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ABSTRACT 

 

Fibroblast growth factor 8 (Fgf8) is a potent vertebrate morphogen that plays decisive roles 

in multiple developmental processes, such as cellular proliferation, survival, differentiation, 

growth and migration. Fgf8 regionalizes the forebrain and has organizing activity in the 

midbrain–hindbrain boundary (MHB). Fgf8 induces limb formation and maintains the apical 

ectodermal ridge (AER), it controls development of the branchial arches and craniofacial 

skeleton, and its expression in the presomitic mesoderm (PSM) regulates axis elongation, 

and defines somite boundaries. It follws that the spatiotemporal activity and expression 

levels of Fgf8 should be tightly controlled, and this control likely occurs at multiple levels – 

from transcription to regulation of signaling pathways triggered by Fgf8. This thesis 

constitutes an analysis of mechanisms controlling the activity of Fgf8, and shows that slight 

modifications in its expression can alter multiple phenotypic traits. 

Comparative analysis of mammal:teleost conserved chromosomal regions combined 

with enhancer detection revealed functional chromosomal units called genomic regulatory 

blocks (GRBs). GRBs usually contain a developmental control gene, or target gene, whose 

expression is under the control of numerous highly conserved noncoding elements (HCNEs) 

distributed over a large area that can stretch into and beyond adjacent phylogenetically and 

functionally unrelated genes, called bystander genes, expressed in patterns unrelated to the 

target gene. Rearrangements in evolutionarily conserved GRB may have serious 

consequences during development and thereby contribute to human developmental disease.  

 In all vertebrates, as well as the ascidian Ciona intestinalis, the Fgf8 gene is located 

in a block of conserved synteny, which also contains the bystander gene Fbxw4. The teleost 

genomes contain an additional gene upstream of fgf8, slc2A5, which was lost from the 

mammalian lineage, while the fish have lost BTRC, which is found in all tetrapod genomes. 

In addition, a whole genome duplication in the teleost lineage resulted in two fgf8 paralogs, 

fgf8a and –b. Along the fgf8a synteny block a number of HCNEs was detected, located in an 

area of about 200kb, including inside and around adjacent genes. Functional analysis of 

these HCNEs in transgenic zebrafish lines suggested that all of them acting as enhancers 

directed expression of the reporter GFP protein into domains characteristic for fgf8a 

expression, but not for fbxw4 or slc2a5. Even though in teleosts the fgf8a locus is inverted 

with respect to tetrapods, and HCNEs are located on the other site of the gene as a result, 
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they still exhibit specific fgf8a activity. Therefore, fgf8a and the bystander genes fbxw4 and 

slc2a5 genes and cis–regulatory elements of fgf8a constitute a genomic regulatory block 

(GRB), conserved in all teleost genomes. 

 Insertion of tumor viruses in the proximity of developmental control genes can cause 

misregulation of the gene and lead to cancer in the mouse. Long terminal repeats (LTRs) of 

murine tumor viruses contain steroid response elements, which can act as a long–range 

enhancers. Analysis of four enhancer detection lines in the zebrafish, where integrations of 

engineered murine proviral vectors had occurred in a 100kb region around the fgf8a gene, 

caused multiple developmental defects, which were linked to LTR activity. While the 

expression pattern of YFP reporter protein in all fgf8aCLGY lines mimicked, at least partially, 

the endogenous expression domains characteristic of fgf8a, fish from the transgenic lines 

showed extensive phenotypic disorders, including pigmentation anomalies, craniofacial, 

axial and dermal skeleton defects, and abnormal accumulation of subcutaneous and visceral 

fat. These phenotypic changes were connected to elevated expression of fgf8a and became 

manifest during metamorphosis. In addition, transgenic fish had an 80% higher risk of 

malignant lesions in the brain. The strength of the observed phenotype appeared to be 

dependent on the distance of the integration site from fgf8a. Progression of tumorigenesis 

tended to be more severe in males of one line, suggesting androgens as mediators of altered 

fgf8a activity. Morpholino knock–down experiments targeted to androgen receptor 

transcript in this transgenic line could reduce the observed elevated fgf8a level.  

 Fgf8 signaling is also regulated at the protein level by specific antagonists, the 

sprouty proteins. A new member of this family was identified in zebrafish by enhancer 

detection. A transgenic line was isolated with an expression pattern overlapping fgf8a in 

forebrain, dorsal diencephalon, MHB, branchial arches, pectoral fin and PSM. Mapping by 

inverse PCR identified this locus as sprouty1. Sprouty1 is a downstream modulator of Fgf 

signaling and its expression is attenuated by the small molecular inhibitor of FGF receptor 1, 

SU5402.   

 Together these findings highlight complex regulatory mechanisms underlying the 

control, in all vertebrates, of Fgf8, a potent morphogen, which controls multiple aspects of 

animal form and function.  
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GENERAL INTRODUCTION 

 

Fibroblast growth factors (FGFs) and their signaling  

Fibroblast growth factors (FGFs) constitute a family of polypeptide ligands, which by 

binding to specific tyrosine kinase receptors (RTKs) activate cytoplasmic signal 

transduction pathways, controlling in time and space a wide range of developmental and 

physiological processes, including growth, migration, differentiation and proliferation of 

cells from all three germ layers. In the context of a individual multicellular organism, 

changes in FGF signaling can lead to pathogenesis, malformations, and tumor development 

and –progression, while in evolution, altered regulation of Fgfs may have contributed to the 

astonishing variety of animal form.   

 Fibroblast growth factors were originally identified as potent mitogens in cultured 

fibroblasts (Gospodarowicz 1974). The vertebrate Fgf family contains twenty–five 

members, FGF1 – 25. All members of this family are characterized by high homology in a 

central core of 120 –140 amino acids, which fold into twelve antiparallel β–strands that 

form a three–dimensional cylindrical barrel, and have more variable amino– and carboxy 

terminal stretches (Ago et al. 1991; Coulier et al. 1997; Zhu et al. 1991).  

 FGFs stimulate cellular responses by binding to the extracellular domains of their 

specific fibroblast growth factor receptors (FGFRs 1-4), leading to receptor dimerization 

and phosphorylation of the cytoplasmic domain of the FGFR. Molecular association 

between FGF and its receptor requires direct involvement of heparin and heparan sulfate 

glycosaminoglycans (HSGAGs) in a specific complex on the cell surface, which is essential 

for biological activity (Ornitz 2000; Powers et al. 2000; Raman et al. 2003).  

  

Identification of Fgf8 

Fibroblast growth factor 8 was identified as androgen–induced growth factor (AIGF) in the 

conditioned medium of the androgen–dependent mouse mammary Shionogi carcinoma cell 

line SC–3. SC–3 cells, which require androgen for growth stimulation, and presence of 

androgen is also necessary to induce secretion of AIGF (Tanaka et al. 1992). Sequence 

analysis revealed high similarity to other fibroblast growth factors, and AIGF became the 

eighth member of the fibroblast growth factor family (Ohuchi et al. 1994). Restricted and 



 

 

13 

dynamic expression of FGF8 during embryogenesis and morphogenesis suggests a unique 

and important role in the development of multiple embryonic structures.  

