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Abstract 

 

Cataracts are defined as opacities of the eye lens and can be caused by a large number 

of risk factors. In aquaculture, cataracts in farmed Atlantic salmon (Salmo salar L.) 

represent an ethical problem and can cause economical losses. A series of studies 

have shown the cataract mitigating effect of dietary histidine (His) levels above the 

currently recommended minimum requirement in Atlantic salmon smolt and that 

dietary His levels are reflected in the concentrations of the His-derivative N-

acetylhistidine (NAH) in the lens. However, the mechanism of lens protection by 

dietary His is not clear and no studies with adult Atlantic salmon growers have 

previously been carried out.  

Gene expression analysis in the lens is a powerful tool to investigate the molecular 

mechanisms of cataract formation in Atlantic salmon. In an initial study, the possible 

effects of different sampling procedures and tissue preservation methods on lens gene 

expression and lens RNA quality were investigated. Although there was no difference 

in RNA quality, tissue preservation in liquid nitrogen instead of RNAlater was 

recommended due to practical conditions in RNA extraction. Sampling procedures 

lasting up to two hours and procedures not employing anaesthetics provoked 

expression changes of selected antioxidant and stress-responsive genes. Thus, a quick 

sampling protocol not exceeding 30 minutes and the use of anaesthetics were 

recommended for future studies.  

A feeding trial was carried out to investigate the effects of different dietary His 

concentrations and His feeding regimes on lens and muscle imidazole concentrations 

and on cataract formation in adult Atlantic salmon growers. Fish in their second year 

in sea were fed one of three diets only differing in the His content [low His (L): 9 

g/kg diet, medium His (M): 13 g/kg diet and high His (H): 17 g/kg diet] for four 

months (June to October). Dietary His concentrations were reflected in lens NAH and 
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to a lesser degree in muscle anserine concentrations. Between July and September, 

fish developed cataracts with different severity in response to dietary histidine levels 

fed between June and September. Feeding at least 13 g His/kg diet from June to July 

mitigated later cataract formation. 

To identify molecular mechanisms involved in cataract formation, microarray 

analysis was applied to compare lens gene expression in groups of fish with cataracts 

of different severity caused by high or low dietary His levels. The differences in gene 

expression between the dietary groups were more pronounced in lenses sampled in 

October at a late stage of cataract formation than at an earlier state in September. At 

the late stage, 514 transcripts were significantly differentially expressed, while the 

same only applied to eight transcripts at the earlier state. Among the differentially 

expressed transcripts at the late stage were metallothionein A and B, as well as 

transcripts involved in lipid metabolism, carbohydrate metabolism, regulation of ion 

homeostasis and protein degradation. The differentially expressed transcripts could 

be categorized as “early” or “late” responsive, according to their expression pattern 

relative to progression in cataract formation. “Early” responsive transcripts might be 

used as molecular markers for early cataract formation in future studies; and one of 

the most promising candidates was SPARC (secreted protein acidic and rich in 

cysteine). 

In a second feeding trial, Atlantic salmon growers were fed one of four diets with 

varying inclusion levels of plant proteins and plant lipids (100% fish meal and 100% 

fish oil, 80% plant protein and 35% vegetable oil blend, 40% plant protein and 70% 

vegetable oil blend and 80% plant protein and 70% vegetable oil blend) for 12 

months. The His concentrations differed in the diets dependent on the level of plant 

protein inclusion and were reflected in lens NAH concentrations. Fish fed the highest 

inclusion level of plant lipids had decreased growth rates and higher lens water 

contents than fish fed the marine control diet or the lower inclusion levels of plant 

lipids. The lenses of all groups fed plant feed ingredients were smaller than lenses of 

the control fish. Inclusion of dietary plant lipids led to slightly different lens fatty acid 
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and lipid class composition. No severe cataracts were observed during the feeding 

study and there was no difference in cataract prevalence between the dietary groups.  

Lenses of fish from the plant feeding trial were examined for their ability to withstand 

osmotic disturbances ex vivo. Lens whole-organ culture in hypoosmotic and 

hyperosmotic media led to increase and decrease of lens volume, respectively. Lenses 

of plant diet-fed fish were less resistant to swelling and shrinking, released less NAH 

into the culture medium and accumulated His and NAH at higher rates than control 

lenses. Culture in hypoosmotic medium resulted in higher cataract scores than in 

hyperosmotic and control medium. mRNA expression levels of the selected genes 

glutathione peroxidase 4 (GPX4) and SPARC were affected by the diet and betaine 

aldehyde dehydrogenase by osmotic treatment of the lenses. The role of NAH as a 

lens osmolyte was confirmed. However, the ability to osmoregulate under 

hypoosmotic conditions was related to dietary plant lipid inclusion levels rather than 

lens NAH concentrations. 
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1. Introduction 

 

 “Cataract” is a collective name for any kind of light-scattering opacity of the eye 

lens. Cataracts can affect the vision on a range from not noticeable, over hazy vision, 

glare, contrast sensitivity reduction, diplopia and up to complete blindness (Brown 

and Bron 1996). Cataracts are a major health problem for humans and have been a 

subject of biochemical research for about a hundred years (Hockwin et al. 2002). 

Cataracts have also been observed in many terrestrial animals and in a number of fish 

species, among them Atlantic salmon (Salmo salar L.), which is a popular food fish 

and a major aquaculture species in northern Europe. Cataracts were frequently 

observed in populations of farmed Atlantic salmon in the early beginnings of fish 

farming, and in the nineties and early 2000. Today, although less often, cataracts still 

occur in farmed Atlantic salmon. Atlantic salmon are visual predators and fish with 

severe cataracts may experience decreased growth rates and be more susceptible to 

secondary diseases due to decreased feed intake (Menzies et al. 2002). Cataracts 

represent an ethical problem for the aquaculture industry, being subject to steadily 

increasing public attention on fish welfare. In addition, severe cataract outbreaks may 

lead to economical losses for the aquaculture industry.  

In a recent series of studies, the amino acid histidine (His) has been identified as a 

key preventative factor in the development of cataracts in Atlantic salmon parr and 

smolt. Elevated levels of dietary His - reached by supplementation of the diet with 

mammalian blood meal, crystalline His, or by the use of His-rich fish meals - have 

been shown to suppress, or, to a lesser degree, to prevent cataract formation in 

Atlantic salmon (Breck et al. 2003; Breck et al. 2005a). The levels of His in the diet 

were reflected in the lens concentrations of His and especially the His-derivative N-

acetylhistidine (NAH). NAH has thus been proposed as a marker for the His status in 

the Atlantic salmon lens (Breck et al. 2005a; Breck et al. 2005b). However, the effect 

of elevated dietary His on cataract development in adult Atlantic salmon growers 
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during the second summer in sea water has not been studied. Also, the exact 

mechanism of the protective function of elevated dietary His and thus elevated lens 

NAH concentrations is not clear.  

Due to the versatile chemistry of the His molecule, NAH might have many possible 

functions in the lens, including osmoregulation (Baslow 1998), anti-oxidation 

(Babizhayev 1989; Babizhayev et al. 2004), anti-inflammation (Wade and Tucker 

1998), anti-glycation (Hobart et al. 2004) and increased buffering capacity (Abe et al. 

1985). A role of NAH in the hypoosmotic regulation in the salmon lens ex vivo has 

been proposed (Breck 2004). Since several mechanisms might be involved in cataract 

formation in Atlantic salmon, the study of gene expression might be a valuable tool to 

explore the mechanisms of cataractogenesis in the Atlantic salmon lens at the 

molecular level. Microarray analysis is an effective “hypothesis generator” and a 

well-suited method to screen for differentially expressed genes in the transcriptomes 

of cataractous and clear lenses. However, gene expression analysis methods depend 

on good quality RNA preparations and elimination of confounding factors such as 

sampling stress.  

Aquaculture is a worldwide rapidly growing industry, while the amounts of available 

marine raw materials are limited (FAO 2009). To secure a sustainable production of 

Atlantic salmon, increasing amounts of alternative feed ingredients, including plant 

raw materials, are used (Torstensen et al. 2008; Turchini et al. 2009). In a recent 

study, severe outbreaks of cataract have been observed in adult Atlantic salmon fed 

high inclusion levels of vegetable oils (Waagbø et al. 2004). Thus, the effect of plant-

derived feed ingredients on lens function and cataractogenesis in Atlantic salmon 

needs further investigation. 
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2. Aims of the study 

 

The overall objectives of the present thesis were to investigate the cataract mitigating 

effect of dietary His in relation to commercial-like diets based on marine ingredients 

and plant-based diets in adult Atlantic salmon growers, and to find the mechanisms 

by which dietary His interferes with cataract formation, applying biochemical and 

gene expression analyses to the lens. The specific aims were: 

 

1. To investigate the possible impact of tissue preservation methods on the 

quality of RNA extracted from lenses of Atlantic salmon and to explore if 

sampling stress caused by different sampling procedures - varying in duration 

and use of anaesthetics - affect the expression levels of specific cataract-

related target genes in Atlantic salmon lenses (Paper I). 

2. To investigate the effects of different dietary His concentrations (Paper II, III 

and IV) and His feeding regimes (Paper II) on the concentrations of major His-

derivatives in lens and muscle tissue, and on cataract formation in adult 

Atlantic salmon growers.  

3. To apply microarray analysis to screen the lens transcriptome for differentially 

expressed genes in Atlantic salmon with His-related cataracts of different 

severity in order to understand the molecular mechanisms of cataract 

formation and to find possible expression markers for early cataract diagnosis 

(Paper III).  

4. To investigate the possible effects of high inclusion levels of plant-derived 

dietary proteins and lipids on lens lipid and fatty acid class composition, lens 

NAH and His concentration and cataract formation in adult Atlantic salmon 

growers (Paper IV). 
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5. To apply an ex vivo whole organ lens culture model to investigate the 

osmoregulatory capacity of lenses dissected from Atlantic salmon fed plant-

based diets or a marine control diet and exposed to moderate hypoosmotic or 

hyperosmotic conditions, and to analyse mRNA expression levels of selected 

genes in the cultured lenses (Paper IV).  
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3. Background 

3.1 The fish eye and lens 

The basic construction of the eye is similar in all fish species, including Atlantic 

salmon (Hargis 1991) (Figure 1). The fish lens is spherical and is surrounded by the 

eye chamber fluids, the aqueous humour anteriorly and the more jelly-like vitreous 

humour posteriorly. The lens is avascular, and nutrients are taken up from - and 

metabolites released into - the eye chamber fluids by the lens epithelial cells. The fish 

lens protrudes through the pupillary opening, bringing the anterior part of the lens 

close to the cornea. The cornea regulates the fluid movement into the eye chamber 

and thereby contributes to keeping the osmolality of the eye chamber fluids constant. 

Through the close placement to the cornea, fish lenses are more susceptible to 

osmotically induced anterior opacifications than mammalian lenses (Doughty et al. 

1997; Midtlyng et al. 1999).  

 

Iris

Cornea

Lens capsule

Lens epithelium

Iris

Dorsal ligament

Proliferative zone

Lens fibre cells

Lens cortex

Perinucleus

Nucleus

Musculus retractis lentis

 

Figure 1. Schematic section of the teleost eye. Adapted from Midtlyng et al. (1999) 
and Bjerkås (1998). 
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The basic structure of the lens is similar in all organisms, although the shape can vary 

from globe-like, as in teleost fish, to the biconvex ellipsoid shape of human lenses. A 

general overview over the lens structure is given by Brown and Bron (1996). The 

lens consists of the nucleus, the perinucleus and the cortex - all three made up of fibre 

cells - as well as the lens epithelium and the lens capsule (Figure 1). The capsule, a 

thick basal lamina, serves as a physical protection of the lens and is fully permeable 

for water and small organic molecules. The monolayer of epithelial cells executes the 

main metabolic and osmoregulatory activity in the lens (Bhat 2001). In the 

proliferative zone, the epithelial cells differentiate into fibre cells. The resulting new 

layer of fibre cells spreads upon underlying older layers of fibre cells. The older fibre 

cells, eventually coming closer to the lens nucleus, lose their nuclei and other 

organelles, thus losing metabolic activity and the ability to transcribe DNA.  

The fish eye and lens continue to grow throughout the entire lifetime (Fernald 1985; 

Fernald 1990). Unlike in most other tissues, lens cells are never replaced and there is 

no protein turnover in the central region of the lens. The fibre cells contain high 

concentrations of the major lens proteins, the crystallins. These proteins are highly 

ordered and tightly packed in the cells, which enables light to pass through the lens. 

Any disruption of this order through protein modifications and aggregation, if not 

removed by lens repair mechanisms, will lead to light scattering and thus cataract 

formation (Brown and Bron 1996). 

3.2 General principles of cataract 

Cataracts are defined as opacities of the eye lens (Brown and Bron 1996). Studies of 

the human lens and cataracts have a long history and are still a highly important field 

of interest in medical research due to the frequent occurrence of cataracts. Cataracts 

are one of the main causes of blindness worldwide. About 20% of the population in 

the western world are estimated to have cataracts at the present time-point and this 

number is expected to increase dramatically in the coming years, mainly due to the 

increase in the number of elderly in the population (Congdon et al. 2004). 
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Cataracts represent a multifactorial disease, and any insults causing changes in the 

microstructure of the crystalline lens can cause opacities if not repaired instantly and 

properly. Such insults are for instance oxidative stress, osmotic stress and the 

formation of chemical adducts (Bunce et al. 1990). Human cataracts have been 

intensively studied and a high number of risk factors have been identified. Radiation, 

including UV light (Bochow et al. 1989) and X-ray (Ham Jr 1953) has been shown to 

be a risk factor for cataract formation. Nutritional factors affecting cataract formation 

in humans, such as antioxidant vitamins and amino acid deficiencies, are discussed in 

detail by Bunce et al. (1990). Also smoking of cigarettes (Christen et al. 1992) and 

beedies (Ramakrishnan et al. 1995) has been shown to increase the risk for cataract 

formation. However, the main risk factors for cataract development in the Western 

world are advancing age and diabetes. The main mechanisms involved in both age-

related and diabetic cataract formation are oxidative stress and chemical modification 

(Spector 1995; Truscott 2005; Vinson 2006; Williams 2006; Chan et al. 2008). 

Oxidative stress is caused by free radicals, so called reactive oxygen species (ROS), 

which are highly reactive and can oxidise a broad range of biomolecules, including 

DNA, lipids and proteins. Especially thiol groups are prone to oxidation. The human 

lens contains high concentrations of the antioxidant glutathione (GSH) (Reddy 1990; 

Giblin 2000) and a system of interacting antioxidant enzymes to keep the 

redoxregulation in the lens in balance (Lou 2003). Among the antioxidant enzymes 

present in the lens are superoxide dismutase (SOD) (Reddy et al. 2004), glutathione 

peroxidase (GPX) and glutathione reductase (GR) (Lou 2003), glutathione S-

transferase (GST) (Raghavachari et al. 1999), and metallothionein A (MT-A) and B 

(MT-B) (Oppermann et al. 2001; Hawse et al. 2006). Chemical modifications of 

proteins, like glycation and glycoxidation, lead to highly complex cross-linked 

molecules called AGEs (advanced glycation end products). AGE formation impairs 

the structure of the lens crystallins and thus causes lens opacification (Ahmed 2005). 

