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2. Scientific environment

             The Circulatory Research Group at the Institute for Surgical Sciences, University of

Bergen is directed by Professor Paul Husby. This is an interdisciplinary group of surgeons,

anesthesiologists and perfusionists that have worked with large animal models (pigs) for several

years. The focus of the Circulatory Research Group is different aspects of fluid homeostasis and

flow-and pressure-strategies during normothermic as well as hypothermic cardiopulmonary

bypass (CPB).

The experimental studies of this thesis were performed between 2004-2008 at the

Vivarium at Haukeland University Hospital under the direction of the Faculty of Medicine.

             The clinical study was performed between 2007-2008 on patients admitted to the

Department of Heart Diseases, at Haukeland University Hospital, who were undergoing cardiac

surgery. The study was carried out in collaboration with the staff from the Department of

Anesthesia and Intensive Care.
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3. Abbreviations

Alb Albumin
BMI Body mass index
BV Blood volume
CABG Coronary artery bypass grafting
CI Indexed values of cardiac output
CO Carbon monoxide
C.O. Cardiac output
COP Colloid osmotic pressure
COPp Colloid osmotic pressure in plasma
COPi Colloid osmotic pressure in interstitial fluid
CPB Cardiopulmonary bypass
CVP Central venous pressure
EVLW Extravascular lung water
FER Fluid extravasation rate
FiO2 Inspiratory fraction of oxygen
GEDV Global end-diastolic volume
Hb Hemoglobin
HbCO Carboxyhemoglobin
HES Hydroxyethyl starch
HSD Hypertonic saline / dextran
HSH Hypertonic saline / Hydroxyethyl starch
I Index (CI = cardiac index; SVRI = indexed value of SVR, etc)
ICP Intracranial pressure
ICU                                        Intensive care unit
ITBV Intrathoracic blood volume
Jv Net capillary filtration
JL Lymph flow
Kfc Capillary filtration coefficient
kD                                          kilo Dalton
LVEF Left ventricle ejection fraction
MAP Mean arterial pressure
Mw                                         Molecular weight
NFB Net fluid balance
PCWP Pulmonary capillary wedge pressure
Pc Capillary hydrostatic pressure
PEEP Positive end-expiratory pressure
Pi Interstitial fluid hydrostatic pressure
PV Plasma volume
SVR Systemic vascular resistance
� Sigma = Capillary reflection coefficient
TTW Total tissue water content
TEG                                       Thromboelastography
VRBC  Red cell volume
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5. Introduction
5.1. Background
5.1.1. Start of cardiac surgery

Cardiac surgery has been regarded as one of the most important medical advances in the

twentieth century. Different extracorporeal circulation techniques were developed more than 50

years ago to facilate treatment of congenital cardiac anomalies.

The first surgical procedures on these patients were performed using hypothermia and

inflow occlusion (Moller et al. 2009). Hypothermia decreased tissue oxygen requirements

(Bigelow et al. 1954) providing organs protection against ischemic injury, and allowed the

surgeon to interrupt circulation for a short time. The procedures performed with this technique

were mainly repair of atrial septum defects that could be closed within a few minutes.

For longer procedures new techniques were needed. John Gibbon successfully used a

screen oxygenator he had developed in 1953 for closure of an atrial septal defect in a 19-year-old

woman. The use of this equipment in the next 5 patients was, however, unsuccessful and further

attempts were discontinued.

In 1954 Lillehei and co-workers developed a new technique for “cardio-pulmonary-

bypass” where a human donor was used for “cross circulation” (Figure 1).

Figure 1: Cross circulation technique; (Adapted from Moller et al. 2009 Ann Thorac Surg 88:

1044-46, reprint with permission from author)
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The donor, often a relative, served as the oxygenator, and a pump provided blood flow

between the patient and donor. During a 14-month period 45 children were operated by use of

this technique and 28 patients were successfully repaired and discharged from the hospital. A

surgical mortality of 38 % would hardly have been accepted today, but it is important to

remember that most patients with congenital heart disease had a poor prognosis, often leading to

early fatality, before the development of the heart-lung machine.

In a 53-year follow-up study, 20 of the patients operated by use of the “cross circulation

technique” were still alive and had no limitations related to the previous cardiac operation they

had gone through (Moller et al. 2009).

The “cross-circulation technique” had limitations and was a risky procedure both for the

patient and the donor, and the search for more suitable strategies continued.

In 1955 the DeWall bubble oxygenator, that was developed in co-operation with Lillehei

and his group, was used for the first time (DeWall 2003). A 13-year-old boy with a ventricular

septal defect was the first patient. The system worked well, was widely accepted and was used

with an increasing frequency for open-heart surgery. The technology was, however, complex and

therefore slow to develop.

