonlinear internal waves. However, the role of the nonhydrostatic
pressure in the generation phase of internal waves is more unclear.

In the present study a numerical ocean model with nonhydrostatic capacity is used to
study the generation phase of wind induced internal waves in a simplified system. The
influence of nonhydrostatic pressure will depend on the resolution, and we are therefore
running the model with increasing horizontal resolution and comparing the results from a
hydrostatic and a nonhydrostatic model.

The results show that the strength of the nonhydrostatic pressure grow when the grid
scale is reduced in all calculations. The nonhydrostatic pressure does not influence the
results significantly during the generation phase using a grid resolution of 25m or larger.
With a horizontal resolution of 12.5m, both the density field and the velocity field are
influenced by the nonhydrostatic pressure. Instabilities are generated at the rear end of the
wave in all calculations. The instabilities are restricted to an area close to the boundary
with a grid resolution of 25m and larger. Though, in the nonhydrostatic calculation with
a grid resolution of 12.5m, the instabilities are transported further into the model domain
and a larger area is accordingly influenced by mixing. This is not seen in the hydrostatic
results. The results with a horizontal resolution of 12.5m indicate that the small scale
physical processes are not fully resolved. With higher resolution these processes may be
better represented and the strength of the nonhydrostatic pressure may further increase.



1 Introduction
Most of the numerical ocean models used in the scientific community apply the hydro-
static approximation. This approximation results in a more simple form of the momentum
equations and a set of equations that are more efficient to solve. In most ocean scale stud-
ies, when the horizontal scales and motions are much larger then the vertical scales and
motions, a hydrostatic model gives trustworthy results. Though, when modelling physi-
cal processes on scales less than 1-10 km, the physical processes excluded in a hydrostatic
model may be of importance [Marshall et al., 1997, Gill, 1982]. High resolution ocean
models, with horizontal grid resolution of 1 km and less, are needed today in studies of the
coastal ocean and to study specific physical phenomena in the open ocean. In these studies,
nonhydrostatic pressure effects have to be considered, and the models capacity to capture
the nonhydrostatic pressure effects will be of vital importance.

In recent years research groups are in the process of developing ocean models with
the capacity to model nonhydrostatic pressure effects [Mahadevan et al., 1996a,b, Marshall
et al., 1997, Kanarska and Maderich, 2003, Kanarska et al., 2007, Wadzuk and Hodges,
2004]. Most of these models apply a pressure correction method to calculate the nonhydro-
static pressure and the related velocity corrections to correct the hydrostatic velocity field.
Some of these correction methods are described in Armfield and Street [2002], Kanarska
et al. [2007]. In the present study a two-dimensional form of a mode split σ−coordinate
ocean model [Berntsen, 2004] with the capacity to include nonhydrostatic pressure effects
is applied. The nonhydrostatic pressure correction methods used in the model are described
in Berntsen and Furnes [2005], Keilegavlen and Berntsen [2009]. The model has earlier
been used and tested in tank scale studies [Berntsen et al., 2006, 2008, Bergh and Berntsen,
2009].

The scale analysis made by Marshall et al. [1997] indicate that the hydrostatic approx-
imation begin to break down somewhere between 1 and 10 km. This is only an indication
of when nonhydrostatic pressure effects need to be accounted for. With increased resolu-
tion in the model, the influence of the nonhydrostatic pressure may continue to increase
all the way down to grid resolution of a metre. With a resolution of about a metre, the
vertical and horizontal length scales of motion will be of the same size. The dependency of
the applied grid resolution on the strength and the influence of the nonhydrostatic pressure
may depend strongly on the physical phenomena addressed. To study the influence of the
nonhydrostatic pressure on a specific physical process, one may apply a simplified model.
Gradually decreasing the horizontal grid size, the strength of the nonhydrostatic pressure
is allowed to increase and the influence on the physical processes may be studied in a
systematic manner. Running a hydrostatic and a nonhydrostatic model in a parallel set of
calculations, the nonhydrostatic model results may also be compared to the corresponding
hydrostatic results.

