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“La mer est salée parce qu’il y a des morues dedans. Et si elle ne déborde pas, c’est parce que 
la Providence, dans sa sagesse, y a placé aussi des éponges” 
 
 
”The sea is salted because there are cods inside. And if it does not overflow, it is because 
providence, in its wisdom, also placed sponges there.”  
 
Alphonse Allais (French writer, 1854-1905) 
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ABSTRACT 
 
 The Astrophorida (Porifera, Demospongiae) currently represent ca 660 extant species 

worldwide. In tropical and parts of warm temperate waters they are common at quite shallow 

depths, while in boreal/antiboreal and Arctic waters they are usually deep-water species. They 

have a very diverse external morphology (massive to thin encrusting, subspherical-, fan-, cup- 

or irregularly-shaped) and display a wide array of external colors. They can be several meters 

large to a few millimeters thick. However, they all share the same spicule combination: small 

aster-shaped spicules (microscleres) associated with large four-rayed spicules (megascleres) 

called triaenes. This unique shared derived character (synapomorphy) is not found in any 

other Porifera groups. According to the last major morphological revision of the 

Astrophorida, five families are included in this order: Ancorinidae, Calthropellidae, 

Geodiidae, Pachastrellidae, and Thrombidae. To date, molecular phylogenetic studies 

including Astrophorida species are scarce and offer limited sampling. Phylogenetic 

relationships within this order are therefore for the most part unknown, hypotheses based on 

morphology largely untested and the spicule evolutionary processes poorly studied. This 

thesis presents five papers investigating the 1) taxonomy, 2) phylogeny and 3) evolution of 

the Astrophorida. 

 

1) The first aim of this thesis was to build a molecular phylogeny on solid taxonomical 

grounds. The three first papers are integrative taxonomical and nomenclatural studies on 

Atlantic Astrophorida species, notably from the Caribbean coast of Panama and from 

Norway. In the course of these studies, three species were synonymized, two species were 

resurrected and two were new to science. This thesis also proposes a list of the North-East 

Atlantic/Mediterranean Sea Astrophorida species here considered valid. 

 

2) The second aim of this thesis was to investigate the phylogenetic relationships within the 

Astrophorida with molecular data. The two following papers are molecular phylogeny 

analyses using a cytochrome c oxidase subunit I (COI) gene partial sequence and the 5’ 

end terminal part of the 28S rDNA, first considering the Geodiidae alone, then the 

Astrophorida. Sampling included all five families of this order, three ‘lithistid’ families of 

Astrophorida affinities as well as two putative Astrophorida (Alectona and Neamphius) 

still classified today in the Alectonidae, Hadromerida. The COI and 28S (C1-D2) datasets 

were concatenated in a single matrix containing a total of 152 taxa (29 genera, 2 sub-
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genera, 89 species) and 1,527 characters. The resulting tree showed that i) the 

Astrophorida was monophyletic, ii) the sub-orders Euastrophorida and 

Streptosclerophorida were both found polyphyletic, iii) the Calthropellidae were 

monophyletic (and found to be a subfamily of the Geodiidae), iv) the Geodiidae, the 

Ancorinidae and the Pachastrellidae appeared polyphyletic and had to be redefined, v) a 

new subfamily of the Geodiidae was revealed (Caminellinae subfam. nov.) and finally vi) 

some genera were found to be polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, 

Rhabdastrella, Stelletta and Vulcanella). Based on these results, a revised classification of 

the Astrophorida is proposed, along with a key to the families, sub-families and incertae 

sedis. The use of a phylogenetic classification of the Astrophorida (following the 

principles of phylogenetic nomenclature and the rules of the PhyloCode) was also 

explored. 

 

3) The third aim of this thesis was to investigate the evolution of Astrophorida sponge 

spicules, particularly diverse in this order. In the two last papers, spicule categories were 

mapped on the molecular phylogenetic trees. The main result was that spicule homoplasy 

is more common than what we expected: convergent evolution and secondary losses have 

happened many times, in all the clades, for megascleres and microscleres. The 

implications of these results are discussed with respect to the function of spicules, their 

evolution and the taxonomy of sponges. 
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1. INTRODUCTION 

 

1.1. General introduction to the phylum Porifera  
 

Ancestors of the extant sponges (phylum Porifera Grant, 1836) are considered to be 

the first animals to appear on the planet. This has been confirmed many times by a majority of 

molecular studies that find the Porifera at the base of the Metazoa tree (Medina et al. 2001; 

Lavrov et al. 2005; Peterson & Butterfield 2005; Jiménez-Guri et al. 2007; Park et al. 2007). 

According to the fossil record, siliceous sponges are present just before the Cambrian (~580 

Mya) (Li et al. 1998; Huang et al. 2008) and are already well diversified in the Lower 

Cambrian (Xiao et al. 2005). Meanwhile, sponge specific biomarkers (carbonate rock texture 

and hydrocarbon remains of C30 sterols) place the origin of sponges in the Early 

Neoproterozoic, at least 100 Ma before the Cambrian, at ~635 Mya (Love et al. 2009) or ~779 

Mya (Neuweiler et al. 2009). Molecular clock analyses are consistent with the biomarker 

record and strongly suggest that sponges with siliceous spicules were present during the 

Precambrian, but were not fossilized (Savolainen et al. 2005; Sperling et al. 2010). Sperling et 

al. (2010) speculate that this “spicule gap” could result from a higher solubility of biogenic 

silica due to clay-poor Precambrian sediments. 

Porifera encompass ca 8,500 described species, and estimations of undescribed species 

usually double that number (van Soest 2007). Porifera are present worldwide, in all aquatic 

habitats, including freshwater environments, tropical reefs, Arctic/Antarctic regions and the 

deep-sea. Porifera are distributed in four classes: Hexactinellida Schmidt, 1870, 

Demospongiae Sollas, 1885, Homoscleromorpha Lévi, 1973 and Calcarea Bowerbank, 1864. 

Compared to most other phyla, phylogenetic relationships among Porifera are largely 

unresolved. More than fifty years after Lévi (1957) considered Porifera to be the last major 

group of Metazoa in which the orders were still not clearly defined, we can unfortunately 

notice this is still the case. The main reasons for this are i) the paucity of characters used in 

sponge classification and ii) the homoplasy richness of this group. Sponge taxonomy is 

primarily based on spicule morphology and spicule arrangement within the sponge body 

(Hooper & van Soest 2002b). Other characters such as texture, form and coloration are less 

reliable as they are frequently influenced by environmental factors (Bell & Barnes 2000; 

McDonald et al. 2002; Meroz-Fine et al. 2005). But even spicule size, shape and type can 

sometimes be influenced by environmental conditions (cf. 1.4.3.). Therefore, sponge 
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systematics have given rise to numerous debates, most of which result from a lack of suitable 

variable morphological characters to distinguish sponges at the species level and higher. 

In this context, molecular data was highly welcomed because it provided new and 

independent evidence to test morphological hypotheses. The first application of molecular 

systematics to sponges dates back to the 1980s, using allozyme divergence to discriminate 

between conspecific sponge populations. In the 1990s, molecular studies comparing 

sequences of ribosomal RNA have been used to reappraise the phylogenetic relationships 

among sponge genera, families and orders, mainly using the 18S small subunit and 28S large 

subunit rRNA genes. Since then, the use of a genetic approach has been a valuable 

contribution to the study of many long-standing problems in sponge taxonomy (see Boury-

Esnault & Solé-Cava 2004 for a review) one of them being the status of the phylum Porifera. 

Indeed, these last 10 years the question regarding the “natural” existence of this group has 

been regularly debated and tested. Early phylogenetic studies generally used ribosomal and/or 

nuclear housekeeping genes (e.g. aldolase (ALD), catalase (CAT), elongation factor 1-alpha 

(EF1a)) and sampled few sponges species: they suggested the Porifera were not monophyletic 

(Adams et al. 1999; Peterson & Addis 2000; Medina et al. 2001). Similar results were 

obtained with a wider sampling (Borchiellini et al. 2001; Borchiellini et al. 2004b; Sperling et 

al. 2007; Sperling et al. 2009). Later studies including Expressed Sequence Tags (EST) and 

complete mitochondrial genomes, with limited sampling, were finding the Porifera 

monophyletic, albeit with contradictory supports and sister-groups (Jiménez-Guri et al. 2007; 

Dunn et al. 2008; Lavrov et al. 2008; Philippe et al. 2009; Schierwater et al. 2009). A few 

ribosomal gene studies (with limited sampling) also found the Porifera monophyletic 

(Dohrmann et al. 2008; Lavrov et al. 2008). Although the issue is not settled, most studies 

nonetheless agree that the Silicea Gray 1867 (Hexactinellida + Demospongiae) are 

monophyletic (Adams et al. 1999; Borchiellini et al. 2001; Medina et al. 2001; Dohrmann et 

al. 2008; Philippe et al. 2009; Sperling et al. 2010). Meanwhile, Homoscleromorpha and 

Calcarea are either sister-groups within the Porifera or paraphyletic and closer to the 

Eumetazoa. Also, based on molecular results, the 13 extant orders of Demospongiae (85% of 

all living sponges) are currently distributed in four clades: G1/Keratosa, G2/Myxospongia, 

G3/Haplosclerida and G4/Democlavia (Borchiellini et al. 2004b; Sperling et al. 2009) (Fig. 

1). 

 The overall goal of this thesis was to provide new insights on the evolutionary 

relationships within the order Astrophorida Sollas, 1888, using molecular and morphological 

data. This introduction will be divided in three parts. After a short presentation of the 
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Astrophorida, I will present what was known of their taxonomy and phylogeny before the 

beginning of this study, including a brief overview of molecular markers in sponge 

phylogenetic studies. Finally, I will introduce a few facts about Astrophorida morphology and 

spiculogenesis, both of which will be helpful for the following discussion on spicule 

evolution. 

 

 

 

1.2. General presentation of the Astrophorida 

 

 The Astrophorida is geographically and bathymetrically widely distributed around the 

world, and represent around 660 extant species worldwide (van Soest et al. 2010; this study). 

Astrophorida species have colonized hard- as well as soft-bottoms from various depths. In 

tropical and parts of warm temperate waters Astrophorida species are common at quite 

shallow depths, while in boreal/antiboreal and Arctic waters they are usually deep-water 

species (they are poorly known in the Antarctic). In gravely hard-bottom habitats on the outer 

shelf and upper slope, Astrophorida can dominate ecosystems in terms of abundance and 

Figure 1. Current molecular phylogenetic relationships of the Demospongiae. Dashed lines 
indicate uncertain branches. * indicates the presence of microsclere asters. Two hypotheses for 
the gain of triaenes are illustrated: the hypothesis suggested by the fossil record and the 
hypothesis suggested by molecular clock analyses. 
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biomass (Maldonado & Young 1996; Klitgaard & Tendal 2004). They have also been shown 

to dominate in some paleoenvironments (Pisera et al. 2006). Astrophorida species have a very 

diverse external morphology: massive to thin encrusting, subspherical-, fan-, cup- or 

irregularly-shaped. They display a wide array of external colors: white, purple, green, yellow, 

orange, black etc. They can be several meters large (e.g. Stryphnus fortis (Vosmaer), pers. 

obs.) to a few millimeters thick (e.g. some Jaspis). However, Astrophorida are all 

characterized by a clear morphological synapomorphy: the simultaneous presence of aster-

shaped microscleres and tetractinal megascleres. According to the fossil record, Astrophorida 

may represent one of the oldest orders of demosponges. Well-preserved typical triaenes 

(ortho- and plagiotriaenes) and euasters (oxyasters and sterrasters) are common in Early and 

Middle Cambrian Australian terrains (van Kempen 1990; Reitner & Mehl 1995; Mehl 1998). 

They even abound in Mesozoic spicule assemblages (van Kempen 1990). In rare cases, the 

whole sponge can be fossilized, as in the fossil Geodia avicula from the Miocene (Brimaud & 

Vachard 1986). On the contrary, Astrophorida lithistids are easily fossilized because their 

spicules are tightly holding together (Brimaud & Vachard 1986; Lévi 1991; Pisera 1999). 