Throughout the years the equipment used in a typical extracorporeal circuit has advanced

considerably. Although the different circuits used today vary considerably between hospitals, the

basic concepts of extracorporeal circulation are essentially common to all CPB circuits in use.

5.1.2. The heart-lung machine and priming solutions

The standard equipment used in a heart-lung machine at present includes the main

elements of pump, oxygenator, venous reservoir, tubings, gas supply systems, different filters,

bubble traps as well as suckers and venting systems. In addition cardioplegia delivery systems

and in-line monitoring equipment are available together with a number of alarm systems.

Before use the machine has to be primed with a fluid solution, so that adequate flow rates

can rapidly be achieved upon initiation of cardiopulmonary bypass without any risk of air

embolism. Lactated or acetated Ringer’s solution is at present used as the main prime

component. This solution is capable, when mixed with the patient’s blood, to maintain oxygen

delivery and carbon dioxide removal and physiological homeostasis during extracorporeal

circulation. Although agreements on the use of non-blood prime, the final composition of the

priming solution is continuously under discussion.
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5.1.3. Cardiac surgery – at present

A great challenge in cardiac surgery is the change in patient population during the last

decades. Older age, more comorbidity, emergency surgery and female gender are all contributing

to increased risk during cardiac surgery (Kurki et al. 2003; Higgins 1998). Still, an increasing

number of high-risk patients are admitted to advanced surgery (Scrutinio & Giannuzzi 2008).

          To maintain low morbidity and mortality in this population it is important to optimize all

parts of their treatment. Small improvements may be the decisive factor when handling high-risk

patients.

         Fluid therapy in cardiac surgery offers challenges beyond other surgical specialities. The

patients` underlying cardiac disease, the complexity of the surgical intervention (including

cardiac arrest and hypothermia) and the pathophysiological impact of extracorporal circulation,

all contribute to the need for critical reflection when instituting fluid treatment protocols.

5.2. Fluid shifts

Starling`s observations (Starling 1896), which led to Starling equation, illustrates how the fluid

filtration through capillary membranes is dependent on the balance between the hydrostatic

pressure and the osmotic pressure of the membranes.

Figure 2:

Jv (Net capillary filtration) = Kfc [( Pc –Pi ) – �(COPp – COPi)]

Venous
end

Lymphatic flow

Pi interstitial

Arterial
end

COPp intravascularPc intravascular

Blood
vessel

Hydrostatic Oncotic

COPi interstitial
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Kfc capillary filtration coefficient (a product of surface area and hydraulic conductance)
Pc capillary hydrostatic pressure
Pi interstitial fluid hydrostatic pressure
COPp intravascular oncotic pressure (COP in plasma)
COPi interstitial oncotic pressure (COP in interstitium)
� reflection coefficient (related to imperfect semipermeability, for plasma proteins
            usually 0.80-0.95)

Edema is an excess of interstital fluid, and is a result of:

Net Capillary Filtration > Lymphatic drainage rate

and may be caused by
• elevated capillary pressure (e.g. heart failure, over-transfusion, deep venous thrombosis)
• reduced plasma COP (e.g. malnutrition, malabsorption (lack of proteins) or hemodilution)
• reduced reflection coefficient (inflammation)

5.3. Additives

5.3.1. Colloides

Starlings discovery led to the use of solutions of artificial colloids to replace lost plasma

in wounded soldiers already during World War I. Development of a safe and inexpensive colloid

solution has been an ongoing process since. A selection of available products today is:

5.3.1.1. Albumin

            Albumin is derived from human plasma. Due to ethanol and heat treatment viral

transmissions are unlikely. 60 % of total protein present in plasma is albumin. There is a constant

movement of albumin between intra- and extravascular compartments.

           Human albumin has few adverse effects and is considered to be the colloid with least

influence on the coagulation. Still albumin may inhibit platelet aggregation and influence

bleeding (Vincent 2009). Interference with blood typing and allergic reactions is possible

(0.003 %), though less frequent compared to other colloides (Ring & Messmer 1977). Albumin

is a transport molecule, which should be kept in mind when treating patients exposed to multi-

pharmacia. Compared to other colloides it is expensive.

Available solutions are:

4 % (40 mg/ml) Albumin used in study I

20 % (200 mg/ml) Albumin
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5.3.1.2. Hydroxyethylstarch (HES)

              HES is frequently used as a plasma substitute, and is a modified natural polymer of

amylopectin (polysaccharide) found in plants such as potato and corn. A variety of different HES

solutions exist, and it is important to distinguish between the different preparations because of

the effect of plasma volume expansion as well as their effects on coagulation and other clinical

variables. Consentration, its molecular weight, its molar substitution, and the C2/C6 ratio define

HES solutions` physical and chemical characteristics. The molecules show great polydispersity,

and molecule size in the solutions follows a bell-shaped distribution, ranging from a few

thousand to a few millon daltons. The number and weight of molecules (70kD - 480kD)

determines colloidal activity.