Although the principle mechanisms of oxidative stress and chemical modification are 

valid in all organisms, it is currently not known to what extent they are involved in 

cataract formation in Atlantic salmon. 
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3.3 Cataracts in Atlantic salmon and other teleost fish 

Cataracts have been observed in both wild living and farmed teleost fish. The 

majority of the reported cataracts have been found in salmon and trout species, at 

least partly as a direct consequence of farmed salmonids being more thoroughly 

inspected than wild living species. In 1998, a cataract prevalence as high as 82% was 

found in 49 Atlantic salmon sea farms along the Norwegian coast (Ersdal et al. 2001).  

Two types of cataracts can be observed in fish. The first type, transient cataracts 

caused by osmotic imbalance, has been described in both wild and farmed fish 

species (Loewenstein and Bettelheim 1979; Iwata et al. 1987; Bruno and Raynard 

1994; Bjerkås et al. 1998; Bjerkås et al. 2000; Breck and Sveier 2001). The second 

type, irreversible cataracts, can be caused by a large number of different factors. 

Different environmental conditions have been identified as risk factors for cataract 

development in salmonids: fluctuating water salinity causing severe or repeated 

osmotic stress (Bjerkås et al. 2003; Bjerkås and Sveier 2004), temperature changes 

(Bruno and Raynard 1994; Bjerkås and Bjørnestad 1999; Bjerkås et al. 2001), water 

gas supersaturation (Krise and Smith 1993), water hyperoxygenation (Waagbø et al. 

2008) and UV radiation (Hargis 1991; Cullen et al. 1994; Doughty et al. 1997). Also 

several toxins have been shown to cause cataracts in salmonids: polycyclic aromatic 

hydrocarbons (PAH) (Laycock et al. 2000), organophosphates (Fraser et al. 1990) 

and thioacetamide (von Sallmann et al. 1966). Furthermore, intraocular infections or 

inflammations can lead to secondary changes causing cataract formation in fish 

(Ashton et al. 1969; Shariff et al. 1980; Karlsbakk et al. 2002). Genetically linked 

predisposition to cataract formation in salmonids has been described (Steucke et al. 

1968; Kincaid 1989; Wall and Richards 1992; Breck et al. 2005a). 

In addition to the above listed risk factors for irreversible cataracts, numerous 

nutritional linked cataracts have been described in farmed salmonids in the past, 

caused by deficiencies in: thiamine (Hughes 1985), riboflavin (Poston et al. 1977; 

Hughes et al. 1981), methionine (Poston et al. 1977; Barash et al. 1982; Hughes 

1985; Cowey et al. 1992), tryptophan (Poston and Rumsey 1983; Akiyama et al. 
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1986), manganese (Yamamoto et al. 1983) or zinc. Zinc deficiency is caused either 

directly by low dietary concentrations or by reduced availability due to formation of 

chelates in the intestine or competitive uptake of other minerals (Ketola 1979; Barash 

et al. 1982; Richardson et al. 1985; Shearer et al. 1992; Maage and Julshamn 1993). 

Also feeding of energy-dense diets, leading to rapid growth, has been related to 

cataract development (Waagbø et al. 1998; Breck and Sveier 2001). It has also been 

shown that high dietary levels of iron, manganese and lipids increased, and dietary 

antioxidants decreased the frequency of cataract formation, respectively (Waagbø et 

al. 2003). With the development of more balanced and optimised feeds, the nutrition-

related cataracts listed above have mostly disappeared from modern aquaculture.  

However, a new interest was sparked in the study of nutrition related cataracts when 

the omission of mammalian blood meal as a protein source in salmonid feeds in the 

early 1990s led to several severe outbreaks of cataract incidences in European 

salmonid fish farms, especially in Ireland (Crockford 1998; Wall 1998). Since blood 

meal is known to contain high amounts of His and iron, a NRC-funded research 

project (No.134965/120 “Importance of dietary histidine, iron and zinc 

concentrations on cataract development in two strains of Atlantic salmon”) was run 

from 2000 to 2003 to elucidate the role of these dietary components. Elevated levels 

of dietary His were found to possess a cataract suppressing effect in Atlantic salmon 

smolt (Breck et al. 2003; Breck 2004; Breck et al. 2005a; Breck et al. 2005b). These 

studies led to a further optimisation of feed for Atlantic salmon smolt and laid the 

fundament on which the work of the present thesis is built. 

3.4 His and His-related compounds: chemistry and 
possible functions in the lens 

In contrast to most mammalians, His is an essential amino acid for fish (Espe et al. 

2001), meaning that fish cannot synthesise His de novo. Thus, His has to be supplied 

by diet intake. A minimum concentration of 7 g His per kg diet is currently 

recommended to cover the requirement of Atlantic salmon (NRC 1993). However, 
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several studies have shown a cataract preventative or cataract mitigating effect of 

dietary His above the suggested minimum requirement in Atlantic salmon smolt 

(Breck et al. 2003; Bjerkås and Sveier 2004; Breck 2004; Breck et al. 2005a; Breck 

et al. 2005b). The His-derivative NAH is a major component of the free amino acid 

pool of the Atlantic salmon lens. The lens concentrations of NAH have been shown 

to reflect dietary His levels, and NAH has thus been established as a lens-specific 

marker for the His status of Atlantic salmon (Breck et al. 2005a; Breck et al. 2005b). 

A role of NAH as an osmolyte in the Atlantic salmon lens has been proposed (Breck 

2004; Breck et al. 2005b). 

His is one of the 20 amino acids which function as the monomers that build up 

peptides and proteins in all living organisms (Nelson and Cox 2000). Amino acids 

have also a metabolic function and are the main energy source in the liver of 

carnivorous fish, including Atlantic salmon (Espe et al. 2001). Hence, His may occur 

in a cell as part of a protein or oligopeptide, or as a free amino acid. In either form it 

may be modified, e.g. by methylation or acetylation. Modification of free His makes 

it unavailable for protein synthesis and thus metabolically relatively inert. 

Like all other amino acids, the His molecule contains an amino-group, a carboxyl-

group and a characteristic side chain attached to the α-C atom. All amino acids 

except glycine exist in the L or D-form, depending on the position of the side chain 

on the �-C atom. Only the L-stereoisomers are used in protein synthesis. In the 

present thesis, including the Papers I-IV, �-L-histidine is commonly referred to as 

histidine for simplifying reasons. The specific His side chain features a nitrogen 

containing ring structure, the imidazole ring. The special chemistry of the imidazole 

ring makes the His molecule and its derivatives unique and versatile compounds, 

suited to fulfil a number of possible functions in the lens cells. An overview over 

these possible functions is given the following paragraphs. The molecular structures 

of His and three His-derivatives found in Atlantic salmon lens and muscle tissue are 

shown in Figure 2. 
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A B

C 

D 

 

Figure 2. Structural formulas of His (A) and the His derived compounds NAH (B), 
Carnosine (C) and Anserine (D). NAH is lens-specific, while carnosine and anserine 
are muscle-specific. His is present in both tissues. 

 

His is the only amino acid with an ionisable side chain with a pKa near the neutral 

pH (pH 7). Because of the ability to serve as a proton-donor/acceptor at neutral pH, 

His residues are often found in the reactive centres of enzymes (Nelson and Cox 

2000). The imidazole ring is one of the strongest bases existing at pH 7. Since the 

intra- and intercellular fluids of most animal tissues have a neutral pH, His 

constitutes an effective physiological buffer. His-related compounds are the major 

buffering compounds in the skeletal muscle of fish (Abe et al. 1985) and vertebrates 

(Abe 2000). His and the His-derivative NAH (Figure 2 B) are present in the free 

amino acid pool of the Atlantic salmon lens. The buffering capacities of lenses 
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containing different concentrations of His and NAH have recently been tested. In 

lenses with a higher NAH concentration, the buffering capacity was found to be 

slightly higher than in lenses with a lower NAH concentration, although the 

difference was not significant (Breck et al. 2005a). 

His-derived dipeptides like carnosine (Figure 2 C), homocarnosine and anserine 

(Figure 2 D), that occur at high concentrations in muscle and brain of many 

vertebrates, have been reported to have antioxidant activity (Boldyrev et al. 1988; 

Kohen et al. 1988; Aruoma et al. 1989). The potential of carnosine-related �-

dipeptides to bind prooxidative metal ions, to quench a number of reactive free 

radicals and to bind to hydroperoxides or aldehydes, including dialdehyde lipid 

peroxidation products, has been confirmed by Babizhayev (1989; 2006). The 

antioxidant capacity of N-acetylcarnosine, especially protecting lens membrane 

lipids from lipid peroxidation and lens proteins from non-enzymatic cross-linking 

glycation reactions, is utilised in eye drops aimed at non-surgical cataract prevention 

and treatment in humans (Babizhayev et al. 2004).  

Carbonyl groups derive from direct oxidation of amino acid side chains by reactive 

oxygen species (ROS), the reaction of lipid peroxidation products with basic side 

chains, or glycation phenomena, all of them being age-related processes and known 

to be involved in cataract formation. The binding of carnosine to carbonylated 

proteins prevented cross-linking reactions with primarily unaffected proteins, which 

had an anti-ageing effect on cultured cells (Hipkiss 2000; Hipkiss et al. 2001). The 

anti-crosslinking activity of His was even higher than carnosine, while NAH showed 

no anti-crosslinking activity (Hobart et al. 2004). Other possible functions of His and 

His-related compounds in the lens include osmoregulation (Baslow 1998) and anti-

inflammation (Wade and Tucker 1998). 
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3.5 Plant feed ingredients and cataracts in farmed Atlantic 
salmon 

Aquaculture is a worldwide growing industry and is actually growing more rapidly 

than any other animal food-producing sector (FAO 2009). This leads to a steady 

increase in the amounts of feed raw materials that are needed to produce adequate 

diets to feed the farmed fish. Atlantic salmon is a carnivorous fish species, and 

traditionally farmed Atlantic salmon are fed diets based on ingredients of marine 

animal origin, like fish meal and fish oil (Tacon and Metian 2008). Currently, close to 

85% of the entire fish oil production is consumed by the aquaculture industry and 

more than half of this is used for salmonid feeds alone (FAO 2009). Due to 

stagnating capture fisheries production the resources for marine ingredients are 

limited and will not be sufficient to cover the increased demand in the future. Fish 

meal and fish oil prices have increased in 2008 and are expected to remain high (FAO 

2009). Plant ingredients are attractive alternatives to fish meal and fish oil, since they 

are readily available and the costs are relatively low (Torstensen et al. 2008; Turchini 

et al. 2009). 

Several feeding studies have addressed the effects of plant feed ingredients on growth 

performance, tissue composition and fish welfare. The dietary lipid composition has 

been shown to affect the lipid class and fatty acid composition in various salmon 

tissues (Waagbø et al. 1991; Torstensen et al. 2000; Bell et al. 2001; Torstensen et al. 

2001; Bell et al. 2002). The effect of dietary vegetable oils on cataractogenesis in 

Atlantic salmon was investigated in two long-term feeding studies in Norway and 

Scotland, as parts of the RAFOA (Researching Alternatives to Fish Oils in 

Aquaculture, Q5RS-2000-30058, http://www.rafoa.stir.ac.uk/) project (Waagbø et al. 

2004). In these studies, Atlantic salmon were fed fish meal based diets with 75-100% 

fish oil replacement by a common vegetable oil blend (30% palm oil, 15% linseed oil 

and 55% rapeseed oil) from start feeding to slaughter. Cataract screenings revealed 

high cataract prevalence in both groups, whereas the severity was considerably and 

significantly higher in fish fed the vegetable oil diet. Further investigations of the 
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effects of plant feed ingredients on lens composition, lens function and 

cataractogenesis as measures of fish welfare are needed to ensure the safe use of plant 

feed ingredients in aquaculture. 

3.6 Principles of osmoregulation in Atlantic salmon  

Osmosis is the diffusion of water through a semi-permeable membrane from an area 

with low solute concentration to an area with high solute concentration. The cell 

membrane is relatively permeable to water, but not to larger biomolecules and ions. 

Thus, cells in a hyperosmotic environment will release water and shrink, and cells in 

a hypoosmotic environment will take up water and swell. To prevent cell damage 

caused by shrinking or swelling, cells actively regulate their volume back to the 

initial state. Upon hypoosmotic stress, a regulated volume decrease (RVD) occurs. In 

RVD, there is an efflux of both inorganic ions and osmolytes to the extracellular 

environment, which leads to the concomitant loss of water and return to the normal 

cell volume. Regulated volume increase (RVI) occurs upon hyperosmotic stress and 

involves the fast uptake of ions that are subsequently slowly replaced by compatible 

osmolytes (Kwon and Handler 1995; McManus et al. 1995).  

Many organisms use osmolytes to control the cell volume. Osmolytes are small 

soluble organic molecules whose concentrations are up-regulated or down-regulated 

to adjust the osmolality in the cell. They are often called “compatible”, because they 

do not interact with cytosolic macromolecules in detrimental ways, as would 

inorganic ions at high concentrations. Several osmolytes might have additional 

cytoprotective functions, e.g. as antioxidants, in redox balance, in sulphide/sulphate 

detoxification, or in protein stabilisation (Yancey 2005; Burg and Ferraris 2008). 

There are five major categories of osmolytes: small carbohydrates (e.g. trehalose), 

polyols (glycerol, inositol, sorbitol, etc.) and their derivatives, amino acids (glycine, 

proline, taurine, etc.) and their derivatives (e.g. NAH), methylamines (e.g. N-

trimethylamine oxide (TMAO) and glycine betaine) and methylsulphonium solutes 

including urea (Yancey et al. 1982; Yancey 2005). 
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Euryhaline species like Atlantic salmon can adapt to a life under different osmotic 

conditions. Atlantic salmon have an anadromous lifestyle, migrating from freshwater 

streams to the sea after the early life stages and returning to freshwater after one or 

several years in the sea to spawn. Before the migration from freshwater to seawater, 

Atlantic salmon parr pre-adapt to the increased salinity in seawater and become 

smolt. They undergo complex physiological, morphological and behavioural changes, 

called parr-smolt transformation or smoltification (McCormick et al. 1998; 

McCormick 2001). 

