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Introduction

In ocean modelling there are several categories of numerical models. By
investigating the vertical coordinates in the models, one find that most of
them can be classified as either Cartesian (z), isopycnal (ρ) or terrain fol-
lowing (σ) models, see Figures 1, 2 and 3, respectively. The models are
analogous in their continuous form, but the discretisations make the systems
different [Haidvogel and Beckmann, 1999]. Similar problems may therefore
get different answers. Since large errors in simulations often can be traced
back to the choice of vertical coordinates, the pros and cons of the different
coordinates are of great importance.

3D ocean models

The first ocean models used z-coordinates in the vertical, see Figure 1. Equa-
tions then assume their familiar form. In these coordinates, the surface and
bottom layer processes are difficult to resolve. The reasons are, respectively,
the thickness of the surface layer (that has to be chosen larger than the
largest amplitude of the free surface), and the stepwise representation of the
bottom topography. In addition, an artificial diapycnal diffusion leads to
a false stratification along z-surfaces [Haidvogel and Beckmann, 1999]. A
favourable aspect is that the hydrostatic balance is easy to compute. This is
important for the long term thermohaline circulation.

In density layer models (Figure 2), the artificial diapycnal diffusion is
almost zero. The reason is that most of the transports in the oceans oc-
cur approximately along isopycnal surfaces. In contradiction to the z- and
σ-coordinates, these coordinates maintain the internal fronts between water
masses in long-time integrations. The difference lies in the time-dependent
grid that can, in principle, adjust to the dynamic situation of the ocean [Haid-
vogel and Beckmann, 1999]. Following the pros above are two less favourable
aspects; The resolution near bottom and surface, and the estimations of the
internal pressure.

Terrain-following (σ-coordinate) models are widely used, see Figure 3.

1



2 Introduction

Figure 1: Vertical discretisation for an equidistant z-coordinate model in 2D;
Lines constant z; Black bottom topography.

They are often advantageous when dealing with large variations in topogra-
phy [Mellor et al., 1998], and give an accurate representation of the bottom
and top boundary layers. However, near steep topography the use of these
coordinates can lead to large errors in the pressure gradient force. The hor-
izontal pressure gradient in the σ-coordinate system consists of two terms,
which may be large, comparable in magnitude, and opposite in sign. A small
error in one of these terms can ultimately lead to an unacceptable result. If
the internal pressure gradient errors are understood and hopefully reduced,
the σ-coordinates may give superior ocean models.

Prior work

The severity of the pressure gradient errors in σ-coordinates is a topic of dis-
cussion. According to Haney [1991], the scheme is hydrostatically consistent
if ∣∣∣∣ σδσ δDD

∣∣∣∣ < 1 . (1)

Here, σ is the vertical sigma coordinate (see Chapter 1), δσ is the vertical
grid size, δD is the horizontal change of depth between two neighbouring cells
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Figure 2: Vertical discretisation for an isopycnal coordinate model in 2D [Haid-
vogel and Beckmann, 1999]

and D = h+ η where h is the static depth and η is the free surface elevation.
By letting δσ tend to zero, one would expect to improve the results, but this
is impossible without violating Equation (1) closer to the bottom boundary.

Mellor et al. [1994] pointed out that criterion in Equation (1) is very
restrictive. They showed that the discretisation error for the second-order
internal pressure method used in POM is to leading order

E

(
δxb

δx

)
=
D

4

δxD

δx

(
∂2b

∂z2

)[
(δσ)2 − σ2

(
δxD

D

)2
]
, (2)

where x is the horizontal coordinate, z the vertical coordinate and b = ρg
ρ0

is the buoyancy. Here g is the gravity constant, ρ is the density and ρ0 is a
constant reference density. In contrast to Equation (1), Equation (2) shows
that the error decreases if δσ and δxD

D
goes to zero. Hydrostatic consistency

is accordingly not a useful concept. Increasing the vertical resolution will
not help to improve the error if the term involving δxD

D
is the limiting factor.

After several experiments, Mellor et al. [1994] found that the error is not
numerically divergent, and consequently concluded that the pressure gradient
error is not of great concern.

There are many different approaches on how to reduce the error in the
pressure gradient force. For instance, it is common to subtract the back-
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Figure 3: Vertical discretisation for an equidistant terrain-following model in 2D;
Lines constant σ; Black bottom topography.

ground stratification that depends only on the vertical coordinate from the
density field [Gary, 1973]. One can argue that this will make the remaining
terms in the equation smaller and therefore lead to a reduced truncation er-
ror. In addition, terms that cancel analytically, but not numerically, can be
removed [Haney, 1991; McCalpin, 1994]. However, one can claim that since
the “correct” way of splitting the density field is unknown, the validity of
these manipulations is uncertain [Shchepetkin and McWilliams, 2003].

Another approach is to compute the internal pressure in z-coordinates,
make two estimates of the horizontal pressure gradient, and set it to zero
when the results are of opposite sign. If the estimates are of the same sign,
the smaller term is used [Stelling and Van Kester, 1994]. While this gives
accurate results for the horizontal pycnoline seamount case, it will generally
underestimate the true geostrophic flow [Slørdal, 1997].

To reduce the effects of the pressure gradient errors, it is also possible to
smooth the topography of the area of study [Barnier et al., 1998]. However,
one should keep in mind that altering the topography too much, would mean
solving the equations for a different case than the one of interest.

Adding viscosity will dampen the artificial flow caused by the pressure
gradient errors. Even though the aberration is limited in the case treated
by Mellor et al. [1998], several later studies have suggested that the error
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term may grow strongly in cases where more realistic viscosities are applied
[Berntsen, 2002]. Generally, it should be a goal to develop ocean models that
enable us to study situations as realistic as possible.

Much effort has been put into improving the numerical method used to
compute the internal pressure. When McCalpin addressed the seamount case
in 1994, he used a fourth order method. Chu and Fan [1997] showed that the
error can be further reduced by applying a sixth order method. However,
Chu and Fan concluded that there will be little advantage to using the sixth
order scheme if the bottom topography is not complex.

Song [1998] advocated the use of a Jacobian representation of the pressure
gradient term. He underlined the necessity of the formulation to retain the
most important properties of the integral in the continuous case. He, among
others, has pointed out that applying the gradient before the integration may
reduce the truncation error.

To investigate the internal pressure gradient problem, one can study
geostrophic flow [Haney, 1991]. By choosing an appropriate function for
ρ, it is possible to find an analytical solution. The error can therefore be
found.

Another common experiment is to run a test case of a tall, narrow
seamount (first introduced by Beckmann and Haidvogel [1993]). If the isopy-
cnals initially are horizontal, one know that the pressure gradient force and
all velocities should be equal zero. Then, if artificial velocities do occur, they
will be a measure of the errors. In their work with the seamount, Beckmann
and Haidvogel [1993] experienced growing errors for some cases.

When Mellor et al. [1998] studied the seamount case, they classified the
errors from the 1994 paper as sigma errors of the first kind (SEFK). SEFK
are related to 2D problems, and according to Mellor et al. [1998], they will
eventually die out. The growing errors in Beckmann and Haidvogel [1993]
were classified as sigma errors of the second kind (SESK). Mellor et al. [1998]
relate these to vorticity (relevant to 3D cases), but the SESK observed in their
seamount study, decay to a nonzero value.

The thesis

The numerical experiments addressing the seamount case have led to new
insight in the nature of the internal pressure gradient errors. In addition, the
seamount exercises have led to the development of new and better numerical
methods. There are many real seamounts in the ocean. One may therefore
argue that the seamount case is a very relevant test case. However, the large
scale oceanic flow is strongly connected to the bathymetry of the ocean.
It may be reasonable to ask if the lessons learned from the seamount test
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enlighten all the errors caused by the internal pressure gradient. Another
germane test case may, with a new physical context, reveal errors not previous
prominent.