 

Fgf8 isoforms in diverse species 

The exon–intron organization of Fgf8 has been highly conserved during vertebrate evolution 

from teleosts to mammals. In many species multiple Fgf8 protein isoforms, which share a 

common carboxyterminal region, but possess different amino termini, are generated by 

alternate splicing of exon 1 (Crossley and Martin 1995; Gemel et al. 1996). Isoforms vary 

by their binding to FGFRs and hence in their biological function, and also in mitogenic and 

transforming capacity. In the mouse, multiple splice donor and splice acceptor sites suggest 

that at least seven Fgf8 isoforms can be generated that differ only at their amino terminus 

(Crossley and Martin 1995; MacArthur et al. 1995a). In humans four isoforms were 

identified that are identical to their murine counterparts in the common carboxyl region of 

the mature protein. They also reveal high homology to corresponding murine isoforms in the 

amino termini (Gemel et al. 1996; Ghosh et al. 1996; Valve et al. 2001). Significant 

diversity is also observed in the 3’–untranslated region of the mRNAs between human 

FGF8 and mouse Fgf8 genes (Ghosh et al. 1996). Chicken and Xenopus Fgf8, like the 

mouse and human counterparts, are also alternatively spliced, but there are only two 

isoforms (Haworth et al. 2005; Sato et al. 2001; Shim et al. 2005). Isoform b of the Fgf8 

protein in human, mouse and chicken, due to its higher affinity for Fgf receptors, has a more 

potent biological activity than other isoforms, (Gnanapragasam et al. 2003; Guo and Li 

2007). In the zebrafish genome, two copies of fgf8 genes were identified (Jovelin et al. 

2007; Kikuta et al. 2007), and fgf8a appears to have two splice variants (Inoue et al. 2006). 

 

Fibroblast growth factor receptors and Fgf8  

Four different fibroblast growth factor receptors (FGFR) were identified in vertebrates, 

including human, mouse, chicken and zebrafish. FGFR 1 – 3 have structural variants 

generated by alternatively spliced exons IIIb – b and IIIc – c, which results in two major 

isoforms containing different immunoglobin–like III domains in the extracellular region 

(Chellaiah et al. 1994; Itoh and Ornitz 2004; Johnson et al. 1991; Lee et al. 1989). FGFR4 is 

unique and has only one possible form of its IgIII domain (Vainikka et al. 1992). Alternative 
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splicing of FGFRs increases the functional diversity of these receptors. Ligand–binding 

specificity and tissue–specific expression properties of alternatively spliced forms of FGFRs 

vary considerably and are essential to the function of the Fgf signaling system (Powers et al. 

2000).  

 FGFRs are widely expressed during vertebrate development, and their highly specific 

expression patterns suggest that each of them plays an important role. Fgfr1 is expressed 

almost exclusively in mesoderm (Orr-Urtreger et al. 1991; Peters et al. 1992; Yamaguchi et 

al. 1992; Yamaguchi et al. 1994), while Fgfr2 is predominantly localized in epithelia (Orr-

Urtreger et al. 1993; Peters et al. 1992), Fgfr3 is expressed in the developing central nervous 

system as well as in developing bones (Peters et al. 1993), whereas Fgfr4 is expressed in the 

endoderm and the somitic myotome (Stark et al. 1991). 

 Diversity in Fgf8 signaling is achieved by differential binding affinity of different 

isoforms of the Fgf8 ligand to different splice variants of Fgfrs during embryogenesis, in 

adulthood, and also in developmental defects and pathological conditions. Fgf8 has high 

affinity to Fgfr2c (Ornitz et al. 1996), and to Fgfr1 (Scholpp et al. 2004). In zebrafish fgfr1 

belongs to the fgf8 synexpression group, and the co–expression of both genes in presomitic 

mesoderm (PSM) is important during somitogenesis (Sawada et al. 2001). Human FGF8 

isoforms mediate signaling by FGFR2c, FGFR3c and FGFR4 (Buratini et al. 2005a; 

Buratini et al. 2005b; MacArthur et al. 1995a; Valve et al. 2001). None of the FGF8 

isoforms interact with the b splice form of FGFR1 – 3, nor with the c form of FGFR1 

(MacArthur et al. 1995a; Valve et al. 2001).  

 

fgf8 duplication and the fgf8/17/18–subfamily 

A whole genome duplication, and concomitant further functional diversification of the 

duplicated genes are thought to underlie the astonishing phenotypic variation and evolution 

of the teleosts (Holland et al. 1994; Wolfe 2001). Duplication of the genes and, importantly, 

their regulatory elements, may have facilitated functional and spatial subfunctionalization 

(Force et al. 1999; Kikuta et al. 2007; Kleinjan et al. 2008; Li et al. 2005; MacCarthy and 

Bergman 2007; Vavouri et al. 2007).  

 A whole genome duplication occurred early in the evolution of the ray–finned fish 

(Actinopterygii) (Amores et al. 1998; Aparicio 2000; Jaillon et al. 2004), and the Fgf 

superfamily reveals traces of expansion and loss through large–scale duplications (Itoh and 
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Ornitz 2004; Popovici et al. 2005). Danio rerio has two paralogs for only about 20% of 

identified human genes (Postlethwait et al. 2000), suggesting an intense rediploidization 

process.  

Three Fgf genes have been identified in Drosophila melanogaster, named branchless 

(Sutherland et al. 1996), thisbe (also known as fgf8–like 1) and pyramus (also known as 

fgf8–like 2) (Gryzik and Muller 2004; Stathopoulos et al. 2004), and two in Caenorhabditis 

elegans (egl–17 and let–756) (Burdine et al. 1997; Coulier et al. 1997). A survey of Fgf 

genes in the basal urochordate, the ascidian Ciona intestinalis, reveals presence of only six 

ancestors of vertebrate FGFs. One of them, Ci–Fgf8/17/18, was assigned by phylogenetic 

analysis as an ortholog of vertebrate FGF8, FGF17 and FGF18 genes (Satou et al. 2002). 

During two subsequent whole genome duplications, the ancestral Fgf8/17/18 became 

multiplied into the three members of the tetrapod Fgf8/17/18 subfamily (Jovelin et al. 2007). 

Fgf17 and Fgf18 reveal a high level of homology to the main member of the subfamily, 

Fgf8, whose functions in many aspects of embryonic development seem to be highly 

conserved in relatively distant species, such as mouse and zebrafish. The teleost 

Fgf8/17/18–subfamily also includes Fgf24 (Itoh and Ornitz 2004; Popovici et al. 2005), 

which has the highest sequence similarity to Fgf18 in teleosts (Fischer et al. 2003).  