                   The molar substitution expresses the average number of hydroxyethyl groups per

unit of glucose, and varies from 0.4-0.7, (how many hydroxyethyl groups exist/10 u of glucose).

The C2/C6 ratio describes more precisely the substitution pattern (the hydroxyethyl units are

most frequently at position C2 and C6) (Treib et al. 1999). High molar substitution and high

ratio indicates delay in breakdown and elimination of hydroxyethyl starch, resulting in a

relatively long-lasting effect, but also risk of accumulation of molecules, and subsequently a

higher risk of adverse effects. The first generations had a molecular weight of 400-600 kD, and

molar substitution of 0.7. There has been a continuous improvement of these solutions, with the

newest ones weighing only 130 kD, and with a molar substitution of 0.4.

                  HES might interfere with normal hemostasis at different levels. Large molecules can

interfere with fibrinogen, coagulation factor VIII, and the von Willebrand factor (Kozek-

Langenecker 2005). Anaphylactic reactions are, estimated to a frequency of 0.006%, lower than

for both dextran and gelantine (Ring & Messmer 1977). The frequency is slightly higher than for

albumin, even though some studies report similar values for albumin and HES (Laxenaire et al.

1994).

             There has been increasing interest concerning the effects of HES on renal function.

Impaired renal function has been described (Cittanova et al. 1996), as well as swelling of renal

tubular cells after administration of certain HES preparations (Boldt 2009a). A suggested

mechanism of renal dysfunction is the induction of hyperviscosity of the urine by infusion of

hyperoncotic colloids in dehydrated patients, and can be avoided by adequate hydration (Boldt

2009a).

Available solutions are:

HAES�; (6% HES 200/05), used in study I

Voluven�; (6% HES 130/04)
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5.3.1.3. Dextran
             Dextran is polysaccaride molecules of high molecular weight, synthesised from sucrose

from lactic-acid bacteria and with a molecular weight ranging from 40-70 kD. Dextrans may

induce abnormal bleeding due to their effects on primary hemostasis and on the fibrinolytic

system. Infusions may induce a “von Willebrand syndrome” with decreased levels of von

Willebrand factor and associated factor VIII (Van der Linden & Ickx 2006). Dextrans also

enhance fibrinolysis. They are more often than other colloides associated with anaphylactoid

reactions (Ring & Messmer 1977), and the use of dextran 1 (hapten inhibition) are usually

recomended to reduce the risk for DIAR (dextrane induced anafylactoid reactions).

Available solutions are:

Macrodex�; (6 % dextran 70)

Plasmodex®; (6% dextran 30)

5.3.2. Hypertonic saline/colloidal solutions

          Hyperosmolar solutions intend to make use of the large interstitial and intracellular

reservoirs. The first study from Velasco (Velasco et al. 1980) and co-workers reported that a

small infusion of hypertonic saline (7.5 % NaCl) of only 10 % of shed blood volume rapidly

restored arterial pressure and cardiac output to baseline values.

             The use of hypertonic saline started as development of solutions for small-volume

resuscitation. Several beneficial effects were observed; increased cardiac output, fall in total

peripheral resistance and improved renal perfusion (Nakayama et al. 1984). Different

hyperosmolar solutions have been tested, like mannitol and glucose, and the increased osmolality

of all solutions produced rapid initial improvements. The response did not require sodium or

chloride. However, the decline in improvements was slowest with hypertonic saline (Kramer

2003).

              As these improvements were short-lived, combination fluids were developed. Several

studies observed improved results of hypertonic saline in combination with colloides, compared

with one of the solutions used alone (Kramer 2003; Holcroft et al. 1987; Smith et al. 1985).

          By maintaining the COP with colloides, fluid mobilized from the extravascular space by

the osmotic effect of hypertonic saline, remained for a longer period in the intravascular

compartment.

Available solutions are:

HyperHaes�; (6% HES (200/05), 7,2 % NaCl) used in study II, IV and V

Rescueflow�; (6 % dextran (70), 7,5 % NaCl) used in study III.
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5.3.3. Crystalloides

           Crystalloides are aqueous solutions of mineral salts or other water-soluble molecules and

are disseminated homogenously throughout the plasma volume and interstitium. Due to this fact,

a four-fold amount of fluids is needed in order to achieve the same intravasal volume effect as

whole blood or colloid plasma substitution (Schumacher and Klotz 2009). Most solutions are

balanced electrolyts solutions largely corresponding to plasma composition. Lactated or acetated

Ringer’s solutions are most commonly used. Lactated Ringer’s solution might exacerbate pre-

existing acidosis and interfer with lactate as a marker of hypoxia (Zander Rolf 2006). In Norway

actated Ringer’s solutions is most common.
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6.0 Aims of the study
Negative impact of fluid overload has gained increasing interest during the last years. Fluid

overloading with edema formation is a regular finding following on-pump cardiac surgery.