Berntsen et al. [2007] used a test case of the Nordic Seas to investigate
the pressure gradient problem. The initial conditions were chosen such that
a true solution was known. The results shed light on the order of magnitude
of the errors involved, but not on the true errors. The largest errors were
observed near the continental shelves.

An alternative way of discretising the Jacobian was introduced by Shchep-
etkin and McWilliams [2003]. By using Green’s theorem, one can evaluate a
contour integral instead of a one-dimensional vertical integral. A realistic test
case of the Atlantic Ocean was used to compare the new discretisation with
the prior approaches to the equation. Their results show that all methods
produce the largest errors near the continental shelves.

A common test is to compare the performance of the model to observa-
tions. In an attempt to simulate the diurnal stratification cycle in a shallow
lake, Condie [1999] experienced that the vertical diffusivity field was charac-
terised by strong peaks over the deep troughs when σ-coordinates were used.
The abnormal diffusion was due to errors caused by the internal pressure
gradient.

In the realistic test cases above, errors are shown in areas with steep
bathymetry. The bottom topography is complex and it is therefore difficult
to investigate the reason for the true errors. In this thesis, test cases of
idealised 3D ocean basins will be examined. The simplified contexts can be
compared to the shape of an ocean or a lake.

This work will focus on how the internal pressure gradient errors affect
the numerical instability in idealised ocean basins. The nature of the errors
will be investigated and discussed. First, in Chapter 1, the ocean model and
the underlying equations will be discussed. In Chapter 2, different forms of
ocean basins will be studied. Experiments will show how the shapes affect
the generation of false geostrophic flow in the basins. The results here will
show the better basin to proceed with in the later experiments. Further on,
in Chapter 3, the basin’s ability to represent real physical phenomena will be
tested. External and internal Kelvin waves will be used as a measure of how
well the model works. The SESK will be found in Chapter 4, together with
new errors. In Chapter 5 the model’s sensitivity to the advection scheme will
be tested. An overview of the results and ideas for future investigations are
given in Chapter 6.



Chapter 1

Underlying equations and
approximations

In the research, the well-known σ-coordinate Princeton Ocean Model (POM)
[Blumberg and Mellor, 1987] will be used. The first version of the model was
created in the late 1970’s by Alan F. Blumberg and George L. Mellor. Today
it has more than 3000 users from over 70 different countries.

Any numerical ocean model must be based in some manner on the laws of
fluid flow. These can, of course, be simplified, discretised and parametrised
etc. in many different ways. In the given chapter some of the principles
that POM is built on will be shown. Especially will the pressure term be
examined.

1.1 Basic laws for fluid flow

Mass and momentum should always be conserved. Conservation of mass can
be expressed as

∂ρ

∂t
+∇ · (ρV) = 0 ,

where V is the velocity field [u, v, w], ρ is the density and t is time. This is
called the equation of continuity. As for momentum, Newton’s second law
for fluids can be stated as follows

DV

Dt
= −1

ρ
∇p− 2Ω×V + g + F , (1.1)

7



8 1.1 Basic laws for fluid flow

where D
Dt

is the total derivative operator, p is the pressure, Ω is the earth
rotation vector, g is the gravity, and F represents other forces. The earth
rotation vector Ω can be expressed as

Ω = Ω cos (ϕ) j + Ω sin (ϕ) k ,

where Ω is the angular velocity and ϕ is the latitude. This is the equation of
motion (Equation (1.1)) [Gill, 1982].

In component form the equations become

x : ρ

(
Du

Dt
+ f∗w − fv

)
= −∂p

∂x
+
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
,

y : ρ

(
Dv

Dt
+ fu

)
= −∂p

∂y
+
∂τxy

∂x
+
∂τ yy

∂y
+
∂τ yz

∂z
,

z : ρ

(
Dw

Dt
+ f∗u

)
= −∂p

∂z
− ρg +

∂τxz

∂x
− ∂τ yz

∂y
+
∂τ zz

∂z
,

where

f = 2Ω sin (ϕ)

is the Coriolis parameter,

f∗ = 2Ω cos (ϕ)

is the reciprocal Coriolis parameter and τ is the stress tensor. The reciprocal
Coriolis parameter is generally very small, and can be set to zero. Here only
cases where the variation of the Coriolis force with latitude is negligible are
considered, so f will be taken as a constant. In other words, it is assumed
that the region is on a f-plane [Cushman-Roisin, 1994].

Here a Cartesian coordinate system, where the positive x, y and z-axis
point to the east, north and upwards, respectively is used. The reference level
is at z = 0, where the water is at equilibrium, z = −h(x, y) is the bottom
topography, and the free surface is located at z = η (x, y, t).
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1.2 Approximations

Following Blumberg and Mellor [1987], two approximations are used to sim-
plify the equations. The first assumption made, is that the density can be
split into a mean value ρ0 and a small perturbation. As a result all density
differences that are not multiplied by gravity can be neglected (the Boussi-
nesq approximation). The next approximation is that the pressure at a given
depth equals the weight of the water above (the hydrostatic approximation).
The equation of continuity becomes

∇ ·V = 0 , (1.2)

which is equivalent to assuming that the fluid is incompressible [Gill, 1982].
Often it is sufficient to study the statistically averaged flow, leaving aside

all turbulence fluctuations. Reynold suggested to divide each variable into
a mean and a fluctuation, such as V = V + Vf [Pond and Pickard, 1983].
The mean part is found by averaging the value over a time period. Since
only mean values are used from now on, bars are dropped. The Reynolds
averaged momentum equations [Blumberg and Mellor, 1987] become

∂u

∂t
+ V · ∇u− fv = − 1

ρ0

∂p

∂x
+ Fx ,

∂v

∂t
+ V · ∇v + fu = − 1

ρ0

∂p

∂y
+ Fy ,

ρg = −∂p
∂z

.

Here Fx and Fy represents the small-scale unresolved processes in the x- and
y-direction, respectively. They are given by

Fx =
∂

∂x

[
2AM

∂u

∂x

]
+

∂

∂y

[
AM

(
∂u

∂y
+
∂v

∂x

)]

and

Fy =
∂

∂y

[
2AM

∂v

∂y

]
+

∂

∂x

[
AM

(
∂u

∂y
+
∂v

∂x

)]
.

AM is the horizontal viscosity. The diffusivity and the vertical viscosity are
set to zero.

In addition to the equations above, an energy equation is needed

Dρ

Dt
= 0 .
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1.3 The linearised equations

In this study, the linearised version of the stated governing equations will
be used [Mellor et al., 1998]. The equation of continuity (Equation (1.2)) is
unchanged, while the rest of the governing equations are

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
+ Fx , (1.3)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
+ Fy , (1.4)

ρg = −∂p
∂z

, (1.5)

∂ρ′

∂t
+ w

dρref
dz

= 0 . (1.6)

Note that the equations have been simplified by splitting the density field ρ

ρ(x, y, z, t) = ρref (z) + ρ′(x, y, z, t) .

Here ρref is the reference stratification and ρ′ is the perturbation density.
By integrating (1.5) from z to the free surface η, the pressure at depth z

can be found. The total pressure may be described as

p(x, y, z, t) = patm + pη(x, y, t) + pint(x, y, z, t) .

Here patm is the constant atmospheric pressure, pη = gρ0η is the pressure from

the surface elevation and pint = g
∫ 0

z
ρ(x, y, z′, t)dz′ is the internal pressure.

To reduce the local errors, the reference stratification ρref is subtracted
from the density ρ when calculating the internal pressure. The internal pres-
sure used in the POM calculation is therefore

pint = g

∫ 0

z

ρ′(x, y, z′, t)dz′ .

Mode splitting

An ocean model should be able to reproduce different physical phenomena.
To reduce the computational cost, of resolving fast moving external gravity
waves together with for example slow moving internal gravity waves, the
model is split in two different modes [Mellor, 2003]. In POM the external
mode calculates the vertically integrated equations with small time steps,
while the internal mode calculates the full equations with longer time steps
[Blumberg and Mellor, 1987].