The wind and the tide, are the major sources of external energy into the ocean [Munk
and Wunsch, 1998, Wunsch and Ferrari, 2004, Ferrari and Wunsch, 2009]. The tidal en-
ergy enter the ocean as a body force, acting in the whole water depth. The wind enter
through the ocean surface and most of the wind forced energy is restricted to the surface
layer, with only a minor part penetrating trough the pycnocline and reach the deeper layers
in the ocean [Skyllingstad et al., 1999]. Together with the external energy sources, river
discharges and rotational effects interact in the coastal ocean and create a complicated sys-
tem [Huthnance, 1995, Davies and Xing, 2001, Xing and Davies, 2002, 2003]. To clarify
the relation between these processes, it is common to simplify and only study some of the
processes involved.
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Wind forcing may advect water towards the coast, with the result of an increase in the
water level. In a stratified ocean or lake, the circulation pattern and the barotropic pressure
gradients at the coast will result in a baroclinic response in the form of downwelling. A
simplified study by Kundu [1986] shows the combined effect of wind forcing and rotational
effects in a two-dimensional model, with the coast in the form of a vertical wall. In another
two-dimensional numerical model study, Austin and Lentz [2002] apply sloping lateral
boundaries to study both upwelling and downwelling events. In a downwelling situation,
the resulting displacement of the interface may create propagating internal waves [Heaps
and Ramsbottom, 1966, Hall and Davies, 2005]. The development of the internal waves
and the influence of nonhydrostatic pressure have been studied in an earlier work [Bergh
and Berntsen, 2009]. In that study a simplified model was used, in the form of a two-
dimensional closed basin of constant depth and without rotational effects. The amplitude
and the form of the displacement of the interface will be important for the development of
the propagating internal wave [Farmer, 1978, Horn et al., 2001]. With a shallow upper layer
and a deeper lower layer, propagating internal waves of depression may undergo nonlinear
steepening and take soliton forms. In the study by Bergh and Berntsen [2009], with the
same forcing as in this work, a train of soliton waves developed after 60 h in a 400 km long
basin. In that study, the horizontal resolution varied from 1 km down to 62.5m, and with
a horizontal resolution of ΔX = 125m, nonhydrostatic effects were strong enough in the
steepening internal wave front to generate soliton waves. Though, even with a horizontal
grid size of ΔX = 62.5m, the nonhydrostatic pressure effects were not strong enough
during the first 20 h to influence the generation processes of the internal wave close to the
boundary.

In the present study the model domain is reduced from 400 km down to 50 km, and
an open boundary is introduced at the western side. Forcing values from a large scale
model [Bergh and Berntsen, 2009] are applied in a 1 km long FRS-zone at the western
open boundary. With a much smaller model domain, we are able to decrease the horizontal
grid size further, to study possible nonhydrostatic pressure effects during the generation
process of the internal wave.

2 Model

2.1 The governing equations
In the present study a two-dimensional version of a σ-coordinate ocean model is used. A
detailed description of the used model can be found in Berntsen [2004]. This work can be
described as a high resolution focused boundary layer study of the problem described in
Bergh and Berntsen [2009]. In the coordinate system (x, z, t), where x is the horizontal
coordinate, z the vertical coordinate, and t the time variable, the Reynolds averaged mo-
mentum equations using the Boussinesq approximation and assuming no rotational effects
may be written

∂U

∂t
+ U

∂U

∂x
+W

∂U

∂z

= − 1
ρ0

∂P

∂x
+

∂

∂x
(AM

∂U

∂x
) +

∂

∂z
(KM

∂U

∂z
) , (1)
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The continuity equation for incompressible fluids is given by

∂U

∂x
+
∂W

∂z
= 0 . (3)

In these calculations the conservation equation for density
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=

∂

∂z
(KH

∂ρ
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) +

∂

∂x
(AH

∂ρ

∂x
) (4)

is applied. In the equations above U and W are the horizontal and vertical velocity com-
ponents respectively, P is the pressure, ρ is the density, g is the constant of gravity, and ρ0
is the reference density.
The pressure P may be decomposed into pressure from the surface elevation η, internal
pressure, and nonhydrostatic pressure PNH according to