Surprisingly, molecular clock estimates suggest that Astrophorida and Spirophorida may have 

diverged only 380 Ma ago (late Devonian) (Sperling et al. 2010). Either i) molecular clock 

estimates are too shallow or ii) the triaenes and euasters found from the Early Cambrian are 

not homologous to the ones of extant Astrophorida or iii) triaenes and euasters are 

plesiomorphic and have appeared in the ancestor of the G4/Democlavia, which might have 

originated in the Cambrian (according to the molecular clock); in that case, triaenes would 

have been lost in the ancestor(s) of the rest of the Democlavia: Hadromerida, Poecilosclerida 

and Halichondrida (Fig. 1). 
 Sexual reproduction is poorly studied and documented in the Astrophorida. With the 

exception of the armored planktonic larva (= hoplitomella larva) of Alectona and Thoosa 

(Topsent 1920; Vacelet 1999) no larvae are known (Maldonado & Bergquist 2002). All 

Astrophorida, except for Alectona and Thoosa, are considered to be oviparous. Few 

Astrophorida species have actually been shown to be gonochoric and oviparous: Erylus 

discophorus (Schmidt) (Scalera Liaci & Sciscioli 1969; 1970), Geodia barretti Bowerbank 

(Spetland et al. 2007), Geodia cydonium (Jameson) (Mercurio et al. 2007). Stelletta grubei 

(Schmidt) (Scalera Liaci & Sciscioli 1969; Sciscioli et al. 1991) and shallow-water 

Theonellidae of the Red Sea (Ilan et al. 2004). Furthermore, I have observed oogenesis in 

Rhabdastrella cordata Wiedenmeyer (#S1026) from South Australia. Spermatogenesis has 

been observed in Thenea muricata (Bowerbank) and Yucatania sphaerocladoides (Hartman & 
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Hubbard) (Sollas 1882b; Babiç 1915; Hartman & Hubbard 1999). Sperm release has been 

rarely documented except for a Geodia sp. in Jamaica (Reiswig 1970) and Geodia barretti in 

an aquarium at the University of Bergen (pers. obs.). Oocyte release has to my knowledge 

never been observed in this group. Conversely, asexual reproduction is common and fairly 

well documented in the Astrophorida: Geodia hentscheli Cárdenas et al. (Burton 1949), 

Geodia cydonium (pers. obs.), Geodia phlegraei (Sollas) (Greenland specimens, pers. obs.), 

Thenea muricata and Thenea valdiviae von Lendenfeld (Steenstrup & Tendal 1982). 

 

1.3. Taxonomy and phylogeny of the Astrophorida 

 

1.3.1. Historical review of the Astrophorida taxonomy 

 

 Demospongiae with triaenes (Astrophorida and Spirophorida) are grouped in the 

Tetractinellida Marshall, 1876 (Fig. 1). The Astrophorida was originally a suborder of the 

Choristida Sollas, 1885 which united all the Tetractinellida with aster microscleres, except for 

the lithistids. The fact that today’s definition of the Astrophorida has not changed reflects the 

stability and phylogenetic relevance of the morphological characters used to define it. Lévi 

(1973) later made of this group an order and modified some of its contents, notably excluding 

the Placospongiidae and including the Thrombidae and the Calthropellidae. According to their 

last major revision in the Systema Porifera, five families are included in this order: 

Ancorinidae Schmidt 1870, Calthropellidae Lendenfeld 1907, Geodiidae Gray 1867, 

Pachastrellidae Carter 1875, and Thrombidae Sollas, 1888 (Hooper & van Soest 2002a). 

Thirty-eight genera and two subgenera are currently distributed in those families. In an effort 

to incorporate lithistids, the sub-orders Euastrophorida Reid, 1963 (Astrophorida with 

euasters) and Streptosclerophorida Dendy, 1924 (Astrophorida with streptasters) were erected. 

Lithistids with streptasters were then included in the Streptosclerophorida (Reid 1963; Lévi 

1991). 
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Classification of the Astrophorida according to the Systema Porifera:  

(Maldonado 2002; van Soest & Hooper 2002; Uriz 2002a; b; c) 

Order Astrophorida Sollas, 1888 
Family Thrombidae Sollas, 1888 

Thrombus Sollas, 1886 
Family Pachastrellidae Carter, 1875 

Acanthotriaena Vacelet et al., 1976 
Ancorella von Lendenfeld, 1907 
Brachiaster Wilson, 1925 
Characella Sollas, 1886 
Cladothenea Koltun, 1964 
Dercitus Gray, 1867 
Pachastrella Schmidt, 1868 
Poecillastra Sollas, 1888 
Stoeba Sollas, 1888 
Thenea Gray, 1867 
Triptolemma de Laubenfels, 1955 
Vulcanella Sollas, 1886 

Vulcanella (Vulcanella) Sollas, 1886 
Vulcanella (Annulastrella) Maldonado, 2002 

Family Geodiidae Gray, 1867 
Caminus Schmidt, 1862 
Erylus Gray, 1867 
Geodia Lamarck, 1815 
Isops Sollas, 1880 
Pachymatisma Bowerbank in Johnston, 1842 
Sidonops Sollas, 1889 

Family Calthropellidae von Lendenfeld, 1907 
Calthropella Sollas, 1888 
Chelotropella von Lendenfeld, 1907 
Pachastrissa von Lendenfeld, 1903 
Pachataxa de Laubenfels, 1936 

Family Ancorinidae Schmidt, 1870 
Ancorina Schmidt, 1862 
Asteropus Sollas, 1888 
Cryptosyringa Vacelet, 1979 
Disyringa Sollas, 1888 
Ecionemia Bowerbank, 1864 
Holoxea Topsent, 1892 
Jaspis Gray, 1867 
Melophlus Thiele, 1899 
Penares Gray, 1867 
Psammastra Sollas, 1886 
Rhabdastrella Thiele, 1903 
Stelletta Schmidt, 1862 
Stryphnus Sollas, 1886 
Tethyopsis Stewart, 1870 
Tribrachium Weltner, 1882 

Lamellomorpha Bergquist, 1968 incertae sedis 
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1.3.2. Molecular phylogenetics and the Astrophorida 

 

 The Astrophorida are part of the G4/Democlavia clade (Fig. 1). It is one of the few 

sponge orders to have been consistently, and with strong support, shown to be monophyletic 

(Chombard et al. 1998; Borchiellini et al. 2004b; Nichols 2005; Erpenbeck et al. 2007a). All 

molecular phylogenetic studies place them in a strongly supported sister-order relationship 

with the Spirophorida Bergquist and Hogg, 1969 (Chombard et al. 1998; Borchiellini et al. 

2004b; Nichols 2005; Lavrov et al. 2008; Voigt et al. 2008; Sperling et al. 2009). 

 The first molecular phylogenetic study to focus on the Tetractinellida used the 5’ end 

terminal part of the 28S rRNA gene (Chombard et al. 1998). The most-parsimonious tree they 

obtained (Fig. 2) notably suggests that i) the sub-orders Euastrophorida and 

Streptosclerophorida are monophyletic and paraphyletic respectively (if Stryphnus is 

considered a Streptosclerophorida), ii) some lithistids belong to the Astrophorida, iii) Penares 

helleri (Schmidt) (an Ancorinidae) should be reallocated to the Geodiidae (it has presumably 

secondarely lost its sterrasters) and iv) Poecillastra (a Pachastrellidae) is a more basal 

Astrophorida than the Geodiidae, Ancorinidae and lithistids. Later, Chombard (1998) added 

two additional sequences to her analyses: one from a Geodiidae (Geodia cydonium), the other 

from an Ancorinidae (Stelletta dorsigera Schmidt). Her results prompted her to propose to 

resurrect the Geodiidae subfamilies: Erylinae Sollas, 1888 and Geodinae Sollas, 1888. At the 

same time she suggested that the Geodiidae could be polyphyletic, although taxonomists had 

never previously challenged the monophyly of the family before. 

 Because they possess triaenes and asters, many lithistid families are also known and/or 

suspected to belong to the Astrophorida (Sollas 1888; Topsent 1928; Reid 1970; Lévi 1991) 

but have until now and in spite of molecular evidence (Kelly-Borges & Pomponi 1994; 

Chombard et al. 1998; McInerney et al. 1999) been kept apart in the classification (Hooper & 

van Soest 2002b). Other enigmatic taxa such as the excavating sponges Alectona and 

Neamphius (both belonging to the Alectonidae) have also been suggested to be derived 

Astrophorida species, based on morphological (Sollas 1888), molecular (Borchiellini et al. 

2004a) and larval data (Topsent 1920; Vacelet 1999). 
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1.3.3. Molecular markers in sponge phylogenetics 

 

 Early metazoans such as Porifera and Cnidaria (especially Anthozoa) have a slow-

evolving mitochondrial DNA when compared to other phyla (Shearer et al. 2002; Duran et al. 

2004; Lavrov et al. 2005; Wörheide 2006; Huang et al. 2008). Therefore, the cytochrome c 

oxidase subunit 1 (COI) has proven to be a good phylogenetic marker for higher-level sponge 

phylogenies (Nichols 2005; Erpenbeck et al. 2007a). Although the COI Folmer fragment has 

also been successfully used for inter-species and population studies (Duran & Rützler 2006; 

Blanquer & Uriz 2007; Heim et al. 2007b; Reveillaud et al. in press), it has in some cases 

appeared to be too conserved (Schröder et al. 2003; Addis & Peterson 2005; Heim et al. 2006; 

Huang et al. 2008), which raises issues when it comes to the barcoding of sponges (Box 1). 

 The 28S rDNA (C1-D2) partition has been used early in sponge molecular 

phylogenies (Lafay et al. 1992) and proven to be adequate in resolving poriferan intra-ordinal 

relationships (Borchiellini et al. 2004b). It is relatively unsaturated and suited to resolve 

Astrophorida relationships (Chombard 1998; Chombard et al. 1998). But the D1 domain 

Figure 2. Most-parsimonious tree resulting from a parsimony analysis of 28S rDNA sequences 
(C1-D2). Length of branches are shown above each branch and circled numbers indicate the 
bootstrap proportions (1000 replicates). Microsclere composition of ingroup species are indicated 
as well as their previous and final assignments (in bold when modified by the present work). Eu. = 
Euastrophorida; St. = Streptosclerophorida; fam. A = family Ancorinidae; fam. G = family 
Geodiidae (Chombard et al. 1998; Figure 5). 
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alone is not informative enough to resolve the inter-family relationships within the 

Astrophorida (Borchiellini et al. 2004a). The D2 domain is more variable and appropriate to 

investigate inter-species relationships (Usher et al. 2004; Barucca et al. 2007; Blanquer & 

Uriz 2007; Wörheide et al. 2008). Other studies have been using the 28S (D3-D5) partition, 

but it has proven more suited for higher-level phylogenies (McInerney et al. 1999; Alvarez et 

al. 2000; Erpenbeck et al. 2004; Erpenbeck et al. 2005b; Nichols 2005; Erpenbeck et al. 

2007b) than for inter-species studies (Reveillaud et al. in press). Of course, for higher-level 

phylogenies, the 18S rDNA gene has been widely used (Adams et al. 1999; Borchiellini et al. 

2004b; Dohrmann et al. 2006; Redmond et al. 2007; Redmond & McCormack 2008; Voigt et 

al. 2008) and it also has in some rare cases been used for inter-species studies (Blanquer & 

Uriz 2007). The 16S and 12S rDNA gene have been rarely used and they both seem quite 

conserved, more so than COI (Heim et al. 2007a; Dohrmann et al. 2008). 

 Chombard (1998) suggested that internal-transcribed-spacer 2 (ITS2) might be a good 

molecular marker to discriminate Geodiidae species. ITS1 and ITS2 rDNA sequences have 

been shown to have an appropriate rate of evolution for studies at the species level (e.g. 

Hoshino et al. 2008; Valderrama et al. 2009 and references therein). But, as in many other 

phyla, ITS divergent paralogues can be found (Lôbo-Hajdu et al. 2004; Wörheide et al. 2004; 

Alvarez et al. 2007). ITS phylogenetic results must therefore be treated with care, especially 

for analyses at the population-level (Wörheide et al. 2004; Nichols & Barnes 2005). 

 Other markers have been used, but to at a lesser extent: a series of nuclear 

housekeeping genes such as elongation factor 1-alpha (EF1a), aldolase (ALD), catalase 

(CAT) or triose-phosphate isomerase (TPI) (Erpenbeck et al. 2005a; Erpenbeck et al. 2006a; 

Sperling et al. 2007); nuclear introns such as the ATP synthetase beta subunit-gene (ATPSb-

iII) intron (Bentlage & Wörheide 2007; Wörheide et al. 2008; Reveillaud et al. in press); 

mitochondrial markers such as NADH dehydrogenase subunit 5 (nad5) (Hoshino et al. 2008), 

cytochrome c oxidase subunit 3 (CO3) (Park et al. 2007) and the ATP synthase subunit 8 

(Atp8) (Xavier et al. in press). 
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Box 1: Barcoding of sponges 
 
 DNA barcoding is an identification method that compares short specific DNA 

sequences from unidentified specimens to sequences of previously identified voucher 

specimens (Hebert et al. 2003). There are currently two separate tasks to which DNA 

barcodes can be applied: i) species identification and ii) new species discovery (DeSalle et 

al. 2005). For the first task, one needs species-specific sequences. For the second task, one 

needs a molecular marker able to delimitate species. The mitochondrial cytochrome c 

oxidase subunit 1 (COI) so commonly used in phylogenetics was a marker of choice for the 

‘Barcoding of Life’ initiative (Hebert et al. 2003). It was thought the ca. 700 base pairs 5’ 

partition of COI, also known as the Folmer fragment (Folmer et al. 1994) could facilitate 

the correct determination of specimens including polymorphic or cryptic species (Moritz & 

Cicero 2004; Schander & Willassen 2005). DNA identification would be of paramount 

importance for sponges, a group with limited morphological diagnostic features. As of now, 

sponge COI seems to evolve more slowly than in other phyla (with the exception of the 

Cnidarians) up to the point that there is a substantial overlap between intra- and closest 

interspecific variation (= no ‘barcoding gap’) (Huang et al. 2008) and that two different 

sponge species cannot be discriminated (Schröder et al. 2003; Addis & Peterson 2005; 

Heim et al. 2006). The former is mainly a problem for the DNA identification of new 

sponge species; the latter is a problem for identification of known species. The potential 

insufficient resolution of COI at the species level has prompted Erpenbeck et al. (2006b) to 

propose a more variable second partition, further downstream in the COI sequence, which 

has proven to be suited for inter- and intra-specific studies (López-Legentil & Pawlik 

2009). It is also clear that barcoding of species should not rely on a single marker but on a 

multiple marker strategy from different genomes (Savolainen et al. 2005; Wörheide et al. 