Atlantic salmon are osmoregulators, i.e. they aim to keep their body fluids 

osmolalities constant, in contrast to osmoconformers, which maintain about the same 

osmotic pressure as their environment (Yancey 2005). The main organs to control the 

osmotic balance in Atlantic salmon are the gut, skin and gills, as these are the major 

contact sites to the aquatic environment. In freshwater, specialised cells of the gut and 

the gills function to take up and retain ions, while in saltwater the opposite is the case 

and cells actively secrete ions to keep the osmotic balance in the organism. The 

plasma osmolality in Atlantic salmon is slightly higher in seawater-adapted compared 

to freshwater-adapted salmon (Iwata et al. 1987; Hansen 1998). The osmolyte glycine 

betaine (in the present thesis called betaine for simplifying reasons) can be added to 

the diet during smoltification to increase seawater-tolerance in Atlantic salmon smolts 

(Virtanen et al. 1989). The impact of osmotic stress on cataract development in 

Atlantic salmon is detailed in section 3.3. The His-derivative NAH has been 

suggested to function as an osmolyte in the lens of goldfish (Carassius auratus) 

(Baslow 1998) and Atlantic salmon (Breck 2004; Breck et al. 2005b). 

3.7 The stress response in fish 

Intensive fish farming implies a number of possible stressors to the fish, which may 

predispose them to compromised growth and health, and may promote disease. 

Therefore, a considerable amount of work has been done to investigate the potential 

stressors and the stress responses in fish (Iwama et al. 1997). The results of this 
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research are highly important - not only in aquaculture, but also for the experimental 

biologist working with fish - and help to distinguish if experimental observations are 

mainly caused by the primary objective of the experiment or by responses to 

accompanying stress. This is crucial to ensure reproducible and reliable research, as 

well as ethical handling of the fish as research animals. 

The stress response in fish can be divided into primary, secondary and tertiary 

responses (Mazeaud et al. 1977; Wedemeyer et al. 1990; Barton 2002). The primary 

response consists of relatively fast endocrine changes, including temporary increases 

in plasma catecholamines (adrenaline and noradrenaline) through the adrenergic 

response and in plasma cortisol through the hypothalamo-pituitary-interrenal (HPI) 

response. To the secondary responses belong metabolic changes (like hyperglycaemia 

and changes in plasma free fatty acids), haematological changes (like changes in 

blood haemoglobin, red and white blood cell numbers and hematocrit) and changes in 

plasma ion and acid-base-balance. Primary and secondary responses are tissue-

specific, while tertiary responses, such as changes in the growth performance, 

reproduction rate and disease resistance affect the whole body (Iwama et al. 1997). In 

addition to this stress response affecting the whole organism, a stress response exists 

at the cellular level. The cellular stress response includes the increased expression of 

stress proteins, such as certain members of the family of heat shock proteins (HSPs) 

(Iwama et al. 1998; Iwama et al. 1999). HSPs are expressed in virtually all studied 

organisms and have highly conserved sequences. These unique characteristics have 

made HSPs popular and widely used molecular markers for responses to different 

stressors in various tissues and organisms (Iwama et al. 1998). 
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4. Methodological considerations 

 

The analytical methods and experimental procedures applied in the present thesis are 

described in the respective papers (Paper I-IV). Challenges, cautions, adaptations and 

validity of selected methods and models are discussed in more detail in the following 

sections. 

4.1 Fish trials 

The lenses analysed for Paper I were sampled after a short-time (2 hours) experiment 

where different sampling procedures were applied to groups of six Atlantic salmon to 

investigate possible effects on lens gene expression. All sampled fish came from the 

same batch of smolts obtained from the Institute of Marine Research’s (IMR) 

research station at Matre (Hordaland County, Norway) in April 2006. The fish had 

been reared in a 1500 litre outdoor tank at the IMR in Bergen, Norway, until 

sampling at the end of June 2006. The actual experiment was carried out in smaller 

(80 litre) tanks without replicates. The use of replicate tanks and nested ANOVA 

statistics is usually recommended for aquaculture studies, to control any additional 

variation caused by tank-specific environmental factors or by hierarchical feeding 

that may appear in fish feeding trials (Ruohonen 1998; Ling and Cotter 2003). In the 

present study, however, feeding was not an experimental factor and due to the short 

duration of the experiment, tank-specific variations were considered to have much 

less effect than the experimental treatment.  

Applying the findings of Paper I, fish sampled for Paper II, III and IV were 

anaesthetised before killing and the time from anaesthesia to dissection of lenses and 

other tissues was kept as short as possible, not exceeding 30 minutes. The lens 

samples were flash-frozen in liquid nitrogen or by placing them on dry ice. 
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A feeding trial to demonstrate the cataract preventative effect of dietary His regimes 

in adult Atlantic salmon growers was conducted in sea net pens at Skretting ARC’s 

research station at Lerang (Rogaland County, Norway) from June to October 2006. 

Lerang research station was chosen due to previous cataract observations at this sea 

site. Adult Atlantic salmon growers in their second year in sea water were fed 

commercial-like diets with or without His supplementation [low-His diet (L), 

medium-His diet (M) and high-His diet (H)] in duplicates. Since low dietary His 

concentrations alone might not have been sufficient to provoke cataract formation, 

the experimental period was laid to the warmer summer months, as high water 

temperatures and increased growth have been proposed as risk factors for cataract 

formation (Breck and Sveier 2001). The cross-over design of the feeding trial (Paper 

II) allowed the investigation of time-dependent effects of varying dietary His levels 

relative to possible cataract formation. Lens and muscle tissue samples for the 

evaluation of His nutrition (Paper II) and the investigation of the molecular aspects of 

His-related cataracts (Paper III) were obtained in July, September and October. 

Another feeding trial from which lenses for Paper IV were obtained was carried out 

as a part of the IP-EU project “Aquamax” (016249-2; http://www.aquamaxip.eu) at 

IMR’s research station at Matre (Hordaland County, Norway) from June 2006 until 

June 2007. Atlantic salmon growers were reared in triplicate tanks and received one 

of four diets varying in the content of marine and vegetable lipid and protein sources 

(FMFO: 100% fish meal and 100% fish oil, 80PP35VO: 80% plant protein and 35% 

vegetable oil blend, 40PP70VO: 40% plant protein and 70% vegetable oil blend, and 

80PP70VO: 80% plant protein and 70% vegetable oil blend). For simplifying 

reasons, only the marine diet (FMFO) and the most extremely substituted diet 

(80PP70VO) are presented and discussed in Paper IV, as diet M and P, respectively. 

However, the same analyses as in Paper IV have also been carried out for the 

intermediate dietary groups. These groups are briefly referred to in the discussion of 

Paper IV and will be dealt with in more detail in the general discussion, to support the 

results of Paper IV and to try to clarify whether impacts of the diets originated from 

the protein or lipid ingredients. 
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For paper I and IV, lenses were dissected from fish also sampled for other purposes. 

This “sharing” of sampled fish between different projects is an important measure to 

reduce the number of animals treated - and killed - for research purposes. Reduction 

is one of the “three Rs”, a main principle in modern laboratory animal science 

introduced by Russell and Burch (1959). The three Rs stand for Replacement, 

Reduction and Refinement. Russell and Burch (1959) prompted the researchers to 

find alternatives for their animal research, by replacing the use of laboratory animals 

by other techniques that give the same or similar answers (e.g. applying cell culture 

methods), by reducing the number of research animals used for an experiment (e.g. 

by choosing appropriate experimental designs and statistical tests) and by refining the 

experimental procedures and protocols to reduce stress and suffering for the research 

animals. 

4.2 Assessment of the cataract status in lenses 

Many classification systems exist for application in clinical practice and in etiological 

and intervention studies (Brown and Bron 1996). In the present thesis, cataract status 

of the lenses was diagnosed by slit lamp biomicroscope inspection and a simple 

scoring system as described by Wall and Bjerkås (1999) was applied. The cataract 

score per individual lens was assessed on a scale from zero (clear lens) to four 

(completely opaque lens), summing up to a possible maximum score of eight per fish 

(Figure 3). This scoring system does not give morphological information or 

information about the localisation of the observed opacifications, and such additional 

information had thus to be noted separately. Since the scoring system is relatively 

easy to apply and only requires darkened conditions and a portable slit lamp 

biomicroscope, it has proven to be the method of choice for eye and lens screenings 

of fish in aquaculture research. Scheimpflug photography has been suggested in 

addition to slit lamp biomicroscope inspection in farmed fish to reveal causative 

factors for the observed cataracts (Wegener et al. 2001). In the experiments presented 

in this thesis, however, this method was not applied since the additional gain of 
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information was considered not sufficient to legitimate the complication of the 

experiments by the sophisticated instrumentation.  
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Figure 3. Atlantic salmon lenses with cataracts of different severity, graded after 
the score system of Wall et al. (1999). (A) Score 1. (B) Score 2. (C) Score 3. (D) 
Score 4. Photographs from Bjerkås et al. (2006), with permission. 

4.3 Considerations on the quality of isolated RNA  

High quality RNA preparations are of major importance to ensure reliable results of 

gene expression analysis methods (Bustin and Nolan 2004; Imbeaud et al. 2005; 

Perez-Novo et al. 2005; Fleige and Pfaffl 2006). The quality of an RNA preparation 

has traditionally been determined by the ratio between the 28S rRNA band and the 

18S rRNA band after gel electrophoresis. Today, microcapillary electrophoresis has 

become a material-saving alternative and new methods to assess RNA quality have 

emerged (Imbeaud et al. 2005; Copois et al. 2007). In the present thesis, the quality of 

RNA samples was judged by the RNA integrity number (RIN) calculated by the 
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Agilent 2100 Bioanalyzer software (Schroeder et al. 2006). The RIN of a sample can 

range from 1 (completely degraded RNA) to 10 (high quality RNA). The quality of 

RNA isolated from different Atlantic salmon tissues can be affected by the method of 

tissue storage (Olsvik et al. 2007). 

The possible effects of lens tissue preservation in liquid nitrogen or RNAlater on the 

quality of RNA isolated from Atlantic salmon lens were investigated in Paper I. No 

significant difference between the methods was found. However, the preservation of 

lenses in liquid nitrogen instead of RNAlater was recommended, since the frozen 

lenses were easier to handle during the RNA purification procedure. High RNA 

quality (RIN between 8.0 and 9.4) was obtained applying an adapted version of the 

purification method commonly used at NIFES at that time-point. The results obtained 

in Paper I were applied in the following gene expression analysis experiments in 

Paper III and IV. 

In the His-feeding trial on which the microarray experiment in Paper III is based, a 

massive cataract outbreak was observed between July and September. It was 

originally planned to compare fish that had received high or medium-His feed at two 

time points, the July-sampling before the cataract outbreak and the September-

sampling as an acute stage of cataractogenesis. However, due to problems during the 

RNA purification (probably overheating of the samples during the homogenisation 

step) these samples did not meet the quality demands of a RIN � 8 and could thus not 

be used for microarray analysis.  

Figure 4 shows a typical electropherogramme of a high-quality RNA sample (Figure 

4A), one of the impaired samples (Figure 4B), as well as a heavily degraded RNA 

sample obtained from another experiment (Figure 4C). Basically, the impaired 

sample in Figure 4B lacks the 28S peak, while the baseline remains similarly low as 

in the high-quality sample in Figure 4A. A raised baseline preceding the 18S peak, as 

in the heavily degraded sample in Figure 4C, indicates low molecular degradation 

products. Due to the lacking 28S peak in the impaired sample in Figure 4B, the RIN 

could not be calculated; however, the impaired samples did not display the typical 
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pattern of random degradation observed in Figure 4C. Salt contaminations may lead 

to the observation of lacking 28S peaks in total RNA samples as in Figure 4B. In the 

present case, however, the samples have been cleaned by an extra column-based step 

in the purification protocol (Paper III), which virtually excludes salt contamination as 

the cause of our observations. Since the impaired samples did not meet the quality 

demands for a microarray experiment, we had to select alternative samples from the 

cross-over feeding groups sampled in September and from the October-sampling. 

However, from a preliminary experiment there is evidence that the rejected samples 

are suitable for qRT-PCR analysis (data not shown).  

 

   

  

Figure 4. Electropherogrammes of Atlantic salmon total RNA samples produced on 
an Agilent 2100 Bioanalyzer. (A) High-quality lens total RNA sample used in the 
microarray study, displaying an integrity number (RIN) of 9.0. The 18S and 28S 
peaks are marked with arrows. (B) Lens total RNA sample not used in the 
microarray study. The RIN was not applicable due to lack of the 28S peak. (C) 
Heavily degraded total RNA sample from another experiment, with a RIN of 5.4. 
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4.4 Gene expression analysis 

Two methods were used to analyse gene expression in the present thesis: qRT-PCR 

(Paper I, Paper III and Paper IV) and cDNA microarray (Paper III), which are 

discussed in separate subsections below. Both methods share, however, some 

potential pitfalls that will be dealt with firstly.  

The results obtained by single qRT-PCR and microarray experiments are like snap-

shots of the transcriptome in the assayed cells or tissues. This is valuable information; 

however, no answers about mRNA transcription rates, mRNA turnover, protein 

synthesis, or post-translational modifications and thus protein activity are given. The 

regulation of gene expression induced by experimental treatment is in most cases 

time-dependent and different genes may be regulated in different ways. Time course 

experiments are often the best way to find peak expression levels of a regulated gene, 

but were beyond the scope of the present thesis. 

The term “nutrigenomics” has been used to describe the study of the effects of 

nutrition on gene expression by high-throughput analytical methods (Müller and 

Kersten 2003). Ideally, nutrigenomics studies, as any other gene expression studies, 

should be complemented by studies on the expression levels of proteins 

(“proteomics”) and metabolites (“metabolomics”), to assess the whole spectra of 

responses to nutrients in cells, tissues, or whole organisms (Müller and Kersten 

2003). In the present thesis, gene expression data were combined with results of 

biochemical analyses (Paper III and IV) and with physiological responses to 

experimental treatment (Paper IV) to mutually increase the reliability of the results 

and explore the response mechanisms. Small fold changes are frequently reported in 

nutrigenomics studies (Jordal 2006; Garosi et al. 2007) and thus a high number of 

biological replicates were analysed in the experiments presented in this thesis to 

secure sufficient statistical power to draw reliable conclusions. 

In all gene expression analyses presented in this thesis, RNA was isolated from whole 

lenses. Studies on human cataracts often focus on the lens epithelium alone 
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(Kantorow et al. 1998b; Zhang et al. 2002; Hawse et al. 2003; Ruotolo et al. 2003). 

Lens epithelial cells and lens fibre cells have partly different functions in the lens. 

Thus, clearer results could possibly have been obtained if only epithelial cells or only 

fibre cells had been used for gene expression analysis. However, to separate the two 

types of lens cells would have increased the need of biological material since samples 

from many lenses had to be pooled to ensure high enough yields of purified RNA to 

run the desired analyses. Besides the resulting need for more experimental animals, 

sample pooling might have masked differentially expressed genes. In addition, 

sample pooling would have made it impossible to correlate individual gene 

expression data to other analysed parameters, such as individual cataract scores, as 

applied in Paper III. The dissection of lens epithelial cells and fibre cells had also 

made the experiments more time-consuming and cost-intensive. 