Underlying equations and approximations 11

1.4 Transformation to σ-coordinates

The σ-coordinate models are terrain-following, which means that the vertical
layers are shaped after the topography, see Figure 3. Therefore, a transfor-
mation from the Cartesian (x, y, z, t) to the σ-coordinates (x∗, y∗, σ, t∗) is
needed

x∗ = x y∗ = y σ =
z − η
h+ η

t∗ = t .

Note that σ = 0 at z = η and σ = −1 at z = −h. Let D ≡ h+ η and apply
the chain rule to obtain

∂G

∂x
=

∂G

∂x∗
− ∂G

∂σ

(
σ

D

∂D

∂x∗
+

1

D

∂η

∂x∗

)
,

∂G

∂y
=

∂G

∂y∗
− ∂G

∂σ

(
σ

D

∂D

∂y∗
+

1

D

∂η

∂y∗

)
,

∂G

∂z
=

1

D

∂G

∂σ
,

∂G

∂t
=

∂G

∂t∗
− ∂G

∂σ

(
σ

D

∂D

∂t∗
+

1

D

∂η

∂t∗

)
,

where G is an arbitrary field variable.
The following expression for the partial derivative of the pressure that

appears in Equation (1.3) is obtained, by using the transformation formulas
above

∂p

∂x
= g

∫ η

z

∂ρ

∂x
dz = gD

∫ 0

σ

∂ρ

∂x∗
− ∂ρ

∂σ

(
σ

D

∂D

∂x∗
+

1

D

∂η

∂x∗

)
dσ .

A similar expression is found for the pressure term in Equation (1.4). In this
thesis one will focus on the internal pressure gradient

∂pint
∂x

= gD

∫ 0

σ

(
∂ρ′

∂x∗
− σ

D

∂ρ′

∂σ

∂D

∂x∗

)
dσ .

Note that ρref has been subtracted to reduce errors.
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Chapter 2

The test basins

The seamount test case [Beckmann and Haidvogel, 1993] is normally used
when studying the numerical instability of the POM code. By applying the
model to a new physical context, the errors may force other types of oceanic
motion. Two new test cases of idealised ocean basins are chosen, because
their shape can be compared to the bathymetry of a real ocean.

2.1 Model setup

Initially, the ocean is at rest with fixed background stratification. There is no
physical forcing and the vertical and horizontal diffusivities are zero. In the
POM code, the mean density ρ0 = 1000 kg m−3. The reference exponential
stratification ρref is given by

ρref (z) = 28 kg m−3 −∆ρez/500 m ,

where ∆ρ = 3.671 kg m−3. Initially the perturbation density ρ′ may be de-
fined as

ρ′(z) = −1.5 kg m−3ez/500 m .

Under these circumstances an exact solution is know; zero velocities and
no change in density. A way of investigating the errors can therefore be to
study the change in the perturbation density ρ′. Another measure for the
error is the maximum velocity of the purely artificial flow. The maximum
velocity is computed according to

Vmax = max
[√

u2
i,j,k + v2

i,j,k

]
,

13
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where i, j and k are the cell indices in the x-, y- and z-direction, respectively.
If a solution is stable, the magnitude of the maximum velocity reach an upper
limit.

On the other hand, if the solution is unstable, a Shapiro filter [Shapiro,
1975] can be used to smooth the topography. Then the depth h, at a given
grid point in the interior, is replaced by

h = 0.25hL + 0.5h+ 0.25hR , (2.1)

where hL and hR are the depths in the cells to the left and right of the point
in the x-direction. The same is done in the y-direction with the new depth h
found in Equation (2.1). A less steep slope may give smaller internal pressure
gradient errors.

In the seamount test case the slope parameter r is often referred to. This
number is a numerical resolution parameter defined by

r =
|∂h|
2h

,

where ∂h is the difference in adjacent cell depths and h the mean of adjacent
depths [Mellor et al., 1998]. If r is not between 0 and 1 the topography is
too steep. To avoid instability one then may have to filter or change the
bathymetry.

The numerical results depend on the Burger number

S =
Nh0

fB
,

where h0 = 4000 m, B = 40 km, f = 10−4 s−1 is the Coriolis parameter, g is
the gravity and the buoyancy frequency N is given by

N2 = − g

ρ0

dρref
dz

. (2.2)

The uniform grid consist of 120x120 grid cells in the horizontal, where
∆x = ∆y = 20 km. The basin is closed at x = 0 km, x = 2400 km, y = 0 km
and y = 2400 km.
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Figure 2.1: The geometry of test basin 1

2.1.1 Basin 1

Bathymetry

The first basin, henceforth referred to as B1, is defined by

h = hs if 0 < d < L,

h = h0 − (h0 − hs)
(
L+ s− d

s

)2

if L ≤ d ≤ L+ s ,

h = h0 if L+ s < d,

where L is the width of the shelf, s is the width of the shelf slope, hs is the
depth of the shelf and h0 is the depth of the deep ocean. In the interior, d is
defined by

d−1 = L−1
x + L−1

y .

Here Lx and Ly are the distances to the nearest vertical and horizontal bound-
ary at a given point, respectively. At the edges parallel to the x-axis d = Ly
and at the edges parallel to the y-axis d = Lx. Similar expressions, for finding
a number to represent the distance to the closest boundary, are often used
in the equations for turbulent closure [Blumberg and Mellor, 1987]. The ide-
alised slope [Gjevik, 2002] has a singularity where the shelf edge meets the
parabolic inclination. In this study L = 100 km, s = 100 km, hs = 200 m and
h0 = 4000 m, see Figure 2.1.
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Figure 2.2: The maximum velocities [m s−1] as a function of time in days for B1;
Shapiro filter; AM = 400 m2 s−1

Results

When the horizontal viscosity AM = 200 m2 s−1 the solution is unstable, but
with Shapiro filtering the solution becomes stable. The solution converge
without filtering when AM is approximately 800 m2 s−1. (Figure 2.2 for the
maximum velocities when AM = 400 m2 s−1 and filtering is used). An arti-
ficial large scale oceanic flow is created. The false geostrophic flow has the
largest velocities at the shelf, close to the steep slope, see Figure 2.3 for the
velocities V =

√
u2 + v2 at 100 m depth.

The numerical results showed that in the ocean basin case the slope pa-
rameter r needs to be significantly smaller than 1 for stable results. In the
simulations above r = 0.44 with Shapiro filtering and r = 0.71 without
filtering.

By investigating the change in density after a time at a given depth, it is
possible to study a density pattern, see Figure 2.4. The interface has risen
at the slope, while at the interior the density is lower. Note that the change
occurs at the shelf slope. The pattern correlate with a downwelling. This
can be observed in Figure 2.5 for the surface elevation.
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Figure 2.3: The velocities V [m s−1] at 100 m depth after 180 days for B1; AM =
400 m2 s−1

Figure 2.4: The change in density [kg m−3], in one corner of B1, at 1000 m depth
after 150 days; Solid lines positive change; Dashed negative change;
AM = 400 m2 s−1
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Figure 2.5: The surface elevation [m] after 180 days for B1; Solid lines positive
elevation; Dashed negative elevation; AM = 400 m2 s−1

Figure 2.6: The geometry of test basin 2
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2.1.2 Basin 2

Bathymetry

The second basin, hereafter referred to as B2, is given by

h = hm + ∆htanh(
d−M
W

) ,

where hm is the depth when h0 = 2hm − hs. As above, h0 is the depth of
the deep ocean and hs is the depth of the continental shelf. Furthermore
∆h = hm − hs, d is given as in B1, M is the distance from the closest
horizontal boundary at depth hm to the shelf slope and W is half the width
of the slope. By choosing variables so that B1 and B2 have approximately
the same bathymetry one get hm = 2100 m, hs = 200 m, M = 150 km and
W = 50 km, see Figure 2.6.