2007) so new markers are now on trial in sponges (e.g. 28S, ITS, nad5, CO3). In order to 

start tagging sponge specimens with DNA sequences and thus initiate a DNA species 

database, the Sponge Barcoding Project (SBP) was initiated during the 7th International 

Sponge Symposium in Buzios (Brazil) in 2006: www.spongebarcoding.org/ (Wörheide et 

al. 2007). Morphological description of the sequenced specimens on the SBP is of 

paramount importance insofar as proper sponge identifications can be challenging and 

ambiguous. For a discussion on DNA barcoding in sponges see Solé-Cava & Wörheide 

(2007). 
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1.4.  The morphology of Astrophorida 

 

1.4.1. Spicules 

 

 In Demospongiae, siliceous spicules are traditionally distributed into two categories on 

the basis of their size: megascleres and microscleres. A combination of triaenes and asters is 

the synapomorphy of the Astrophorida. The diversity of microscleres is especially high in the 

G4/Demosclavia clade and the Astrophorida has a much more diverse and abundant spicule 

repertoire in comparison with other sponge orders (e.g. Halichondrida, Haplosclerida). For 

example, Geodia barretti has up to ten different spicule types: two categories of oxeas, 

triaenes, anatriaenes, protriaenes, mesoprotriaenes and four types of asters. With the 

development of the scanning electron microscope (SEM) at the end of the ‘60s, spicule 

morphology revealed new microstructures (e.g. surface ornamentation, pattern of 

ramifications), which have been used to resolve spicule homology issues, species 

discrimination and sponge classification. This tool is now essential in any morphological 

work on sponges. The Astrophorida is a promising model group to study spicule evolution 

since they offer such a wide variety of spicules that can be traced through evolution and 

whose homologies can be tested through phylogenetic reconstruction. This is a much harder 

task in orders like Haplosclerida (McCormack et al. 2002; Redmond et al. 2007) or 

Halichondrida (Erpenbeck et al. 2005b; Erpenbeck et al. 2006a) offering mostly monaxonic 

spicules. 

 

1.4.2. Skeleton organization 

 

 Astrophorida usually have a radial arrangement of their megascleres, more obvious in 

the peripheral region. A more or less thick layer of microscleres can form a conspicuous 

cortex; this is especially true for the Ancorinidae and the Geodiidae. Pachastrellidae, 

Calthropellidae and Thrombidae do not have a conspicuous cortex although they usually have 

a thin layer of microscleres at their surface, the term ectosome is then preferred. When long or 

short-shafted triaenes are present they generally have their cladomes placed under the 

ectosome or cortex and their rhabdomes perpendicular to it. In species with pseudo-calthrops 

(= very short-shafted triaenes, as in Poecillastra compressa (Bowerbank)) triaenes are more 

rare and irregularly positioned. When calthrops or mesotriaenes are present, they are usually 
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very abundant and present throughout the whole sponge, there is no radial arrangement then. 

Apart from the cortex/ectosome, microscleres can be present in the choanosome, especially 

around the canals and openings (oscules, pores). In addition to spicules, many species also 

have thick layers of collagen in their cortex. The Tetractinellida are considered to have 

secondarily lost spongin (a subtype of collagen, typical of sponges) (Borchiellini et al. 2004b) 

although it has been found in low quantities in Stelletta grubei (Simpson et al. 1985b), so it 

may be present in other Astrophorida as well. 

 

1.4.3. Morphogenesis of spicules 

 

 Silicon (Si) is the second most abundant element (27%) in the lithosphere after 

oxygen. This makes silica (SiO2) the most abundant mineral in the Earth’s crust. 92% of the 

extant sponges have siliceous spicules (Boury-Esnault 2008). Spiculogenesis takes place in a 

silica under-saturated environment so it is an active process. This process is partially 

controlled genetically since each species has a characteristic repertoire of spicules and spicule 

arrangement. It is also partially controlled by physiological processes such as reproduction 

(Bavestrello et al. 1996; Frøhlich & Barthel 1997; Mercurio et al. 2000) or nutrition (Frøhlich 

& Barthel 1997) and environmental parameters (Uriz et al. 2003) such as silica concentrations 

(Stone 1970; Elvin 1971; Pé 1973; Yourassowsky & Rasmont 1984; Frøhlich & Barthel 1997; 

Maldonado et al. 1999; Mercurio et al. 2000), water temperature (Stone 1970; Elvin 1971; 

Bavestrello et al. 1993; Mercurio et al. 2000) and wave force (Palumbi 1986). 

 Megascleres and microscleres seem to be produced in specific sclerocytes which 

require a certain level of silicon concentration to work (Maldonado et al. 1999; Uriz et al. 

2003). Biosilicification takes places around a proteic axial filament (triangular-shaped in the 

Astrophorida, at least in the megascleres (Simpson et al. 1985a; Müller et al. 2007)) 

surrounded by an intracellular membrane called the silicalemma. The axial filament is rich in 

silicateins (silica proteins), assumed to be the key enzymes responsible for the synthesis of the 

spicules (Shimizu et al. 1998; Cha et al. 1999). Silicateins have been found in the Silicea 

sponges (Shimizu et al. 1998; Krasko et al. 2000; Müller et al. 2008). Axial filaments have 

been observed in megascleres and microscleres of Astrophorida species (Simpson et al. 

1985a). Axial filaments may impose the overall geometry of the spicules while further spicule 

ornamentation (spines and swellings) might be controlled by other factors present in the 

silicalemma (Schönberg 2001; Pisera 2003; Uriz et al. 2003). Silicatein has actually been 



 23 

detected on the surface of spicules, suggesting that they can grow by apposition 

extracellularly (Müller et al. 2005; Schröder et al. 2006). It has also been shown that silicate 

stimulates gene expression of sillicatein and collagen (Krasko et al. 2000). 

 

1.4.4. Morphogenesis of sterrasters 

 

 In euasters, the axial filaments display a radial arrangement, so each ray of the aster 

contains a branch of axial filament (Simpson et al. 1985a). Therefore, sterrasters also have 

this polyaxonal filament (Rützler & Macintyre 1978; Simpson 1989). While three isoforms of 

silicatein could be identified in the axial filament of the megascleres of Geodia cydonium 

(silicateins-�, � and �), only one could be detected in the axial filament of sterrasters: 

silicatein-�/� (Müller et al. 2007). Each aster is produced within a single microsclerocyte in 

the choanosome (Sollas 1880; Simpson et al. 1985a; Simpson 1989) before being transported 

to the cortex (Dendy 1921; Hoffmann et al. 2003). Therefore, we usually find young stages of 

sterrasters in the choanosome and fully-grown sterrasters in the endocortex. Once the 

sterrasters are in the endocortex, collagen fibrils fix them (Sollas 1880; Uriz 2006). Further 

development and maturation of the sterrasters might involve the silicalemma which might 

expand from the rays in order for the areas between the rays to become filled with silica 

(Simpson 1989). Seemingly, deposition of the final 5-15 	m layer of silica including the ray 

tips (rosettes) is a secondary process apparently unrelated to the axial filaments of the rays 

(Rützler & Macintyre 1978). The depression (hilum) observed in all sterrasters marks the 

position of the microsclerocyte nucleus (Sollas 1880).  

 

1.5. Function of spicules 

 

 To understand the evolution of spicules, one must first question the function of 

spicules. The first function of spicules in sponges is structural support. Megascleres especially 

provide a three-dimensional skeleton that gives the sponge body rigidity and its shape. This is 

important to colonize space and therefore optimize its filter-feeding activity. It is also 

important in order to withstand hydrodynamic forces (Palumbi 1986). Microscleres might also 

reinforce and strengthen the tissue (Koehl 1982); this is especially obvious in the thick cortex 

rich in microscleres found in many Astrophorida (e.g. Geodiidae). Since sponges may have 

originated in the Early Neoproterozoic, before eumetazoans predators (Martin et al. 2000; 
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Ivantsov 2009), the use of spicules as protection against predators might be an exaptation, a 

side-effect of structural reinforcement (Sperling et al. 2010). Defense against predators come 

in two ways: i) the spicules may form a natural strong barrier protecting against the teeth of 

predators (as in the Geodia spp.) and/or ii) the spicules make the sponge dangerous to eat, the 

spicules might enter the gut (Birenheide et al. 1993) and/or make the digestion difficult. May 

it be megascleres or microscleres, they can deter natural predators such as fish (Randall & 

Hartman 1968; Burns & Ilan 2003), hermit-crabs (Hill et al. 2005), or sea urchins (Birenheide 

et al. 1993; Ferguson & Davis 2008). Conversely, other studies show that the skeleton does 

not always provide protection (Chanas & Pawlik 1996). Some predators do not seem to be 

bothered: fish sea turtles (Meylan 1988), some hermit-crabs (Waddell & Pawlik 2000a), sea 

stars (Waddell & Pawlik 2000b), polychaetes (Pawlik 1983) or chitons (Warén & Klitgaard 

1991; Todt et al. 2009). Either these predators avoid spicules (Pawlik 1983) or ingest 

everything with no visible effects (Randall & Hartman 1968; Meylan 1988; Birenheide et al. 

1993). But the outcomes of these feeding experiments are often contradictory: there does not 

seem to be a general rule. Predator-sponge relations may be strictly species dependant and 

therefore difficult to compare. Moreover, studies are now showing that when it comes to 

defense, spicules can act synergistically with other defense mechanims such as secondary 

metabolites to deter predators or to attract epibionts which themselves deter predators (Hill et 

al. 2005; Jones et al. 2005; Ferguson & Davis 2008). For example, although they have a thick 

solid cortex, Caribbean Geodia are eaten by some fish (Dunlap & Pawlik 1996; Hill & Hill 

2002). Instead of having a chemical defense (Pawlik et al. 1995), they may use secondary 

metabolites to promote overgrowth of other species better equipped to defend themselves 

from fish predation (Wilcox et al. 2002; Engel & Pawlik 2005). 

 Other uses of spicules are known. They are not widespread and are probably also 

exaptations: spicules can be used for buoyancy of gametes (Uriz et al. 2003), buoyancy of 

planktonic larvae (Vacelet 1999), depth regulation in parenchymella larvae (Maldonado et al. 

1997), protection of gemmules (e.g. amphidiscs) (Hartman 1981), passive capture of prey 

(Vacelet & Boury-Esnault 1995), or for conducting light to chlorosymbionts (Brümmer et al. 

2008). Apart from those very specific functions, most of the spicule diversity that taxonomists 

use to distinguish different species/genera are difficult to relate to specific functions and 

appear to be non-adaptative traits (Dendy 1921; Hartman 1981). 
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2. AIMS OF THIS THESIS 
 

 At the base of any biological research there has to be solid alpha-taxonomy (the 

practice and science of classification). This is particularly true for phylogenetics where 

interpretations of results are fully dependant on proper specimen identifications. My first aim 

was therefore to properly identify and in some cases describe/revise the taxonomy of the 

Astrophorida species that were sampled (Paper I, II & III). Although I have had specimens 

from all over the world, I have mainly sampled in the Atlantic Ocean and thus focused my 

taxonomical research on Atlantic Astrophorida. In this process, I have assessed the 

importance of DNA data as an auxiliary criterion to help sponge taxonomists in their task 

(Paper III, IV & V). I have also explored ways to store morphological along with genetic 

data while participating in the making of the sponge DNA barcoding database (Paper I, II, 

III & IV). 