4.4.1 Microarray analysis 

Microarrays are powerful tools to screen for expression levels of a large number of 

genes - up to hundreds of thousands - at the same time, thus producing great amounts 

of individual gene expression data. Microarray analysis is a complex, multistep 

technique with many sources for variation, both systematic (technical) and non-

systematic (biological). To gain meaningful results, experiments have to be carefully 

planned, standardised protocols used, and correct data normalisation and analysis 

methods applied (Quackenbush 2001; Imbeaud and Auffray 2005; Jaluria et al. 

2007). The experimental design, data normalisation and data analysis for Paper III 

were thus carried out in collaboration with specialists from the Computational 

Biology Unit (CBU), Bergen Center for Computational Science (BCCS), at the 

University of Bergen. Sample labelling and microarray hybridisations were done at 

the Norwegian Microarray Consortium (NMC) national technology platform in 

Trondheim, supported by the Functional Genomics Program (FUGE) in the Research 

Council of Norway (NRC). The Minimum Information About a Microarray 

Experiment (MIAME) guidelines (Brazma et al. 2001) were followed. 
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In the present study, the GRASP 16K salmonid microarray was used. This salmonid 

cDNA microarray was designed to represent a substantial part of the whole 

transcriptome (von Schalburg et al. 2005; http://web.uvic.ca/grasp). The expressed 

sequence tags (ESTs) printed on the array originated from a variety of tissues at 

different developmental stages from Atlantic salmon and rainbow trout 

(Oncorhynchus mykiss), both belonging to the family of Salmonidae and thus 

displaying high DNA sequence similarity. Samples from several teleost species 

distantly related to salmonids have been shown to hybridise with the array (von 

Schalburg et al. 2005). However, since no lens-specific EST library was among the 

libraries used for its production, the array is very likely not representative for the 

entire lens transcriptome. Thus, specific genes or isoforms of genes exclusively 

expressed in the lens - with a potential role in His-related cataract formation - may 

not be represented among the sequences printed on the array. As a result, the 

expression patterns of these missing lens-specific genes could not be detected in the 

microarray study presented in Paper III. One of these potentially interesting genes 

was aquaporin 0, the major lens aquaporin, which is expressed in the fibre cells and 

has water transport and structural functions. Mutations in aquaporin 0 have been 

shown to cause congenital cataracts in human and mice (Verkman et al. 2008). 

It is known that technical variation caused by sample processing by different persons 

or at different time points, as well as the order of sample processing, can influence 

the results of microarray experiments significantly. In the present study, the various 

steps of the sample processing were thus carried out by the same person and with 

randomised sample order. For each processing step, all samples were processed at the 

same time; and when this was not possible, the samples were divided into batches 

containing equal numbers of samples of each dietary group in randomised order.  

Several of the purchased array slides used in this study bore pronounced fingerprint-

like marks at arrival (Figure 5). These marks appeared as flaws about 2-4 pixels in 

size in the image analysis and are presumably caused by salts of a buffer solution that 
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evaporated on the slides. The affected spots have been “flagged out” and thus 

removed from the analysis, to ascertain that the results of the study were not affected. 

 

 

Figure 5. “Fingerprints” on one of the microarray slides scanned before 
hybridisation. 

 

The differences in gene expression levels between two experimental groups are often 

presented as fold changes (i.e. the ratios between the two groups). In the past, it has 

been a common practice in microarray analysis to set arbitrary fold change cut-off 

values, often at two-fold to four-fold, below which the effect of differential 

expression was considered not significant (Quackenbush 2002). If such a practice had 

been applied in the present study, the list of differentially expressed transcripts would 

have been shortened from several hundreds to less than ten. Many potentially 

interesting transcripts would have been lost from the analysis. The fold change alone 

should not be used as a measure of biological significance for differentially expressed 

genes. 
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A considerable number of the ESTs on the 16 K salmonid microarray are redundant, 

i.e. coding for the same transcript, but representing different parts of the sequence of 

this transcript. These ESTs will thus be annotated with the same gene name. In 

microarray data analysis, one can choose to treat these ESTs as separate transcripts, 

or combine the expression data from several ESTs annotated with the same gene 

name to a new average value for this gene (“collapsed dataset”). This has 

implications on the results of cluster analyses and enrichment analyses, where 

artificially low false discovery rates (FDR) will be detected in uncollapsed datasets. 

However, due to genome duplication, many genes in Atlantic salmon exist in several 

isoforms and it is often impossible to determine whether small sequence differences 

between ESTs are due to experimental variance (like sequencing errors), differences 

between individual fish, or actually represent different isoforms of a gene. In order 

not to lose potentially important information on different isoforms, as discussed by 

(Olsvik et al. 2008), we decided to analyse uncollapsed data in Paper III. 

Gene ontology (GO; http://www.geneontology.org) terms can be applied to describe 

the molecular function, biological process and cellular component of a gene product 

in a standardised way (Ashburner et al. 2000; Harris et al. 2004). In the present study, 

the transcripts on the array were functionally annotated with GO terms. This 

functional annotation is deposited in a so called mapping file. Gene set enrichment 

analysis (GSEA) is a powerful tool to detect functional clusters of genes that are 

differentially expressed, but where the individual members of the cluster may not be 

recognised significantly differentially expressed due to variations in expression levels 

and low fold changes (Subramanian et al. 2005). In the present study, GSEA was 

applied to the dataset using both the GO-mapping file provided by the array producer 

and a GO-mapping file created using the Blast2GO platform (Conesa et al. 2005; 

http://www.blast2go.de). However, both approaches produced results of small 

biological relevance and have thus not been included in Paper III. 

The limitations in data analysis caused by incomplete annotation of the EST clones 

on the array are discussed in Paper III. Briefly, about 25% of the transcripts in the 
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dataset were unknown sequences. In addition, about one third of the known 

transcripts lacked a functional annotation. Thus the functional enrichment analysis 

results could not give a complete view of the functional categories enriched in the 

dataset. New sequence information is continuously created and this progress in 

sequence identification and annotation will eventually fill the gaps that currently exist 

in the dataset. 

Finally, it should be underlined that the experiment presented in Paper III was a 

screening study. Microarray analysis was used as a “hypothesis generator” and 

further investigation is needed to fully explore the findings of this study.  

4.4.2 qRT-PCR analysis 

Two types of quantification are currently common in qRT-PCR analysis, nonspecific 

detection using DNA-intercalating dyes, e.g. SYBR Green, and specific detection by 

template-specific fluorescent probes (Bustin and Nolan 2004). Fluorescent probes 

ensure higher specificity than the unspecific DNA-binding dyes, but increase the 

costs for an experiment. In the present thesis, SYBR Green was applied for qRT-PCR 

analysis (Paper I, III and IV). The expected sizes of the respective PCR products were 

confirmed by DNA melt curve analysis, as recommended by Bustin and Nolan 

(2004). A further improvement, however beyond the scope of the present thesis, 

would have been to sequence the obtained PCR products, to confirm that the 

expected sequences had been amplified. 

Differences in the amplification efficiency may lead to different results when samples 

are assayed for the same gene in separate qRT-PCR runs. Thus, for direct comparison 

of samples analysed on different plates, the expression values obtained from both 

plates have to be “calibrated” via one or more common samples. This process is 

called interplate calibration (Kubista and Sindelka 2007). Interplate calibration was 

not needed in the experiments described in Paper I, III and IV, where all samples 

could be assayed for a certain gene on one plate. However, for the present thesis, the 

samples of the two additional dietary groups not included in Paper IV have been 
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analysed on a separate plate. Interplate calibration was thus necessary to be able to 

compare these additional results with the two main dietary groups. The same standard 

curve of pooled samples was run on both plates and interplate calibration was done as 

described by Kubista and Sindelka (2007).  

Proper normalisation of qRT-PCR data is crucial to obtain reliable results 

(Vandesompele et al. 2002; Bustin and Nolan 2004). In all qRT-PCR experiments 

presented in this thesis, the best reference genes have been selected from a pool of 

tested genes applying the geNorm VBA applet for Microsoft Excel version 3.4 

(Vandesompele et al. 2002; http://medgen.ugent.be/~jvdesomp/genorm). Two to 

three reference genes have been used to normalise the data in the various 

experiments. 

Recently, an expert group of leading qRT-PCR specialists has proposed guidelines 

for the minimum information that should be enclosed when qRT-PCR experiments 

are published. These guidelines, called “The Minimum Information for Publication of 

Quantitative Real-Time PCR Experiments” (MIQE), will help the reader to evaluate 

the quality of the results and to reproduce the results (Bustin et al. 2009). To enable a 

straightforward and transparent data exchange between qRT-PCR instruments, 

different data analysis software, collaborating colleagues and any other interested 

researchers, the XML-based “Real-Time PCR Data Markup Language” (RDML) has 

been introduced by the RDML consortium (Lefever et al. 2009; 

http://www.rdml.org). Most of the essential points on the MIQE checklist are 

described in the traditional way in the materials and methods section in Paper I, III 

and IV, and RDML was not used. However, the MIQE guidelines and the use of 

RDML will presumably be integrated into the standard procedures at NIFES in the 

near future. 
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4.5 Ex vivo whole-organ culture of lenses 

Organ culture of lenses is a useful tool in cataract research, since it permits the study 

of lens responses to various defined treatments, such as H2O2-induced oxidative stress 

(Spector 1995), lipid peroxidation products (Zigler et al. 1983), hypolipidemic drugs 

(De Vries and Cohen 1993), UV-A radiation (Dovrat and Weinreb 1999) and Ca2+-

overload induced by a Ca2+ ionophore (Sanderson et al. 2000). An ex vivo whole-

organ culture model of Atlantic salmon lenses has been established in co-operation 

with the University of East Anglia (UEA) (Breck 2004). The lenses were cultured in 

a standard serum-free cell culture medium, Eagle’s Minimum Essential Medium 

(EMEM). Lenses cultured for over four weeks maintained their transparency, and the 

lens membrane voltage and protein synthesis rate remained relatively constant over 

two weeks, proving the functioning of the culture model (Breck 2004).  

The same ex vivo culture model was applied on Atlantic salmon lenses from fish fed a 

plant-based or a marine control diet in the study presented in Paper IV. In this study, 

the lenses were subjected to hypoosmotic or hyperosmotic culture media for four 

successive days. The osmolalities for the hypoosmotic (237 mOsm/kg) and 

hyperosmotic (399 mOsm/kg) medium were chosen in a range that might be expected 

to occur upon osmotic challenge in vivo, whereas in previous studies, a wider range 

of osmolalities including more extreme values was applied (Breck 2004). The 

osmolality of the control medium (321 mOsm/kg) used in Paper IV was chosen based 

on previous measurements of aqueous humour osmolality in seawater-acclimated 

Atlantic salmon smolt that ranged from 320 to 324 mOsm/kg (Breck et al. 2005a). To 

ensure an adequate osmolality of the control medium in future experiments applying 

ex vivo lens whole-organ culture, the measurement of aqueous humour osmolality in 

fish that are to be used as lens donors could be included as a routine. 

The cultured lenses were imaged approximately every 24 hours, prior to medium 

exchange. In contrast to the previous studies carried out at UEA (Breck 2004), the 

apparatus used at NIFES to image the cultured lenses was improvised (Figure 6 A). A 

LED ringlight placed under the object table was used as the light source and the 
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pictures were taken under darkened conditions with a digital camera with constant 

focus and aperture. Lens sizes were calculated from three measurements of the lens 

diameters relative to the opening for the light source in the object table (known 

constant diameter of 13 mm) on the digital photos (Figure 6 B). The digital images of 

the lenses did not allow for quantification of opacities using appropriate software, 

which would have added an additional parameter to the analysis. However, opacities 

of the cultured lenses were assessed on the last day of culture using a slit lamp 

biomicroscope and applying the scoring system described in paragraph 4.2. This 

approach made it possible to directly compare the obtained values to in vivo field 

measurements. 

 

   

Figure 6. (A) Experimental setup for lens imaging applied in Paper IV. The light 
source is located under the covering marked (L) on the image. Photo: Rune 
Waagbø. (B) Example for one of the images of the cultured lenses taken daily for 
Paper IV. Several rings can be seen on the image. While the outer rings are 
reflections from the walls and the lid of the cell culture plate, the inner ring marked 
(1) on the image is the opening for the light source in the object table. The cultured 
lens is marked (2) on the image. The bright spots on the lens are reflections of the 
LED ring light. 

B

A 

L 2 
1 
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4.6 Statistics 

The statistics connected to microarray analysis are described in a separate section in 

Paper III. The statistical tests applied to other measured parameters are stated in the 

statistics section in the respective papers. Parametric methods were applied whenever 

possible. If the underlying assumptions for parametric testing were not fulfilled, i.e. 

the measured values in a group were not normally distributed and/or the variances 

were significantly different between the groups, non-parametric equivalent tests were 

applied. Non-parametric methods were used to test cataract scores and gene 

expression levels in lenses of different experimental groups. Non-parametric methods 

have usually less power than their parametric equivalents, but are less restrictive 

about the format of the data (Zar 2009). 
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5. General discussion 

 

The general discussion will focus on the main findings presented in Paper I-IV, and 

discuss them in relation to the overall aims of this thesis. The effects of dietary His on 

tissue composition and cataract formation in adult Atlantic salmon growers are 

discussed first, followed by the discussion of the alteration of lens gene expression by 

sampling stress and by His-related cataract formation. Furthermore, the impact of 

plant feed ingredients on lens osmoregulation and cataract formation are discussed. 

Finally, speculative considerations about the mechanisms behind His-related cataracts 

in Atlantic salmon are made.  

5.1 Effects of dietary His on tissue composition and 
cataract formation 

In previous studies with Atlantic salmon smolt, it has been shown that elevated levels 

of dietary His were reflected in the concentrations of the major His-derivative in the 

lens, NAH, and that this prevented or slowed the progression of cataract development 

(Breck et al. 2003; Breck 2004; Breck et al. 2005a; Breck et al. 2005b). The work in 

the present thesis aimed to investigate this relationship in adult Atlantic salmon 

growers. The effects of dietary His levels and His feeding regimes on lens 

biochemical composition and cataract formation in adult Atlantic salmon growers are 

presented and discussed in Paper II and partly in Paper III.  