P (x, z, t) = gρ0η(x, t) + g

∫ 0

z

ρ(x, ź, t)dź + Pnh(x, z, t), (5)

where the calculation of Pnh is described in Section 2.2. To formulate a uniform approach
for the subgrid scale closure with a varying horizontal grid size, we apply a two dimensional
form of the Smagorinsky formulation to calculate the horizontal viscosity AM . The eddy
viscosity parameter, in the Smagorinsky formulation, is set to CM = 5.0 in calculations
1 to 3, with ΔX = 100, 50, and 25m, and to CM = 10.0 in calculation 4, with ΔX =
12.5m. The vertical viscosity is set to a constant value,KM = 4.0×10−3 m2 s−1 together
with constant low values of the horizontal and vertical diffusivity, AH = KH = 1.0 ×
10−6 m2 s−1. When the model is used in the hydrostatic mode, the vertical momentum
equation, Eq. (2), is replaced by

∂P

∂z
= −ρg , (6)

which describes the hydrostatic balance, and only the hydrostatic part, PH , of the pressure
is used, the two first terms on the right hand side of Eq. (5).

The equations described above in the (x, z, t) coordinate system are transformed into a
σ-coordinate system (x∗, σ, t∗) in the numerical model, see Berntsen [2004].

The variables are discretised on a C-grid. In these calculations a Total Variance Dimin-
ishing (TVD) advection scheme with a superbee limiter is applied. The time stepping is
performed with a predictor-corrector method. The leapfrog method is used as the predictor
and the fully implicit method is used as the corrector. Mode splitting is applied and the
velocity field is divided into a depth averaged part, with the time step Δt = Δt/30 and
a deviation from the depth averaged part, with the time step Δt. The resolution in time
is adjusted according to the horizontal resolution to avoid numerical instabilities and is
described in Table 1.
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2.2 Nonhydrostatic pressure
The pressure is split into a hydrostatic part, Ph, and a nonhydrostatic part, Pnh. The hydro-
static version of the governing equations are used to calculate a provisional velocity field.
Subsequently the convergence and divergence in the provisional velocity field are used to
calculate Pnh. Correction velocities may then be calculated due to the gradients in the non-
hydrostatic pressure field, with the result of a divergence free velocity field. Similar meth-
ods are used as in Casulli [1990], Marshall et al. [1997], Kanarska and Maderich [2003],
Kanarska et al. [2007] and were first introduced in the present model by Heggelund et al.
[2004]. Heggelund et al. used a similar method as in Kanarska and Maderich [2003] and
transformed the correction methods onto the σ−coordinate system. The σ−transformation
complicate the calculations, and it was suggested in Berntsen and Furnes [2005] to solve the
nonhydrostatic pressure directly in the σ−coordinate system, Pnh(x, y, σ). The approach
introduced by Berntsen and Furnes [2005] is used in the present model and will simplify
the calculation. The methods used in the present work are compared to the transformation
method used in Kanarska and Maderich [2003] by Keilegavlen and Berntsen [2009]. It is
shown that similar pressure and velocity fields are produced with the two different methods
[Keilegavlen and Berntsen, 2009].

2.3 Numerical calculations
The model is closed at the eastern coast, where no volume fluxes and a free slip condition
is applied. An open boundary is applied at the western coast. The basin length L = 50 km
and the constant depth H = 250m. The calculations are initialised with two separate
layers, each with a separate constant density gradient ∂ρ/∂z. In the 100m deep upper layer
∂ρ/∂z = 0.02 kgm−4 and in the 150m deep lower layer ∂ρ/∂z = 0.001 kgm−4.

The model is forced at the surface with a sinus formed wind pulse over TW = 12 h,
with the maximum wind stress τmax = 0.5Nm−2. The wind stress τs, will then be

τs =

{
τmax sin

(
πt
TW

)
for 0 ≤ t ≤ TW ,

0 for t > TW .
(7)

The effects of the wind stress and the bottom friction are calculated with a drag coefficient
method. The model run over T = 20 h. In this study 126 equidistant vertical σ−layers are
used, implying a vertical resolution of 2m. The horizontal resolutions, ΔX , are given in
Table 1.

Table 1: Summary of the numerical calculations, horizontal grid points IM, horizontal
resolution Δx (m), the time step in the model, Δt (s), and numbers of cells in the FRS-
zone, LB, in both a hydrostatic, a), and a nonhydrostatic, b), mode

Case IM ΔX Δt LB

1 a,b 511 100 4 10
2 a,b 1021 50 2 20
3 a,b 2041 25 1 40
4 a,b 4081 12.5 0.5 80
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Figure 1: Forcing reference values in the FRS-zone, a) the surface amplitude, η (m), b) the
density stratification, ρ (kgm−3), and c) the horizontal velocity, U (m s−1).