Hemodilution is one of the important contributors to this fluid loading.

The aim of the present study was to evaluate the effect of different colloidal additives on

fluid loading and edema generation during CPB in an experimental model, and to translate the

results into a clinical setting focusing on eventual consequences for organ function.

The specific aims of the different sub-projects were to investigate:

• Whether maintainance of COP by use of iso-oncotic prime could reduce fluid leakage

during CPB (Paper I)

• How a slow infusion of hypertonic saline/hydroxyethyl starch during CPB influenced

fluid shifts and edema generation in the different organs, brain included (Paper II)

• The effects of hypertonic saline/dextran infusion during CPB on fluid homeostasis

(Paper III)

• To what extent a given amount of hypertonic saline/hydroxyethyl administered as  prime

additive during CPB could influence fluid balance/distribution (Paper IV)

• Wheather a hypertonic saline/hydroxyethyl additive influenced fluid balance also during

tepid CPB (Paper IV)

• A: If the results of the experimental studies could be translated into clinical practice, and

B: How can a conceivable reduction in NFB by infusion of hypertonic

saline/hydroxyethyl starch to CABG patients during CPB impact cardiopulmonary

function in the early postoperative hours (Study V)
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7. Materials and methods

7.1 Experimental studies (paper I-IV)
7.1.1. Animals and animal handling

            Pigs are commonly used in cardiovascular research because they share important

anatomic and physiologic characteristics with humans. Their hearts are approximately of the

same size, and coronary blood flow, hemodynamics and myocardial contractility are analogous

(Becker et al. 1972; Swindle 1984; Hughes 1986). Compared to former use of dogs, they are

more suitable both from an anatomic and physiologic viewpoint. The availability and price is

also considerably lower (Swindle 1984). A piglet model (Norwegian landrace-Yorkshire hybrid)

is well established in our research lab, and has been used for studies on fluid shifts during CPB

for several years (Heltne 2002, Farstad 2006, Haugen 2008).

All experimental studies were carried out in pigs weighing 28-35 kg. Handling of the animals

and procedures described were approved and in accordance with recommendations given by

Norwegian Animal Research Authority. The animals were acclimatised in the laboratory animal

housing area for at least 3 days prior to the experiments. Water was available until pre-

medication was given, while food was withdrawn 8-12 hours before.

Anesthesia and surgery

            The piglets were anesthetized according to a standard protocol (Husby et al. 1998). 20

min prior to induction of anesthesia, ketamine 15 mg/kg, diazepam 0.3 mg/kg and atropine 1 mg

was given i.m. Inhalation of isoflurane 1-3 % in oxygen was used for induction of general

anesthesia. Additionally thiopenthone 5 mg/kg was given i.v. prior to tracheal  intubation and

start of mechanical ventilation. Isoflurane inhalation 0.5-1.5 % delivered in 50% oxygen in air

via a ventilator was used together with an infusion of midazolam 0.5 mg/kg/h and fentanyl 7.5

μg/kg/h to maintain anesthesia. In addition pancuronium 45 �g/kg/h was given as an infusion in

paper II-IV to avoid shiverings during temperature reduction.

In paper II and III an ICP transducer and a microdialysis catheter was placed into brain

parenchyma through a burr hole as described in the respective papers.

               Mid-line sternotomy was performed along with cannulation of the aorta (18 Fr) and the

right atrium (35 Fr). The left ventricle was vented (17 Fr) via the apex. A 5 Fr pulmonary artery

catheter was introduced until wedging position was achived in the pulmonary artery (Edwards

Lifesciences, Irvine, Ca, USA).
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 Intravascular catheters were placed in the femoral artery for recording of MAP and

blood sampling, and in femoral vein for fluid substitution and CVP-measurements. Surgery was

normally completed within 30 min.

 In the end of the experiment, when fully anesthetized, the animals were euthanized with

an injection of potassium chloride.

Cardiopulmonary bypass

               Standard equipment for open-heart surgery (Quadrox, hollow fibre membrane

oxygenator with venous hardshell cardiotomy reservoir, VHK 4200, Jostra, AG, Hirrlingen,

Germany) was used. The machine reservoir was filled to a level of 300 ml (400 ml in paper I)

and maintained at that level during the bypass period. Initial prime volume was 1115 ml (1000ml

in paper I). Pump flow was set to 2.7 l/min/m2. Flow pattern was non-pulsatile. The CPB head

pressures were in the range of 200-250 mmHg. During CPB the height difference between the

machine reservoir and the right atrium was fixed (73 ± 3 cm). Left ventricle was vented by use of

a 17 Fr. vent catheter. Free venous drainage was ensured continuously by visual inspection and

by monitoring of the central venous pressure (CVP) in the right atrium.