The single ancestral copy of Fgf8 found in tetrapods underwent duplication during 

the teleost genome duplication, and in zebrafish and stickleback two copies of the fgf8 gene 

were identified, fgf8a (on chromosome 13 in zebrafish) and fgf8b (on chromosome 1 in 

zebrafish) (Jovelin et al. 2007; Kikuta et al. 2007). The duplication event was followed by 

lineage–specific subfunctionalization (Jovelin et al. 2007). Expression of fgf8b (previously 

known as a fgf17a (Reifers et al. 2000a)) begins later compared to fgf8a and its transcript is 

not detectable during gastrulation. Expression of fgf8b largely overlaps with fgf8a, and it is 

expressed in a subpopulation of fgf8a–positive cells, namely those with high level of fgf8a 

transcripts. Thus, fgf8b is present at the midbrain–hindbrain boundary (MHB), the optic 

stalk and anteromedial margin of the maturing somites. Later, fgf8b transcripts are 

detectable in the otic vesicle, hyoid cartilage and the dorsal diencephalon close to the 

forming epiphysis (Reifers et al. 2000a).  
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Fgf8 loss–of–function mutants 

During embryogenesis, fgf8a is expressed in organizing centers. Its expression starts at early 

stages of gastrulation, and is highly dynamic and spatially restricted (Furthauer et al. 2004; 

Reifers et al. 1998). The zebrafish loss–of–function mutant of fgf8a, acerebellar (ace), dies 

at around 2 – 3 days because of multiple malformations and heart oedema. Homozygous ace 

mutants fail to develop the MHB and cerebellum (Reifers et al. 1998), they have ear defects 

(Leger and Brand 2002; Phillips et al. 2001), heart abnormalities (Reifers et al. 2000b), and 

forebrain and optic stalk defects (Shanmugalingam et al. 2000). 

Zebrafish acerebellar constitutes a splice mutation, which deletes 107 base pairs 

corresponding to exon 2, from the mRNA. A G to A mutation inactivates the splice donor 

site, leading to skipping of exon 2 and a shift in the open reading frame, and as a result to a 

premature stop codon. Thus ace protein lacks the amino acids encoded by exon 2 and 3, 

which are required to activate the receptor and which are conserved between Fgf8 proteins 

(Lorenzi et al. 1995). The acerebellar phenotype can be mimicked by antisense morpholinos 

against the fgf8a mRNA, targeted to the start codon (Araki and Brand 2001). 

In mouse Fgf8 is initially expressed in the primitive streak, and is essential for cell 

migration during gastrulation. In the Fgf8 knockout mouse mutant, epiblast cells undergo 

epithelial–to–mesenchymal transition, but fail to move away from the streak. As a 

consequence no endodermal or mesodermal structures are formed, and mutant embryos do 

not proceed through gastrulation  (Sun et al. 1999). 

 

Fgf8 is important for early vertebrate embryogenesis  

An essential role of Fgf8 was revealed in gastrulation, somitogenesis, brain development, 

and also in limb and craniofacial morphogenesis. Regions where high levels of Fgf8 

transcript are detected are known to direct patterning and outgrowth of embryonic 

structures, and Fgf8 has been recognized as a morphogen acting in organizing centers in the 

embryo. 

In situ hybridization analysis reveals that Fgf8 is predominantly expressed in the 

primitive streak region in mouse (Crossley and Martin 1995) and fgf8a in the embryonic 

shield, the zebrafish equivalent to the Spemann organizer (Reifers et al. 1998). Further 

prominent expression domains include the MHB (Irving and Mason 2000; Jaszai et al. 2003; 

Mason et al. 2000; Picker et al. 1999; Reifers et al. 1998), the rostral forebrain 
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(Shanmugalingam et al. 2000; Walshe and Mason 2003b), limb ectoderm and apical 

ectodermal ridge (AER) (Boulet et al. 2004; Lewandoski et al. 2000; Mahmood et al. 1995; 

Moon and Capecchi 2000; Ohuchi et al. 1997; Sun et al. 2002), and branchial arch ectoderm 

and the craniofacial skeleton (Abu-Issa et al. 2002; Albertson and Yelick 2007; Hall et al. 

2006; MacArthur et al. 1995a; Tucker et al. 1999a; Tucker et al. 1999b; Walshe and Mason 

2003a). 

 

Fgf8 is an organizer of brain development 

Vertebrate brain patterning depends on an organizing center located at the isthmus, a 

constriction in the embryonic midbrain–hindbrain region. Specialization of the 

mesencephalon (midbrain) and metencephalon (rhombomere 1 at the anterior end of the 

hindbrain) and anterior–posterior patterning of this region starts during gastrulation, with the 

beginning of zygotic gene expression of engrailed–related En1 and paired–related Pax2, 

which distinguishes these two regions of the brain (Bouchard et al. 2000; Hanks et al. 1995; 

Schwarz et al. 1997; Wurst et al. 1994). Otx2 and Gbx2 are also required for positioning of 

the isthmus, by antagonistic actions (Li and Joyner 2001; Liu and Joyner 2001; Simeone 

2000).    

Grafting experiments in chick revealed isthmus activity in patterning of the midbrain 

and cerebellum. Tissue containing the midbrain–hindbrain boundary, when grafted to caudal 

forebrain, can induce a cell identity change and guide development of forebrain towards an 

ectopic midbrain, and when the isthmus is transplanted into posterior hindbrain it induces 

the development of ectopic cerebellar structures (Marin and Puelles 1994; Martinez et al. 

1991).     

Fgf8 protein can induce ectopic expression of genes in the forebrain that are 

normally expressed in the isthmus. Signals from the ectopic isthmus–like organizing center 

induce formation of ectopic midbrain, in a mirror image of normal midbrain (Crossley et al. 

1996a; Martinez et al. 1999). Thus, Fgf8 produced in the isthmus is necessary for 

establishment and maintenance of a signaling center in the MHB (Chi et al. 2003; Mason et 

al. 2000; Rhinn and Brand 2001). In mammals, Fgf8 is also involved in cortical patterning 

(O'Leary et al. 2007) and in zebrafish for establishment of correct retinotopic projections 

(Picker and Brand 2005). 
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Fgf8 determines size and shape of somites and somite boundaries 

In vertebrates, the primary segmented tissue of the body axis, the vertebrae, ribs, skeletal 

muscle and dorsal dermis are derived from blocks of paraxial mesoderm, the somites that 

become patterned during early embryogenesis. Somitogenesis requires strict temporal and 

spatial regulation by the segmentation clock through oscillating gene expression and a 

wavefront formed by gradient expression of Fgf8 (Baker et al. 2006a; Baker et al. 2006b). 

Somite formation starts in the presomitic mesoderm (PSM) in the tail that forms two parallel 

bands alongside the posterior notochord. PSM does not exhibit any segmentation, but 

displays rhythmic expression of particular genes (Pourquie 2003), and this activity persists 

throughout somitogenesis (Jouve et al. 2002). Somite formation proceeds in a strict 

anteroposterior sequence such that a new pair of somites is regularly added in a rostro–

caudal fashion until a fixed species–specific number of somites is reached (Collier et al. 