Briefly, the results of Paper II confirm the above stated findings to be valid in adult 

Atlantic salmon growers in their second year in the sea. A major outbreak of cataracts 

was observed among the fish in the second period of the feeding trial from July until 

September. The cataract severity in the feeding groups was directly related to the 

dietary histidine levels fed during the first period from June until July. Feeding the 

medium- and high-His diets (containing 12.8 and 17.2 g His/kg diet, respectively) 
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prevented severe cataract formation, while feeding the low-His diet (containing 9.3 g 

His/kg diet) resulted in significantly higher cataract scores. It should be noted that the 

His content of the low-His diet is in the range of current standard commercial diets 

for adult Atlantic salmon growers. 

The cross-over design of the feeding experiment allowed us to determine the cataract 

outcome relative to the period of feeding the different diets. Supplementation of His 

during the first period from June until July and then switching to a low-His diet was 

found to be equally efficient in cataract mitigation as His supplementation throughout 

the whole experimental period. However, switching from the low-His diet during the 

first period to the medium or high-His diet during the second period still lowered the 

mean cataract scores in these dietary groups compared to fish fed the low-His diet 

during the first and second period. Dietary His levels during the third period had only 

a minor effect on the cataract scores, which stayed nearly constant from September to 

October in the respective dietary groups. We would thus recommend a diet 

containing at least 12.8 g His/kg diet before and during phases of expected increased 

risk to prevent severe cataract formation in adult Atlantic salmon growers in their 

second year in the sea. Also, once cataract formation is observed in a population of 

fish due to low dietary His levels, increasing the His level in the diets up to 17.2 g 

His/kg can mitigate the severity of the developing cataracts.  

The levels of dietary His were reflected by lens imidazole concentrations in adult 

Atlantic salmon growers before visible cataract formation (Paper II and III), as has 

previously been shown for Atlantic salmon smolt (Breck et al. 2005a; Breck et al. 

2005b). Lens NAH concentrations were also negatively correlated to cataract scores 

in the respective lenses in September and October (Paper II and III). These findings 

suggest that the NAH concentrations in cataract-free lenses can be used as a marker 

for the potential of cataract formation in adult Atlantic salmon growers. 

Anserine is the major imidazole compound in the white muscle of Atlantic salmon 

and its concentration in the muscle depends also on the dietary His intake (Breck et 

al. 2005a). In Paper II it was found that the muscle anserine concentrations in adult 
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Atlantic salmon growers were less affected by dietary His levels and feeding regimes 

than lens NAH concentrations. This indicates that His is more easily accessible from 

the plasma for white muscle tissue than for the lens, or that the imidazole supply to 

white muscle tissue is prioritised compared to the lens (Paper II).  

Cataracts in Atlantic salmon are most likely initiated by an intricate interplay between 

several nutritional and/or environmental factors (Breck 2004; Bjerkås et al. 2006). 

Although low His/NAH concentration in the lens has been identified as a risk factor 

for cataract formation in Atlantic salmon, fish with low His/NAH status do not 

necessarily develop cataracts, as seen in Paper IV. Also, although mitigating cataract 

formation, high His/NAH concentrations in the lens can in most cases not totally 

prevent cataract development (Paper II and III). This indicates the presence of one or 

more other factors influencing cataract development in Atlantic salmon that are not 

entirely controllable by lens imidazoles. Water temperature changes are a known risk 

factor for cataract formation in Atlantic salmon (Wall 1998; Bjerkås et al. 2001). In 

the His-feeding trial described in Paper II, the rise in water temperature between June 

and July was probably one of the contributing factors leading to the development of 

severe cataracts in the fish fed the low-His diet. 

As discussed by Breck (2004) for Atlantic salmon smolt, the currently recommended 

minimum requirement level of 7 g His/kg diet (NRC 1993) is not sufficient to impede 

cataract formation in adult Atlantic salmon growers in their second year in the sea 

(Paper II). In the present study, fish fed the low-His diet containing 9.3 g His/kg diet 

developed severe cataracts. The dietary His levels did not affect the growth rate in 

adult Atlantic salmon growers, but influenced the susceptibility for cataract formation 

(Paper II). It is thus clear that growth performance alone is not sufficient to decide if 

His requirements are met in Atlantic salmon. The term “beyond deficiency 

requirement” has been introduced to describe the beneficial role of vitamins beyond 

the prevention of deficiency diseases (Sauberlich and Machlin 1992). Our findings 

suggest a “beyond deficiency” role of His in cataract prevention in Atlantic salmon, 

where the practical requirement in phases of increased risk is higher than the dietary 
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level required for optimal growth. The outcome of the present histidine feeding study 

may thus be used as a nutritional guideline for cataract prevention in adult Atlantic 

salmon growers in their second year in sea water in periods of increased risk. 

5.2 Effects of sampling stress on lens gene expression  

A general question often posed in studies with fish is to what extend experimental 

results are affected by handling stress, since the organisms stress response might 

interfere with the response to experimental treatment. There is no entirely stress-free 

sampling procedure, and thus researchers working with fish have to be aware of 

possible effects of the cellular stress response on the measured analytical parameters. 

The effects of different sampling procedures on the expression levels of selected 

genes in the lens were investigated to sort out confounding effects of sampling 

regimes on potential cataract-induced changes (Paper I). 

The expression level of HSP70 was found to be significantly elevated in lenses from 

fish sampled after 30 minutes without anaesthesia, compared to control fish 

immediately killed by a blow to the head; probably as a result of handling stress 

(Paper I). In a study on the effects of different water oxygenation levels on cataract 

formation, mRNA expression levels of HSP70 were found to be significantly 

decreased in lenses of fish exposed to 125% O2 compared to the normoxic control 

group (Waagbø et al. 2008). HSP70 is a stress-responsive protein with chaperone 

function, and increased expression of HSP70 is often used as a biological marker for 

different stresses (Iwama et al. 1998). However, the understanding of the HSP 

response in fish is still imperfect (Iwama et al. 2004) and its use as an indicator for 

hatchery stress has been questioned (Zarate and Bradley 2003). 

Antioxidant genes might be applied as markers for cataract formation. The expression 

levels of the antioxidant genes glutathione reductase (GR) and manganese superoxide 

dismutase (Mn SOD) were decreased in lenses of the fish that had been treated for 

two hours with or without anaesthesia (Paper I). qRT-PCR analysis of the same genes 
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in gills tissue of the same fish revealed similar expression patterns and the gene 

expression values in lenses and gills of the same fish were found to be significantly 

correlated (data not shown). This was a surprising finding, since the avascular lens is 

considered a relatively inert organ due to its isolated location embedded in eye 

chamber fluids, while the fish gills are known to have a fast cellular response to 

external stressors and are also involved in the stress response in fish (Wendelaar 

Bonga 1997). Our findings might thus indicate that the lens is more sensitive to 

external stresses than assumed, and that the antioxidant response in lenses and gills 

tissue functions similarly fast. To avoid possible effects of handling stress on lens 

gene expression, short sampling procedures applying anaesthetics were used when 

material for Paper II-IV was collected. 

5.3 Lens gene expression screening – suggestion of early 
markers of cataract formation 

In Paper III it was shown for the first time that lens gene expression in two groups of 

Atlantic salmon growers was affected by feeding different dietary His levels, 

resulting in cataracts of different severity. Among the differentially expressed genes 

were metallothionein A and B, and transcripts involved in lipid metabolism (lipocalin 

precursor, fatty acid-binding protein 2 (FABP2), apolipoprotein Eb and clusterin 

precursor), carbohydrate metabolism (fructose-bisphosphate aldolase B, 

glyceraldehyde-3-phosphate dehydrogenase, hexokinase-2 and triosephosphate 

isomerase) and in the regulation of ion homeostasis (Na,K-ATPase �1C) and protein 

degradation (the regulatory and catalytic subunits of calpain, and cathepsin L and B). 

The potential role of these transcripts in cataract formation in adult Atlantic salmon 

growers was discussed in Paper III. Metallothioneins, Na,K-ATPase, calpains and 

cathepsins have previously been shown to be involved in cataract formation in 

mammalians (Paper III), suggesting mechanistic parallels in Atlantic salmon and 

mammalians. 
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The two groups of Atlantic salmon compared in Paper III had been fed diets 

containing 9 and 13 g His/kg diet, respectively. A marked increase in cataracts 

occurred between July and September, leading to significantly higher mean cataract 

scores in the low-His group compared to the medium-His group. Samples from both 

groups were taken at the end of the feeding trial in October. Some of the observed 

differences in gene expression levels might thus have reflected secondary reactions of 

the lens cells to cataractous changes over a longer period of time, like compensatory 

or repair mechanisms. However, lens samples taken in September, closer to the acute 

stage in cataract formation, were also subjected to microarray analysis in the same 

way as described for the October-sampling in Paper III. Because of the less 

pronounced differences between the dietary groups sampled in September, and for 

simplifying reasons, the findings from the September-sampling presented below have 

not been included in Paper III. 

It was originally planned to use fish that had been fed the medium-His or low-His 

diet for the entire experimental period from start until sampling, but due to problems 

during the RNA purification (see section 4.3) alternative samples had to be used. 

These alternative fish had received the high-His or low-His diet from June to July and 

the medium-His diet from July to September (HM and LM, respectively). Both lens 

NAH concentrations and cataract status of the two alternative groups were 

significantly different. However,  receiving the medium-His diet during the period of 

serious cataract formation may have blurred differences in gene expression and might 

thus partly explain the less pronounced differences found between the dietary groups 

in the September-sampling compared to the October-sampling.  

Applying correspondence analysis (CA) to the September samples (Figure 7 A), the 

separation of the two dietary groups was not as clear as for the October-sampling 

(Figure 7 B). Significance analysis of microarrays (SAM) revealed that fewer genes 

were significantly differentially expressed than in the October-sampling. Only the 

first eight transcripts in the SAM list had a q-value of 0%. The ninth gene already had 

a q-value above the 5% significance threshold. For the October sampling, as much as 
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514 transcripts were found to be significantly differentially expressed (Paper III). The 

maximum fold changes were 1.6 and -1.6 for the September-sampling, compared to 

2.1 and -2.5 for the October-sampling.  
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Figure 7. Correspondence analysis (CA) plot of the selected His feeding groups for 

the September-sampling (A) and the October-sampling (B). The two principal 

components explaining the highest variance in the dataset are shown on the x- and 

y-axis of the plot, respectively. The samples and group medians are coloured 

according to the dietary groups: low-His: blue, high-His: dark red. The orientation of 

the lines plotted from the point of origin through the respective group medians 

indicates the separation of the samples between the two groups.  

A 
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Appendix 1 shows all 97 transcripts in the SAM list with a q-value of 31% or less. 

When functional enrichment analysis was applied to the September samples as 

described in Paper III, fewer functional classes were enriched in the SAM top list 

than for the October-sampling (data not shown).  

Several transcripts showed the same expression patterns in the compared groups from 

the September-sampling and the October-sampling. Among these transcripts were 

FABP2, plasma retinol-binding protein II, lipocalin precursor, transaldolase, SPARC 

(secreted protein acidic and rich in cysteine) and the catalytic subunit of Calpain-2. 

FABP2, plasma retinol-binding protein II and lipocalin precursor are all lipid-binding 

proteins. Whether they are involved in lens metabolic processes or have a pure lipid-

transporting role related to changes in lens lipid composition due to temperature 

changes is not clear (Paper III). Calpains have previously been found to be activated 

in various types of cataracts in rodents and are thought to cleave aggregated lens 

proteins (Paper III). Transaldolase was down-regulated in low-His lenses both in 

September and October. Transaldolase is the rate-limiting enzyme in the 

nonoxidative phase of the pentose phosphate pathway (Heinrich et al. 1976). The 

pentose phosphate pathway provides ribose-5-phosphate for nucleic acid synthesis 

and NADPH for lipid biosynthesis and the regeneration of the antioxidant GSH from 

its oxidised form GSSG. GSH is an important antioxidant in the lens and GSH levels 

are lowered in cataractous lenses compared to clear lenses (Reddy 1990; Spector 

1995; Giblin 2000; Lou 2003). The pentose phosphate pathway has been shown to be 

stimulated in the rabbit lens in response to oxidative stress (Giblin et al. 1981). 

Decreased expression of transaldolase has been found to increase the activity of 

glucose-6-phosphate dehydrogenase, which led to increased GSH levels through 

stimulating the pentose phosphate pathway and thus protection against oxidative 

stress (Banki et al. 1996; Banki et al. 1998). 

Based on their expression patterns in lenses with different progression in cataract 

development, selected transcripts were suggested as possible biological markers for 

early cataract diagnosis in Atlantic salmon (Paper III, Figure 8). As for the October-
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sampling, about 10% of the significantly differentially regulated transcripts of the 

September-sampling were found to be “early” regulated when the same method as in 

Paper III was applied. The multifunctional extracellular matrix protein SPARC was 

among the “early” up-regulated transcripts found in the October-sampling that have 

been proposed as potential molecular marker for early cataract formation in Atlantic 

salmon (Paper III). The involvement of SPARC in cataract formation has been 

discussed in Paper III. Briefly, increased levels of SPARC mRNA and protein have 

been found in human cataractous lenses compared to clear lenses (Kantorow et al. 

1998a; Kantorow et al. 2000; Hawse et al. 2003) and the deletion of the SPARC gene 

in mice leads to cataract development (Gilmour et al. 1998; Norose et al. 1998).  
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Figure 8. Transcripts with different expression patterns in lenses sampled in 
September related to cataract scores in the same lenses. The log intensity ratios 
are plotted against the cataract score of the respective sample, not taking into 
account which dietary group the samples belong to. The pink line was added to the 
graphs to help visualise the expression pattern. (A) SPARC precursor (SPARC; 
accession nr. CB488287): “Early” up-regulated. (B) Metallothionein A (MT-A; 
accession nr. CB505763): “Late” up-regulated. 

 

Of the “early” regulated transcripts found in the October-sampling (Paper III), only 

SPARC was among the most differentially expressed transcripts in the September-

sampling. Also here, SPARC was found to be “early” regulated (Appendix 1, Figure 

8). This coherence considerably strengthens the potential of SPARC as a molecular 

marker for early cataract formation in Atlantic salmon. In the lens culture experiment 

presented in Paper IV and discussed in section 5.5, SPARC expression was found to 
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be significantly affected by the diet and near to significantly by the osmotic 

challenge. This additional proof of the regulation of SPARC gene expression by 

cataract-provoking factors further confirms that SPARC is a strong candidate for 

early cataract diagnosis by lens gene expression analysis. Table 1 lists “early” 

regulated transcripts found in the October-sampling (Paper III) and the September-

sampling (Appendix 1) that are proposed as potential candidates for molecular 

markers for early cataract diagnosis in Atlantic salmon.  

 

Table 1. Potential molecular markers for early cataract diagnosis from the datasets 
obtained from the lenses sampled in September and October. The transcripts were 
identified by their expression patterns relative to the cataract scores in the 
respective lenses (method described in Paper III). For the September-sampling, 
transcripts with a q-value up to 30% were included, while for the October-sampling, 
only the most significantly differentially expressed transcripts with q=0 were 
included in this table. A q-value up to 5% was considered significant (Paper III). 