At the open boundary, variables are relaxed towards reference levels taken from a large
scale model. This is done in a 1 km long open boundary using a flow relaxation zone (FRS-
zone) application [Martinsen and Engedahl, 1987]. The number of cells in the FRS-zone,
LB, will be different with different horizontal resolution and is described in Table 1. The
variable φ are adjusted in the FRS-zone at each time step according to

φ = (1− α)φint + αφref ,

where φint is the un-relaxed values computed by the model and φref is a specified reference
value. The relaxation parameter α varies from 1 at the first grid cell at the western side
of the computational domain to 0 at the end of the FRS-zone facing the interior model
domain. The reference values φref are taken from a model with a closed 400 km long
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basin and with the same wind forcing described in this work, see Bergh and Berntsen
[2009] for a more detailed description. The reference calculation is done with a horizontal
resolution of ΔX = 1 km and a vertical resolution of 126 σ-layers. The values from the
reference calculation are taken at the same position as the position of the FRS-zone in this
work, at a distance of 50 km from the eastern coast. The relaxed variables are the surface
elevation, η(t), the density profile, ρ(z, t), the depth averaged horizontal velocity, U(t),
and the horizontal velocity profile, U(t, z). The reference values for these variables are
presented in Fig. 1. The variables are linearly interpolated in time to fit with the resolutions
in the different calculations. The relaxed variables in the FRS-zone at the western boundary
will then be forced towards the values extracted from the large scale model.

3 Results
The wind pulse generates a wind forced surface layer that advect water towards the eastern
coast. This will set up the surface at the coast and generate a barotropic pressure gradient
directed away from the coast. Downwelling at the coast push down lighter water masses
and an internal baroclinic pressure gradient will partly balance the barotropic counterpart,
in the stratified water mass. The wind forced advection in the surface, together with the total
pressure gradient, generate a circulation pattern in the form of a wind forced surface layer,
downwelling close to the coast and a weak return flow below the surface layer, see Figs.
2, 3, and 4. The downwelling at the coast generates an internal wave of depression that
propagates away from the coast. This internal wave of depression may later (not presented
in this work) undergo nonlinear steepening and develop into a soliton wave form Horn et al.
[2001], Farmer [1978], Bergh and Berntsen [2009].

There are significant differences between the results with a horizontal resolution of
ΔX ≥ 25m and the results with ΔX = 12.5m, and the results are presented in two
different sections accordingly.

3.1 Results for ΔX = 100, 50, and 25m
The wind forcing has a period of 12 h, starting from zero and increasing to a maximum at
6 h, and decreasing to zero at 12 h and after, see Section 2.3. The advection in the wind
forced surface layer continues to increase after the maximum in the wind pulse, and reach a
maximum in the horizontal velocity component around 10 h. The strength of the advection
starts to decrease after 10 h, even though the advective surface layer continues to deepen
during all the modelled period. With the same vertical viscosity in these calculations, the
development of the wind forced surface layer may be described by the forcing horizontal
velocities in the FRS-zone, see Fig. 1. The vertical extent of the advective surface layer
reach to a depth of about 20m at 10 h, and to about 40m at 20 h. The advection of water
towards the east coast increase the water elevation at the coast. The elevation reach a
maximum at the same time as the maximum in advection occur, around 10 h.

Both the advection and the variation of the water elevation are strongly dependent on
the forcing at the open boundary, see Fig. 1. From the forcing surface elevation in the
FRS-zone, one may detect two clear signals. First, the 12 h period signal from the forcing
wind pulse and, on top of that, a signal with shorter period. The signal with shorter period
is connected to the period of a surface standing wave in the large scale model, from where
the forcing surface elevation is taken. The period of a surface standing wave in a closed
basin may be calculated to T (n) = (2L/(n c)) for wave mode n, where L is the length
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Figure 2: Density stratification, ρ ci=0.2 kgm−3, at 10 h with the nonhydrostatic calcu-
lation to the left (a, c, e) and hydrostatic calculation to the right (b, d, f) and with the
horizontal grid sizes ΔX = 100m (a, b), ΔX = 50m (c, d), and ΔX = 25m (e, f)

of the closed basin, c = (g H)−1/2 is the speed of a surface gravity wave with the gravity
constant g and the water depthH . With a basin length L = 400 km and depthH = 250m,
in the large scale model, the first mode (n = 1) surface standing wave period is calculated
to T = 4.5 h. This period is in agreement with the short period signal seen in the forcing
surface elevation in Fig. 1.