Results

The solution does not reach equilibrium when AM = 200 m2 s−1, but the
maximum velocities are lower than in B1. See Figure 2.7 for the maximum
velocities, Figure 2.8 for the velocities V =

√
u2 + v2 at 100 m depth, Figure

2.9 for the change in density and Figure 2.10 for the surface elevation. Here
AM = 400 m2 s−1. The main features in the figures are the same as in B1.
Given the smooth tanh-function, the slope parameter is small, r = 0.20.

Figure 2.7: The maximum velocities [m s−1] as a function of time in days for B2;
AM = 400 m2 s−1
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Figure 2.8: The velocities V [m s−1] at 100 m depth after 180 days for B2; AM =
400 m2 s−1

Figure 2.9: The change in density [kg m−3], in one corner of B2, at 1000 m after
150 days; Solid lines positive change; Dashed negative change; AM =
400 m2 s−1
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Figure 2.10: The surface elevation [m] after 180 days for B2; Solid lines positive
elevation; Dashed negative elevation; AM = 400 m2 s−1

2.2 Comparing the basins

Both basins have steep topography, which can lead to large errors in the
pressure gradient force. The main difference is the smoothness of the curve
in B2 compared to the singularity, where the shelf meets the slope, in B1.
Also, the slope parameter r in B2 is lower than in B1. These two factors may
explain the fact that the maximum velocity in B2, when AM = 400 m2 s−1

(Figure 2.7), is noticeably lower than in B1 (Figure 2.2). This can also be
seen in Figure 2.3 and Figure 2.8 for the computed velocities V =

√
u2 + v2

at 100 m. One may question if the maximum velocity in B2 would be the
smallest of the two, after a longer run. In Figure 2.2 the velocity seems
to reach an equilibrium, while in Figure 2.7 the solution is still growing.
The surface elevation (Figure 2.5 and Figure 2.10) and the density difference
(Figure 2.4 and Figure 2.9) are of the same magnitude in both basins.

Based on the smaller velocities measured in B2, the smooth basin is chosen
for the later experiments.
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Chapter 3

Physical phenomena

Realistic test cases try to recapture real physical phenomena. By focusing
on one given oceanic motion, in an idealised test case, it is easier to see if the
phenomenon is correctly recreated. The physical phenomena experimented
on in this chapter are Kelvin waves. They are easy to generate, and the reach
and the velocity of the simulated waves are easy to measure and to compare
to the real waves.

3.1 External Kelvin waves

Coastal upwelling is often followed by Kelvin waves in nature. A wave is
generated because an upwelling is created in one given area along the coast
and the system tries to go back to its initial state. The wave needs the
lateral boundary to propagate. Its maximum amplitude is found at the coast
and the elevation decays further away from the sea shore. If the bottom is
flat and the coast is vertical, the reach of the wave depends on the external
Rossby radius of deformation R0. Following Kundu and Cohen [2004]

R0 =

√
gh

f
.

Here g is the gravity, h is the bottom depth and f = 10−4 s−1 is the Coriolis
parameter. The amplitude decays exponentially away from the boundary
with R0 as the decay scale. With h = 200 m at the continental shelf one has
R0 ≈ 443 km. Since the shelves in B1 and B2 are to narrow for displaying
the given physical phenomenon, a new basin is designed, B3 (Figure 3.1). B3
is equal to B2, see subsection 2.1.2, but it has a broader shelf, M = 400 km.
The reach of the waves will still be limited by the shelf, but the main features
of the phenomenon should be recognised.

23
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Figure 3.1: The geometry of test basin 3

Notice that it is still unclear if the test case is stable when the horizontal
viscosity AM = 400 m2 s−1 (Figure 3.2). Grid, boundary conditions, initial
state, reference stratification ρref , perturbation density ρ′ and Burger number
S are as given in Section 2.1. The slope parameter r is smaller than in the
previous cases. Here r = 0.12.

To generate the waves, the surface elevation in a square section, (400 km×
400 km), in the south west corner is raised 1 m initially. The perturbation
triggers a wave that is bound to the boundary and travels with the coast to
the right, see Figure 3.3. A smaller wave is also seen travelling along the
western boundary. The different sizes of the waves can be explained by the
Coriolis force. After five hours, the foremost peak of the largest wave, has
a reach of 390 km, see Figure 3.3. As assumed, the surface displacement is
zero, when the wave has reached the deeper part of the ocean.

By comparing different plots of the wave propagation it is possible to
find the velocity c of the wave. In the given case the observed velocity
c is approximately equal to the computed velocity c0 ≈ 161 km h−1. The
computed velocity c0 is given in m s−1 by

c0 =
√
gh .

Here g is the gravity and h is the depth of the continental shelf [Kundu and
Cohen, 2004].

One may conclude that the test basin represents external Kelvin waves
in a satisfactory manner.
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Figure 3.2: The maximum velocities [m s−1] as a function of time in days for B3
with exponential stratification; AM = 400 m2 s−1

Figure 3.3: The surface elevation [m] after 5 hours for B3. The water elevation
is initially raised in one corner; AM = 400 m2 s−1
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3.2 Internal Kelvin waves

Oscillating within the fluid instead of on the surface, internal waves are found
everywhere in the ocean. Analogous to the external Kelvin waves, internal
waves are gravity waves. They try to restore the hydrostatic equilibrium,
when the buoyancy and the gravity force are in balance.

Following Kundu and Cohen [2004], the internal Kelvin waves can travel
in any continuously stratified fluid. The waves will propagate with different
mode speeds

cn =
Nh

nπ
, n = 1, 2, ... (3.1)

Here N = N(z) is the buoyancy frequency, see Equation (2.2) and h = h(x, y)
is the depth of the ocean. The corresponding decay scales or the internal
Rossby radiuses of deformation are

Rn =
cn
f
, n = 1, 2, ....

By comparison to the external Rossby radius R0, the internal radius Rn

is small. The internal waves might therefore be difficult to examine. In an
attempt to make the waves easier to observe, in the upper part of the ocean
basin, the reference density profile ρref is changed to

ρref (z) = 28 kg m−3 −∆ρ
3

4

(
1 + tanh

(
z +M

W

))
,

where ∆ρ = 3.671 kg m−3 as before. Note that the stratification profile can
be divided into three parts, a distance 2W where the density changes its
value and two layers with constant density, one above and one below the
interface. The thickness of the two constant layers can be adjusted by M ,
the distance from the surface to the middle of the layer where ρref changes
its value. Here W = 250 m and M = 100 m. The initial perturbation ρ′ is
altered to

ρ′(z) = −1.5 kg m−3 3

4

(
1 + tanh

(
z +M

W

))
,

see Figure 3.4 for the different density profiles.
By comparing the new buoyancy frequency with the old (Figure 3.5) it is

observed that the frequency N has increased in the upper part of the basin.
Figure 3.6 shows that the solution has not reached equilibrium and that

the magnitude of the maximum velocities are reasonably low. It is also evi-
dent that the maximum velocities oscillate. The oscillations are investigated
further in Subsection 4.2.1.
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Figure 3.4: The vertical distribution of density [kg m−3]; Solid lines tanh profile;
Dashed exponential profile

Figure 3.5: The vertical distribution of the buoyancy frequency [rad s−1]; Solid
lines tanh density profile; Dashed exponential density profile
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For n = 1 at the shelf (h = 200 m) and with N ≈ 1.04 · 10−2 rad s−1, the
internal Rossby radius R1 is approximately 6620 m at 100 m depth. Since
the grid resolution is too large (20 km), the waves will not be represented
with the present grid. To observe a wave, the internal Rossby radius needs
to be greater than 2∆x or 40 km. This can be done by reducing the Coriolis
parameter f or increasing the buoyancy frequency N .