Time Rank 
Accession 

nr. 
Transcript name 

Fold 
Change 

q-value

September 45 CB488287 SPARC precursor 1.46 18 
58 CB510751 UNKNOWN 1.19 20 
59 CB493904 Endothelin-converting enzyme 1 -1.30 20 
64 CA062809 Polyadenylate-binding protein 4 1.24 21 
66 CA041001 UNKNOWN -1.17 21 
68 CN442545 Cytochrome c oxidase subunit 3 1.26 21 

October 3 CA051877 UNKNOWN -1.86 0 
4 CB507722 Metallothionein B 1.58 0 
5 CB493454 Lipocalin precursor -1.67 0 

12 CB509992 Lipocalin precursor -1.53 0 
15 CA063208 UNKNOWN -1.95 0 
27 CA059685 UNKNOWN 1.71 0 
29 CA058895 Apolipoprotein Eb precursor 2.11 0 
37 CA041385 Proactivator polypeptide precursor 1.40 0 
38 CA042089 Ependymin precursor -1.68 0 
49 CB494396 Glycylpeptide N-tetradecanoyltransferase 1 -1.72 0 
64 CB512365 UNKNOWN -1.45 0 
86 CA057824 Apolipoprotein Eb precursor 1.63 0 
91 CB512134 Myosin light polypeptide 6 1.42 0 

106 CB511219 Gamma crystallin M2 -1.50 0 
108 CA056981 UNKNOWN -1.37 0 
121 CB492597 Ependymin precursor -1.41 0 
134 CA037913 UNKNOWN 1.49 0 

  141 CA043660 Nuclear receptor 0B2 1.38 0 
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To prove the functionality of these transcripts as molecular expression markers, they 

have to be tested in lenses that will develop cataract, but before visible cataract 

formation is observed. Such experimental material was obtained at the first sampling 

of the His feeding trial in July. Fish fed the low-His diet until July have been shown 

to develop more severe cataracts between July and September than the medium and 

high-His groups (Paper II and III). The lenses sampled from the different dietary 

groups in July might thus be used to verify the differential expression of possible 

molecular expression markers in cataractous versus clear lenses by qRT-PCR. 

5.4 Interactive effects of plant feed ingredients on lens 
osmoregulation and cataract formation 

Several studies have addressed the possible negative effects of the use of plant feed 

raw materials in Atlantic salmon (Waagbø et al. 1991; Torstensen et al. 2000; Bell et 

al. 2001; Torstensen et al. 2001; Bell et al. 2002), but there is only one previous 

report on the effect of dietary vegetable oils on cataract formation in Atlantic salmon 

growers (Waagbø et al. 2004). In Paper IV, the effects of plant feed ingredients on 

lens composition and cataract formation in adult Atlantic salmon growers were 

investigated.  

As a consequence of the different amino acid composition of plant proteins and 

marine proteins, the His concentration in the diets differed according to the inclusion 

level of plant proteins. The use of 80%, 40% and 0% plant protein lead to dietary His 

concentrations of 6.4 to 7.4 g/kg, 9.0 g/kg and 14.3 g/kg, respectively (Torstensen et 

al. 2008). This in turn led to respective differences in His and NAH concentrations in 

the lenses of fish of the different dietary groups (Figure 9). Interestingly, the relation 

between dietary His concentration and lens His and NAH concentrations was not 

linear. Inclusion of 40% plant protein resulted in lens His and NAH concentrations 

similar to the marine control group, compared to equally low concentrations in both 

80% plant protein groups (Figure 9). This might indicate that a saturation of the lens 

His and NAH stores was reached by feeding 14.3 g His/kg diet and that feeding 9 g 
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His/kg diet was nearly sufficient to reach this saturation level in the one year feeding 

study with constant experimental conditions and relatively low temperature.  
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Figure 9. Molar concentrations of (A) histidine (His) and (B) N-acetylhistidine 
(NAH) in lenses of Atlantic salmon fed diets containing 100% fish meal (FM) and 
fish oil (FO), or the indicated percentages of plant protein (PP) and vegetable oil 
(VO) instead of FM and FO. The fish had been reared for 12 months in sea water. 
The concentrations of His and NAH are given in μmol/g lens wet weight. The boxes 
show the group median and 25% and 75% percentiles, and the whiskers show the 
minimum and maximum values. N=12-15 per dietary group. 

 

The cataracts observed at the end of the trial were mild and there was no significant 

negative effect of plant feed ingredients on cataract formation during the 

experimental period, although the relatively low concentrations of His and NAH in 

lenses of the plant diet fed-fish would suggest an increased risk for cataract 

development for these fish (Paper IV). The low incidence of cataract in the present 

long term feeding study might, at least in part, be due to the stable experimental 

conditions, especially the constant and relatively low water temperature (Paper IV).  

The highest dietary inclusion levels of plant proteins led to decreased growth in adult 

Atlantic salmon growers due to decreased feed intake (Torstensen et al. 2008). The 

inclusion of plant feed ingredients resulted in decreased lens sizes. Lenses of fish fed 

the 80PP35VO, 40PP70VO and 80PP70VO diet were all similar in size, while lenses 
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of fish fed the marine control diet (FMVO) were larger. Lens sizes were thus not 

directly related to the size of the fish, as would be expected in normally growing fish 

without any nutrient deficiencies (Pankhurst and Montgomery 1994). The same effect 

of plant feed ingredient inclusion on lens sizes in Atlantic salmon was seen in a 

previous feeding trial (Waagbø et al. 2004). Also the lens water content was slightly, 

but significantly, different in the dietary groups in the present study. Lenses of fish 

fed diets with 70% vegetable oil inclusion contained more water than lenses of fish 

fed the marine control diet and the diet with 35% vegetable oil inclusion. The 

increased water content might be an indication of impaired osmoregulatory ability. 

The possible implications of these findings for cataract susceptibility in the different 

dietary groups are not known at the present. The osmoregulatory capacities of lenses 

of the different groups were further investigated in an ex vivo lens culture experiment 

(Paper IV).  

NAH has been shown to be involved in lens water homeostasis in goldfish (Carassius 

auratus) (Baslow 1998) and in Atlantic salmon (Breck 2004). NAH efflux into the 

culture medium of Atlantic salmon lenses cultured under hypoosmotic conditions ex 

vivo (Paper IV) clearly confirmed a role of NAH as a lens osmolyte in Atlantic 

salmon. With a larger pool of lens NAH due to higher dietary His levels (Figure 9 B), 

lenses of fish fed the diets with the highest marine protein content (FMFO and 

40PP70VO) were able to release more NAH into the culture medium (Figure 10 E). 

Since the Atlantic salmon lens contains free His at much lower concentrations than 

NAH and the medium His concentrations were similar in all dietary groups under 

both hypoosmotic (Figure 10 H) and hyperosmotic (Figure 10 I) conditions despite 

diet-dependent differences in lens His concentrations between the groups (Figure 9 

A), it can be concluded that the role of free His as an osmolyte was not significant. 

Even though lenses of fish fed the 80PP35VO diet had about the same NAH 

concentrations as lenses of fish fed the 80PP70VO diet (Figure 9 B), it seems clear 

from Figure 10 B that high dietary plant lipid inclusion is the factor impairing the 

ability of lenses to withstand swelling on the first day of hypoosmotic treatment. The 
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situation is not as clear for the hyperosmotic treatment (Figure 10 C). However, high 

intra-group variation due to the low number of observations prevented reliable 

conclusions from the intermediate groups (80PP35VO and 40PP70VO).  

 

 

Figure 10. Responses of cultured Atlantic salmon lenses to osmotic challenge ex 
vivo. The graphs show the status before start of the experiment at day 0 and on the 
four successive treatment days. The volume changes of the lenses cultured in 
control (A), hypoosmotic (B) and hyperosmotic (C) medium were calculated from 
lens diameters measured on digital photographs of the lenses. The molar 
concentrations of NAH in control (D), hypoosmotic (E) and hyperosmotic (F) 
medium, and likewise His concentrations in control (G), hypoosmotic (H) and 
hyperosmotic (I) medium were measured by HPLC. Error bars show the standard 
error of the mean (SE). N=3-4 for lens diameter measurements in the 80PP35VO 
and 40PP70VO groups, N=10-12 for lens diameter measurements in the FMFO and 
80PP70VO groups, and N=3-4 for medium NAH and His measurements in all 
groups. 

 

Appendix 2 and 3 show the relative lipid class and fatty acid compositions, 

respectively, of lenses of Atlantic salmon fed the four diets FMFO, 80PP35VO, 
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40PP70VO and 80PP70VO. The relative amounts of the lipid classes in the lenses of 

the different dietary groups (as a percentage of the total lens lipid concentration) were 

similar except for phosphatidyl inositol (PI). Lens PI concentrations seemed to 

depend on combined inclusion levels of plant protein and lipid sources, rather than 

plant lipid sources alone. A significant difference in relative lens phosphatidyl serine 

(PS) concentration between the marine control (FMVO) group and the plant diet 

(80PP70VO) group was found in Paper IV. When all dietary groups were analysed, 

this effect was no longer significant (Appendix 2). Lens PS concentrations were 

obviously related to dietary plant lipid inclusion. The fatty acid profile in the lenses 

of the four dietary groups was similar despite the marked differences in the 

composition of marine and plant lipid sources (Appendix 3). The only significant 

differences were found for linoleic acid (18:2n-6; making out 0, 0.2, 0.3 and 0.4% of 

total lens fatty acids in the FMFO, 80PP35VO, 40PP70VO and 80PP70VO groups, 

respectively) and the n-3/n-6 ratio (being 20, 18, 13 and 15 in the FMFO, 

80PP35VO, 40PP70VO and 80PP70VO groups, respectively). These differences 

were obviously caused by the high concentration of linoleic acid and other n-6 fatty 

acids in plant lipids. These results indicate a tight regulation of the lipid class and 

fatty acid composition in the Atlantic salmon lens (Paper IV).  

It is known that the composition of a membrane can affect the membrane water 

permeability (Ehringer et al. 1991; Robertson and Hazel 1999) and the activity of 

integral membrane transport proteins involved in osmoregulation, e.g. Na,K-ATPase 

(Mizuno et al. 1981; Yeagle et al. 1988; Vemuri and Philipson 1989), which could 

explain the observed differences in the ability to regulate lens volume between the 

dietary groups in the present study. It should be noted, however, that the changes 

described in the above mentioned studies are an order of magnitude higher than the 

differences in fatty acid and lipid class composition observed in the present thesis and 

Paper IV. Also, Na,K-ATPase activity was most likely not changed in the present 

study, since Na,K-ATPase �1C mRNA expression levels were not affected by the 

different diets. Lens lipid composition may have an influence on cataract formation, 

as it has been shown to differ between cataractous and clear lenses both in rats 
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(Mizuno et al. 1981), humans (Borchman et al. 1993; Huang et al. 2005) and Atlantic 

salmon (Toivonen et al. 2004). However, the lens lipid composition differs markedly 

between different animal species (Deeley et al.), which makes it difficult to relate 

data obtained from rat and human lenses to our findings. In the study with Atlantic 

salmon, the lens lipid compositions were influenced by the different diet 

compositions in the feeding groups and it is thus not clear if lens lipid composition 

was the factor causing cataract formation in this study (Toivonen et al. 2004).  

In humans, high intakes of dietary linoleic acid (18:2n-6) and linolenic acid (18:3n-3) 

increased the risk to develop age-related nuclear opacities for women (Lu et al. 

2005). It is known that the fatty acid composition affects the rigidity of phospholipid 

membranes, with highly unsaturated n-3 fatty acids decreasing the rigidity of eye 

membranes (Nguyen et al. 2007). It may be concluded that lens lipid and fatty acid 

class composition may play a role in cataract formation and should be further 

investigated. However, in the present thesis we could not show any significant effect 

of the vegetable oil mix used in the diets on cataract formation in adult Atlantic 

salmon growers, although the ability of the lenses to osmoregulate ex vivo seemed to 

be affected. An osmotic challenge test under practical conditions could have verified 

this relevance.  

Gene expression levels of selected genes in lenses of fish fed the marine control diet 

(FMFO) or a plant-based diet (80PP70VO) were studied in Paper IV. When all four 

dietary groups were analysed together, glutathione peroxidase 4 (GPX4, Figure 11A), 

SPARC (Figure 11B), FABP2 (Figure 11C) and betaine aldehyde dehydrogenase 

(BA-DH) (Figure 11D) were found to be significantly differentially expressed 

(Kruskal-Wallis ANOVA, p<0.05). From Figure 9 and Figure 11 it becomes evident 

that the expression of GPX4 was most likely increased by the inclusion of plant feed 

ingredients, seemingly independently of the inclusion level. The expression levels of 

SPARC and FABP2 were decreased by the inclusion of plant feed ingredients and 

seemed to correlate with dietary His concentrations or other factors connected to 
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dietary marine protein levels. The expression pattern of BA-DH seemed only partly 

to be related to dietary factors.  
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Figure 11. Mean normalised expression (MNE) levels of the selected genes GPX4 
(A), SPARC (B), FABP2 (C) and BA-DH (D), in lenses of Atlantic salmon fed diets 
containing 100% fish meal (FM) and fish oil (FO), or the indicated percentages of 
plant protein (PP) and vegetable oil (VO) instead of FM and FO, after ex vivo 
culture as described in Paper IV. MNE values of lenses cultured in control, 
hypoosmotic and hyperosmotic media were combined in the graphs. The boxes 
show the group median and 25% and 75% percentiles, and the whiskers show the 
minimum and maximum values. Different letters above the boxes show a significant 
difference between the respective dietary groups (Kruskal-Wallis ANOVA, p<0.05). 
N=14-18 per dietary group. 

 

mRNA expression levels of BA-DH were also affected by osmotic challenge in the 

two extreme groups (Paper IV). When all four dietary groups were analysed together, 
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BA-DH (Figure 12 A) and GPX4 (Figure 12 B) were significantly differentially 

expressed (Kruskal-Wallis ANOVA, p<0.05). The trends for ATP�1C and SPARC 

were close to significant. These findings indicate that the expression levels of a wide 

range of genes with different functions were affected by osmotic challenge of 

Atlantic salmon lenses. BA-DH, GPX4, ATP�1C and SPARC were also significantly 

differentially expressed between cataractous and clear lenses (Paper III). 
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Figure 12. Mean normalised expression (MNE) levels of the selected genes BA-DH 
(A), GPX4 (B), ATP�1C (C) and SPARC (D), in lenses of Atlantic salmon after ex 
vivo culture in hypoosmotic (hypo), control or hyperosmotic medium. MNE values of 
lenses from fish of al four dietary groups were combined in the graphs. The boxes 
show the group median and 25% and 75% percentiles, and the whiskers show the 
minimum and maximum values. An asterisk (*) indicates a significant difference 
between the respective dietary groups (Kruskal-Wallis ANOVA, p<0.05). N=14-18 
per osmotic challenge group. 
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5.5 Speculations about the mechanisms behind His-related 
cataracts in Atlantic salmon 

NAH is the main lens imidazole in Atlantic salmon and high concentrations of lens 

NAH reached by adequately high levels of dietary His are known to have a cataract 

preventative effect (Breck et al. 2003; Breck 2004; Breck et al. 2005a; Breck et al. 