The advection of water towards the coast results in a zone of downwelling close to the
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Figure 3: Horizontal velocity, u ci=0.1m s−1, at 10 h with the nonhydrostatic calculation
to the left (a, c, e) and hydrostatic calculation to the right (b, d, f) and with the horizontal
grid sizes ΔX = 100m (a, b), ΔX = 50m (c, d), and ΔX = 25m (e, f)

boundary, see Fig. 5. Light surface water is pushed down at the boundary, to a depth of
approximately 50m, see Fig. 4. The downwelling is strong enough to create overturning
and convective mixing in the upper 50m, see Fig. 2. The downwelling flow separate from
the boundary and form a return flow, below the wind forced surface layer, transporting
water away from the east coast , see Fig. 3. The strong downwelling at the boundary create
a sharp density interface around 50m depth, see Fig. 6.
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Figure 4: Focus over boundary layer, 49 to 50 km, vertical velocity, w ci=1 cm s−1, at 10 h
with the nonhydrostatic calculation to the left (a, c, e) and hydrostatic calculation to the
right (b, d, f) and with the horizontal grid sizes ΔX = 100m (a, b), ΔX = 50m (c, d),
and ΔX = 25m (e, f)

The density stratification in Fig. 2 indicate that all the calculations 1 to 3, both hydro-
static and nonhydrostatic, give similar results at 10 h. At this stage, the depression wave,
propagating away from the boundary, has a more gentle slope in the front and a more abrupt
change in the rear end.

With a horizontal resolution ofΔX = 100m, the negative vertical velocities in connec-
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Figure 5: Focus over boundary layer, 49 to 50 km, horizontal velocity, u ci=0.1m s−1, at
10 h with the nonhydrostatic calculation to the left (a, c, e) and hydrostatic calculation to
the right (b, d, f) and with the horizontal grid sizesΔX = 100m (a, b),ΔX = 50m (c, d),
and ΔX = 25m (e, f)

tion with the downwelling at the boundary layer reach a maximum amplitude of−2.5 cm s−1,
see Fig. 4. The downwelling reach down to a separation point at approximately 50m depth.
With increased horizontal resolution, the negative vertical velocity in the boundary layer
increase further in magnitude. When the horizontal grid size is halved, the size of the neg-
ative velocity amplitude is doubled in the results with ΔX = 50m and ΔX = 25m, see
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Figure 6: Focus over boundary layer, 49 to 50 km, density stratification, ρ ci=0.2 kgm−3,
at 10 h with the nonhydrostatic calculation to the left (a, c, e) and hydrostatic calculation to
the right (b, d, f) and with the horizontal grid sizesΔX = 100m (a, b),ΔX = 50m (c, d),
and ΔX = 25m (e, f)

Fig. 4. In the results withΔX = 50m the intensification of the downwelling zone result in
a upward directed flow, just outside the downwelling zone, see Fig. 4 c) and d). The verti-
cal velocities in the upward directed flow, further increase in the results with ΔX = 25m,
see Fig. 4 e) and f).

The calculated maximum and minimum vertical velocities in the whole domain, are
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found in the boundary layer, and are presented in Fig. 7. The maximum and minimum
velocities following the same pattern as the horizontal advection in the surface, with maxi-
mum amplitudes found around 10 h. Also the horizontal extent of the downwelling zone is
reduced with decreased horizontal grid size. The horizontal extent decrease from approxi-
mately 400m, to 200m, and to 100m when the horizontal grid size is reduced from 100m,
to 50m, and to 25m respectively. This gives a horizontal extent of the downwelling zone
of approximately 4 grid cells in all calculations, see Fig. 4.