In the deep part of the ocean (h = 4000 m), R1 ≈ 132 km. Internal Kelvin
waves can therefore be observed in the test case, but only travelling along the
shelf slope. Since the equations above are valid for waves travelling along a
straight coast, vertically on a horizontal bottom, the phenomenon observed
and the equations may not correlate.

Internal motions stand for most of the internal mixing in the ocean [Bergh,
2010]. If there is no deep mixing, the ocean will after a time have no flow
below a shallow upper layer [Munk and Wunsch, 1998]. It is therefore impor-
tant for ocean models to be able to represent oscillations and internal waves.
Here the model’s ability to represent internal waves is tested by changing the
Coriolis parameter f .

In Figure 3.7 the density in a square section (80 km × 80 km), in the
south west corner is reduced by 0.01 kg m−3. The Coriolis parameter f is
also reduced to 10−5 s−1. A wave is generated that travels eastward. It is
difficult to measure the exact mode speed and the reach of the wave. At
times, the wave front pauses and sometimes it even travels to the west. If
the wave speed is calculated from the observed wave fronts after 1 day and
30 days, one get c ≈ 0.29 km h−1. The corresponding internal Rossby radius
R and mode n are approximately 8 km and 8.3, respectively. Note that n is
not an integer and that the internal Rossby radius is less then 2∆x (40 km).
The radius is also not representative for the reach of the wave observed in
Figure 3.7, where R ≈ 30 km. Observe that the mode speed is lower than
the external mode speed c0. The solution is unstable, due to the perturbed
stratification, see Figure 3.8. Accordingly, the investigation of the internal
Kelvin waves will not be addressed further in this thesis.
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Figure 3.6: The maximum velocities [m s−1] as a function of time in days for B3
with tanh stratification; AM = 400 m2 s−1
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(a) 1 day (b) 5 days

(c) 10 days (d) 20 days

(e) 30 days

Figure 3.7: The vertical velocities [m s−1] in one part of B3. In one corner, the
tanh stratification is perturbed; AM = 400 m2 s−1
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Figure 3.8: The maximum velocities [m s−1] as a function of time in days for B3.
In one corner, the tanh stratification is perturbed; AM = 400 m2 s−1



32 3.2 Internal Kelvin waves



Chapter 4

Sigma errors

Mellor et al. [1998] identified two types of sigma errors. The first (SEFK)
vanished due to the advection of the density field, while the second (SESK)
was found to be small. They connected the SESK to the vorticity. In the
seamount case, the initial SESK can be observed as an eight-lobe pattern.

4.1 Vorticity errors

In the present study, the internal pressure gradient errors in basins are inves-
tigated. By comparison to the seamount case, which has a peak appearing in
the middle of the ocean (Figure 4.1), the basins have a depression. Investi-
gating the initial vorticity errors for B3, with tanh stratification, shows that
the model reacts differently to the formations. In Figure 4.2 the field of the
initial acceleration of the vertically integrated vorticity

∂

∂t

∫ 0

−1

(
∂v

∂x
− ∂u

∂y

)
dσ ,

is shown. The sixteen vortices, eight positive and eight negative, are situ-
ated near the steep topography and appear in pairs. The difference in the
curvature may be the reason for the more circular and outspread vortices in
the seamount case (i.e. Figure 4.3 when the standard second order POM
method is used). The positions of the vortices on the circular shelf may be a
consequence of the grid rotation or the fact that B3 has the steepest slopes at
the given locations. The main features are the same when changing between
exponential and tanh stratification. Note that the setup from Shchepetkin
and McWilliams [2003] is used, when figures from the seamount test case are
presented.

The field of the initial acceleration of the vertically integrated vorticity
in the seamount test case, was observed as an eight-lobe pattern around the

33
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Figure 4.1: The seamount

Figure 4.2: The initial acceleration of the vertical integrated vortices [m s−2] in
B3 with tanh stratification; AM = 400 m2 s−1
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Figure 4.3: The initial acceleration of the vertically integrated vortices [m s−2]
for the seamount;

seamount (Figure 4.3). Berntsen [2002] found that the pattern changed in
time, if the Smagorinsky-type viscosities used not were approximately 100
times larger then recommended. The phenomenon was explained by the
fact that there has to be a balance between the centrifugal and the Coriolis
force. A dimensionless number, the Rossby number RO, is normally used
to investigate the influence of the two different forces on the system. The
Rossby number is given by

RO =
U

Kf
,

where U and K are, respectively, the characteristic velocity and length scale
of the phenomenon. If there is an approximate balance, the length scales of
the eddies have to increase analogous with the velocities. The vortices then
interact to create a new pattern. By observing the vorticity at different times
in B3, one notices that the vortices always are present and that they continue
to appear in the north, east, south and west of the shelf slope, see Figure 4.4.
Due to conservation of potential vorticity, the vortices follow isolines of the
bathymetry. Also here the number of vortices change in time. In B3 there is
sometimes one pair of vortices in one position (Figure 4.4(a)), but at other
times there are several pairs (Figures 4.4(d)). Additionally, some vortices
seem to depart from the main formations and travel counter clockwise before
disappearing, see 4.4(b). After a time the pattern seem to stay fixed (Figure
4.4(e)).
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(a) 1 day (b) 5 days

(c) 10 days (d) 23 days

(e) 150 days

Figure 4.4: The vertical integrated vorticity [m s−1] in B3 with tanh stratifica-
tion; AM = 400 m2 s−1



Sigma errors 37

4.2 New errors

When investigating internal waves, a new stratification profile was intro-
duced, see Section 3.2. The figure of the maximum velocities (Figure 3.6)
showed large oscillations. Accordingly, one may investigate the vertical ve-
locity.

4.2.1 Vertical velocity

An examination of the vertical velocity at 100 m below the surface after 10
days, reveals a circular pattern situated above the steep slope. In the centre
the vertical velocities differ from zero, see Figure 4.5. The circle is made
up of many small formations that are approximately 2∆x long and ∆x wide
(Figure 4.6). The artificial velocities oscillate with an almost constant period,
T . 2π

f
s, in the small formations, see Figure 4.7. The circular frequency ω

of the oscillations is approximately 1.09 ·10−4 rad s−1. By comparing ω to the
Coriolis parameter f = 10−4 s−1, one observes that they are almost equal.
Following Kundu and Cohen [2004] internal waves are only found when ω is
in the frequency range

f < ω < N,

where it is assumed that N > f . By investigating Figure 3.5, one can observe
that the last inequality is fulfilled at least in the upper half of the basin. Note

Figure 4.5: The vertical velocities [m s−1] at 100 m depth after 10 days in B3
with tanh stratification; AM = 400 m2 s−1
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Figure 4.6: The vertical velocities [m s−1] at 100 m depth after 10 days in one
part of B3 with tanh stratification; AM = 400 m2 s−1

that the circular frequency ω lie in the range. For this reason, it should be
possible to find internal waves in the oceanic basin.

It is reasonable to assume that the artificial density perturbation, created
by the internal pressure gradient, generate gravity waves. After a time, it
may be possible to observe that the waves are affected by the Coriolis force.
The force can create a phenomena travelling counter clockwise around the
basin.

By investigating the pattern at different times it is observed that the large
circle, around the basin (Figure 4.5), always consists of the small formations.
The noise may be a consequence of the leapfrog scheme used in the model
(see Chapter 5). This scheme is known to be too dispersive. As revealed by
Figure 4.7, the vertical velocities in the formation oscillate. In contrast to
the circle, the pattern in the centre change in time (The four surrounding
circles may e.g. disappear and the circle in the centre expand, see Figure
4.8). After a time, a new formation in the pattern is evident. Situated
just inside the circle, in the north, east, south and west, the pattern shows
four spikes directed to the centre of the circle, see Figure 4.8. A similar
phenomenon was observed when the vorticity was investigated (Section 4.1)
and will be found when studying the initial acceleration of the horizontal
divergence (Subsection 4.2.2), the horizontal advection of the density field
(Subsection 4.2.3), the density diffusion (Section 4.3), the upwind scheme
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Figure 4.7: The vertical velocities [m s−1] as a function of time in days for B3
with tanh stratification, in the cell situated at (450 km,1370 km) at
100 m depth; AM = 400 m2 s−1

Figure 4.8: The vertical velocities [m s−1] at 100 m depth after 150 days in B3
with tanh stratification; AM = 400 m2 s−1
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(Section 5.1) and the TVD scheme (Section 5.2). Note that the spike in the
south inclines to the right as a consequence of the Coriolis force. The other
spikes lean accordingly.