2005b; Paper II; Paper III). Furthermore, lens NAH has been shown to be involved in 

lens osmoregulation (Breck et al. 2005b; Paper IV) and lens antioxidative response 

(Remø 2009) in Atlantic salmon. The up-regulation of calpains and cathepsins in 

cataractous Atlantic salmon lenses might indicate increased aggregation of lens 

proteins that have to be cleaved proteolytically in an attempt to maintain lens 

transparency (Paper III). Kinoshita (1974) was the first to describe the osmotic stress 

model of diabetic cataract in humans, stating that osmotic stress caused by 

accumulation of the sugar alcohol sorbitol leads to cataract development through lens 

fibre cell swelling, ionic imbalance and membrane disruption. Chan and co-workers 

(2008) recently refined this model, specifying that in acute diabetic cataract models 

where lens opacification occurs within days or weeks, the accumulation of sorbitol 

and the associated increased osmotic stress are the main contributing factor, whereas 

in human diabetic cataracts that develop more slowly, chronic oxidative stress and 

overexertion of the osmoregulating enzymes lead to premature failure of the lens 

osmoregulatory mechanism. 

There might be mechanistic parallels between diabetic cataracts in mammalians and 

humans and the His-related cataracts found in Atlantic salmon. Both changes in water 

salinity and in plasma osmolality can cause changes in aqueous humour osmolality, 

which in turn leads to osmotic stress for the lens. It has indeed been shown that 

changed water salinity can cause reversible osmotic cataracts in Atlantic salmon and  

repeated and/or severe osmotic stress may eventually lead to the formation of 

irreversible cataracts (Bjerkås et al. 2003; Bjerkås and Sveier 2004). One of the 

reactions of fish to stressors, such as handling stress, is release of catecholamines and 

corticosteroids, which in turn lead to elevated plasma glucose levels (Wendelaar 
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Bonga 1997). There is also evidence for carnivorous fish like Atlantic salmon not 

being able to control blood glucose concentration as tightly as mammalians (Cowey 

et al. 1977; Hemre et al. 2002). Hence, farmed Atlantic salmon may experience 

slightly “diabetic” conditions throughout their life, increasing the incidence of 

oxidative stress and protein glycation in the lens.  

Chronic oxidative stress, non-enzymatic glycation, the exertion of the osmoregulatory 

system in the lens due to changing environmental conditions - such as water salinity 

and temperature - and poor regulation of blood glucose levels may eventually lead to 

impairment of the lens osmoregulatory system in Atlantic salmon. In consequence, 

once a certain threshold is exceeded, the lens will no more be able to handle osmotic 

stress, even at levels that were manageable before, and lens fibre disruption and 

impaired ion balance will lead to cataract development. The above mentioned 

osmoregulatory dysfunction model for slowly developing human diabetic cataracts 

proposed by Chan et al. (2008) might thus apply to the cataracts observed in farmed 

Atlantic salmon. 
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6. Conclusions 

 

Two main conclusions can be drawn from the present thesis: i. Elevated levels of 

dietary His mitigate cataract formation in adult Atlantic salmon growers in their 

second year in sea water (Paper II and III). ii. NAH acts as an osmolyte in the 

Atlantic salmon lens (Paper IV), which might at least in part explain the cataract 

mitigating function of high dietary His levels. In more detail, it can be concluded 

that: 

 

1. The quality of RNA isolated from Atlantic salmon lenses was not affected by 

the tissue preservation techniques tested. A quick sampling protocol including 

the use of anaesthetics and not exceeding 30 minutes duration is recommended 

to avoid changes in lens gene expression caused by sampling stress (Paper I).  

2. Dietary His concentrations were reflected in lens NAH (Paper II, III) and, to a 

lesser extent, in muscle anserine (Paper II) concentrations in adult Atlantic 

salmon growers in their second year in sea water. Feeding a diet containing 

more than 12.8 g His/kg diet prior to a period of increased risk due to high 

water temperature prevented severe cataract formation. Increasing the dietary 

His level during a period of cataract formation mitigated cataract severeness 

(Paper II).  

3. Cataracts in adult Atlantic salmon growers caused by a low level of dietary His 

led to significant changes in lens gene expression. The number of significantly 

differentially regulated genes was higher in lenses sampled at a late stage of 

cataract formation in October than at a more acute stage in September (Paper 

III). Based on the expression patterns in lenses with different progression in 

cataract development, selected transcripts - the most promising candidate 
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being SPARC - were suggested as possible biological markers for early 

cataract diagnosis in Atlantic salmon (Paper III, Appendix 1). 

4. The inclusion of plant feed ingredients affected lens sizes in a long term 

feeding study with adult Atlantic salmon growers at stable water temperature. 

Lens water contents and lipid and fatty acid class compositions were altered by 

dietary plant lipid inclusion. Lens His and NAH concentrations were related to 

dietary plant protein inclusion. Mild cataracts were observed, but cataract 

formation was not affected by inclusion of plant feed ingredients (Paper IV). 

5. In the ex vivo whole-organ lens culture model applied, lenses from fish fed the 

diets with highest plant lipid inclusion had a decreased osmoregulatory 

capacity compared to lenses from fish fed the marine control diet or the diet 

with lower plant lipid inclusion, as assessed by lens volume change. NAH 

efflux under hypoosmotic conditions was observed (Paper IV). 
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7. Future perspectives 

 

The work described in the present thesis prepares the ground for a better 

understanding of the mechanisms of cataract formation in Atlantic salmon. Elevated 

dietary His levels have been shown to have a cataract mitigating effect in adult 

Atlantic salmon growers under practical conditions. Although the plant protein 

containing diets in the feeding trial described in Paper IV were low in His and 

subsequently lens NAH concentrations were low in the respective dietary groups, no 

severe cataracts occurred during the trial. The stable experimental conditions might 

have masked a possible increased susceptibility for cataracts in these groups. A 

feeding experiment under practical farming conditions in sea water net pens, allowing 

for better growth and natural temperature fluctuations might have been more 

appropriate to study His-related cataract formation. Moreover, due to the composition 

of the four diets in Paper IV it was not possible to separate the effects of dietary plant 

lipids and plant proteins completely. Feeding trials with experimental diets only 

differing in one of the factors: lipid source, protein source and His content would be 

needed to clearly determine the effects of the single factors. 

In the fish feeding trial described in Paper II and III, an increase in water temperature 

was most likely the critical stimulating factor for cataract formation. More research 

on the possible cataract-stimulating effect of temperature changes has to be done to 

reach the goal of controlled experimental induction of cataracts and to survey 

temperature as a risk factor for cataract formation in aquaculture. Such studies should 

also take into account different dietary lipid compositions, to explore possible 

bottlenecks in the regulation of the lens membrane composition that may lead to 

cataract formation. Research on temperature changes might also prove useful to meet 

the challenges the aquaculture industry faces in the future by increased water 

temperatures due to global climate changes. 
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The use of whole lenses for expression analysis in Paper I, III and IV may have 

masked some potential effects, as the lens consists of two cell types with partly 

different functions. More clear results could possibly be obtained if only epithelial 

cells or only fibre cells would be used in future studies on lens gene expression. One 

could go even further and dissect cells from different locations in the lens, to 

investigate spatial patterns of gene expression, e.g. using laser-capture 

microdissection.  

Lens epithelial cell lines are commonly used in human cataract research. Primary cell 

cultures or a cell line of Atlantic salmon lens cells could be established and used to 

test risk factors for cataract formation in vitro, similarly to the ex vivo whole-organ 

culture applied in Paper IV. Compared to whole-organ culture, the advantage of 

primary cell cultures or cell lines is that the number of experimental animals could be 

further reduced as the amount of cells obtained from one lens might be sufficient for 

multiple experiments or experimental treatment groups.  

The lens transcriptome screening presented in Paper III gave some indications about 

the molecular mechanisms involved in cataract formation in Atlantic salmon. 

However, further work is needed to fully explore the results of this study. A general 

problem of gene expression studies is that mRNA abundance is not in all cases 

equivalent to protein abundance or activity, as the cell possesses various regulation 

mechanisms on the level of transcription, translation and posttranslational 

modification. Thus, in future studies, analysis of the mRNA expression levels of 

interesting candidates should be accompanied by studies on the protein level, e.g. 

applying Western blot or immunoprecipitation techniques and studies of enzyme 

activity where applicable. Fluorescence labelling of proteins could be applied to 

reveal their spatial expression patterns in the lens. 

In Paper III, two groups of Atlantic salmon that had developed cataracts of different 

severity due to feeding different levels of dietary His were compared. Due to this 

experimental design, it was not possible to distinguish between His-related metabolic 

changes and effects caused by cataractous changes in the lens. To explore the “pure” 
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molecular mechanisms of cataract formation, fish reared under the same conditions 

and fed the same diets, but at different stages of cataract formation, could be 

compared. The gained knowledge of these basic mechanisms would enable a more 

comparable approach including different species and types of cataracts. Combined 

with what is known about the functions of NAH and His in the Atlantic salmon lens, 

this could lead to a better understanding of the mechanisms of His-related cataracts in 

Atlantic salmon could be created. 

Based on the expression pattern relative to cataract progression, several transcripts 

were proposed as possible expression markers for early cataract formation in Paper 

III and Table 1. To verify their function as molecular markers, the differential 

expression of these transcripts - and other potential candidate genes deduced from the 

literature - should be tested in lenses that will develop cataract, but before visible 

cataract formation is observed. Adequate experimental material already exists in 

lenses from the same feeding trial as the lenses used in Paper III, but from a previous 

sampling, and is ready to be analysed by qRT-PCR. Once approved, it would be 

possible to apply analysis of the expression markers to lenses from the feeding trial 

used for Paper IV, where severe cataract formation was expected but did not occur. 

Such an approach could give further indications on the risk for cataract formation in 

Atlantic salmon by using dietary plant raw materials. Established expression markers 

for early cataract diagnosis could help to shorten the duration of future experiments, 

saving both time and money.  

Due to limitations in time, only a small number of potentially affected transcripts 

could be tested by qRT-PCR in lenses cultured under different osmotic conditions in 

Paper IV. Other promising candidates involved in cellular ion and water homeostasis 

would, for example, include the Na,K,Cl-cotransporter, the various isoforms of Na,K-

ATPase and aquaporin 0 and 1. 

The function of NAH as a lens osmolyte has been confirmed in Paper IV, based on 

the observation of NAH efflux from lenses under hypoosmotical conditions. Lens 

protein and NAH turnover have been investigated in Atlantic salmon smolt (Breck et 
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al. 2005b). To further explore the lens His and NAH-dependent osmoregulatory 

system, an attempt could be made to characterise the molecular transport mechanisms 

of His uptake and NAH efflux, as well as the regulation of enzymatic NAH synthesis 

in the lens and NAH cleavage in the aqueous humour. 

Another interesting task would be the investigation of the possible role of betaine as 

an osmolyte in the Atlantic salmon lens. A transcript coding for the enzyme 

catalysing the synthesis of betaine, betaine aldehyde dehydrogenase (BA-DH), was 

found to be expressed in the lens (Paper III). Based on this finding, the mRNA 

expression of BA-DH was analysed in cultured lenses in Paper IV and was found to 

be differentially regulated in response to hyperosmotic and hypoosmotic treatment. 

The next steps to confirm a role of betaine as a lens osmolyte would be to measure 

the concentration of betaine in Atlantic salmon lenses, preferably exposed to 

hyperosmotic and hypoosmotic conditions similar to the model applied in Paper IV, 

as well as in aqueous humour/culture medium, together with the investigation of the 

betaine transport system.  

In light of the possible similarities between cataract formation in Atlantic salmon and 

in diabetic human lenses, the potential function of lens NAH in antioxidation and 

antiglycation could be further investigated. A model of oxidative stress on cultured 

Atlantic salmon lenses, employing hydrogen peroxide (H2O2) in the culture medium, 

was successfully established by Remø (2009). This model could be used in 

connection with markers for the oxidative status, such as the ratio of oxidised to total 

glutathione and lipid peroxidation markers, to investigate the antioxidative capacity 

in lenses with different NAH concentrations. Similarly, the effects of lens NAH 

concentrations on lens protein glycation could be investigated applying a modified 

lens culture model, where glucose is added to the culture medium. 
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Appendix 1 

Significance analysis of microarrays (SAM) ranked gene list.  

The transcripts are ranked according to the significance of differentially expression. The 

table contains all transcripts with a q-value under 31%. Transcripts with a q-value under 5% 

are regarded significantly differentially expressed between the two dietary groups. d[i]: SAM 

score for a transcript i; de[i]: expected SAM score for a transcript i. * E: category of “early” 

regulated transcripts; L: category of “late” regulated transcripts.  

 

Ran
k 

Accession 
nr. Transcript name d[i] de[i] 

Fold 
Chang

e 

q-
value

Regulatio
n category 

* 
1 CA054659 Fatty acid-binding protein. intestinal 3.59 2.93 -1.58 0.00 L 
2 CB498606 Fatty acid-binding protein. intestinal 3.33 2.67 -1.47 0.00 L 
3 CB486047 Stathmin 3.18 2.55 -1.24 0.00 L 
4 CA059668 Oncorhynchus mykiss SYPG1 (SYPG1). 