7.1.2. Experimental protocol

Paper I
            Three groups were studied: CT-group (control group) where the CPB circuit was primed

with acetated Ringer`s solution, and when needed, acetated Ringer`s solution was added to the

reservoir. In the Alb-group the CPB circuit was primed with 4% albumin, and when needed,

albumin 4% was added to the reservoir. In the last group, HES-group, HES (200/05), was mixed

with acetated Ringer`s solution to obtain a COP equivalent to the in vivo plasma COP in each

animal, this mixture was also added to the reservoir when needed. In all groups the primimg

volum was 1000 ml, including 400 ml in the reservoir. After stabilization for 60 min,

normothermic CPB (38ºC-39ºC) was initiated and continued for 60 minutes followed by 90

minutes of hypothermic CPB (28ºC ).

Paper II
            In this study two groups of animals received a continuos infusion. In the CT-group

(control group) an infusion of acetated Ringer´s solution 5 ml/kg/hour was started immediately

after anesthesia, and continued until termination of CPB. In the HSH-group the infusion was 1

ml/kg/h of hypertonic saline/hetastarch (HyperHaes®) combined with 4 ml/kg/h of acetated

Ringer´s solution and was given in the same period. After stabilization for 60 min, normothermic
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CPB (38 ºC-39 ºC) was initiated and continued for 60 minutes followed by 90 minutes of

hypothermic CPB (28 ºC). In both groups the primimg volum was 1115 ml, including 300 ml in

the reservoir. Acetated Ringer´s solution was used when needed in the resvoir.

Paper III
                In this study exactly the same protocoll as in study II was used, with the exeception of

the study fluid. HSH was replaced with hypertonic saline/dextran (Rescueflow®).

Paper IV
              An addition in the prime was used in this study. In the interventional group (H-group),

 4 ml/kg hypertonic saline/hetastarch (HyperHaes®) replaced acetated Ringer´s solution in the

prime, whearas only acetated Ringer´s solution was used in the control group (C-group). After

stabilization for 60 min, CPB was initiated and continued for 120 min. During CPB the

temperature drifted to a ”tepid” level (33 ºC -35 ºC). In both groups the priming volume was

1115 ml, including 300 ml in the reservoir. Acetated Ringer´s solution was used when needed in

the reservoir.

7.1.3. Monitoring, measurements and calculations

Plasma and blood volume determination

           To calculate changes in plasma volum and fluid-shifts the exact volume of the blood need

to be determinated. Several tracers have been used. Carbonmonoxide has been used as tracer in

different studies during the last years, initially developed by Fogh-Andersen and co-workers

(Fogh-Andersen et al. 1987). The technique was further sophisticated by Burge and Skinner who

presented a detailed description of all calculations leading to hemoglobin (Hb) mass and blood

volume determination (Burge & Skinner 1995). Heltne and co-workers further developed the

technique for use in pigs (Heltne et al. 2002). 30ml of CO was administered into a closed circle

re-breathing system. The amount of Hb in the blood was calculated from the increase in HbCO

fraction after 10 min. The method was used in paper I-IV.

Baseline plasma volume was calculated from the following equations:

nCO = 1000 x [(PB/1013,33) x VCO/0,08206 x (273+T)]

nHb = (nCO x 25 )/�COHb

VRBC = (644 x Hct x nHb) / Hb

BV = (VRBC x 100) / Hct x Fcell ratio

PV = BV - VRBC

nCO = number of mmol CO added to the breathing system
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PB = barometric pressure (kPa)

VCO = volume of CO added to the breathing system (litre)

T = room temperature (°C)

nHb = number of mmol hemoglobin in the animal

�COHb = difference in HbCO before and after CO administration

VRBC = erythrocyte volume in the animal (millilitre)

Hct = hematocrit (%)

Hb = hemoglobin (gram per litre)

BV = blood volume in the animal (millilitre)

Fcell ratio = correction factor for trapped plasma (0.96 – 0.98)

PV = plasma volume in the animal (millilitre)

� PV = change in PV from one time intervall to the next

Blood losses were measured, and blood samples taken every 30 min. From the Hb and the

hematocrit values obtained, together with the blood loss, changes in plasma volume were

calculated;

New VRBC   = Previous VRBC   - blood loss x [(Hct start of period + Hct end of period): 2]

New PV      = (New VRBC   / Hct end of period) – New VRBC

During CPB the calculated total PV was corrected according to the volume in the heart-lung-

maschine.

NFB (Net Fluid Balance) is the total amount fluids added minus diuresis and bleeding
.
FER (Fluid Extravasation Rate) is NFB minus � PV

Both values measured as ml/kg/h unit and were calculated every 30 min.