Studying the interface displacement in Fig. 8, we can conclude that the increased ve-
locities, together with the reduced horizontal extent of the downwelling zone, result in a
relatively constant vertical volume flux in the boundary layer. The increased vertical ve-
locities result in an area with intensified convergence in the boundary layer and increased
values of the nonhydrostatic pressure, see Fig. 9. Even so, the nonhydrostatic pressure
does not affect the general density stratification or the circulation pattern in the results with
ΔX ≥ 25m.
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Figure 7: Maximum (line) and minimum (dotted line) vertical velocity (m s−1) in a) the
nonhydrostatic calculations respectively b) the hydrostatic calculations, with the horizontal
grid size ΔX = 100m (black), ΔX = 50m (red), ΔX = 25m (blue), ΔX = 12.5m
(light blue)

At 20 h the internal wave of depression has propagated further away from the east coast.
The front of the wave has almost reached the open boundary at the western side, and the
sharp rear end of the wave is found at a distance of approximately 35 km from the west
coast, see Fig. 8. The well mixed zone in the upper 50m continues to expand horizontally,
following the propagating internal wave, see Fig. 10. At this time, instabilities have been
generated at the eastern boundary, and the instabilities become stronger with reduced hori-
zontal grid size. Studying the maximum and minimum vertical velocities in Fig. 7, one may
deduce that there are stronger variability after 15 h in the results withΔX = 25m, indicat-
ing that the instabilities start at this time. The results also show that the instabilities begin
later in the calculation with larger horizontal grid sizes, ΔX = 100m and ΔX = 50m.
Though, in the results with ΔX ≥ 25m, the instabilities are limited to an area behind
the propagating internal wave, and have not spread further away than approximately 15 km
away from the east coast at 20 h, see Fig. 8.

One may expect instabilities and mixing to take place in the rear end of the wave. The
density gradients are compressed in the rear end of the wave, and this may create an area
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Figure 8: Interface displacement, ρint = 1026.8 kgm−3, in a) nonhydrostatic respectively
b) hydrostatic calculations, with the horizontal grid sizeΔX = 100m (black),ΔX = 50m
(red), and ΔX = 25m (blue)

with low Richardsson numbers. This is often seen in propagating solitary waves in the
ocean where Kelvin-Helmholtz (KH) instabilities may grow in this area, see for instance
Moum et al. [2003]. There are few similar numerical calculations as the present, with a
wind induced initial depression. In numerical experiments it is common to initialise the
model with a depression at the boundary in the form of half soliton wave with a dou-
ble amplitude Bourgault and Kelley [2003], Thiem and Berntsen [2009]. If there are no
shear instabilities, this type of initialisation give a smooth transition to a propagating single
soliton without instabilities. In laboratory experiments it is common to initiate the wave
propagation by removing a gate that separates two water masses of different vertical stratifi-
cation [Michallet and Ivey, 1999, Grue et al., 1999]. In these experiments some instabilities
and mixing will take place during the generation phase of the wave. Shear instabilities are
clearly seen in both the generation phase and in the rear end of the propagating internal
wave in unpublished numerical calculations by Barad and Fringer [2009].
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Figure 9: The nonhydrostatic pressure Pnh (Nm−2) at 10 h over the boundary layer from
49 to 50 km. Results produced with ΔX = 100m are given in a), with ΔX = 50m in b),
and ΔX = 25m in c). Notice the change in the contour interval, ci, in panel c)
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Figure 10: Density stratification, ρ ci=0.2 kgm−3, at 20 h with the nonhydrostatic calcu-
lation to the left (a, c, e) and hydrostatic calculation to the right (b, d, f) and with the
horizontal grid sizes ΔX = 100m (a, b), ΔX = 50m (c, d), and ΔX = 25m (e, f)
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3.2 Results with ΔX = 12.5m
When the horizontal grid size is reduced to 12.5m, the horizontal extent of the downwelling
zone at the eastern coast is further reduced and the amplitude of the vertical velocity is
further increased at 10 h, see Figs. 11 and 12. The horizontal extent of the downwelling
zone is almost halved, compared to calculations with ΔX = 25m, and extend about 60 to
70m from the east coast, see Figs. 11 e) and 12 e). The negative vertical velocity increase
to a maximum amplitude of −19 cm s−1 close to the boundary. With increased vertical
velocities at the boundary, the density stratification below the separation point, around
50m depth, is further compressed, see Figs. 11 c) and 12 c).