PHF1 (PHF1). and RGL2 (RGL2) genes. 
complete cds; DNaseII pseudogene. 
complete sequence; LGN-like. PBX2 (PBX2). 
NOTCH-like. TAP1 (TAP1). and BRD2 
(BRD2) genes. complete cds; and MHCII-
alpha and Raftlin-like pseudogenes. complete 
sequence 

3.16 2.48 -1.29 0.00 L 

5 CA051480 UNKNOWN 3.13 2.41 -1.44 0.00 L 
6 CB515802 ATP synthase gamma chain. mitochondrial 

precursor 
-3.11 -2.93 1.30 0.00 L 

7 CA054838 Plasma retinol-binding protein II -3.11 -2.70 1.53 0.00 L 
8 CA039925 Oncorhynchus mykiss SYPG1 (SYPG1). 

PHF1 (PHF1). and RGL2 (RGL2) genes. 
complete cds; DNaseII pseudogene. 
complete sequence; LGN-like. PBX2 (PBX2). 
NOTCH-like. TAP1 (TAP1). and BRD2 
(BRD2) genes. complete cds; and MHCII-
alpha and Raftlin-like pseudogenes. complete 
sequence 

3.10 2.36 -1.25 0.00 L 

9 CB498358 Fatty acid-binding protein. intestinal 3.00 2.32 -1.51 6.05 L 
10 CB509992 Lipocalin precursor 2.96 2.28 -1.45 6.05 L 
11 CB493612 ATP synthase a chain -2.95 -2.57 1.32 8.25 L 
12 CB511332 Fatty acid-binding protein. intestinal 2.91 2.25 -1.43 6.05 L 
13 CA056964 Oncorhynchus mykiss mRNA for sex 

hormone-binding globulin. complete cds 
2.90 2.22 -1.30 6.05 L 

14 CA043176 Lipocalin precursor 2.87 2.19 -1.31 6.05 L 
15 CK990493 Cystatin-B 2.86 2.17 -1.33 6.05 L 
16 CA043660 Nuclear receptor 0B2 -2.85 -2.48 1.35 9.07 L 
17 CA052954 Polyadenylate-binding protein 1 -2.82 -2.42 1.22 9.07 L 
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18 CA062758 PREDICTED: similar to endoU protein 
[Monodelphis domestica] 

2.79 2.15 -1.29 9.55 L 

19 CB493454 Lipocalin precursor 2.77 2.12 -1.40 9.55 L 
20 CB491705 Probable RNA-directed DNA polymerase 

from transposon BS 
-2.75 -2.37 1.28 9.07 L 

21 CA055371 GTP-binding protein SAR1a -2.69 -2.33 1.31 12.10 L 
22 CA063402 Phosphoinositide-3-kinase-interacting protein 

1 precursor 
-2.65 -2.29 1.20 12.10 L 

23 CA040156 Integral membrane protein GPR137B -2.64 -2.26 1.25 12.10 L 
24 CB492836 Lipocalin precursor 2.63 2.10 -1.35 14.51 L 
25 CA063511 Transaldolase 2.62 2.09 -1.30 14.51 L 
26 CB497796 Cystatin precursor -2.62 -2.23 1.32 12.10 L 
27 CB515635 G1 to S phase transition protein 1 homolog -2.60 -2.20 1.27 12.10 L 
28 CA047249 Excluded (Chimera) -2.59 -2.18 1.50 12.10 L 
29 BU965678 NADH-ubiquinone oxidoreductase chain 3 -2.59 -2.15 1.21 12.10 L 
30 CB509557 Heat shock cognate 70 kDa protein -2.59 -2.13 1.33 12.10 L 
31 CB514949 Tubulin beta-1 chain 2.58 2.07 -1.20 14.63 L 
32 CA044961 Mu-crystallin homolog -2.58 -2.11 1.25 14.17 L 
33 CA063027 Transaldolase 2.53 2.05 -1.27 15.49 L 
34 CA054109 Oncorhynchus mykiss IgH.A locus. partial 

sequence 
2.52 2.04 -1.20 15.49 L 

35 CA062534 PREDICTED: Danio rerio hypothetical 
LOC556254 (LOC556254). mRNA 

-2.51 -2.09 1.24 15.88 L 

36 CB512299 Nascent polypeptide-associated complex 
subunit alpha 

-2.50 -2.07 1.21 15.88 L 

37 CA057637 Importin-7 2.50 2.02 -1.18 15.49 L 
38 CK990533 Keratin. type II cytoskeletal 8 -2.49 -2.06 1.46 15.88 L 
39 CK991278 UNKNOWN 2.48 2.01 -1.23 15.49 L 
40 CN44253

4 
Cytochrome c oxidase subunit 2 -2.48 -2.04 1.24 15.88 L 

41 CA055608 Splicing factor. arginine/serine-rich 16 2.47 1.99 -1.21 15.49 L 
42 CA054143 Hematological and neurological expressed 1-

like protein 
2.45 1.98 -1.16 17.28 L 

43 CB492201 Cytochrome c oxidase subunit 2 -2.42 -2.03 1.19 17.75 L 
44 CK990254 Human G protein-coupled receptor (GPR2) 

gene. partial cds 
-2.41 -2.01 1.23 17.75 L 

45 CB488287 SPARC precursor -2.41 -2.00 1.46 17.75 E 
46 CA060846 UNKNOWN -2.41 -1.98 1.31 17.75 L 
47 CB492503 Nicotinamide riboside kinase 2 -2.40 -1.97 1.25 18.14 L 
48 CA063671 UNKNOWN -2.40 -1.96 1.57 18.14 L 
49 CB514299 UNKNOWN 2.40 1.97 -1.24 17.79 L 
50 CA050613 Lysosomal-associated transmembrane 

protein 4A 
-2.39 -1.95 1.22 18.14 L 

51 CB505283 UNKNOWN 2.39 1.96 -1.20 17.79 L 
52 CN44255

8 
Cytochrome c oxidase subunit 3 -2.37 -1.93 1.19 18.83 L 

53 CA039532 Beta crystallin A3-1 -2.36 -1.92 1.11 18.83 L 
54 CK990833 Cystatin-B 2.34 1.94 -1.34 19.44 L 
55 CA769320 Fatty acid-binding protein. intestinal 2.34 1.93 -1.37 19.44 L 
56 CA058772 Mus musculus FL10 mRNA. complete cds 2.34 1.92 -1.14 19.44 L 
57 CA055797 Elongation factor 1-gamma -2.33 -1.91 1.14 19.66 L 
58 CB510751 UNKNOWN -2.32 -1.90 1.19 19.66 E 
59 CB493904 Endothelin-converting enzyme 1 2.32 1.91 -1.30 19.99 E 
60 CK991184 Casein kinase II subunit alpha -2.31 -1.89 1.17 19.66 L 
61 CB502110 Calpain-2 catalytic subunit -2.30 -1.88 1.21 20.82 L 
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62 CB512096 40S ribosomal protein SA 2.30 1.90 -1.23 20.16 L 
63 CA046921 Excluded (Chimera) 2.30 1.89 -1.20 20.16 L 
64 CA062809 Polyadenylate-binding protein 4 -2.29 -1.87 1.24 20.93 E 
65 CN44251

9 
Cytochrome c oxidase subunit 2 -2.28 -1.87 1.25 20.93 L 

66 CA041001 UNKNOWN 2.27 1.88 -1.17 21.13 E 
67 CA045398 Oncorhynchus mykiss 28S ribosomal RNA 

gene. partial sequence 
2.27 1.87 -1.19 21.13 L 

68 CN44254
5 

Cytochrome c oxidase subunit 3 -2.27 -1.86 1.26 21.04 E 

69 CK990781 Calpain-2 catalytic subunit precursor -2.26 -1.85 1.20 21.04 L 
70 CA041846 UNKNOWN -2.25 -1.84 1.15 21.72 L 
71 CA046171 Excluded (Chimera) -2.24 -1.83 1.14 21.72 L 
72 CB505609 Salmo salar calcium polyvalent cation 

receptor 3 mRNA. complete cds 
2.24 1.86 -1.14 21.13 L 

73 CA054600 UNKNOWN 2.24 1.85 -1.20 21.13 L 
74 CB496359 Anaphase-promoting complex subunit 

CDC26 
-2.23 -1.82 1.23 22.98 L 

75 CA042437 UNKNOWN -2.23 -1.82 1.25 22.98 L 
76 CB500378 UNKNOWN -2.22 -1.81 1.23 23.56 L 
77 CA041959 Cold-inducible RNA-binding protein -2.21 -1.80 1.22 23.56 L 
78 CB497061 LIM domain only protein 7 -2.20 -1.79 1.19 24.42 L 
79 CB490880 Voltage-dependent anion-selective channel 

protein 1 
2.18 1.84 -1.18 23.81 L 

80 CA036947 Cystatin-B 2.18 1.84 -1.28 23.81 L 
81 CA059691 Legumain precursor 2.18 1.83 -1.21 24.64 L 
82 CA064204 Protein S100-B 2.15 1.82 -1.27 27.66 L 
83 CA064185 Glutaredoxin-1 2.14 1.81 -1.18 28.42 L 
84 CB496934 Zea mays clone Contig482.F mRNA 

sequence 
-2.14 -1.79 1.21 28.08 L 

85 CB493115 Cystatin-B 2.13 1.81 -1.28 28.48 L 
86 CA051588 UNKNOWN 2.13 1.80 -1.23 28.48 L 
87 CB497305 Elastase-2A precursor -2.13 -1.78 1.14 28.15 L 
88 CB492976 Phosphate carrier protein. mitochondrial 

precursor 
-2.12 -1.77 1.17 28.86 L 

89 CB499214 Glutamine synthetase. mitochondrial 
precursor 

2.10 1.79 -1.23 30.24 L 

90 CB493575 FK506-binding protein 1A -2.09 -1.77 1.23 29.91 L 
91 CB509522 TSC22 domain family protein 4 -2.09 -1.76 1.28 29.91 L 
92 CB494682 Protein kinase C and casein kinase substrate 

in neurons protein 3 
-2.09 -1.75 1.23 29.92 L 

93 CB515741 UNKNOWN 2.09 1.78 -1.16 30.24 L 
94 CB505763 GDP-L-fucose synthetase -2.09 -1.75 1.24 29.92 L 
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Appendix 2 

Concentrations of lipid classes in lenses of Atlantic salmon fed diets containing 

100% fish meal (FM) and fish oil (FO), or the indicated percentages of plant protein 

(PP) and vegetable oil (VO) instead of FM and FO.  

Means and standard errors (SE) are given as mg lipid/g lens wet weight. ANOVA and Tukey 

test were used to test for significant differences between the dietary groups and p-values 

are stated. Different letters show a significant difference between the respective dietary 

groups. N=3 for all groups. PC, phosphatidyl choline; PS, phosphatidyl serine; PI, 

phosphatidyl inositol; PE, phosphatidyl ethanol; CHOL, cholesterol; FFA, free fatty acids; 

PL, polar lipids; NL, neutral lipids. 

 

  FMFO 80PP35VO 40PP70VO 80PP70VO   
  Mean SE   Mean SE   Mean SE   Mean SE     
PC 20.14 0.41 20.12 0.07 20.29 0.16 19.57 0.28 ns 
PS 7.24 0.11 7.97 0.16 8.07 0.45 8.10 0.10 ns 
PI 4.17 0.11 a 3.72 0.32 ab 3.46 0.32 ab 2.86 0.11 b p=0.03
PE 20.49 0.06 20.01 0.07 20.39 0.44 20.23 0.33 ns 
DAG 2.44 0.13 2.74 0.13 2.35 0.16 2.56 0.20 ns 
CHOL 29.62 0.32 29.84 0.27 30.21 0.61 30.36 0.52 ns 
FFA 15.90 0.35 15.60 0.45 15.23 0.43 16.32 0.48 ns 
Sum PL 52.04 0.53 51.82 0.44 52.22 0.88 50.75 0.49 ns 
Sum NL 47.96 0.53   48.18 0.44   47.78 0.88   49.25 0.49   ns 
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Appendix 3 

Relative concentrations of fatty acid classes in lenses of Atlantic salmon fed diets 

containing 100% fish meal (FM) and fish oil (FO), or the indicated percentages of 

plant protein (PP) and vegetable oil (VO) instead of FM and FO.  

Means and standard errors (SE) are given as percentages of the total lens fatty acid 

concentrations. ANOVA and Tukey test were used to test for significant differences between 

the dietary groups and p-values are stated. Different letters show a significant difference 

between the respective dietary groups. N=3 for all groups. 

 

  FMFO 80PP35VO 40PP70VO 80PP70VO   
  Mean SE   Mean SE   Mean SE  Mean SE     
14:0 9.47 0.26 8.30 0.21 9.07 0.47 8.43 0.45 ns 
16:0 14.00 0.61 12.97 0.18 13.60 0.55 13.03 0.15 ns 
16:1n-9 4.13 0.19 4.30 0.17 4.30 0.10 4.37 0.17 ns 
16:1n-7 5.60 0.15 5.23 0.47 5.80 0.21 4.97 0.41 ns 
17:0 1.33 0.09 1.33 0.03 1.37 0.03 1.43 0.03 ns 
18:0 5.87 0.37 6.33 0.18 6.07 0.24 6.50 0.21 ns 
18:1n-11 0.07 0.07 0.03 0.03 0.07 0.07 0.00 0.00 ns 
18:1n-9 20.30 0.40 20.13 0.70 21.30 0.53 20.10 1.27 ns 
18:1n-7 3.37 0.09 3.33 0.15 3.40 0.10 3.10 0.15 ns 
16:4n-3 3.27 0.17 3.47 0.20 3.30 0.17 3.50 0.21 ns 
18:2n-6 0.00 0.00 0.17 0.09 0.33 0.03 0.40 0.06 p=0.04
20:1n-9 0.13 0.13 0.30 0.15 0.30 0.17 0.33 0.17 ns 
20:3n-6 0.00 0.00 0.00 0.00 0.07 0.07 0.13 0.07 ns 
20:4n-6 1.10 0.06 1.27 0.09 1.20 0.12 1.27 0.18 ns 
22:1n-11 0.00 0.00 0.00 0.00 0.07 0.07 0.00 0.00 ns 
20:5n-3 4.40 0.76 4.40 0.55 3.70 0.55 4.40 0.64 ns 
22:5n-3 1.27 0.23 1.37 0.20 1.13 0.23 1.40 0.29 ns 
22:6n-3 13.87 2.66 16.57 2.50 13.40 2.57 17.03 3.71 ns 
SUM 
unidentified 11.87 1.76 10.43 1.23 11.60 1.47 9.60 2.16 ns 
SUM identified 88.13 1.76 89.57 1.23 88.40 1.47 90.40 2.16 ns 
SUM saturated 30.67 1.19 28.97 0.23 30.07 1.29 29.40 0.57 ns 
SUM 16:1 9.67 0.15 9.53 0.67 10.07 0.30 9.33 0.55 ns 
SUM 18:1 23.73 0.52 23.50 0.87 24.73 0.70 23.20 1.42 ns 
SUM 20:1 0.13 0.13 0.30 0.15 0.30 0.17 0.33 0.17 ns 
SUM 22:1 0.00 0.00 0.00 0.00 0.07 0.07 0.00 0.00 ns 
SUM monoenes 33.53 0.72 33.30 1.57 35.17 0.99 32.87 2.11 ns 
SUM n-3 22.83 3.51 25.87 2.89 21.53 3.23 26.37 4.42 ns 
SUM n-6 1.10 0.06 1.43 0.09 1.63 0.20 1.77 0.24 ns 
SUM polyenes 23.97 3.60 27.27 2.89 23.13 3.44 28.17 4.63 ns 
n-3 / n-6 19.93 1.95 a 18.23 2.24 ab 13.17 0.48 b 14.67 0.58 ab p=0.02
 