2000; Schnell et al. 2002; Stickney et al. 2000).  

Several genes reveal dynamic expression in the PSM, with the oscillatory frequency 

equal to the time necessary to form one somite (McGrew et al. 1998; McGrew and Pourquie 

1998; Palmeirim et al. 1997). During the formation of somites, bands of periodic expression 

of the hairy1 basic helix loop helix (b–HLH) transcription factor (Palmeirim et al. 1997) and 

lunatic fringe (l–fng) (McGrew et al. 1998) sweep along the PSM, triggered by the 

segmentation clock. Notch–Delta signaling also defines somite boundaries (Conlon et al. 

1995; Jiang et al. 2000; Jiang et al. 1998; McGrew et al. 1998).  

Fgf8 protein is expressed at high levels only in the posterior PSM, and through 

subsequent Fgf8 mRNA decay generates a gradient along the somites with the highest level 

in the posteriormost region (Dubrulle and Pourquie 2002; Dubrulle and Pourquie 2004). 

Fgf8 generates a moving wavefront along the AP axis of the PSM, which controls both 

segment boundary position and axial identity (Dubrulle et al. 2001; Sawada et al. 2001). 

High levels of Fgf8 at the posterior region of PSM are required to maintain the newly 

formed PSM cells in an immature and undifferentiated state. During maturation of the 

somite, while the cells move away from their origin in the PSM, FGF8 levels progressively 

decrease, and cells reach a threshold of FGF signaling, called the determination front, at a 

certain level of the PSM, which activates the segmentation process (Delfini et al. 2005). By 

decreasing levels of Fgf signaling, for example by incubation of zebrafish embryos in the 

small molecule inhibitor of Fgfr, SU5402, abnormally large somites are formed, while the 



 

 

19 

opposite effect is observed after transplantation of Fgf8–soaked beads into the paraxial 

mesoderm in the tailbud region (Sawada et al. 2001). In zebrafish, and presumably other 

teleosts as well, posterior mesoderm is not regulated by fgf8 alone, but requires in addition 

the teleost–specific fgf24 (Draper et al. 2003). 

A further important function in determining the wavefront in the PSM and in the 

formation of somites is played by retinoic acid (RA), which generates a gradient 

antagonistic to Fgf8. RA attenuates Fgf8 expression in paraxial mesoderm, and through this 

controls somite boundary position (Diez del Corral et al. 2003). Collectively, these findings 

show that vertebrate axis formation depends crucially on the number of Fgf8 transcripts per 

cell, which by way of mRNA decay results in the formation of a protein gradient in a 

posterior to anterior direction.  

 

Fgf8 initiates and maintains vertebrate limb outgrowth and patterning 

The outgrowth and patterning of the vertebrate limb bud is the result of a reciprocal 

interaction between the mesoderm and a specialized region of the ectoderm, the apical 

ectodermal ridge (AER), which rims the distal tip of the limb bud (Lewandoski et al. 2000; 

Mahmood et al. 1995; Martin 1998; Sun et al. 2002), and which promotes proximal–distal 

(PD) limb outgrowth (Capdevila and Izpisua Belmonte 2001). Signals emanating from the 

AER act to maintain the underlying mesoderm, called the progress zone (PZ), in a highly 

proliferative and undifferentiated state, and cells from the PZ are assigned progressively 

more distal positional values during limb growth. Several Fgf genes are expressed in the 

developing limb in AER–specific patterns: Fgf4 (Moon et al. 2000; Sun et al. 2000), Fgf8 

(Lewandoski et al. 2000; Moon and Capecchi 2000), Fgf9 (Colvin et al. 1999; Colvin et al. 

2001) and Fgf17 (Amsterdam et al. 1999; Martin 1998; Xu et al. 2000). In mouse individual 

loss of function of Fgf4, Fgf9 and Fgf17 has no effect on limb development, whereas 

inactivation of Fgf8 causes limb truncation, identifying it as the gene with a primary role in 

limb development (Lewandoski et al. 2000). It is expressed in the ectoderm of the 

prospective limb territory prior to morphological outgrowth of the limb bud in both mouse 

and chick, and is maintained throughout the AER during the period of limb development 

(Mahmood et al. 1995). Fgf8 also maintains Sonic hedgehog expression in the zone of 

polarizing activity (ZPA) in the limb bud (Crossley et al. 1996b), another organizing center. 
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Removal of the AER results in the cessation of limb bud growth, thus causing limb 

truncation along the proximo–distal axis and lack of distal skeletal elements (Mahmood et 

al. 1995). Substitution of the surgically removed AER by Fgf8 protein maintains limb bud 

outgrowth in mouse embryos (Crossley et al. 1996b; Mahmood et al. 1995), suggesting that 

Fgf8 signaling mediates AER activity (Crossley et al. 1996b; Vogel et al. 1996). The 

duration of Fgf8 expression in the AER of the developing limb has also a function in the 

development of digits, as prolonged signaling leads to formation of additional phalanges by 

elongation and segmentation of the penultimate phalanx, and to formation of an additional 

joint. Thus, high levels of Fgf8 inhibit tip formation and promote elongation of digit 

primordia, whereas artificial attenuation of Fgf signaling induces premature tip formation 

(Sanz-Ezquerro and Tickle 2003).    

Teleost pectoral fins are homologous to tetrapod forelimbs (Sordino et al. 1995), and 

fgf8a is expressed in AER during fin development. However, its disruption does not cause 

any developmental defects in the fin, which are normal in acerebellar mutant larvae (Reifers 

et al. 1998). The crucial role in the fish AER is instead performed by fgf24, a teleost specific 

member of the fgf8/17/18 family, and zebrafish with loss–of–function mutation in the fgf24 

gene accordingly lack pectoral fins (Fischer et al. 2003).   

 

Fgf8 function in skeletal development 

Fgf signaling also plays important roles during the development of the skeleton. 

Perturbations of Fgf signaling during craniofacial skeleton development leads to multiple 

alterations of the head skeleton, and form a genetic background of various dysmorphology 

syndromes (Ornitz and Marie 2002; Passos-Bueno et al. 1999). 

Fgf8 is required for the patterning of mesenchymal cells of cephalic neural crest, and 

regulates morphogenesis of the craniofacial skeleton. In the absence of Fgf signaling, no 

pharyngeal and neurocranial cartilages are formed (Creuzet et al. 2005; Crump et al. 2004; 

Walshe and Mason 2003a). Neural crest cells participating in the formation of head bones 

and cartilages can be divided into a Hox–negative anterior domain, which predominantly 

yields bones and cartilages of the face (facial skeletogenic neural crest, FSNC), and a 

posterior domain, where Hox genes of the four first paraloguous groups are activated, and 

which generate a small part of the head skeleton, the hyoid cartilage (Couly et al. 1996; 

Couly et al. 1993). Rhombomere 3 (r3) partially participates in both domains, although its 
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contribution to branchial arches is minor, since most of the neural crest cells derived from r3 

normally undergo apoptosis (Graham et al. 1994; Graham et al. 1993). Exogenous Fgf8 

protein is able to rescue development after experimental excision of the FSNC through 

recruitment of cells from r3 (Creuzet et al. 2005). Craniofacial defects are connected with 

Fgf8 function in proliferation, migration and survival of neural crest cells (Creuzet et al. 