If the Coriolis parameter f is changed to 10−5 s−1, internal waves can be
observed in the basin, see Figure 4.9. The front is propagating with an almost
constant speed c = 3.3 km h−1, before the wave dissolves. In Section 3.2, an
equation for mode speeds of internal Kelvin waves was given, see Equation
(3.1). For the first baroclinic mode c1 ≈ 3.7 km h−1 when h = 4000 m and
N ≈ 1.04 · 10−2 rad s−1 at z = 100 m depth. Note that the calculated speed
c1 and the observed c have approximately the same magnitude.

Convergence and divergence cause the water to rise and fall. In accor-
dance with Figure 4.7, there has to be a corresponding divergence. One
might be tempted to speculate that the oscillations are connected to diver-
gence errors. Also the plot of the vertical velocity (Figure 4.6) shows an
interesting phenomenon. It would be reasonable to believe that the noise in
the plot should disappear due to advection of density in the horizontal direc-
tion. Two experiments, in the following sections, investigate the speculations
above.

4.2.2 The initial acceleration of the horizontal diver-
gence

The initial acceleration of the horizontal divergence may give a good indica-
tion to why the vertical velocity field observed is created (Figure 4.5). At the
beginning of the computations, estimates of the pressure forces − 1

ρ0

∂p
∂x

in the

x-direction and the forces − 1
ρ0

∂p
∂y

in the y-direction are calculated and taken

as the accelerations ∂u
∂t

and ∂v
∂t

, respectively. This allows an easy evaluation
of the initial acceleration of the vertically integrated horizontal divergence

∂

∂t

∫ 0

−1

(
∂u

∂x
+
∂v

∂y

)
dσ .

A plot of the acceleration is seen in Figure 4.10. By comparing the plot
to Figure 4.5 one can see that both patterns display a ring placed near the
steep topography. While the main features are the same, the details in the
patterns differ. The plot of the vertical velocity field consists of several
smaller formations while the plot of the initial acceleration of the horizontal
divergence only has four crests situated in the north, east, south and west of
the shelf slope. By comparing Figure 4.8 of the vertical velocities after 150
days and Figure 4.10 of the initial acceleration of the vertically integrated
horizontal divergence one observes that the spikes and the crests are located
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(a) 15 days (b) 15 days

(c) 15 days 12 hours (d) 15 days 12 hours

(e) 16 days (f) 16 days

(g) 16 days 12 hours (h) 16 days 12 hours

Figure 4.9: The vertical velocities [m s−1] at 100 m depth in B3 with tanh strat-
ification. The Coriolis parameter f = 10−5 s−1; AM = 400 m2 s−1
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Figure 4.10: The initial acceleration of the vertical integrated horizontal diver-
gences [m s−2] in B3 with tanh stratification; AM = 400 m2 s−1

at the same positions. Mellor et al. [1998] used the same approach to study
the vorticity error.

Note that the accelerations are estimated with internal pressure gradients.
Errors in the gradients may be transferred to the divergence and cause the
formation of the pattern observed in Figure 4.5.

A change in baroclinic pressure gradients can be expressed analytically
by combining Equation (1.3) and Equation (1.4)

∂

∂t

(
∂u

∂x
+
∂v

∂y

)
+ f

(
∂u

∂y
− ∂v

∂x

)
= − 1

ρ0

(
∂2p

∂x2
+
∂2p

∂y2

)
+
∂Fx
∂x

+
∂Fy
∂y

.

Observe that the first term contains an expression for the horizontal diver-
gence, while the second term contains the vorticity. Due to the changes in
the pressure gradients there has to be a change in one or more of the other
terms in the expression. The equation may explain why it is reasonable to
think that there are at least two types of errors connected to 3D flow. One
connected to vorticity and one to divergence.
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4.2.3 The horizontal advection of the density field

In Chapter 1 the underlying equations in the model were introduced. Sev-
eral approximations were used to simplify the equations. As a consequence,
the model will reduce some of its accuracy. Here the focus will be on the
importance of horizontal advection of the density field

u
∂ρ

∂x
+ v

∂ρ

∂y
.

The advection was removed when the density derivative Dρ
Dt

was linearised,
see Sections 1.2 and 1.3. The flow’s ability to smooth out the density differ-
ences in the horizontal direction is therefore reduced. The equation Dρ

Dt
= 0

expresses incompressibility of a fluid particle [Kundu and Cohen, 2004].
Figure 4.11 shows that the maximum velocities oscillate with a varying

amplitude. The solution still does not reach an equilibrium. The small for-
mations in the circle, in the plot of the vertical velocities, have been reduced,
see Figure 4.12(a) and Figure 4.13.

By investigating the vertical velocity field at different times one notices
that there are waves going in toward the centre of the basin. The circular
waves are generated near the shelf, see Figure 4.12. The period of the waves

Figure 4.11: The maximum velocities [m s−1] depth as a function of time in days
for B3 with tanh stratification. The horizontal advection of the
density filed is included; AM = 400 m2 s−1
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(a) 10 days (b) 10 days 3 hours

(c) 10 days 6 hours (d) 10 days 9 hours

(e) 10 days 12 hours (f) 10 days 15 hours

Figure 4.12: The vertical velocities [m s−1] at 100 m depth in B3 with tanh strat-
ification. The horizontal advection of the density field is included;
AM = 400 m2 s−1
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Figure 4.13: The vertical velocities [m s−1] at 100 m depth in B3 with tanh strat-
ification. The horizontal advection of the density field is included;
AM = 400 m2 s−1

can be observed in Figure 4.14. Notice that the same period (T . 2π
f

s) was
found in Subsection 4.2.1, when the vertical velocities were studied. It is
also worth noticing that the most distinctive features are found in the north,
east, south and west as in the other tests in this chapter. The waves may be
generated because of the density displacement. Due to the internal pressure
gradient errors, the density field close to the steep bathymetry is disturbed.
As the gravity and the buoyancy forces try to restore the balance, a wave is
created. The shelf slopes toward the centre, this may be the reason why the
waves do not travel out to the boundaries.

Later the pattern develops small square formations that are ∆x long, see
Figures 4.15 and 4.16. The formations are a result of the nonlinearity of the
equations. Contrarily to the linear model, the flow of energy is now trans-
ported from lower to higher wave numbers. While this may be true for small
k, the flow of energy do not continue past a maximum wave number kmax.
In nature the limit kmax does not exist and the transport of energy continues
past kmax. When the waves get to small in the model, the wave numbers
may be “reflected” back on smaller values of k [Haidvogel and Beckmann,
1999]. For this reason, smaller waves may be interpreted as resolvable waves.
Note that the model can, due to the finite grid, only resolve waves with wave
length longer or equal then 2∆x. The corresponding kmax is π

∆x
. The noise
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Figure 4.14: The vertical velocities [m s−1] as a function of time in days for B3
with tanh stratification, in the cell situated at (790 km,1190 km)
at 100 m depth. The horizontal advection of the density field is
included; AM = 400 m2 s−1

Figure 4.15: The vertical velocities [m s−1] at 100 m depth after 150 days in B3
with tanh stratification. The horizontal advection of the density
field is included; AM = 400 m2 s−1
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Figure 4.16: The vertical velocities [m s−1] at 100 m depth after 150 days in B3
with tanh stratification. The horizontal advection of the density
field is included; AM = 400 m2 s−1

in the pattern can be interpreted as waves that are 2∆x long.