 

 To date, molecular phylogenetic studies including Astrophorida species are scarce and 

offer limited sampling. Previous Demospongiae molecular phylogenetic studies have included 

only three to six species of Astrophorida (Borchiellini et al. 2004b; Nichols 2005; Erpenbeck 

et al. 2007a) while the most complete study, focusing on the Tetractinellida sampled ten, two 

of which were lithistids (Chombard 1998). Needless to say that phylogenetic relationships 

within this order are for the most part unknown and hypotheses based on morphology largely 

untested. My second aim was therefore to reconstruct a resolved and robust phylogeny of the 

Astrophorida (Paper IV & V). Also, the molecular pioneering work of Chombard (1998) on 

this taxonomical group suggested that some of its families were not monophyletic. I thus 

knew that in order to properly revise the order I would need to include in my sampling all the 

Astrophorida families, and as many species as possible (Paper V). My phylogenetic null 

hypotheses were i) the last major revision of the order, taken from the Systema Porifera 

(Hooper & van Soest 2002b) and ii) the molecular phylogeny from Chombard et al. (1998). 

Part of my aim was also to translate our phylogenetic results into a revision of the 

Astrophorida classification. To succeed in this, I have made attempts to use and compare a 

phylogenetic classification (following the rules of the PhyloCode v.4c, 

http://www.ohiou.edu/PhyloCode) and a Linnaean classification (following the International 

Code of Zoological Nomenclature (ICZN), http://www.iczn.org/iczn/index.jsp) (Paper IV & 

V). 
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 Looking for a pattern of evolution often goes along with understanding evolutionary 

processes. The homology/homoplasy of characters in sponges is a longstanding problem of 

paramount importance (Boury-Esnault 2006). Since most of the Astrophorida taxonomy relies 

on spicule morphology, our aim was to re-assess i) the homology (Paper IV & V) and ii) the 

homoplasy (Paper V) of Astrophorida spicules. As I said before, because of its high spicule 

diversity, the Astrophorida is a group of choice to investigate and understand spicule 

evolution. 

 
 

To summarize, the three aims of this study were: 

 

1. To provide a solid taxonomical basis of Astrophorida species.  

2. To reveal phylogenetic relationships within the Astrophorida. 

3. To investigate the evolution of Astrophorida spicules. 
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4. RESULTS AND DISCUSSION 
 

4.1.  Taxonomy of the Atlantic Astrophorida species 
 
4.1.1. The Atlantic Astrophorida species 
 
 Specimens from the North-East Atlantic (NEA) were collected in Western Norway 

(Bergen area), Southern Norway (BIOSKAG 2006), Northern Norway (Polarstern ARK-

XXII/1a, 2007) and the Greenland Sea (BIODEEP2007, H2DEEP 2008) (Paper I, III, IV & 

V) using a triangular dredge (Fig. 3A), boxcores, a Van Veen grab, an Agassiz trawl, a Sneli 

sled (Sneli 1998), remote operated vehicles (‘Aglantha’ and ‘Bathysaurus XL’) and the 

manned-submersible ‘Jago’. Specimens from the Western Atlantic were collected by diving 

and snorkeling in Bocas del Toro, Panama (Paper II). Spirophorida specimens (outgroups for 

Paper V) were collected at the same time, in the NEA and Panama (Paper II & V). The rest of 

the specimens used for comparative material or the phylogenetic study came from different 

collaborators, institutions and campaigns (cf. Acknowledgments in Paper I to V). All in all, I 

examined more than 600 specimens of Astrophorida. 

 My taxonomy and nomenclatural studies focused on the Astrophorida from the 

Caribbean coast of Panama (Paper II) and from the Norwegian coast (Paper I & III). Paper I 

and III (along with the phylogenetic study of Paper V) resulted in many new records and 

taxonomical decisions concerning the NEA Astrophorida: two species are recorded for the 

first time in Norway (Characella pachastrelloides (Carter) and Vulcanella aberrans 

(Maldonado & Uriz), Paper III), one species is given a new name (Geodia hentscheli, Paper 

IV), one species is synonymized (Geodia simplississima Burton, Paper V), two species are 

resurrected (Pachymatisma normani Sollas, Paper I; Thenea schmidti Sollas, Paper III) and 

one is new for science (Pachastrella nodulosa, Paper III). Concerning the Western-Atlantic 

sponge fauna: four species are recorded for the first time on the Caribbean coast of Panama 

(Cinachyrella kuekenthali (Uliczka), Ecionemia megastylifera Wintermann-Kilian & Kilian, 

Stelletta fibrosa (Schmidt), Stelletta sp., Paper II), two species are synonymized (Erylus 

bahamiensis Pulitzer-Finali and Ecionemia dominicana (Pulitzer-Finali), Paper II), one 

species is resurrected (Geodia tumulosa Bowerbank, Paper II & V) and one is new for science 

(Stryphnus raratriaenus, Paper II). 
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 Because of a sampling bias towards the NEA/Mediterranean Sea, I focused my 

attention on reviewing the taxonomy of Astrophorida from that region. All Astrophorida 

known from the areas we surveyed (Norwegian coast, the Barents Sea and the Greenland Sea) 

were encountered (Fig. 3), except for Geodia simplex Schmidt, 1870, a dubious species. 

Appendix A reviews the status of all the Astrophorida species from the NEA/Mediterranean 

Sea according to my examination of specimens (Papers I, III & unpublished results), 

phylogenetic results (Papers IV & V) and/or the literature. There is a total of 116 

NEA/Mediterranean Sea Astrophorida (non-lithistid): 49 Geodiidae (42,2%), 27 Ancorinidae 

(23,3%), 9 Pachastrellidae (7,7%), 8 Vulcanellidae (6,9%), 8 Theneidae (6,9%), 1 

Thrombidae (0,8%), 12 Thoosidae (10,3%) and 2 incertae sedis (Characella) (1,7%). 

Astrophorida are certainly more numerous since lithistids were not included in this table. 

Indeed, they were absent in our arctic-boreal sampling, and not the primary focus of this 

study. Of these 116 species, 51 (43,9%) are restricted to the NEA while 27 (23,3%) are 

restricted to the Mediterranean Sea (Appendix A). The remaining 38 species (32,7%) are 

distributed in both regions. Of the 17 single-area occurrences, 11 species were described from 

the NEA and 6 species from the Mediterranean. We have encountered and collected 19 

(16,4%) species on the Norwegian coast, the Barents Sea and the Greenland Sea (Fig. 3). 

Figure 3. A. H. T. Rapp bringing the triangular dredge with sponge samples on board of the R/V 

Brattström in the Korsfjord, Western Norway. B. Geodia atlantica (not sampled) in Trænadjupet, 
Northern Norway (manned-submersible dive). Scale: 10 cm. C. Geodia barretti (#PS70/27-1(11)) in 
Trænadjupet, Northern Norway (manned-submersible dive). Scale: 10 cm. D. Geodia macandrewi 
(ZMBN 85207) from Northern Norway. Scale: 10 cm. E. Geodia phlegraei (not sampled) in 
Trænadjupet, Northern Norway (manned-submersible dive). Scale: 8 cm. F. Geodia hentscheli (#PC221) 
from the Schultz Massive seamount, Greenland Sea. G. Pachymatisma normani (09/05/07) from the 
Korsfjord, Western Norway. Scale: 1 cm. H. Stelletta normani (10/03/06) from the Korsfjord, Western 
Norway. Scale: 2 cm. I. Stelletta raphidiophora from the Schultz Massive seamount, Greenland Sea. J. 
Stryphnus fortis (#PS70/27-1(8)) in Trænadjupet, Northern Norway (manned-submersible dive). It is 
covered by the encrusting yellow sponge Hexadella detritifera. Scale: 40 cm. K. Pachastrella nov. sp. 
(ZMBN 85243) from the Korsfjord, Western Norway. Scale: 3 cm. L. Poecillastra compressa (ZMBN 
77932) from Langenuen, Western Norway. M. Characella pachastrelloides (ZMBN 80248) from the 
Hjeltefjord, Western Norway. Scale: 1 cm. N. Vulcanella aberrans (ZMBN 80959) from Trænadjupet, 
Northern Norway. O. Thenea muricata (ZMBN 85231) from Marstein, Western Norway. Scale: 1 cm. 
P. Thenea abyssorum (ZMBN 85228) from the mid-Atlantic arctic ridge, Greenland Sea. Scale: 1 cm. 
Q. Thenea valdiviae (ZMBN 85256) from Freisfjorden, Western Norway. Scale: 1 cm. R. Thenea levis 
(ZMBN 85249) from Marstein, Western Norway. Scale: 1 cm. S. Spicules of Alectona millari (ZMBN 
85238) from Sotbakken, Northern Norway. Scale: 500 	m. 
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4.1.2. Integrative taxonomy 

 

 The utility of DNA sequences for taxonomy purposes is well established. DNA brings 

alternative independent characters in order to reassess the validity of species and their 

morphological characters. New methods for DNA species delimitation are being developed 

(e.g. DNA barcoding) while maintaining the importance of morphological or other 

information (Tautz et al. 2003). As a consequence, the ‘integrative taxonomy’ approach 

combining all kinds of data (external morphology, spicules, embryology, geography, 

reproduction, genetic sequences...) is now considered a reliable and efficient way to evaluate 

the status of a species (Dayrat 2005; DeSalle et al. 2005; Padial & De La Riva 2007; Padial et 

al. 2009) while keeping in mind that discordance among lines of evidence does not 

automatically imply that a species hypothesis is invalid (Padial et al. 2009). I have therefore 

always confronted my molecular results with independent data before taking any taxonomical 

decision. The Astrophorida molecular phylogenetic analyses have initiated the taxonomical 

revision of some genera (cf. 4.2.), species or specimens, most of which are discussed in Paper 

IV and V. The phylogenetic analysis has notably supported the resurrection of Pachymatisma 

normani (Paper I), Geodia tumulosa and Thenea schmidti (Paper V) and the synonymization 

of Geodia simplicissima (Paper V). It has also cast doubts on the monophyly of Penares 

helleri, Geodia cydonium and Geodia megastrella Carter (Paper V).  

 I will here illustrate how DNA and morphological data can complement each other 

through the example of Geodia simplicissima, briefly mentioned in Paper V. It had been 

originally collected at a fairly shallow depth of 10-75 m, in the Foldenfjord (Northern 

Norway) (Burton 1931) and, having extensively sampled most of the Norwegian coast, we 

were surprised never to have found it. Two specimens were finally collected while diving in 

Trellholmstetta (Western Norway) at a shallow depth of 34 m. Surprisingly, their external 

morphology (not illustrated by Burton (1931)) and their COI sequences were identical to 

those of Geodia barretti. This was unexpected since COI had clearly discriminated all the 

other Geodia species sampled (Paper V), so we strongly suspected G. simplicissima to be a 

junior synonym of G. barretti. To compare G. barretti and G. simplicissima, thick sections 

(Fig. 4A-D) and SEM spicule pictures (Fig. 5A-D) were made. Their morphologies were 

fairly different. The main differences between both species concerned i) the organization of 

the cortex and ii) the morphology of the sterrasters. The cortex of G. simplicissima is more 

plastic and compressible than in G. barretti. One of the main reasons is that sterrasters are 
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rare, small and underdeveloped. Also, triaenes are smaller, have irregular clads and show 

additional swellings on the rhabdome. These conspicuous morphological differences raised 

new doubts about COI being fit to discriminate both species. But the finding of a similar 

pattern in shallow Pachymatisma resurrected our initial hypothesis. Shallow Pachymatisma 

looked very much like deep specimens of Pachymatisma normani but they were colored and 

had a much more flexible cortex. Thick sections (Fig. 4E-H) and SEM pictures (Fig. 5E-H) 

showed that they also had a thinner cortex with rare and underdeveloped sterrasters, and a 

thick fibrillar collagen layer under the endocortex. Moreover, their COI was identical to that 

of P. normani. We strongly suspect that environmental parameters are responsible for this 

major phenotypic modification. Since the influence of silica concentration on spiculogenesis 

has often been demonstrated (Stone 1970; Elvin 1971; Pé 1973; Yourassowsky & Rasmont 

1984; Frøhlich & Barthel 1997; Maldonado et al. 1999; Mercurio et al. 2000), we think 

spiculogenesis in G. barretti and P. normani could have been disrupted due to the lower silica 

concentrations found at shallower depths.  