2004; Crump et al. 2004; Walshe and Mason 2003a).  

Zebrafish acerebellar heterozygous adults show various craniofacial defects, such as 

ectopic bone growth, aberrant cranial suturing and asymmetrically missing cartilages, likely 

because of fgf8a haploinsufficiency (Albertson and Yelick 2005; Albertson and Yelick 

2007). However, increasing Fgf8 activity is also associated with ectopic bone formation, and 

vertebral–fusion defects were recently described and linked with high level of Fgf8 

expression in vertebral bodies in the mouse. Fgf8 knock–in to the Tbx1 domain resulted in 

viable and fertile mice with hypoplasia in the two anterior cervical vertebrae and fusion of 

vertebral bodies (Vitelli et al. 2006). Fgf8 is widely expressed during early stages of skeletal 

development, and is involved in cartilage and bone formation (Huang et al. 2003; Moon and 

Capecchi 2000; Walshe and Mason 2003a; Xu et al. 1999). Addition of exogenous Fgf8 

protein to mouse bone marrow cultures significantly promotes cell proliferation and 

subsequent osteoblastic differentiation, suggesting a function in bone formation in vivo 

(Valta et al. 2006). Interestingly, increased expression of Fgf8 in androgen–dependent breast 

and prostate tumors is correlated to occasional ectopic cartilage and bone–like structures in 

the tumors (Kaufman et al. 1984; Valta et al. 2006). 

  

Fgf signaling is controlled by negative regulators, the Sprouty proteins 

Fgf and Egf signaling is mediated by specific receptor tyrosine kinases (RTKs), whose 

activity is orchestrated in space and time by negative and positive regulators (Fernig and 

Gallagher 1994; Kramer et al. 1999; Reich et al. 1999). Sprouty (Spry) proteins inhibit RTK 

signaling through negative feedback loops, and their expression is stimulated by the ligand 

whose pathway they inhibit (Mason et al. 2004).  

Sprouty was identified in Drosophila as a regulator of tracheal branching and eye 

development (Casci et al. 1999; Hacohen et al. 1998). Vertebrate genomes including the 

teleosts contain four sprouty homologs (de Maximy et al. 1999; Huebert et al. 2004; 

Mailleux et al. 2001; Minowada et al. 1999; Tefft et al. 1999; Wang et al. 2006). Through 
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their negative regulation of Fgf signaling, Sprouty proteins have important regulatory 

functions during embryogenesis and in adulthood, and regulatory defects can lead to various 

developmental disorders and cancers (Basson et al. 2005; Goodnough et al. 2007; Kwabi-

Addo et al. 2004; Sutterluty et al. 2007; Wang et al. 2006). 

The Sprouty proteins are regulated at the transcriptional level, but also through 

posttranslational modification, and through cellular localization. Endogenous Sprouty 

proteins are localized in the perinuclear region, in vesicles, and in the plasma membrane 

(Impagnatiello et al. 2001; Yigzaw et al. 2001). Upon growth factor stimulation of RTK 

Sprouty protein is translocated to the plasma membrane, where several Sprouty binding 

partners are located (Gross et al. 2001; Lim et al. 2000; Lim et al. 2002; Sasaki et al. 2003). 

Sprouty specifically inhibits the Ras/MAP/ERK signaling pathway (Shaw et al. 2007), but 

does not affect the phosphoinositide 3–kinase (PI3K) and other MAPK pathways (Yusoff et 

al. 2002). The exact mechanism and place of action of Sprouty proteins in the pathway 

remains controversial: Sprouty may act downstream of RTK and upstream of Ras or at the 

level of Raf (Gross et al. 2001; Hacohen et al. 1998; Leeksma et al. 2002; Reich et al. 1999; 

Yusoff et al. 2002). Nevertheless, the Sprouty proteins add an additional level of regulation 

to the control of Fgf signaling. 

 

CLGY enhancer trap lines 

Insertional mutagenesis and enhancer detection using retroviral vectors constitute an 

efficient method to characterize known as well as unknown regulatory genes involved in 

developmental processes and oncogenic transformation in mouse and zebrafish (Amsterdam 

2003; Amsterdam et al. 1999; Ellingsen et al. 2005; Nakamura et al. 2005; Sivasubbu et al. 

2007; Theodorou et al. 2007; Wang et al. 2007).  

In a large–scale screen in our labolatory, a zebrafish proximal gata2 promoter (Meng 

et al. 1997) was ligated into an engineered Moloney murine leukemia virus (MLV) derived 

CL vector (Naviaux et al. 1996), upstream of a gene encoding yellow fluorescent protein 

(YFP), thus creating the CL–GATA2–YFP (CLGY) enhancer detection vector (Ellingsen et 

al. 2005). The virus was pseudotyped with the Vesicular Stomatitis Virus G protein (VSV–

G), enabling infection of zebrafish cells (Burns et al. 1993; Gaiano et al. 1996a). When the 

provirus inserts in the proximity of long–range cis–regulatory elements, the gata2 promoter 

becomes activated and expresses YFP in a tissue specific manner. YFP expression patterns 
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mimic domains characteristic for the gene normally regulated by these non–coding elements 

(Ellingsen et al. 2005). Integration sites of the CLGY provirus were identified by obtaining 

genomic sequences flanking the provirus through linker mediated PCR (LM–PCR) (Wu et 

al. 2003). Subsequently, sequences were mapped to the zebrafish genome assembly in the 

Ensembl database (www.ensembl.org/Danio_rerio), using BLASTN (Ellingsen et al. 2005).    

During the large–scale enhancer detection screen around 1240 transgenic lines with 

tissue–specific YFP expression pattern were generated. While many of the mapped 

insertions occurred at a small distance from genes with developmental functions, others 

occurred far away from such genes (Ellingsen et al. 2005). 

Among CLGY enhancer detection lines generated in our laboratory, a few showed 

phenotypic effects in adulthood. Insertions in four such lines were mapped near the fgf8a 

locus and cause pigment pattern anomalies and body shape defects. The proviral integrations 

near fgf8a CLGY508, 657, 667 and 1030 (Paper I and III) and spry1 CLGY786 (Paper IV) 

are listed in Table 1.  

 

 

 

 

 

 

Table 1. CLGY enhancer detection transgenic zebrafish lines used during the research in this 

thesis. Chromosomal positions are based on zebrafish genomic assembly Ensembl Zv7.  

CLGY 

line 

Chromosome 

position 

Flanking 

seq. 

length 

(bp)  

ID 

(bp) 

Target 

gene 

 

Distance 

from the 

promoter 

reference 

508 chr:13 20563141–

20563300 

160 159 fgf8 9.952bp 

downstream 

(Kikuta et al. 