Total tissue water content

             Immediately after the animals had been killed, samples were collected from the brain,

heart, lungs, intestinal organs, muscle and skin. The samples were placed in preweighed vials to

determine weight. Thereafter they were dried at 70 °C, and weighed repeatedly until stable

weight. The difference between first and last measurement is presented as total tissue water.

Colloid osmotic pressure (COP)

             Measurements of COP in interstitial fluid (COPi) and plasma (COPp) are well

established methods in our research group. The technique is based on the wick-method (Aukland

et al. 1975) and has been evaluated in pigs (Heltne et al. 1998). By keeping the nylon wicks,
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soaked in saline, in situ for 90-120 min before removal, the best correlation between obtained

values and true COPi (interstitial) was found. The wicks were centrifuged under mineral oil to

obtain undiluted wick fluid. Blood samples for measuring COPp were taken every 30-min and

centrifuged before analyzing. Fluids from both the interstitia and plasma were then measured

with a colloid osmometer using a semi-permeable membrane with a cut-off level at 30.000 (PM-

30 Amicon, Lexington, USA) with acetated Ringer`s solution in the reference chamber. Pressure

was measured by a pressure transducer (Gold-Statham, Spectramed, USA) connected to a

recorder (Easy-Graph 240.Gould Inc., USA).

This method was used in paper I-IV.

Cerebral monitoring

              Intracranial pressure (ICP) monitoring was included in study II-IV. In addition

microdialysis was included in study II to obtain markers of cerebral metabolism. The basic

principle of this technique is to mimic the function of a capillary blood vessel by perfusing a thin

dialysis catheter implanted into the tissue with a physiological solution (Ungerstedt 1991). The

analyzed perfusate reflects the composition of the extracellular fluid. The catheter was perfused

with CNS perfusion fluid (CMA) 0.3 �l/min by a microinfusion pump (CMA 107). Samples

were collected every 30-min and analyzed with respect to glucose, glycerol, lactate and pyruvate

in a CMA 600 Microdialysis Analyzer (CMA Microdialysis AB, Stocholm, Sweden).

7.2. Clinical study (paper V)
49 patients scheduled for elective CABG were included in this double-blinded,

randomized clinical control trial. The study was approved by the Regional Committee for

Medical Research Ethics in Western Norway, the Norwegian Social Science Data Services, and

the Directorate for Health and Social Affairs and by the Norwegian Medicines Agency.

Anesthesia and surgery

The patients were anesthetized according to standard procedyre in our department, using

midazolam, fentanyl, thiopentone, pancuronium, and isoflurane in oxygen/air for maintainance

of general anesthesia. After induction of anesthesia a thermistor catheter (PVPK2015L20;

Pulsion Medical Systems AG, Munich, Germany) was placed in the right femoral artery, and the

transpulmonary thermodilution technique PiCCO®plus system was used for monitoring cardiac

output (C.O.), intrathoracic blood volume (ITBV), extravascular lung water (EVLW) and global
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end-diastolic volume (GEDV) at different time intervals. Only two surgeons performed the

surgery of the patients, using the same technique.

Cardiopulmonary bypass

              The CPB circuit consisted of roller pump, venous cardiotomy reservoir, arterial line

filter (Medtronic Affinity 38μ, Trillium Biopassive Surface), tubings and a hollowfiber

oxygenator (Affinity Trillium coating NT, Medtronic INC, Minneapolis, MN, USA). Flow

pattern was non-pulsatile and mean arterial pressure was maintained between 50 and 70 mmHg.

Standard cannulation in the ascending aorta (Medtronic 22 FR, DLP 89022) and the right atrium

(Medtronic Threestage, MC2X-91429-29 FR) were used. Acid-base parameters were regulated

according to the α-stat strategy. Tepid temperature (� 34 °C) was used in all patients.

Myocardial protection was performed with cold blood cardioplegia (modified St.Thomas

solution with blood, 10 °C), at 20-minute intervals.

Postoperative care

              Assisted ventilation was maintained until following standard criteria were fulfilled: the

patient was hemodynamic stable, thoracic drainage <50 ml/h, bladder temperature, >36.5°C.

Extubation was performed when the patient was awake, arterial pO2 > 9.5 kPa, pCO2 < 6.5 kPa

and tidal volume > 7 ml/kg during CPAP (Continuous Positive Airway Pressure)-ventilation.

Fluid supplementation and diuretics were used according to the physician on duty.