This example illustrates how DNA taxonomy can represent a powerful complement to 

traditional morphological taxonomy, especially for the detection of i) morphological 

polymorphic species (as in the case of G. simplicissima) and of ii) morphological cryptic 

species (Paper I). One of the main advantages of DNA characters of a species being that, in a 

human time-frame, they are not as much influenced by environmental conditions as sponge 

phenotypic morphological characters.  
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Figure 4. A. Thick section of Geodia simplicissima (ZMBN 85212) showing cortex and choanosome. 
Scale: 1 mm. B. Close-up on the cortex. Scale: 500 	m. C. Thick section of Geodia barretti showing 
cortex and choanosome. Scale: 1 mm. D. Close-up on the cortex. Scale: 1 mm. E. Thick section of 
shallow Pachymatisma normani (#PC434) showing cortex and choanosome. Scale: 1 mm. F. Close-
up on the cortex. Scale: 500 	m. G. Thick section of deep P. normani (ZMBN 77858, neotype) 
showing cortex and choanosome. Scale: 1 mm. H. Close-up on the cortex. Scale: 1 mm. 
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Figure 5. A. Sterrasters of Geodia simplicissima (ZMBN 85212). Scale: 10 	m. B. Close up of a 
sterraster (ZMBN 85212) showing possible microspheres of silica polymerization. Scale: 2 	m. C. 
Sterrasters of Geodia barretti (ZMBN 77922). Scale: 20 	m. D. Close up of a sterraster (ZMBN 77922) 
showing hilum and warty rosettes at the tip of the actines. Scale: 10 	m. E. Sterrasters of shallow 
Pachymatisma normani (#PC434). Scale: 20 	m. F. Close up of a sterraster (#PC434) showing hilum 
and spines on the actines. Scale: 10 	m. G. Sterrasters of deep P. normani (ZMBN 77858, neotype). 
Scale: 20 	m. H. Close up of a sterraster (ZMBN 77858, neotype) showing hilum and rosettes at the tip 
of the actines. Scale: 10 	m. 
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4.1.3. Web storage of taxonomical, morphological and genetic data 
 

 Following the rise of Genbank, numerous websites enabling to store morphological 

and taxonomical data have emerged: Zoobank (www.zoobank.org/), MorphDBase 

(www.morphdbase.de/) or MorphoBank (www.morphobank.org/) (Fig. 6). Thinking 

morphological data from the sequenced specimens should be stored and accessible to future 

researchers, I have explored and used two of these web applications: MorphoBank (Paper I) 

and the Sponge Barcoding Project (SBP) website: www.spongebarcoding.org (Paper II, III & 

IV) (Fig. 7).  

 I chose to use MorphoBank because it was specifically designed for morphological 

phylogenetics and cladistics research. Features I appreciated were that i) every specimen 

loaded is attached to its collecting information (Fig. 6), ii) the amount of data one can store is 

unlimited, iii) pictures can be annotated (Fig. 6) and iv) every picture gets a MorphoBank 

accession number so that it is easily traceable and can be cited in an article (Fig. 6). 

 

Figure 6. Screenshot of an annotated Pachymatisma normani picture 
(M9625) stored in MorphoBank (Cárdenas et al. 2007). 
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Figure 7. Screenshot of the submitted record of the neotype of Pachymatisma normani in the Sponge 
Barcoding Project at www.spongebarcoding.org (accessed on 1st March 2010). 
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 Unfortunately, MorphoBank has no link to the genetic data storage websites. In that 

sense, I found it less practical than the SBP. On the SBP, every voucher has its own webpage 

(Fig. 7) with all the collecting/identification data, and morphological information. 

Furthermore, the SBP links the voucher to the GenBank tag sequences 

(http://www.ncbi.nlm.nih.gov) and to the ‘World Porifera Database’ 

(www.marinespecies.org/porifera). On the other hand disadvantages of the SBP are: i) ‘sp.’ 

specimens are not accessible to the public and ii) the amount of morphological data stored is 

limited. One way to make up for these weaknesses is to publish simultaneously the 

morphological data of the vouchers and their DNA tags (Paper II & III) so that taxonomists 

can have a full description along with a discussion on the specimen studied. 

 

4.2.  Phylogenetic relationships within the Astrophorida 

 

 We extracted the DNA from a total of 445 specimens of Astrophorida, 172 of which 

gave no sequences because i) the specimen had not been properly fixed and the DNA was too 

degraded (Box 2), ii) the specimen had been stored too long, iii) the specimen was 

contaminated or iv) co-purified contaminants were blocking the PCR reactions (Paper II). The 

oldest fixed specimen we managed to get a COI sequence of had been collected in Yucatan 

(Mexico) on the 19th of October 1985 (24 years before the extraction). 

 When PCRs did not work although DNA was present, DNA quality was assessed 

using a Nano-Drop-1000 Spectrophotomoter. This showed us that the Viogene DNA 

extraction kit was not always very efficient to get rid of co-purified contaminants. Figure 8 

shows the example of DNA extracted from Stryphnus raratriaenus (a newly described species 

from Panama: Paper II). We have consistently had PCR problems with species of this genus, 

possibly because they produce specific secondary metabolites which tend to block the PCR 

reactions. One can see how the DNA quality increases when we use a standard 

phenol/chloroform DNA extraction technique or if we add an extra step of DNA cleaning 

(precipitation, drying, extra washing with 70% ethanol): the 230 nm wavelength decreases, 

the DNA peak at 260 nm is clearer. 
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 Astrophorida pairwise percentages of sequence divergence measurements in ITS 

(Paper I), the COI Folmer fragment and the 28S(C1-D2) partition (Paper IV & V) are 

summarized in Table 1. The ITS marker has been only studied on two Pachymatisma sister-

species so the divergence measurements are not comparable with COI and 28S(C1-D2). 

Box 2: Preservation of sponge material for molecular studies. 
 

A specimen of Geodia barretti (#PC250) was collected in the Korsfjord. Small 
pieces (ca 10 mg) were fixed in various ways (1-11). DNA was extracted one month after, 
using the Viogene DNA extraction kit. Results can be seen on the DNA agarose gel below. 
 
1. formalin 4% (50 ml) 
2. -20°C freezer 
3. liquid Nitrogen (-196°C) 
4. drying at 60°C 
5. ethanol 75% (50 ml) 
6. ethanol 96% (50 ml) 
7. methanol 75% (50 ml) 
8. methanol 96% (50 ml) 
9. acetone 75% (50 ml) 
10. acetone 96% (50 ml) 
11. xylene (50 ml) 
 
 
 
 

The best preservation methods were clearly liquid nitrogen and ethanol 96%. The 
next best method would be methanol 75%. Similar results were found when we repeated 
this experiment with Phakellia ventilabrum (Axinellidae) and Sycon ciliatum (Sycettidae), 
both from the same area. Ethanol being easier to use in the field, all of our samples were 
fixed in 96% ethanol. 

 

 
Figure 8. Nano-drop measurement curves of three DNA extractions  
of Stryphnus raratriaenus treated differently. 
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Molecular marker ITS1-5.8S-ITS2 COI 28S(C1-D2) 

Intra-specific 
divergence (%) 

0-0.47 0-1 0.25-0.97 

Inter-specific 
divergence (%) 

0.36 0-18.6 0.12-26.0 

 

 All COI and 28S intra-specific distances are nested within the range of inter-specific 

values which makes it difficult to propose a standard sequence threshold to reveal new 

Astrophorida cryptic species (Hebert et al. 2004). However, we should emphasize that all 

species sequenced in our study are clearly discriminated and identifiable with either COI or 

28S(C1-D2), except for some Thenea species not discriminated by COI (Paper III & V). 

28S(C1-D2) evolves slightly more rapidly than COI (Paper IV) so it seems a better barcoding 

marker for species identification than COI. In order to confirm this, a larger intra-specific 

sampling is required. To conclude, using COI in combination with 28S(C1-D2) for the 

identification of known Astrophorida species is possible but ill suited for a screening 

procedure in order to detect new Astrophorida species. 

 The mitochondrial COI and the nuclear 28S(C1-D2) have independent evolutionary 

histories, but they were nonetheless shown to give congruent phylogenetic relationships 

among the Geodiidae (Paper IV). For a comprehensive study of the Astrophorida, they were 

therefore analyzed together in a single matrix containing a total of 152 (potential) 

Astrophorida specimens (29 genera, 2 sub-genera, 89 species) and 1,527 characters. The 

resulting maximum-likelihood (ML) tree (Paper V: Fig. 1) is repeated here (Fig. 9) for the 

readers’ convenience. In short, i) the monophyly of the Astrophorida was confirmed 

(including lithistids, Alecona and Neamphius), ii) the Euastrophorida and 

Streptosclerophorida were both found polyphyletic, iii) the Calthropellidae were 

monophyletic (and found to be a subfamily of the Geodiidae), iv) the Geodiidae, the 

Ancorinidae and the Pachastrellidae appeared polyphyletic and had to be redefined, v) a new 

subfamily of the Geodiidae was revealed, the Caminellinae subfam. nov. and finally vi) some 

genera were found to be polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, 

Rhabdastrella, Stelletta and Vulcanella). Furthermore, amphiasters appeared for the first time 

to be a synapomorphy for a clade henceforth named Amphiastrosa (created under the 

PhyloCode): the clade comprising amphiaster- and euaster-bearing Astrophorida. These 

results suggested a revised classification of the Astrophorida, presented and discussed in 

Table 1. Pairwise percentages of sequence divergence (from uncorrected ‘p’ distances) within the 
Astrophorida in the three molecular markers used in this study.  
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Papers IV and V. It is briefly summarized below, according to the Linnaean classification, 

along with changes made to the Systema Porifera classification. A morphological key to the 

Astrophorida families, subfamilies and genera incertae sedis is proposed in Box 3. 

 
 

Revised classification of the Astrophorida (Paper IV & V): 
 
 

Order Astrophorida Sollas, 1888 

 

Family Thrombidae Sollas, 1888 

Thrombus Sollas, 1886 

Yucatania Gómez, 2006 

Family Thoosidae Rosell and Uriz, 1997 (resurrected and reallocated from the Hadromerida) 

Alectona Carter, 1879 

Delectona de Laubenfels, 1936 

Thoosa Hancock, 1849 

Family Theneidae Carter, 1883 (resurrected, new definition) 

Annulastrella Maldonado, 2002 (upgraded to the genus level) 

Cladothenea Koltun, 1964 

Thenea Gray, 1867 

Family Vulcanellidae fam. nov.  

Poecillastra Sollas, 1888 (new definition) 

Vulcanella Sollas, 1886 (new definition) 

 

All the taxa below belong (or may belong) to the Amphiastrosa: 

 

Family Pachastrellidae Carter, 1875 (new definition) 

Brachiaster Wilson, 1925 

Pachastrella Schmidt, 1868 

Triptolemma de Laubenfels, 1955 

Family Geodiidae Gray, 1867 (new definition) 

• Subfamily Erylinae Sollas, 1888 (resurrected, new definition) 

Caminus Schmidt, 1862 

?Melophlus Thiele, 1899 (reallocated from the Ancorinidae) 

Erylus Gray, 1867 (new definition) 

Pachymatisma Bowerbank in Johnston, 1842 

Penares Gray, 1867 (reallocated from the Ancorinidae, new definition) 

• Subfamily Geodinae Sollas, 1888 (resurrected) 

Geodia Lamarck, 1815 (new definition, new synonyms: Ecionemia Bowerbank, 1864 (in 

part); Isops Sollas, 1880; Rhabdastrella Thiele, 1903; Sidonops Sollas, 1889 and Stelletta 

Schmidt, 1862 (in part)) 
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• Subfamily Calthropellinae von Lendenfeld, 1907 (downgraded to sub-family level) 

Calthropella Sollas, 1888 

Chelotropella von Lendenfeld, 1907 

Pachastrissa von Lendenfeld, 1903 

Pachataxa de Laubenfels, 1936 

• Subfamily Caminellinae subfam. nov. 

Caminella von Lendenfeld, 1894 (resurrected) 

Family Ancorinidae Schmidt, 1870 

• Subfamily Sanidasterinae Sollas, 1888 (resurrected) 

Dercitus Gray, 1867 (reallocated from the “Pachastrellidae”) 

Disyringa Sollas, 1888 

?Ecionemia Bowerbank, 1864 (in part) 

?Psammastra Sollas, 1886 

Stoeba Sollas, 1888 (reallocated from the “Pachastrellidae”) 

Stryphnus Sollas, 1886 (new synonym: Asteropus Sollas, 1888) 

?Tribrachium Weltner, 1882 

• Subfamily Stellettinae Carter, 1875 (resurrected) 

?Ancorina Schmidt, 1862 

?Cryptosyringa Vacelet, 1979 

Stelletta Schmidt, 1862 

Tethyopsis Stewart, 1870 

 

Family Corallistidae Sollas, 1888 

Family Theonellidae von Lendenfeld, 1903 

Family Phymaraphiniidae Schrammen, 1924 

Family Isoraphiniidae Schrammen, 1924 

Family Macandrewiidae Schrammen, 1924 

Family Neopeltidae Sollas, 1888 

Family Phymatellidae Schrammen, 1910 

Family Pleromidae Sollas, 1888 

 

Characella Sollas, 1886 incertae sedis (new definition) 

Neamphius de Laubenfels, 1953 incertae sedis (reallocated from the Hadromerida) 

Acanthotriaena Vacelet et al., 1976 incertae sedis 

Lamellomorpha Bergquist, 1968 incertae sedis 

Jaspis Gray, 1867 incertae sedis 

Holoxea Topsent, 1892 incertae sedis (asters lost) 

Ancorella von Lendenfeld, 1907 incertae sedis (asters lost) 

Belong to the 
Amphiastrosa 

Probably belong to the 
Amphiastrosa 

They belong to the 
Amphiastrosa 

Probably belong to the 
Amphiastrosa 
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Figure 9. Maximum-likelihood phylogeny of the Astrophorida derived using 28S+COI partial 
sequences (1,527 pb.) from 152 Astrophorida taxa (89 species) and four Spirophorida outgroups 
analyzed under the GTR + I + G model. Bootstrap nodal support values > 50% are given at the nodes 
(2,000 replicates). Sub-family and family names result from the discussion in Paper V. 
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Box 3: Key to the Astrophorida families, sub-families and genera 

incertae sedis (lithistids not included). 
 