2007) 

657 chr:13 20493685–

20493754 

70 70 fgf8 79.498bp 

downstream 

(Kikuta et al. 

2007) 

667 chr:13 20525014–

20525158 

145 145 fgf8 48.094bp 

downstream 

(Kikuta et al. 

2007) 

1030 chr:13 20596055–

20596268 

214 212 fgf8 23.016bp 

upstream 

(Kikuta et al. 

2007) 

786 chr :14  868323– 

868595 

273 271 spry1 3.333bp 

upstream 

Paper IV 
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AIM OF STUDY 

 

In light of available data, Fgf8 appears to be an important morphogen, and crucial 

developmental regulator. Its function in initiation and patterning of brain, craniofacial 

skeleton, limb formation, somitogenesis and many other embryonic structures has been 

extensively explored for the last decade, but very little is understood of how the gene is 

regulated. Given that the concentration of its mRNA often decides the fate of a cell within a 

given regulatory network, transcriptional control of Fgf8 must be precise. 

 

The aim of the present study was to investigate aspects of the regulation of fgf8a expression 

using zebrafish as a model system. In particular: 

• To define regulatory elements controlling the transcription of Fgf8, their location, 

and the transcriptional patterns they direct in transgenic fish. 

• To characterize a number of retroviral insertions that appeared to interfere with 

normal Fgf8 signaling, and an investigation of the phenotypic consequences. 

• To map the proviral insertion in an enhancer trap line with expression pattern similar 

to fgf8a and characterize the identified gene. 

 

The combination of zebrafish as an animal model and emerging knowledge about the 

organization of genes and regulatory elements into genomic functional and structural 

chromosomal units involved in regulation of developmental genes allowed investigation of 

cis–regulation of the fgf8a, and this thesis provides observations which might help to 

explain the genetic mechanism of human split hand/foot malformation 3 (SHFM3).  

 

In more general terms, this investigation intended to gain insight into the cis–regulatory 

activity mediated by highly conserved noncoding elements (HCNEs), which control 

regulation of fgf8a in zebrafish. This thesis provides details of organization of HCNEs in the 

fgf8a locus and shows that these elements are distributed within and beyond bystander genes 

in the region.  

Finally this study highlights that exogenous sequences derived from retroviruses 

inserted into a genomic region dedicated to regulation of a morphogen can lead to 



 

 

26 

significant changes in gene activity, phenotypic traits, and might serve as a model for 

exaptation of newly inserted regulatory sequence in evolution.  
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SUMMARY OF RESULTS 

 

Paper I – Genomic regulatory blocks encompass multiple neighboring genes and 

maintain conserved synteny in vertebrates. 

Chromosomal areas containing long–range regulatory elements (>1Mb), are “protected” 

from evolutionary breaks, which would otherwise disturb regulation of developmental 

control genes (Becker and Lenhard 2007). While this observation challenges the random 

breakage theory of chromosomal evolution (Nadeau and Taylor 1984), comparative analysis 

of multiple genomes revealed numerous very short, “hidden” synteny blocks containing 

tandem repeats, suggesting that these regions had broken repeatedly during vertebrate 

evolution. To describe this process the term “breakpoint reuse” was coined, which indicates 

that multiple breaks have happened repeatedly in these fragile regions, between long 

“protected” regions of conserved synteny.  

But why are long blocks of conserved synteny kept intact? The conserved genomic 

segments are enriched for highly conserved noncoding elements (HCNEs) which control the 

expression of target developmental gene(s). Thus, the target gene plus its multiple 

regulatory inputs in the form of HCNEs create a regulatory, functional domain, called a 

genomic regulatory block (GRB). GRBs also contain so–called “bystander” genes, 

phylogenetically and functionally unrelated transcriptional units that are not under the 

specific control of the regulatory elements, and are often expressed in patterns that are 

distinct from that of the target gene. Thus, developmental control genes are often regulated 

by elements inside or beyond other genes, from distance of hundreds of kilobases away, and 

this type of arrangement has been conserved for several hundred million years.   

 Fgf8 is kept in a syntenic block with its downstream neighbor Fbxw4, in all 

vertebrates, and also in Ciona genomes. The ancestral vertebrate synteny block underwent 

duplication in teleosts, and in zebrafish there are two copies of fgf8, fgf8a on chromosome 

13 and fgf8b on chromosome 1. Orthologs of POLL and NP_056263.1 genes present in 

human FGF8 locus were lost in the zebrafish fgf8a block, and the FBXW4 ortholog was lost 

from the fgf8b locus. NPM3 is found elsewhere on zebrafish chromosome 13, separated 

from both fgf8 loci.  

 Enhancer detection in zebrafish allows visualization of cis–regulatory content of the 

region into which the insertion has occurred. Four insertions were mapped to the fgf8a GRB 
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on chromosome 13, and all of them exhibit fgf8a–like patterns. The organization of 

regulatory elements in the proximity of the Fgf8/fgf8a has recently been analyzed in mouse 

and in zebrafish, but the results in this thesis suggest that the fgf8a regulatory block is much 

larger, including also the adjacent genes, slc2a and fbxw4. 

 

Paper II – Roles for teleost-specific and pan-vertebrate noncoding elements in cis- 

regulation of zebrafish fgf8a  

The introns of zebrafish fgf8a and and the intergenic regions towards the neighboring genes 

slc2a5 and fbxw4 contain numerous regulatory elements tested before (Inoue et al. 2006; 

Inoue et al. 2008), although these do not explain the expression of fgf8a in for example the 

somitic mesoderm. Comparative analysis of zebrafish fgf8a locus with other vertebrate 

species reveals the presence of highly conserved noncoding elements (HCNEs) in an area of 

approximately 200kb around fgf8a, including in the adjacent genes fbxw4 and slc2a5.  

These putative regulatory sequences around fgf8a, and in the adjacent genes and 

sequence beyond them were tested in multiple transgenic lines in zebrafish. Sequences were 

amplified and cloned upstream to zebrafish gata2:GFP in the destination vector based on the 

Tol2 transposone. 22 regulatory sequences were tested form zebrafish and one conserved 

only in tetrapods, which in a mouse assay directed reporter expression to the AER 

(Beermann et al. 2006).  

Tested elements, based on the obtained results, were divided into three groups: 1. 

Negative elements, which did not exhibit regulatory activity. 2. Positive elements, which 

show specific fgf8a pattern in highly reproducible manner, and 3. Positive elements, which 

show fgf8a specific expression, but variations between lines are observed. The majority of 

positive elements directed expression of green fluorescent protein in pattern consistent with 

fgf8a expression domains, including the elements located in the adjacent slc2a5 or fbxw4 

genes, which are expressed in skin cells and ubiquitously, respectively, and beyond these 

genes.  

 Although the fgf8a locus is inverted in teleost genomes with respect to tetrapods, 

cis–regulatory elements located upstream to fgf8a, in slc2a5 and beyond, are located far 

downstream in the human FGF8 locus in the neighbor gene BTRC. However, these 

elements, located across an evolutionary breakpoint, exhibited fgf8a specific activity. 
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Paper III – Modulation of multiple phenotypic traits in zebrafish by insertion of steroid 

responsive retroviral sequences in the fgf8a genomic regulatory block. 