Study Protocol

          Patients were randomized to receive either a continuous infusion of HyperHAES® (HSH-

group), which consists of 60 mg/ml of poly (O-2-hydroxyethyl) starch (Hetastarch 200/05, 1232

mmol/l sodium, 1232 mmol/ml chloride, osmolality 2464 mosmol/l (Fresenius Kabi, Uppsala,

Sweden) or acetated Ringer’s solution (CT-group). Infusion started upon arrival in the operating

theatre just after preoperative hemodynamic baseline values were obtained (PiCCO®plus

system). Both groups received acetated Ringer’s solution 4 ml/kg/h and 1 ml/kg/h of the blinded

test solution throughout 4 hours. Accurate accounts of fluid additions, blood loss and diuresis

were kept.

Laboratory data
Acid-base samples were measured regulary. Blood samples of Hb, Evf, Tpk, serum-

sodium, serum-chloride, serum-glucose and serum-creatinine were measured pre-and

postoperatively and additionally at day 1, 2 and 3 after operation.



24

Thrombelastography (TEG®)

               Thrombelastography (TEG®, Haemoscope Corpotation, Niles, IL, USA) was used for

evaluating blood coagulation, and shows the viscoelastic changes that occur during coagulation,

and enable an evaluation of the process of clot initiation, formation and stability. The TEG gives

a graphic representation of clot formation and subsequent lysis (Luddington 2005).

Figure 3.

I� Thrombosis          ��  Fibrinolysis   �

TEG variables include:

r (reaction time), time to initial fibrin formation (Prolongation of r time may be a result of

coagulation factor defiencies, anticoagulation (heparin) or severe hypofibrinogenaemia. A

small r value may be present in hyper-coagulability syndroms.

k (clot formation time)

rk (r +k, or coagulation time)

	-angle (clot formation rate)

MA (maximum amplitude, cloth strength). Platelet abnormalities, both qualitative and

quantitative, disturb MA

CI (TEG coagulation index, which is derived from a linear equation that combines all the

TEG variables, and the normal range is + 2 to – 2.)

Blood was sampled after induction of anesthesia and 1 hour postoperatively, and analyzed.

Cytokines / Cytokine analysis

A panel of cytokines was quantified in plasma from samples collected at different time

points. A multiplex fluorescent bead immunoassay kit (Linco Research Inc, St. Charles, MI,
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USA) was used for the simultaneous quantification of the following cytokines: IL-6, IL-8,

 IL-10 and TNF-	. The samples were prepared for analysis by dilution with serum matrix diluent

and the analysis performed as specified by the manufacturer. Total surface fluorescence was

measured with a flow-based dual laser system (Luminex100, Luminex Corporation, Austin, TX,

USA). The concentration of cytokines was calculated with reference to a standard curve based on

a broad range of standards (4.8-20 000 pg/ml), providing the lower and upper detection level for

all the assayed cytokines.

Transpulmonary thermodilution tecnique PICCO®

           Determination of cardiac output (C.O.), intrathoracic blood volume (ITBV), extravascular

lung water (EVLW) and global end diastolic volume (GEDV) was monitored by use of the

transpulmonary thermodilution technique PiCCO®plus system (Pulsion Medical Systems AG,

Munich, Germany). The thermodilution technique is less invasive then pulmonary-artery (PA)-

catheters. It is a well tested, simple and accurate technique (Ganz et al. 1971). The PICCO

catheter consists of two parts; an arterial catheter and a temperature sensor (se fig.4). In addition

a CVK (central venous catheter) is needed to perform measurements and calculations. A bolus of

sodium chloride administered by a central venous injection passes through the cardiopulmonary

system. The temperature sensor at the tip of the PICCO-catheter, which measures continuous

invasive body temperature, captures then the thermodilution curve. From this thermodilution

curve, patients C.O., ITVB, EVLW, and GEDV are calculated. Indexed values are estimated

according to patient’s body surface.

Figure 4.

 (Printed with permission from PULSION Medical Systems AG)
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8. Synopsis of results

Paper I

(The Journal of Thoracic and Cardiovascular Surgery 2005 Aug; 130(2): 287-94)

This study aimed to compare iso-oncotic priming solutions to crystalloid priming

(acetated Ringer`s solution), with regard to fluid extravasation during cardiopulmonary bypass in

piglets. Three groups were compared. One group received only acetated Ringers`s solution as

prime, one group received 4 % albumin as prime and the last group received HES 200/0.5 mixed

with acetated Ringers`s solution as prime. The mixture was composed to obtain a COP

equivalent to the in vivo plasma COP present in each individual animal.

Upon initiation of hypothermia FER increased in the Ringer-group, whereas FER remained

stable in the two other groups. Preservation of COP reduced fluid extravasation during CPB.

Total tissue water increased in most organs when acetated Ringer`s solution was used. The use

of colloidal priming reduced the amount of tissue water in a number of organs. In this study

albumin turned out to be more effective than HES in reducing the cold-related fluid shifts.