To indicate the overall influence of the nonhydrostatic pressure, the norms of the hori-
zontal hydrostatic pressure gradients and the horizontal nonhydrostatic pressure gradients
are calculated during the modelled period, see Fig. 13. The development in time show
that the nonhydrostatic norm grow much faster than the hydrostatic norm during the first
10 h. There is a periodic variation of the hydrostatic norm with ΔX = 12.5m, and the
nonhydrostatic norm may be stronger than the hydrostatic counter part. The period of the
hydrostatic norms is similar to the one found in the forcing surface amplitude, see Fig. 1,
and may be related to this. Also the time mean value of the nonhydrostatic norm grow to
the same order of magnitude as the hydrostatic counterpart with a grid resolution of 12.5m,
though still half of the hydrostatic value, see Fig. 14.

The pressure gradients in the fluid drive the flow, and with nonhydrostatic pressure
gradients of the same size as the hydrostatic pressure gradients, one can expect that the
nonhydrostatic pressure effects will influence the flow in the model. With a horizontal
resolution of 12.5m, the nonhydrostatic pressure becomes strong enough to affect both the
density and the velocity fields, see Figs. 11 and 12. With increased resolution the model
is able to contain more energy on smaller scales. Even so, the resolution may not be high
enough to resolve the physical processes involved in the generation processes of the wave,
and the strong forcing in the system may result in unphysical large instabilities. A clear
difference is now seen between the hydrostatic and the nonhydrostatic results. The variation
in the velocity field generate a strong and fluctuating nonhydrostatic pressure field, see Fig.
11.

The instabilities generated in the rear end of the wave, close to the boundary, are trans-
ported further into the model domain in the nonhydrostatic results. One may think that the
nonhydrostatic pressure, counteracting vertical velocities, may damp the variations in the
velocity field and that more mixing will take place in the hydrostatic model. The contrary
is seen in the results presented here. The nonhydrostatic pressure act as a mechanism to
transport the instabilities into the model domain, and a larger area may be exposed to mix-
ing, compare Fig. 11 a) and c) to Fig. 12 a) and c). This may also be deduced from the
results at 20 h, see Fig. 15.
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Figure 11: Results from the nonhydrostatic calculation at 10 h with ΔX = 12.5m. a)
density stratification, ρ ci=0.2 kgm−3, b) horizontal velocity, u ci=0.1m s−1, c) vertical
velocity, w ci=1 cm s−1, and d) nonhydrostatic pressure, Pnh ci=5Nm−2
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Figure 12: Results from the hydrostatic calculation at 10 h with ΔX = 12.5m. a) den-
sity stratification, ρ ci=0.2 kgm−3, b) horizontal velocity, u ci=0.1m s−1, and c) vertical
velocity, w ci=1 cm s−1
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Figure 13: The norm of the horizontal hydrostatic pressure gradient in a) the nonhydrostatic
calculations and b) the hydrostatic calculations and c) the norm of the horizontal nonhy-
drostatic pressure gradient in the nonhydrostatic calculations, with the horizontal grid size
ΔX = 100m, ΔX = 50m, ΔX = 25m, and ΔX = 12.5m
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Figure 14: The mean norm of the horizontal hydrostatic pressure gradient in a) the hy-
drostatic calculations and b) the nonhydrostatic calculations and c) the mean norm of the
horizontal nonhydrostatic pressure gradient in the nonhydrostatic calculations, with the
horizontal grid size ΔX = 100m, ΔX = 50m, ΔX = 25m, and ΔX = 12.5m
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Figure 15: Results from the calculations with ΔX = 12.5m at 20 h. Nonhydrostatic
results to the left and hydrostatic results to the right. a) and b) density stratification, ρ
ci=0.2 kgm−3, and c) and d) horizontal velocity, U ci=0.1m s−1, and e) and f) the interface
displacement of ρint = 1026.8 kgm−3
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4 Discussion
In the present work we study the generation of wind induced internal waves. In a study
with a similar forcing as in the present work, using a grid resolution of 62.5m, the non-
hydrostatic pressure effects were too small during the generation phase to influence the
wave. With a higher resolution one may expect that the nonhydrostatic pressure effects be-
come stronger. Introducing an open boundary (FRS-zone) at the western side in the present
work, the model domain is reduced and we are able to study the influence of nonhydrostatic
pressure during the generation phase with a higher resolution.