Integration of the pseudotyped MLV–derived CLGY vector in the fgf8a/fbxw4 locus in 

zebrafish was observed to lead to phenotypic defects. One line, fgf8aCLGY1030, was mapped 

approximately 22.8kb upstream of fgf8a, and three lines, fgf8aCLGY508, fgf8aCLGY657 and 

fgf8aCLGY667 downstream from the gene at distances between 10 to 79.5kb from the fgf8a 

initiation codon, and one of these into the adjacent fbxw4 gene (Table 1). Individuals from 

fgf8aCLGY lines exhibit pigment stripe anomalies in adulthood, a phenotype that was 

previously described in the hagoromo (hag) zebrafish mutant, generated by proviral 

integration in the fifth intron of the fbxw4 gene (Kawakami et al. 2000). 

 All fgf8aCLGY lines represent alleles of hagoromo, with variable severity of the 

phenotype, from almost normal stripes in allele fgf8aCLGY657, increasing in allele fgf8aCLGY667 

and fgf8aCLGY508, to the most extreme in fgf8aCLGY1030. Investigation of pigment formation 

revealed that the larval pattern is not affected in mutants. Defects appear during 

metamorphosis, and adult fish have stripes that are branched, fused and wavy. The scales, a 

typical adult feature in zebrafish, are polymorphic and vary in size, and form on the body 

flank, and fail to develop in the dorsal and ventral regions of body.   

In addition, changes in body shape in fgf8aCLGY1030. is caused by accumulation of 

subcutaneous fat and severe malformations of the vertebral column and subtle craniofacial 

changes. The vertebral centra undergo fusion, and hemal and neural spines have multiple 

outgrowths and changed oriented towards the vertebral column. A decreased dose of fgf8a 

in fgf8a+/- fish also was found to exhibit mild vertebral column malformations. Skeletal 

defects in the fgf8aCLGY mutants appear during metamorphosis, and are associated with 

higher level of fgf8a expression in the tissue surrounding the notochord.   

 Increased levels of the fgf8a expression are detected in larval and adult cerebellum. 

Knock–down experiment with morpholino targeted to androgen receptor transcript rescued 

elevated fgf8a expression in mutant larvae, suggesting that increased level of fgf8a in 

fgf8aCLGY mutants can be at least partially mediated by androgens.     
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Paper IV – Enhancer detection and developmental expression of zebrafish sprouty1, a 

member of the fgf8 synexpression group. 

During a large–scale enhancer detection screen, the CLGY786 line was recovered, where 

YFP expression pattern overlapped with that of fibroblast growth factor 8 a (fgf8a). The 

proviral vector in this line was mapped 3.333kb upstream to a zebrafish gene, which was 

identified as a member of the zebrafish sprouty (spry) family, and phylogenetic analysis 

determined this gene to be a homolog of vertebrate Spry1 genes.  

 The full–length cDNA of spry1 comprises 1270 nucleotides, containing a single 

open reading frame of 879bp, and encodes a predicted protein of 292 amino acid residues 

with a molecular weight of 27.7kDA (bankit1053103 EU379656). Amino acid sequence 

analysis showed conserved domains and motifs characteristic for Sprouty proteins.  

 Comparison of the spry1 endogenous expression pattern by in situ hybridization and 

YFP reporter protein reveals significant similarities, and confirmed that enhancer trap line 

CLGY786 is a faithful reporter of endogenous spry1. Expression of spry1 reveals a striking 

correlation with the fgf8a, spry2 and spry4 domains. In the brain it is expressed in 

telencephalon, dorsal diencephalon, midbrain–hindbrain boundary and rhombomeres. In the 

head region spry1 positive cells are located in branchial arches and later in craniofacial 

skeleton and gill epithelium, and also in the optic stalk and ventral retina. In the trunk spry1 

is expressed in the lateral line, pronephros, and newly formed somites, neural plate, and later 

in notochord and tail fin fold.    

spry1 expression is attenuated in the fgf8/acerebellar mutant and also by the small 

molecule inhibitor of receptor tyrosin kinase, SU5402, attesting an immediate regulation by 

Fgf activity and showing that sprouty1 is a negative regulator of Fgf signaling.  
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GENERAL DISCUSSION  

 

This thesis investigates aspects of the regulation of a prominent vertebrate gene, fibroblast 

growth factor 8 (Fgf8) and one of its downstream regulators, sprouty1 (Spry1). During the 

early phases of my studies, I participated in the genomic mapping of a number of enhancer 

detection insertions during a large–scale screen that culminated in the realization that groups 

of genes have been held together in evolution in all vertebrate genomes by regulatory 

sequences (Paper I). In particular, I mapped and characterized the retroviral insertions 

fgf8aCLGY1030 and spry1CLGY786, which provided the basis for experiments resulting in papers 

III and IV. To further characterize the organization of regulatory elements of the zebrafish 

fgf8a gene, and by extension other vertebrate Fgf8 genes on the basis of the highly 

conserved nature of these regions, I characterized the function and location of individual 

regulatory elements controlling the expression of fgf8a. For reasons of a better flow of 

argument, this study has been inserted as paper II. 

 

Organization of the genome into functional regulatory units  

Comparison of the genomes of evolutionary distant vertebrate species like human and 

zebrafish reveals the presence of long chromosomal blocks in which the order of genes, as 

well as interspersed short stretches of conserved non coding sequence are conserved to a 

much higher degree than would be assumed under a random breakage model. Enhancer 

detection insertions in several such conserved blocks suggested that the regulatory elements 

spanning this sequence often are devoted to the regulation of a single developmental control 

gene within this chromosomal segment, the target gene, but not other, unrelated, non–

developmental genes, the bystander genes. These blocks were recognized as functional units 

and were named genomic regulatory blocks (GRBs). The target genes are generally known 

from the literature and are those with essential roles during development, such as 

transcription factors, growth factors, their downstream regulators, and others. Many of these 

genes have multiple roles during development and therefore their expression must be strictly 

controlled on multiple levels, beginning with transcription regulation. Meanwhile, the 

bystander genes are usually functionally unrelated to target genes, and their expression 

pattern, often ubiquitous and/or low level, is different from the often highly restricted 

patterns of the target gene. Thus, the regulatory activity of clusters of highly conserved 

noncoding elements (HCNEs) spanning the GRB is directed toward the target gene, and 
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usually not the bystander genes, even if the latter contain these HCNEs. The result is 

colinear organization of genes and cis–regulatory sequences in the genomes of different 

species, maintained by evolutionary pressure, which had previously been hypothesized 

(Ahituv et al. 2005; Kleinjan and van Heyningen 2005; Mackenzie et al. 2004). 