An explanation to why internal gravity waves were not created in Subsec-
tion 4.2.1, might have been that the density was not allowed to travel in the
horizontal direction. Here it has been observed that including the horizon-
tal advection does help to create waves. However, it is not observed waves
that are affected by the Coriolis force. It is reasonable to believe that inter-
nal waves, that travel around the basin, would be generated if the Coriolis
parameter f was reduced.

4.3 Diffusive fluxes

The problem of “horizontal” density diffusion in a σ-coordinate system is
related to the pressure gradient errors [Beckmann and Haidvogel, 1993]. The
approximation of the density diffusion often gives large truncation errors
given the new coordinate system [Stelling and Van Kester, 1994]. The change
in the vertical density, along sigma surfaces, tends to smooth out as a result of
the diffusion. This may create artificial geostrophic flow. Mellor et al. [1998]
found that new kinds of errors were added when the horizontal diffusion was
included. In the previous tests the density diffusion was set to zero, see
Section 1.2.
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By adding diffusivity to the artificial formations, found in the plot of
the vertical velocities (Figure 4.5), they might be reduced. Accordingly, the
maximum velocities should become lower. Since the diffusive fluxes both
increase and decrease the errors, it might be interesting to observe how the
model is affected by the different approaches. Here the horizontal diffusion
AH is set equal to the horizontal viscosity AM = 400 m2 s−1.

When the diffusion is included, the maximum velocities do not have a sud-
den growth after 90 days, as in Figure 3.6. The velocity increases steadily
throughout the 180 days, see Figure 4.17. Also note that the maximum ve-
locities have increased. After 10 days not much difference in the vertical
velocity field is seen, compare Figures 4.5 and 4.18, and Figures 4.6 and
4.19. The magnitudes of vertical velocities are reduced a little, but are ap-
proximately the same. This can also be seen in Figure 4.20. The period T
is still observed to be approximately 2π

f
s, see Figure 4.20. In Figure 4.21

the vertical velocities after 150 days are shown. By comparing to the initial
acceleration of the vertical integrated divergence (Figure 4.10) it is noticed
that the four distinctive formations are located at the same positions in both
plots. It seems as if the Coriolis force has had a small effect on the solution,
since the formations are asymmetrical.

Figure 4.17: The maximum velocities [m s−1] as a function of time in days for
B3 with tanh stratification. The diffusive fluxes are added; AM =
400 m2 s−1
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Figure 4.18: The vertical velocities [m s−1] at 100 m depth after 10 hours in B3
with tanh stratification. The diffusive fluxes are added; AM =
400 m2 s−1

Figure 4.19: The vertical velocities [m s−1] at 100 m depth after 10 hours in B3
with tanh stratification. The diffusive fluxes are added; AM =
400 m2 s−1
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Figure 4.20: The vertical velocities [m s−1] as a function of time in days for B3
with tanh stratification, in the cell situated at (450 km,1370 km) at
100 m depth. The diffusive fluxes are added; AM = 400 m2 s−1

Figure 4.21: The vertical velocities [m s−1] at 100 m depth after 150 days in B3
with tanh stratification. The diffusive fluxes are added; AM =
400 m2 s−1
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It is difficult to anticipate how the added diffusivity will affect the solution
after a longer run. By the results it might seem as the new plots have more
noise. Therefore one may assume that errors added by the diffusive fluxes
make the solution unstable at an earlier stage.

Mellor et al. [1998] concluded that the smallest errors were observed when
the ratio AH

AM
= 0. The largest errors were observed when the ratio was

1.0. These results agree with the observations above. Following Mellor and
Blumberg [1985] errors are created since AH has a constant value. When
there is no motion and density is a function of z, the horizontal diffusivity,
normal to a sloping bottom, should be zero. As a consequence, there will be
generated a false flow. The above problem is not only found in σ-coordinates
models, but probably in all ocean models [Mellor et al., 1998].

4.4 Discussion on sigma errors

It was observed that the new test case, B3, has vorticity errors. The errors are
stationed close to the steep topography. Analogous to the seamount case, the
number of vortices change in time. They also travel in the beginning before
they become stationary. New bathymetry has shown that the errors are
affected by the topography. The open surroundings around the seamount
may be the reason to why the vortices are more spread out than in B3.
Another reason may be that the vortices follow isolines of the topography as
a result of conservation of potential vorticity.

The plot of the vertical velocities revealed a pattern (Figure 4.5). By
investigating the vertical velocity in given points in the pattern one found
that the velocity oscillated with a constant period. Two experiments were
implemented to shed light on the behaviour. The first investigated the initial
acceleration of the horizontal divergence. It showed that there also are errors
connected to the divergence. From now on these errors will be referred to
as sigma errors of the third kind (SETK). Secondly, the inclusion of the
horizontal advection of the density field showed that the 2∆x noise observed
in the plot of the vertical velocities (Figure 4.6) can be reduced (Figure 4.13).
On the other hand, it was observed that the maximum velocities grew, and
that a new 2∆x noise developed. It is assumed that the results reflect the
nonlinearity of the model.

The horizontal diffusivity was added to observe how the solution was
affected. From the results above one can conclude that the errors were in-
creased. The diffusion may have reduced the oscillations a fraction and made
the growth of the maximum velocities more smooth, but the added errors do
seem to make the model more unstable.
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Chapter 5

Sensitivity to the advection
scheme

The leap-frog scheme used in POM, is known to be too dispersive, while an
other scheme, upwind, is too dissipative [Yang and Przekwas, 1992]. The
given central difference scheme is used to solve the advective term in the
conservation equation for density. By changing the scheme in the approxi-
mation of the vertical advective flux divergence term w

∂ρref

∂z
(Equation (1.6)),

the numerical stability should be affected.

5.1 Upwind scheme

In the following figures the maximum and the vertical velocities are found,
when the upwind scheme is used for the vertical advection of the reference
density. Near the steep gradients the new scheme may eliminate some of
the spurious 2∆x noise observed earlier (Figure 4.6). In contrast to the
leap-frog scheme it has a strong numerical dissipation [Yang and Przekwas,
1992]. Note that the density can not exceed or go below the maximum and
minimum values of the initial density, as long as the CFL criterion is met
[Haidvogel and Beckmann, 1999].

As expected, the results show that the new scheme is more unstable.
The growth of the errors is related to the advection of the density field. A
new pattern is created, it reflects that the new scheme does not use central
differences, see Figures 5.1, 5.2, 5.3.

Notice that the same pattern was observed in Subsection 4.2.3 when the
horizontal advection of the density field was studied (Figure 4.16). Even if
the formations are the same one may assume that they are created for two
different reasons, the fact that nonlinear equations were used and that the
upwind scheme is not centred in time and space.

Note the four distinct formations that appear equally spread on the circle.
They can be observed at all times.
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Figure 5.1: The maximum velocities [m s−1] at 100 m depth as a function of time
in days for B3 with tanh stratification. The upwind scheme is used;
AM = 400 m2 s−1

Figure 5.2: The vertical velocities [m s−1] at 100 m depth after 7 hours in B3 with
tanh stratification. The upwind scheme is used; AM = 400 m2 s−1
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Figure 5.3: The vertical velocities [m s−1] at 100 m depth after 7 hours in in one
part of B3 with tanh stratification. The upwind scheme is used;
AM = 400 m2 s−1

5.2 TVD scheme

The Total Variation Diminishing (TVD) scheme tries to combine the good
properties of the upwind scheme and a higher order scheme. The higher
order scheme is used as much as possible [Yang and Przekwas, 1992], while
the upwind scheme is included near steep topography. By adding dissipation,
with the upwind scheme, the artificial oscillations may be reduced. Here the
TVD scheme, used in the Bergen Ocean Model (BOM), is tested [Berntsen,
2000].