1. Asters absent.............................................................................................................................................................2 

Asters present ...........................................................................................................................................................3 
 
2. Microscleres are spiny microxeas; calthrops with an aborted fourth actine ..........................................Ancorella 

Microrhabds in ectocortex; short-shafted triaenes .................................Geodiidae (Erylinae), Penares (in part) 
Microscleres trichotriaenes are present............................................................. Thrombidae, Thrombus (in part) 
Microscleres include sanidasters; short-shafted dichotriaenes.................Ancorinidae (Sanidasterinae), Stoeba 
Microscleres include sanidasters and trichodragmata (sometimes lost); triaenes absent ........................ Holoxea 
No microscleres; long-shafted plagiotriaene; anatriaenes and oxeas .......................................Stelletta anasteria 

 
3. Asters are euasters (sometimes modified to toxas) ................................................................................................4 

Asters are streptasters (plesiasters, metasters and/or amphiasters) .......................................................................5 
Asters are amphiasters and thin-rayed oxyasters (sometimes modified to toxas); excavating sponge 
.....................................................................................................................................................Thoosidae, Thoosa 

 
4. Microscleres include sanidasters; triaenes are long-shafted triaenes (sometimes secondarily lost) or calthrops

..................................................................................................................................Ancorinidae (Sanidasterinae)1 

Microscleres include only euasters (sometimes modified to toxas) .....................................................................6 
Euasters include sterrasters (sometimes secondarily lost*) in the endocortex and another kind of euasters in  
the ectocortex; triaenes are long-shafted ................................................................................................................7 
Euasters include sterrasters or aspidasters (sometimes secondarily lost*) in the endocortex and spherules or 
microrhabds in the ectocortex; triaenes are short-shafted; ana/pro/mesotriaenes are absent 
................................................................................................................................................. Geodiidae (Erylinae) 
Microscleres do not include sterrasters/aspidasters and sanidasters; triaenes are calthrops (sometimes in 
combination with long-shafted triaenes) and short-shafted mesotriaenes...............Geodiidae (Calthropellinae) 
 

5. Streptasters are mainly amphiasters ........................................................................................................................8 
Streptasters are mainly spirasters and plesiasters...................................................................................................9 

 
6. Triaenes present..............................................................................................................Ancorinidae (Stellettinae) 

Triaenes absent .................................................................................................................................................Jaspis 
 
7. Uniporal oscule leads into a cloaca............................................................................... Geodiidae (Caminellinae) 

Uniporal oscule does not lead into a cloaca ....................................................................... Geodiidae (Geodinae) 
 
8. Megascleres include calthrops (sometimes with an aborted fourth actine) or short-shafted mesotriaenes  

and/or mesotrider desmas ...............................................................................................................Pachastrellidae 
Megascleres are long-shafted triaenes ................................................................................................... Characella 
Triaenes are absent .................................................................................................................................................10 
 

9. Microxeas present; no acanthotriaenes .............................................................................................Vulcanellidae 
Microxeas present; long-shafted acanthotriaenes present ............................................................. Acanthotriaena 
Microxeas absent......................................................................................................................................Theneidae

 
10. Robust diactine or polyactine megascleres; excavating sponge...........................................Thoosidae, Alectona 

Robust diactine/polyactine megascleres absent ...................................................................................................11 
 
11. Trichotriaenes present ..........................................................................................................................Thrombidae 

Trichotriaenes absent .............................................................................................................................................12 
 
12. No megascleres; microscleres include microrhabds ...........................................................Thoosidae, Delectona 

Megascleres include only oxeas; excavating sponge in its early stage................................................ Neamphius 
Megascleres include oxeas, strongyles and strongyloxeas; other microscleres are microstrongyles 
...........................................................................................................................................................Lamellomorpha 

 
* DNA sequencing is necessary to reveal this loss. 
1 The phylogenetic position of Ancorina is ambiguous (Paper V). To simplify this key, we considered Ancorina to be part of the 
Sanidasterinae (as suggested by morphological data). 
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 Some clades could not be named under the Linnaean classification because i) they 

need to be confirmed by independent data or ii) we are missing the type species of the genus 

or of the family necessary to take a taxonomical decision. Introducing a phylogenetic 

classification (under the rules of the PhyloCode v.4c, January 2010, 

www.ohio.edu/phylocode) of the Astrophorida (Paper IV & V) enabled us to i) name those 

clades while waiting for further studies and sampling, ii) communicate and compare our 

results more efficiently and iii) suggest a new classification based only on clades, which can 

be tested later with independent data. In a way, the phylogenetic classification established the 

foundations for future taxonomical revisions and phylogenetic investigations of the 

Astrophorida. 

 

4.3.  The evolution of spicules in Porifera 

 

4.3.1. The Astrophorida, a homoplasy-rich group 

 

 Our phylogenetic tree gave us an opportunity to follow the evolution of Astrophorida 

sponge spicules (cf. discussion in Paper IV & V). Mapping the microscleres and megascleres 

on the molecular tree was a way to reveal synapomorphies and plesiomorphies for the 

different taxa and thus investigate the underlying evolutionary processes (Paper IV: Fig. 4 & 

6; Paper V: Fig. 2 & S1). Our main result is that independent evolution of the same character 

state (homoplasy) in spicules is more common than what we expected. The term homoplasy 

refers to two major processes: convergence and secondary loss (= reversal). In the 

Astrophorida convergences and secondary losses have happened many times and for all type 

of spicules, megascleres and microscleres. The main consequence is that few spicule types 

(and secondary losses) are actually phylogenetically informative, at the order level at least. 

But before discussing separately each of these processes, I should clarify the term of 

“secondary loss”, which I will be using copiously and which can become ambiguous in some 

cases. 

 

4.3.1.1.  The meaning of secondary loss in phylogenetics and with respect to spicules 

 

 Jenner (2002) emphasized that one has to stop considering ‘absence’ states as 

empirically empty as opposed to ‘presence’ states which furnish potential phylogenetic 
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evidence. By doing so, we prevent these ‘absence’ states to be optimized as plesiomorphies or 

apomorphies. An often ignored fundamental fact is that simple can also mean derived. In 

other words, an ‘absence’ state is also a ‘gain’, with the difference that this ‘gain’ often leaves 

no trace of its past presence, and is therefore invisible. Identified secondary losses can 

therefore potentially represent synapomorphies and thus bring new characters with 

phylogenetic information. But the difficulty of discriminating the different ‘absence’ states 

can render morphological studies heavily skewed. Sponge taxonomists have always 

acknowledged secondary loss of spicules (e.g. Dendy 1921) but they were hardly able to 

justify it, let alone test it. With the arrival of cladistic theory and a renewal of independent 

data came the possibility to unveil homoplasy and thereby secondary losses (Jenner 2004; 

Boury-Esnault 2006). Since these tools are fairly recent, there are fewer records of secondary 

losses than of convergent evolution. 

I consider that there are two main types of spicules losses (Fig. 10): i) a “true” loss 

when nothing replaces the spicule lost (e.g. loss of sterrasters) or ii) a “semantic” loss by 

modification of a spicule into another (e.g. microrhabds becoming spherules; sterrasters 

become aspidasters). A true loss is a reversion so it is first a homoplasy, but if it is identified, 

it can be thought of as a derived character, an apomorphy. If secondary losses of the same 

spicule are identified in different clades, the loss becomes a convergent character, so it comes 

back to being a homoplasic character. On the other hand, a semantic loss obligatorily involves 

homologous spicules, it first leads to an apomorphy, but if the same transformation takes 

place in different clades, it is a homoplasy. “True” and “semantic” losses can be “partial” or 

“total” (see examples below). And, as Maldonado et al. (1999) have suggested, these losses 

can be “permanent” or “temporary” (= reversible). When we will discuss losses, it will always 

be “true” losses, unless stated otherwise. 

 
Figure 10. Meanings of “secondary loss”. 
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4.3.1.2. Secondary losses within the Astrophorida 

 
 One needs to consider smaller clades to really use spicule categories or secondary 

losses as synapomorphies. For example, sterrasters as synapomorphy of the Geodiidae, 

trichodragmas as synapomorphy of Dragmastra, calthrops as synapomorphy of the 

Calthropellinae, secondary loss of ana/pro/mesotriaenes as a synapomorphy of the 

Erylinae+Calthropellinae+Caminellinae, secondary loss of sterrasters as a synapomorphy of 

the Geostelletta (group defined under the PhyloCode). Or, in order to have unique 

synapomorphies among the Demospongiae, one can use combinations of spicule characters to 

support monophyletic clades (e.g. calthrops and euasters (not toxas) for the Calthropellinae). 

 This high-frequency of homoplasy in the Astrophorida is all the more impressive if we 

consider that our results are certainly underestimated, especially concerning secondary loss. 

Many other cases are reported in Astrophorida not sampled in our study. First of all, apart 

from Asteropus (= Stryphnus), Melophlus, Neamphius, Annulastrella and Thrombus sampled 

in our study many other Astrophorida have secondarily lost their triaenes: Holoxea, Jaspis, 

some Stelletta — many of which were originally described as Jaspis (e.g. Stelletta jonesi 

(Thomas) — some Erylus (Erylus amissus Adams and Hooper), Geodia (e.g. G. robusta (von 

Lendenfeld), G. spherastrosa (Wilson)), Rhabdastrella (= Geodia) (e.g. R. distinctus (Thiele), 

R. sterrastraea (Row)), Ecionemia or Lamellomorpha. Because of the absence of triaenes, 

most of these species were originally described in separate genera: Dorypleres (= Stelletta), 

Geodinella (= Geodia), Asteropus (= Stryphnus) or Stellettinopsis (= Ecionemia). Partial 

losses of triaenes are also common: either clads are missing or remain as buds, or triaenes are 

simply very rare. This is common in Ecionemia (e.g. E. corticata (Carter)), Stelletta (e.g. S. 

carolinensis (Wells et al.), S. stellata Topsent, S. tuberculata (Carter)), Rhabdastrella (e.g. R. 

intermedia Wiedenmeyer) and in Stryphnus raratriaenus (Paper III). It should be emphasized 

that total loss of triaenes can lead to ambiguous identifications because Astrophorida are not 

the only order to produce asters (Fig. 1). Indeed, Hadromerida asters can be challenging to 

differentiate from Astrophorida asters. This is why we suspect Jaspis (Astrophorida) and 

Hemiasterella (Hadromerida) to be polyphyletic, which has been already confirmed by 

molecular data in the case of the Hemiasterellidae and Hemiasterella (Chombard 1998; 

Nichols 2005). I managed to get a 28S(C1-D2) sequence from a Jaspis incrustans (Topsent) 

collected in the Mediterranean (unpublished data). A blast search (03/03/2010) indicated that 

it was closer to the Agelasida+Axinellidae ( = clade C sensu Nichols (2005)) and then to some 

Hadromerida species. Furthermore, a close observation of sections made in J. incrustans 
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(from the Mediterranean and from the Gulf of Cadiz) and Hemiasterella sp. 2 from Nichols 

(2005) showed that they had very similar skeleton organization. This might suggest that 

(some) Jaspis are closer to some Hemiasterella but we definitely need more data to confirm 

this. Most of these species were originally grouped in the former polyphyletic   Coppatiidae 

Topsent, 1898 (= [Epipolasidae] Sollas, 1888), since taxonomists had difficulty knowing if 

these species were reduced Hadromerida, Astrophorida or merely primitive types which had 

never had either triaenes or tylostyles (de Laubenfels 1936; Bergquist 1968).  

 Secondary losses of asters are easier to reveal when triaenes are left, since 

Astrophorida and Spirophorida (the only taxa to have triaenes) are fairly easy to tell apart. 