The strong forcing in the FRS-zone together with the constant value of the vertical
eddy viscosity in all calculations, result in relatively robust fluxes in and out of the FRS-
zone. Even if the horizontal extent of the downwelling zone decrease when the grid size
is reduced, the vertical velocities increase with the same rate and the vertical volume flux
in the downwelling zone is relatively constant. The amplitude and the length scale of the
generated internal waves are very similar in all calculations. The nonhydrostatic pressure
field becomes stronger every time the grid size is further decreased, with the present range
of grid scales. Though, there are no visible nonhydrostatic pressure effects with ΔX ≥
25m. When the grid size is reduced to ΔX = 12.5m, the nonhydrostatic pressure effects
become strong enough to influence both the velocity and the density fields. The instabilities
generated at the rear end of the wave are growing stronger when the grid size is reduced.
The instabilities are restricted to a focused area close to the boundary in all calculations
with ΔX ≥ 25m. In the nonhydrostatic calculation with ΔX = 12.5m, the instabilities
and the correlated mixing are transported away from the boundary and are visible in a
larger part of the model domain at 20 h. This is not seen in the hydrostatic results where
the instabilities and the mixing are restricted to an area closer to the boundary.

With ΔX = 12.5m the model is not able to fully resolve the small scale physical
processes. With higher resolution one may expect that the physical processes on smaller
scale will be better represented. In the present calculations, the energy cascade towards
the grid scale does not result in any "real" physical process on smaller scales, and the only
way to balance for this energy cascade would be to increase the parametrised mixing in
the model. When the horizontal grid size is reduced in a numerical model one may enter
into a new type of "regime". This is well known for larger domain three dimensional
ocean models that go from a regime where horizontal eddies are not represented, through a
eddy permitting regime, and finally into a eddy resolving regime as the grid size is reduced.
With the present range of grid sizes we go from a regime where the nonhydrostatic pressure
effects are very small and into a regime that permit nonhydrostatic adjustments of the flow
fields and associated instabilities, without fully resolving the physical processes in that
regime. With higher resolution we may be able to resolve the physical processes involved.

At interfaces similar to the one found in the present experiments there may be Kelvin-
Helmholtz instabilities, see Kundu [1990]. For idealised cases, it may be shown that waves
shorter than a given criteria are unstable. Using such a criteria, from Kundu [1990], we
have estimated the critical length scale for our set of parameters to be approximately 2m.
This means that these unstable modes may not be resolved with the grid sizes used in our
experiments. Even so, there may be a flow of energy towards the length scale associated
with Kelvin-Helmholtz instabilities that creates the wave like pattern found in our results
for ΔX = 12.5m. This transformation into a nonhydrostatic permitting and into a non-
hydrostatic resolving regime for the case of tidal flow over a sill is recently discussed in
Berntsen et al. [2009].

To be able to perform a study where the horizontal grid size is gradually decreased,
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both the vertical and the horizontal subgrid scale parametrisation have to be treated care-
fully. With increased resolution, the energy spectra is broadened and the models capacity
to contain more energy at smaller scales should be increased. There are several problems
connected to the model set up in the present experiments. These may be divided into three
parts, (1) the open boundary, (2) the strong vertical downwelling at the boundary, and (3)
the variation in the horizontal grid resolution. All these problems are related to each other
and to the choice of the subgrid scale parametrisation. The open boundary condition should
simulate the motions and forcing in the large scale model. To prohibit imbalance in the hor-
izontal fluxes between the FRS-zone and the interior of the model, the vertical mixing has
to be treated in a similar way in the FRS-zone as in the interior of the model. Accord-
ingly, the same constant values of vertical eddy viscosity and diffusivity are chosen in the
calculation of the forcing values to be used in the FRS-zone and in all the calculations in
the present experiments. With increased horizontal resolution, one may not only expect
differences in the horizontal but also in the vertical, and this may be problematic when the
vertical viscosities and diffusivities are kept constant.

When the horizontal grid size is reduced, the horizontal extent of the downwelling zone
at the east coast is reduced and the amplitude of the negative vertical velocity is increased.
This focusing of the downwelling zone create higher values of horizontal gradients in the
vertical velocity field and increased shear strain. In the present experiments, with moderate
values of viscosity, the flow of energy towards smaller grid scales create waves with a
length scale of approximately 10−20 times the grid size. These are the shortest waves that
may be represented by models based on first and second order approximations. In reality,
the energy will be transported to even smaller scales, and in future experiments with grid
sizes of approximately 1m Kelvin-Helmoltz type instabilities may be represented.
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