The TVD scheme does not improve the stability of the solution, see Figure
5.4. The growth of the maximum velocities is similar to the increase found
when studying the upwind scheme, see Figure 5.1. Notice that the pattern of
the vertical velocities (Figures 5.5 and 5.6) displays a 2∆x noise at the steep
slope. This is the same type of formations as shown in the above test with
the upwind scheme (Figure 5.2). The characteristic formations observed in
the north, east, south and west of the circular slopes in the prior tests, can
here be observed as an unclear cross in the circle. With the above discussion
in mind, one may assume that the poor results are a consequence of the
weighting of the scheme.
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Figure 5.4: The maximum velocities [m s−1] at 100 m depth as a function of time
in days for B3 with tanh stratification. The TVD scheme is used;
AM = 400 m2 s−1

Figure 5.5: The vertical velocities [m s−1] at 100 m depth after 7 hours in B3
with tanh stratification. The TVD scheme is used; AM = 400 m2 s−1
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Figure 5.6: The vertical velocities [m s−1] at 100 m depth after 7 hours in B3
with tanh stratification. The TVD is used; AM = 400 m2 s−1

5.3 Discussion on advection schemes

The tests show that the scheme chosen for the advective term in the conser-
vation equation for density is of great importance. While the upwind scheme
was assumed to make the results worse, the TVD scheme should have made
the results better. Instead, the TVD scheme tested performed almost as bad
as the upwind scheme. A different TVD scheme [Yang and Przekwas, 1992]
or a different weighting may have given different results.
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Chapter 6

Discussion

There are several ways of forming a coordinate system. When it comes to
ocean modelling, three different systems are widely used. The first is the
traditional Cartesian system, the two others are terrain following (σ) and
isopycnal (ρ) coordinate systems. A transformation in the vertical coordi-
nate may be advantageous in some applications. All three classes of models
have both good and bad aspects. In POM, σ-coordinates are used. A fine
resolution at the surface and at the bottom is therefore achieved. In addition,
all vertical layers are mapped into the ocean. One of the main concerns is
the truncation errors, connected to the estimation of the internal pressure
gradient. These errors often become large near steep bathymetry. If there is
no external forcing and the initial density profile only depends on the vertical
coordinate, no flow should be detected. The artificial velocities may be taken
as a measure of the errors. Other errors are connected to the the diapycnal
diffusion. That is, the density diffusion acts along isosurfaces of σ instead of
density.

Several studies of the internal pressure gradient errors have been made.
The investigations have improved the understanding of the errors and im-
proved the models. The seamount test case has been the pioneer in this work.
Here new test cases of ocean basins have been developed to observe the inter-
nal pressure gradient errors. Findings in this thesis have hopefully resulted in
a better understanding of the errors. It is also necessary to find methods to
reduce or remove the internal pressure gradient errors in σ-coordinate ocean
models.

What is found

The thesis starts with a test of two different basins. The main difference
between the basins is a singularity, where the shelf meets the slope, compared
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to a smooth slope. The results show that the artificial flow is greatly affected
by the change in the bottom topography. It was observed that the generated
velocities were situated in areas with steep bathymetry. As a consequence of
the lower maximum velocities, the basin with the smooth slope was chosen
for the later experiments.

Further on, the model’s ability to display physical phenomena was tested.
The external Kelvin waves were easily reproduced, while the internal Kelvin
waves turned out to be harder to generate. The shelf in the test case was too
shallow. Waves were found when the buoyancy frequency was increased and
the Coriolis parameter was reduced. The model’s ability to show internal
waves is important, since they are ubiquitous in the ocean. Internal waves
should be generated, to restore balance in the model, when the internal
pressure gradient errors perturb the density field. The waves can accordingly
be a measure of the errors.

Mellor et al. [1998] categorised two types of errors connected to the inter-
nal pressure gradient, sigma errors of the first kind (SEFK) and sigma errors
of the second kind (SESK). SEFK are associated with 2D flow and decays
prognostically to zero. The SESK are only found in 3D flows and do not die
out.

In this thesis, one has experienced that the new test case generates SESK.
The curvature of the formations may be the cause of the different appearances
of the vortices. The lonely peak allows for wide spread vortices, while the
circular basin keeps them closer to the steep topography. It is also worth
to note that the vortices in the basin appear to be affected be the Coriolis
force. The SESK may be reduced by replacing the second order POM method
with more recent methods [Chu and Fan, 1997; Thiem and Berntsen, 2006].
Several methods have been developed for the seamount test case, it may be of
interest to observe if the errors created in the basins are reduced accordingly.
With a finer grid resolution, the solution may be stable with a lower viscosity.
It is hard to say if the maximum velocities then are reduced or if the new
viscosity makes the errors grow.

A new kind of errors has also been located and classified as sigma errors
of the third kind (SETK). The new errors are connected to the horizontal
divergence. Artificial convergence and divergence cause the water close to
the slope to oscillate vertically. This is observed in the figures as 2∆x noise.
The initial divergence is, analogous to SESK, computed with estimations
involving the internal pressure gradient, see Section 4.2.2 and [Mellor et al.,
1998]. With the SESK in mind, it may be possible to reduce the SETK by
introducing a higher order method. By testing the methods developed for
SESK, one can observe if SETK are reduced accordingly.

By adding the advection of the density field, one hoped that the errors



Discussion 61

may be reduced. This seems not to be the case. The nonlinearity of the
equations create new 2∆x noise. Circular waves were observed travelling
toward the centre of the basin. One might have thought that the advection
and the influence of the Coriolis could lead to internal waves that travelled
counter clockwise around the oceanic basin. These waves have not been
observed. By reducing the Coriolis parameter or increasing the buoyancy
frequency the waves may become large enough to be reproduced in the model.

Furthermore the horizontal diffusion was added. It is know that when
the density stratification only depends on the vertical coordinate and the
gradients are taken along σ surfaces, there is an effective vertical diffusion.
The truncation errors connected to the estimation of the fluxes increase the
diffusion. In agreement with Mellor et al. [1998], adding the horizontal dif-
fusivity made the maximum velocities grow. The smoothing of the density
field in the vertical may have generated an artificial flow. The model has
then been given new errors by including the horizontal diffusivity.

An alternative way of observing how the numerical approach affects the
internal pressure gradient errors is investigated. The model’s ability to han-
dle the vertical advection of density is tested by changing between different
numerical schemes. Of the schemes investigated the leapfrog scheme, already
used as a standard in the POM code, gives the best results. Further tests
with different schemes may give another result. The TVD scheme used may
e.g. be tested with different weights.

In the test cases, when tanh stratification was used, the most distinct
errors seem to be situated in the north, east, west and south of the circular
slope. The reason may be that the basin has it’s steepest slopes in the
given positions. Another theory is that the locations are a result of the grid
orientation. A test with a rotated grid may give more information about the
phenomenon.

The way forward

As discussed in the introduction, many different approaches have been tested
to deal with the internal pressure gradient errors. Here, new errors have been
found and connected to the divergence. The considerable literature on the
seamount case may give several ideas on how to investigate the new errors.
First one may try different higher order methods and observe how they affect
the SETK.

According to Marsaleix et al. [2009], the initial vorticity can be a measure
of the later errors. The initial divergence may also be such a measure. Then
the two errors together, may give a better understanding of the internal
pressure gradient errors.
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Another way of investigating the errors may be found by reducing the
grid size. Internal waves may then be observed in the simulations. Travelling
around the basin, these waves can be thought of as propagating errors. In
long-time integrations the artificial waves may grow. A measure for the errors
can then be found by observing the internal waves.

In this thesis, different basins with steep shelves have been used to inves-
tigate the internal pressure gradient errors. The new approach has revealed
new aspects of the errors. Hopefully, the new observations will, in time, lead
to an improved model. For the time being, the results may shed new light
on the internal pressure gradient errors.
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