This is the case in many Penares species (e.g. P. sphaera (von Lendenfeld), P. alata (von 

Lendenfeld), P. saccharis (de Laubenfels)), Stelletta anasteria Esteves & Muricy, all Stoeba 

and Holoxea, and some Thrombus. Here again, losses can be partial, and microscleres in some 

species (or specimens) can thus be very rare. For example, Erylus deficiens Topsent, 

originally described as a variety of Erylus discophorus, has very few aspidasters. Meanwhile, 

other specimens from the Gorringe Bank, temporarily identified as Erylus sp. and 

phylogenetically close to E. discophorus (Paper V), have completely lost their aspidasters 

(Xavier & van Soest 2007). Losses of either triaenes or asters were more readily identified 

and accepted because they concerned only one of the two synapomorphic spicules for the 

Astrophorida group. But some species may have lost triaenes and asters, a very likely 

scenario according to our results, and may have thus been classified in other orders (e.g. 

Halichondrida). We are therefore convinced that more Astrophorida species remain to be 

identified and removed from other sponge orders. 

 

4.3.1.3. Convergent evolution within the Astrophorida 

 

 The abundant spicule nomenclature, essentially descriptive, tends to blur the primary 

homology of spicules (Fromont & Bergquist 1990). Therefore, independent characters are 

often necessary to reveal the true nature of spicules that look alike. An efficient way to reveal 

convergent evolution is to observe the spicule formation (with SEM or TEM): spiculogenesis 

or sclerocytes (e.g. Rützler & Macintyre 1978). Another way is to consider the position and 

orientation of these spicules in the sponge architecture (Paper IV). One can also consider 

characters not directly related to the spicules studied (other spicule categories present, 

embryology, biochemistry, histology, molecular phylogenetics…). Finally, one can use 
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phylogenetic reconstructions methods with morphological and/or molecular data (Paper IV & 

V). 

 With respect to convergent evolution, our results are also likely to be underestimated. 

Within the Astrophorida, similar spicules have been systematically interpreted as inherited by 

a single common ancestor. Our study (Paper V) nonetheless shows that this it is not always 

the case. Euasters seem to have appeared twice independently in the Geodiidae and the 

Ancorinidae. Calthrops have appeared independently at least three times (in the 

Calthropellinae, Pachastrella and Dercitus); it has always led to the loss of the typical 

Astrophorida radial arrangement. Other examples are the sanidasters that may have appeared 

in Ancorina sp. and Stryphnus independently; likewise for the discotriaenes in Alectona and 

Discodermia, microrhabds in Ecionemia and the Erylinae species; toxas in Erylus, Geodia, 

Stelletta, Dercitus and Thoosa species; amphiasters in the Thoosidae, Pachastrellidae, 

lithistids, Characella, Neamphius and even Erylus amphiastera (Wintermann-Kilian & 

Kilian) etc. I am sure that many more cases of unexpected convergent evolution are to be 

revealed within the Astrophorida.  

 The high level of homoplasy found in the Astrophorida may be due to our large 

sampling. Indeed, homoplasy has been shown to be correlated to the number of terminal taxa 

in an analysis (Sanderson & Donoghue 1989). In other words, the probability that a character 

will change somewhere on the tree is related to the total number of internodes and therefore of 

the number of taxa. So similar phylogenetic studies in other sponge groups should find similar 

levels of homoplasy. In the following part, we will investigate the Porifera literature in search 

of these homoplasies. 

 

4.3.2. The Porifera, a homoplasy-rich phylum 

 

4.3.2.1. Convergent evolution in Porifera 

 

 Numerous examples of spicule convergent evolution have been revealed by 

comparative morphology, and more recently by molecular phylogenetic data. For example: 

calthrops in the Homosclerophorida and the Astrophorida; trichodragmas in some Stelletta 

(Ancorinidae), Tetillidae (Spirophorida), Spinularia (Polymastiidae), Desmacellidae 

(Poecilosclerida), some Haliclona (Gellius) (Haplosclerida), Dragmacidon, Dragmaxia and 

some Axinella (“Axinellidae”) (Donadey et al. 1990); toxas in different Astrophorida, some 
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Haliclona (Gellius) (Haplosclerida), and some Poecilosclerida; euasters within the 

Astrophorida, the Hadromerida (see above) and the Chondrosida (Chondrilla) (Fig. 1); 

sterrasters (Geodiidae) and selenasters (Placospongiidae) (Rützler & Macintyre 1978); 

sanidasters in the Ancorinidae and in Negombo (Halichondrida), and spinorhabds 

(Podospongiidae, Poeciloasclerida); didiscorhabds (Didiscus, Halichondrida) and discorhabds 

(Latrunculia, Poecilosclerida) (Hiemstra & van Soest 1991); pseudo-rotules of the Spongillina 

(“Haplosclerida”) and the “amphiasters” found in the Thrombidae (Astrophorida); amphidiscs 

of the Euplectellidae (Hexactinellida) and birotula in the Iotrochotidae (Poecilosclerida). 

Examples of convergent evolution are of course also found in the Calcarea: e.g. pseudosagittal 

triactines in Heteropiidae and some Sycon (Sycettidae) (Dohrmann et al. 2006). A few studies 

are now showing that convergent evolution is also present within sponge species: reduction in 

spines on the verticillate acanthostyles is assumed to have developed twice independently in 

widely separated populations of the Astrosclera willeyana Lister complex (Wörheide et al. 

2002). Even siliceous spicules may have evolved independently twice: in the Silicea and in 

the Homosclerophorida (Maldonado & Riesgo 2007; Philippe et al. 2009). We should 

however note that convergent evolution appears surprisingly less common within the 

Hexactinellida (Dohrmann et al. 2008) but maybe because large molecular phylogenies have 

not been done yet on this group. 

 Other sponge characters involving the skeleton have been shown to arise through 

convergent evolution. The polyphyly of “lithistids” inevitably demonstrates that desmas have 

been acquired many times in Demospongiae evolution (Paper V). Likewise for the polyphyly 

of “sclerosponges” and their coralline skeletons which appeared in the Hadromerida and in 

the Axinellida+Agelas clade (Chombard et al. 1997). Spongin skeletons have evolved at least 

twice in the Demospongiae: in the Myxospongia/G2 and in the Keratosa/G1 (Maldonado 

2009). Other skeleton frameworks have been acquired independently: axially compressed and 

extra-axially plumo-reticulate skeletons are present in Axinellidae, Raspailiidae and some 

Hadromerida (e.g. Trachycladus) (Erpenbeck et al. 2007c), the polyphyletic ‘Jenkinidae’ 

(Calcaronea) all share a thin-wall and an inarticulate choanoskeleton (Dohrmann et al. 2006); 

dictyonal framework may have appeared at least twice in the Hexactinellida (Dohrmann et al. 

2008).  

 Sponge evolution shows that even more complex characters can be acquired 

independently. Oviparity for instance, has been acquired twice in different groups: 

Myxospongia/G2 and within the Democlavia/G4 (Borchiellini et al. 2004b), and we know 

that viviparity has been re-acquired independently in some Spirophorida (e.g. Craniella), all 
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Poecilosclerida (except for the Raspaillidae) and some Halichondrida (Sollas 1882a; 

Borchiellini et al. 2004b).  

 

4.3.2.2. Secondary loss in the Porifera 

 

 Loss of spicules in general is less documented and scattered than spicule convergence 

because there are no comprehensive molecular phylogeny for orders rich in spicule diversity 

like the Hadromerida and the Poecilosclerida. Loss of megascleres is even less documented 

since their morphological diversity outside the Astrophorida is lower than for microscleres, 

but they are occasionally suspected: e.g. the loss of tuberose tyles in Crambe (Maldonado & 

Uriz 1996). Loss of microscleres, on the other hand, is well documented in other Porifera 

groups: many Tetillidae (Spirophorida) have secondarily lost their sigmaspires (e.g. some 

Craniella); independent losses of chelae is also hypothesized in the Poecilosclerida (e.g. 

Tedaniidae, Latrunculiidae and Desmacellidae) (Hajdu et al. 1994; Erpenbeck et al. 2007a); 

independant loss of gemmules in the Spongillidae may well have happened several times 

(Meixner et al. 2007). Total loss of spicules may have happened at least twice in the 

Demospongiae (Maldonado 2009), and more within the Homosclerophorida (e.g. some 

Corticium, Oscarella) (Solé Cava et al. 1992). All in all, it would seem that secondary loss 

appears more common for microscleres than for megascleres in the Demospongiae. 

 Secondary losses in the Porifera do not only concern spicules. In the Calcarea, 

molecular phylogenetic analysis indicated independent secondary loss of important and 

complex characters such as the cortex or even symmetry (Manuel et al. 2003). Spongin may 

have been lost at least twice: in the Tetractinellida and in Suberites (Borchiellini et al. 2004b). 

Even one of the possible synapomorphies of the Porifera, choanocyte chambers, have been 

secondarily lost in some Cladorhizidae (Poecilosclerida) (Vacelet & Boury-Esnault 1995). 

 

4.3.2.3. Spicule function, adaptivity and homoplasy 

  

 Spicules have functions (cf. 1.3.5.) so the evolution of (some) spicules is obviously 

under selective pressures from the environment. Persistence across geological time of the 

same spicule morphologies is here to further support their purpose (Uriz 2006). And the 

remarkable fact that octocorals, plathelminthes, mollusks, echinoderms and ascidians have 

come up with similar spicules (Kingsley 1984), which may have similar functions of support 
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and/or protection (Koehl 1982; West 1998; López-Legentil et al. 2006; Clavico et al. 2007) 

should convince us, if needed, that (some) sponge spicules are truly adaptative. 

 One last phenomenon that also supports the usefulness of spicules is the compensation 

process, which I have observed many times, and that is hardly presented in the literature. 

Many sponges might compensate a secondary loss of a spicule, whether it be temporary or 

permanent, partial or total. 1) A semantic loss may be compensated by modifying the skeleton 

organization. Astrophorida which have lost long-shafted triaenes but gained calthrops may 

have lost a way to organize the choanosome and support the cortex. Topsent (1902) rightly 

noticed that the appearance of calthrops (in Calthropellinae, Pachastrellidae and Dercitus) was 

always correlated with a multiplication of their number in the choanosome (Fig. 11A-B); 

maybe because the loss of the triaene rhabdome induced a loss of skeletal support. 2) Sponges 

can compensate a true loss by producing more spicules of another category: in Erylus 

deficiens, the disappearance of aspidasters seems to be balanced by an abundance of 

microrhabds in the cortex in order to supposedly strengthen it (Fig. 11E-F). 3) Sponges can 

compensate by incorporating material from the environment: in Rhabdastrella (= Geodia) 

aurora (Hentschel), sand grains are extremely abundant in the cortex and functionally replace 

the triaenes, few in number and irregular in shape (Bergquist 1968). We have also observed 

this in Ecionemia (= Geodia) sp. (Fig. 11C) and Stelletta (= Geodia) tuberculata, both from 

South Australia, and wonder if these sand grains have also replaced the lost sterrasters. 4) 

Sponges can also compensate by producing more of another tissue: shallow-water P. normani 

which have very few sterrasters produce a thick fibrillar collagen layer under the cortex (Fig. 

4F). This is also maybe how spongin appeared, because sponges needed to compensate the 

loss of their spicules with a new supporting skeleton (Maldonado 2009). 5) Finally, other 

sponges without spicules can use other living organisms as a scaffold to gain support: 

Hexadella detritifera Topsent can use the large megascleres on the hispid surfaces of large 

Astrophorida (Figs. 3J, 11D). 

So spicules are adaptative, and a primary cause of convergence may be functional 

adaptation to similar environments (Patterson 1988). Because of their obvious larger role in 

the skeleton support, megascleres may be more adaptative than microscleres, and therefore 

under more selective pressures from the environment. Most microscleres are so small and 

often randomly distributed, that they seem to play a minor role in the skeleton framework 

(Dendy 1921). For example, it is hard to imagine which selective pressures act on the asters of 

Astrophorida species: how is an oxyaster better/worse than a strongylaster for the sponge’s 

survival or fitness? Therefore, if we admit that less selective pressure acts on them, these 
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characters would be free to evolve in any direction. Darwin (1859) considered such “free” 

characters as more fitted for classification and phylogeny because logically their evolution 

will not be the result of environmental selection, which favors homoplasy. But our results 

suggest on the contrary that microscleres are very homoplasic characters. Furthermore, 

functional adaptation to similar environments does not explain the facility of secondary loss 

(in megascleres and microscleres). So an alternative cause of homoplasy is required. It has 

been shown that homoplasy is positively correlated to the limitations on the number of 

characters states (Donoghue & Ree 2000). Given a particulate rate of evolution (= character 

change), the fewer the evolvable states the more homoplasy is expected, and vice versa 

(Donoghue & Ree 2000). As shown in other organisms (Wake 1991; Donoghue & Ree 2000), 

we therefore propose that spicule formation constraints are a primary cause of homoplasy in 

spicules. These design constraints limit the number of different spicules one can make. For 

example, there may only be so many evolving combinations you can have from a long-shafted 

triaene, hence the multiple independent appearances of calthrops. Spicule design constraints 

can be genetic, cellular or biochemical. And spicule formation constraints may be the primary 

cause of secondary loss. 