Enhancer detection in the zebrafish uncovered a number of these GRBs, showing 

that they are the primary reason for conserved synteny among distantly related species, and 

also suggested that these functional units might help in the understanding of regulatory 

mutations underlying human disease.  

 Amongst 1200 CLGY enhancer trap lines generated in the laboratory (Ellingsen et 

al. 2005), a handful caused visible phenotypic defects in transgenic fish, and all of them 

were mapped to genes involved in Fgf signaling. In four of these lines, fgf8aCLGY1030, 

fgf8aCLGY508, fgf8aCLGY667 and fgf8aCLGY657 (hereafter collectively named fgf8aCLGY lines), the 

retroviral vector had integrated in the proximity of the fgf8a, and turned out to act similarly 

to tumor virus integrations in the equivalent genomic region in mouse mammary carcinoma 

(MacArthur et al. 1995b). One additional line, CLGY786, (hereafter spry1CLGY786) was 

mapped upstream of sprouty1, a gene encoding a negative regulator of Fgf signaling. 

Homozygous individuals from all of these transgenic lines exhibit similar stripe anomalies 

in adulthood, resembling previously reported zebrafish hagoromo mutant (Kawakami et al. 

2000), where proviral integrations were mapped into the fifth intron of the fbxw4/hagoromo 

gene. These observations prompted me to further investigate the fgf8a regulatory domain in 

zebrafish.  

 

Highly conserved noncoding elements distributed in the fgf8a locus show specific 

regulatory function. 

Multiple HCNEs were found in the 200kb region around fgf8a, including adjacent genes 

slc2a5 and fbxw4. Regulatory function of these conserved elements was tested in the 

enhancer assay. Interestingly, all tested, positive elements direct reporter gene expression 

into domains that are characteristic for fgf8a, not for slc2a5 or fbxw4. Interestingly, the most 

remote elements showed specific and reproducible patterns in all generated lines, including 

elements located across a teleost–tetrapod breakpoint. 

Even elements that directed more variable patterns drove GFP in domains where fgf8a 

expression is known or where fgf8a has developmental function. In some of these domains 
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fgf8a is not easily detectable by in situ hybridization, suggesting a very low endogenous 

dose of this morphogen.  

The most important and characteristic fgf8a domains, like MHB, AER or anterior myotomes 

are represented by multiple elements across the entire fgf8a regulatory domain, indicating a 

highly controlled, and perhaps robust, mechanism responsible for maintenance of embryo 

organizing centers. 

 

Analysis of multiple developmental defects in the fgf8aCLGY transgenic zebrafish activates 

fgf8a during metamorphosis 

Four independent enhancer detection transgenic CLGY lines, which exhibit fgf8a–like YFP 

expression pattern, were mapped into a 100kb region around the gene, which represents a 

common insertion site in the mouse (Paper I). Detailed analysis of the phenotype of 

fgf8aCLGY lines revealed specific developmental defects, presumably caused by insertion of 

the proviral vector near fgf8a. Similar pigment stripe anomalies to these observed in our 

fgf8aCLGY were already reported and correlated with proviral integrations in the fbxw4 gene 

(Kawakami et al. 2000). Genomic rearrangements downstream to the Fgf8/FGF8 were 

described in mouse and human, and in both cases Fbxw4/FBXW4 was linked with specific 

defects in digit formation. The function of Fbxw4/fbxw4 in the limb or in pigment stripe 

formation is unknown and can be only speculated based on the observed phenotype, but is 

difficult to explain: Fbxw4 is ubiquitously and weakly expressed in the embryo and in adult 

tissues, and its coding sequence was not affected in the mouse mutants. In contrast, function 

of the neighboring Fgf8 as an inducer and organizer of limb development in mouse and 

chicken made this gene an attractive candidate for these defects, and the fact that its 

expression in the AER is attenuated in the Dac mutant, served only to reinforce this view. 

Although there are currently few indications for fgf8a function in pigment development in 

fish except that an insertion near sprouty1 also can cause strip defects (see below), all other 

observed phenotypes may well be caused in the distinct vertebrate groups by regulatory 

mutations affecting Fgf8. 

 For example, Fgf signaling in bone and skin development and also in adipogenesis 

was demonstrated (Albertson and Yelick 2007; Hutley et al. 2004; Mandler and Neubuser 

2004). The role of Fgf8/fgf8a in the development of the skeleton has been studied in mouse 

and zebrafish. A decreased dose of fgf8a causes craniofacial skeleton defects in fgf8+/- ace 

fish (Albertson and Yelick 2007), whereas increased levels lead to vertebral centra fusion 
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and formation of multiple outgrowths in zebrafish fgf8aCLGY mutants (Paper III) resembling 

the mouse phenotype when Fgf8 was overexpressed in vertebral centra (Vitelli et al. 2006). 

In human hormone dependent tumors, overexpression of FGF8 is connected to the 

formation of ectopic bones and cartilages (Kaufman et al. 1984; Valta et al. 2006). Axial 

skeleton defects have been previously described in a number of fish species, however the 

genetic background of these mutations is unknown. For example, certain breeds of the 

goldfish Carassius auratus display significant body shape changes and some of these are 

also characterized by fused vertebral centra, similar to those in the fgf8aCLGY mutants.  

 The observation that a simple regulatory sequence of a retrovirus can affect multiple 

aspects in the shape of a vertebrate animal may suggest that exaptation of exogenous 

sequences might have contributed to the divergence of vertebrate species. In fact, regulatory 

elements related to ancient transposable elements have been recruited by regulatory network 

in mammals and the human Fgf8 locus was recently shown to harbor SINE retrotransposon-

related elements that act as mammal-specific enhancers in brain development (Sasaki et al. 

2008). 

 

Sprouty proteins – negative regulators of Fgf signaling 

A new member of the zebrafish sprouty family was found by enhancer detection, and the 

line spry1CLGY786, where YFP reflects endogenous spry1, can be seen as a member of the 

fgf8 synexpression group. Homozygous individuals from this line revealed a congenital 

pigment stripe phenotype and mild susceptibility to cancer not unlike that observed in the 

fgf8aCLGY mutants (data not shown). This observation, combined with what we know about 

Sprouty – Fgf interactions during development, this finding would support a role of fgf8a in 

the observed defects in fgf8aCLGY lines, and in the hagoromo mutant. Although this would 

imply two different mechanisms by which proviral insertion close to the gene can change its 

expression, in fact downregulation of gene transcription is what is most commonly 

observed: Large–scale insertional screens in zebrafish are potent tool for generating number 

of mutants which affect genes involved in the various developmental processes. Majority of 

identified mutations caused by proviral integrations, lead to deactivation or downregulation 

of the affected gene, even when insertions occur in noncoding sequence around the gene 

(Amsterdam et al. 2004; Gaiano et al. 1996b; Gross et al. 2005). Therefore, insertions close 

to the promoter of the spry1 gene might cause reduction of gene expression. To confirm or 
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reject this hypothesis, more detailed studies will be necessary to determine the mechanism 

that leads to the observed phenotype in the spry1CLGY786 line.   
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