To conclude, spicule homoplasy may be due to 1) functional adaptation to similar 

environments and 2) spicule formation constraints, which limit what a spicule can look like. 

Both options can cause spicule convergence, but the second one may be the main cause of 

secondary loss, and may explain why this process is so banal in microscleres. We should note 

that a spicule can be lost even if it is adaptative: it is the case of triaenes and sterrasters 

implying that spicule formation constraints may have more influence on the evolution of 

spicules than the environment. What kind of constraint could be favoring such losses? 
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Figure 11. A. Thick section of Dercitus bucklandi Mc 2649). Scale: 1 mm. B. Thick section of 
Pachastrissa pathologica (MNHN DT754, type). Scale: 1 mm. C. Thick section of Ecionemia sp. 
(S1020). Arrow points at sand grains in cortex. Scale: 1 mm. D. Thick section showing Hexadella 

detritifera (h) growing on Stryphnus fortis (s) (ZMBN 82977). Scale: 1 mm. E. Thick section of 
Erylus discophorus (#PC82). Arrows point at aspidasters. Scale: 100 	m. F. Thick section of Erylus 

deficiens (ZMAPOR 20419). Arrow points at thick layer of microrhabds. Scale: 100 	m. 
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4.3.3. Secondary loss of sterrasters 

 

 We have mentioned possible cause(s) of the multiple secondary losses of sterrasters in 

the Geodiidae (cf. discussion in Paper V) and I will take the opportunity of this discussion to 

speculate further on how these losses might have been favored. A rough mapping of 

shallow/deep-water species on the Astrophorida phylogenetic tree (Paper V: Fig. 2) led us to 

suggest that Geodiidae ancestors were probably deep-water species, which implies that 

sterrasters appeared in a deep-water environment. The rigid cortex formed by sterrasters 

obviously confer a role of protection against predators (Hill & Hill 2002). One personal 

observation concerning a common two-sponge symbiosis in the Florida Keys further suggests 

this (Wilcox et al. 2002). Geodia vosmaeri (Sollas) has been shown to lack secondary 

metabolites to defend itself against predators but it might promote growth of other sponges, 

such as Amphimedon erina (de Laubenfels) that produce such chemicals (Pawlik et al. 1995). 

We noticed that sterrasters tended to disappear where A. erina was present, as if G. vosmaeri 

could afford a thinner cortex when overgrown by its protecting symbiont (Fig. 12). 

 

 
 
 
 So sterrasters may have originally been selected for because of the survival advantage 

they brought to the ancestor of the Geodiidae. If this is true, then sterrasters could have 

appeared when or after the appearance of predators. This does not contradict their first 

occurrence in the fossil record of the Lower Cambrian (Reitner & Mehl 1995). On the other 

hand, we notice that most of the secondary losses of sterrasters have occurred in ancestors of 

Figure 12: Stained thick section 
of the cortex of Geodia vosmaeri 

(ZMBN 85213) overgrown by 

Amphimedon erina (A) in the 
Florida Keys. p: uniporal pores of 
G. vosmaeri; c: cortex with 
sterrasters. 
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shallow-water species from tropical or temperate waters (never boreal or arctic). It is therefore 

tempting to propose that secondary loss of sterrasters has been favored in tropical to 

temperate shallow-waters. This would imply that environmental parameters such as lower 

pressure, higher water temperature and/or lower silica concentration could be responsible for 

the loss of these sterrasters. Silica concentration is particularly well known for its effect on 

spicule morphology (cf. 1.3.3.). Silica concentration may trigger or not spicule production in 

the different sclerocytes and thereby modify the set of spicules produced (Jørgensen 1944; 

Maldonado et al. 1999). Vacelet (1988) notes that all sponges that lost their mineral skeleton 

are actually sponges from the littoral zone, maybe because of the low silica concentrations 

due to the expansion of diatoms in the photic zone (Maldonado 2009). Seemingly, lithistids in 

shallow water tend to loose their desmas (Vacelet 1988; Maldonado et al. 1999; pers. obs.) 

and shallow deep-water Geodiidae species have a disturbed spiculogenesis (cf. 4.1.2.). 

 Following this, we can propose that shallow-waters Geodiidae may have stopped 

producing sterrasters because of a lack of silica. The silica concentration may not have been 

high enough to stimulate the transcription and/or translation of silicatein-�/�, the specific 

silicatein producing sterrasters (Krasko et al. 2000; Müller et al. 2007). Or, some Geodiidae 

may have still been able to produce a kind of sterraster, but not fully formed, as the ones 

observed today in our shallow G. barretti and P. normani (Fig. 5A, 5E), in the (shallow) 

Erylus mamillaris/discophorus complex (Fig. 13) or in some shallow Rhabdastrella species 

from tropical waters (e.g. R. aurora, R. cordata). In those cases, silicatein-�/� may still be 

produced but it is the final maturation and fusion of the ray tips that is disturbed, which 

suggests the role of yet another mechanism. Some species may have tried to compensate the 

loss of sterrasters with foreign material or other spicules (Fig. 11C, 11F). Permanent loss of 

sterrasters may happen if some gene involved in the production of sterrasters (e.g. silicatein-

�/� gene or a gene controlling it) mutated. This would not matter for Geodiidae that already 

survived the phenotypical loss of their sterrasters. Once this mutation would spread in the 

population, we would have a permanent secondary loss of sterraster and possibly new species. 

The fact that the cortex with few and underdeveloped sterrasters of the shallow P. normani 

and G. barretti (Fig. 4A-B, E-F) look surprisingly like the cortex (Fig. 11E) and aspidasters of 

E. discophorus (Fig. 13) — a more southern shallow species, placed in the sister-group of 

Pachymatisma (Paper V) — suggests that the E. mamillaris/discophorus complex may have 

originated, like in our hypothetical scenario, from a deep-water ancestor that moved to 

shallower waters. 
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 Theoretically some species may have managed to come back to deep-water and gain 

their sterrasters back (= reversible evolution). However, this last scenario is never met in our 

phylogenetic tree (Paper V: Fig. 2). The few deep-water species from our study to have lost 

their sterrasters (Stelletta (=Geodia) tuberosa (Topsent), Penares sclerobesa Topsent, 

Pachastrissa spp.) could represent species with shallow-water ancestors, which then came 

back to deep-water environments but had lost the possibility to produce sterrasters de novo. 

Or they could represent species that lost their predators or found other ways to deter them 

(e.g. secondary metabolites), so that the sterrasters were not so useful anymore. 

 To conclude, silica concentration may represent one of these spicule formation 

constraints causing secondary loss. It does not act on the function of a spicule but only on its 

formation: it represents a limiting factor conditioning the presence or absence of a spicule. 

Figure 13. SEM observation of aspidasters of Erylus discophorus from Portugal (#PC81). Scale: 
10 	m. Compare with underdeveloped sterrasters of shallow Geodia barretti (Fig. 7A) and 
Pachymatisma normani (Fig. 7E). 
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5. CONCLUSION 

 

• My first aim was to provide a solid taxonomical basis of Astrophorida species. A full 

revision was obviously beyond the scope of this study but I have however during this 

Ph.D. managed to study specimens from all the Astrophorida families, from tropical, 

temperature and boreo-arctic regions. My taxonomy papers focused on Astrophorida from 

the Caribbean coast of Panama and the Norwegian coast. These studies resulted in many 

new records, three species were synonymized, two species were resurrected and two were 

new to science (Stryphnus raratriaenus and Pachastrella nodulosa). The study of so-

called ‘cosmopolitan species’ (e.g. Poecillastra compressa, Pachastrella monilifera, 

Thenea muricata) or ‘common’ species (e.g. Geodia gibberosa, Geodia cydonium) shows 

that more work is required, as well as additional genetic data to fully revise these species. 

Appendix A of this thesis represents a solid basis to pursue this endeavor in the 

NEA/Mediterranean region. Integrative taxonomy has proven to be a powerful method to 

detect putative cryptic species or synonyms. 

 

• Before this study, the evolutionary relationships within the Astrophorida order were for 

the most part unknown. This is the first comprehensive molecular phylogeny of the 

Astrophorida. We obtained a well resolved tree that suggested phylogenetic relationships 

between 89 species of Astrophorida from nine families of sponges. The taxonomic 

translation of this tree was a complete revision of the Astrophorida for which we proposed 

a new classification. With the adding of the eight families of lithistids, the Thoosidae and 

Neamphius huxleyi, the Astrophorida became a larger order than previously considered, 

comprising ca 820 species. 28S(C1-D2) and COI have been efficient markers in revealing 

deep and shallow nodes but some questions remain regarding poorly supported clades, 

incertae sedis taxa (e.g. Characella, Neamphius) and missing taxa in our study (e.g. 

Holoxea, Jaspis, Tethyopsis, Psammastra, Tribachium, Chelotropella, Pachastrissa, 

Thoosa, many lithistid families…). Furthermore, we should not forget that our 

phylogenetic reconstruction resulted in a hypothetical tree, parts of which are congruent 

with morphological data, but which needs to be tested with independent molecular data. 

 

• Our study is far from being the first study to show the misleading nature of spicules and to 

question their utility in sponge taxonomy (Solé Cava et al. 1992; Klautau et al. 1994; 
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Schönberg & Barthel 1998; Erpenbeck et al. 2006a), especially with the numerous studies 

on the phenotypical plasiticity of spicules and the recent outburst of cryptic species 

identification. But this is maybe the first study where homoplasic spicules (megascleres as 

well as microscleres) are shown to be so widespread and common. We were able to reveal 

this homoplasy because of the spicule diversity of the Astrophorida and because of our 

large sampling. Our results show for the first time the banality of spicule secondary loss 

(especially for microscleres) and its potential as a synapomorphy (e.g. in the 

Erylinae+Calthropellinae+Caminellinae, in Geostelletta). We further discussed the cause 

of this high homoplasy levels and concluded that it may be due to 1) functional adaptation 

(especially concerning megascleres) and 2) spicule formation constraints. These design 

limitations (such as silica concentration) may be a major cause of secondary loss in 

spicules. 

 

As the eminent French sponge taxonomist Emile Topsent (1925) once put it: “ La 

détermination des Geodia est actuellement très difficile.” (= The identification of the Geodia 

is today very difficult). Well, we might say it is even harder now with all these absent lost 

characters to take into account. But at least we can be satisfied that we have learned a great 

deal more about their evolution. 
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6. FUTURE PERSPECTIVES 
 

• A revision of the boreo-arctic Geodia (Tendal, Klitgaard, Cárdenas & Rapp, in prep.) and 

the NEA Erylus mamillaris/discophorus complex (Xavier & Cárdenas, in prep) are 

currently pursued. Doing so, DNA tagging of revised species will be continued in order to 

give non-specialists (e.g. ecologists, environmentalists, biochemists) a reliable barcoding 

identification tool. 

 

• Future molecular phylogenetics on the Astrophorida should focus on i) sampling and 

sequencing the missing taxa with the same markers and ii) start to sequence additional 

markers to confirm some important nodes, relationships and clades. It will also be 

interesting to see how well our phylogenetic classification stands when the sampling 

and/or the molecular data increases. Sponge-associated microorganisms are probably as 

old as the sponges themselves and maintained through vertical transmission (Taylor et al. 

2007). There is today a growing interest to understand the relationships between sponge 

bacterial communities and their hosts (Taylor et al. 2007). The phylogenetic tree we 

obtained could therefore also be used for coevolution studies between Astrophorida and 

their symbionts. Co-phylogeny work has been pioneered by Erpenbeck et al. (2002) in the 

Halichondrida so co-phylogenies between specific Astrophorida bacterial groups and their 

hosts could be envisaged. Furthermore, a Demospongiae phylogenetic tree — including 

our phylogenetic results on the Astrophorida — is being put to use in an environmental 

microbial study which aims at understanding the relationships between the microbial 

community patterns of 13 sponge species (of which six are Astrophorida) from the cold-

water coral reefs of Norway and their hosts (Hoffmann, Cárdenas, Rapp, Boetius & 

Ramette, in prep.). Another way to further benefit from our Astrophorida phylogeny 

would be to calibrate some of the nodes (take advantage of the rich lithistids fossil record, 

and the early Cambrian Tetractinellida fossils) and use a relaxed clock model in order to 

have divergence time estimates. We would then have a better idea when spicules were 

secondary lost and if we can correlate these losses to geological/geochemical events. 

 

• A major research theme follows my study on secondary loss in sponges. It is the effect of 

silica concentrations with respect to secondary loss and its potential role in sponge 

speciation. Indeed, we already suspect silica to be a key element in important sponge 

evolutionary events (Maldonado et al. 1999; Maldonado 2009). Seemingly, by directly 
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influencing the phenotype of sponges, silica concentrations might have initiated many of 

those gains/modification/secondary losses of spicules, which could have been fixed in 

separate populations thereby producing new species.  
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