Paper II

(Acta Anaesthesiologica Scandinavica 2006 Aug; 50(7): 855-62)

During 60 min normo- and 90 min hypo-thermic CPB, an infusion of 5 ml/kg/h of

acetated Ringer`s solution was given to the control animals (CT-group). In the interventional

group (HSH-group) 1ml/kg/h was replaced with hypertonic saline/ hydroxyethyl starch 200/0.5

(HSH).  This dose of HSH effectively reduced total fluid gain about 50 % during the CPB

period. During hypothermic CPB there was an increase in FER in both groups. FER increased in

the HSH-group, from 0.15 (0.08) to 0.33 (0.08) ml/kg/min and in CT-group from 0.19 (0.14) to

0.51 (0.10) ml/kg/min. FER of the HSH-group was significantly lower than FER of the CT-

group. Total tissue water content of the heart and the lungs was significantly lower in the HSH-

group compared to the CT-group. Administration of HSH infusion was associated with stable

ICP values wheras ICP of the CT-group increased significantly during bypass.
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Paper III

(Scandinavian Cardiovascular journal 2008 Feb; 42(1): 63-70)

In this study we used the same protocol as in study II. HSH was replaced by HSD

(hypertonic saline /dextran). HSD was given at a rate at 1ml/kg/h which resulted in a reduction

of total fluid gain by 60 % when compared to the CT-group which was given the same amount of

acetated Ringer’s solution. The study was performed in14 piglets, 7 in each group, during

normothermic followed by hypothermic CPB. During hypothermic CPB there was an increase in

FER in both groups. FER increased in the HSD-group, from 0.01 (0.04) to 0.17 (0.07) ml/kg/min

and in CT-group from 0.25 (0.23) to 0.57 (0.14) ml/kg/min. TTW was significantly lower in the

heart and some of the visceral organs in the HSD-group. ICP remained stable in HSD-group,

whereas a significant increase was observed in the CT-group. No adverse effects were observed.

Paper IV

(Perfusion 2008 Jan; 23(1): 57-63)

A protocol with “tepid” temperature during cardiopulmonary bypass was used in this

study. A solution of HSH, 4ml/kg, replaced the same amount of acetated Ringer’s solution in the

prime (H-group). In the control-group (C-group) the prime was only acetated Ringers`s solution.

The animals were allowed to drift to tepid temperature (35 °C). Total fluid needs during 120 min

CPB was reduced by 60% in H-group related to lowered values of fluid extravasation. The effect

was most pronounced during the first 30 min on CPB. FER increased from 0.13 (0.04) to 1.6

(0.4) ml/kg/min in C-group, compared with 0.17 (0.11) and 0.68 (0.42) ml/kg/min in H-group,

respectively. Hemodynamics and laboratory parameters were similar in both groups.

Paper V

(Acta Anaesthesiologica Scandinavica :2010 april; 54(4): 485-93)

          In this clinical double-blinded study we randomized 50 patients scheduled for elective

CABG surgery into two groups. In the interventional group an infusion of 1 ml/kg /h of HSH was

given during 4 hours. In the control group the same amount of acetate Ringers`s solution was

given. Hemodynamic parameters were obtained using the PICCO-system. All fluid additives and
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losses until next morning were registered. Net fluid balance (NFB) was 4 times higher in the

CT-group compared to the HSH-group during the first 6 hours postoperatively. Total fluid gain

until next morning was significantly lower in the HSH-group (2993.9 (938.6) ml) compared to the

CT-group (4298.7 (1059.3) ml) (P< 0.001). Normalized values (i.e. %-changes from baseline) of

cardiac index and global end diastolic volume index increased postoperatively in both groups.

Both parameters were significantly higher at 6 h in the HSH-group compared to CT-group.

Normalized values of intrathoracic blood volume index were lower in the HSH-group at 6 h

postoperatively when compared to CT-group. PaO2/FiO2 ratio decreased similarly in both groups

early postoperatively, but recovery tended to be more rapid and pronounced in the HSH-group.

Although serum-sodium and serum-chloride levels were significantly higher in the HSH-group the

acid-base parameters remained similar and within normal range. No adverse effects of the HSH

infusion were observed.
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9.1. Discussion

9.1. Fluid Load
        Cardiac surgery impacts fluid homeostasis more than other surgical interventions. Factors

responsible for increased fluid accumulation during cardiac surgery are the use of hemodilution,

hypothermia as well as a general inflammatory response caused by contact of blood with foreign

surfaces of the extracorporeal circuit and the surgical trauma. The adverse consequences of

extensive fluid loading and edema formation have during recent years gained increasing

attention. Even though the fluid load today is less than some decades ago, the amount of fluid

accumulated still has a clinical impact.

9.1.1. Hemodilution

Because of a number of unwanted adverse effects, heavy strain on blood banks, limited

resources and high cost, hemodilution was introduced by Panico and co-workers in 1960 (Panico

& Neptune 1960). Some amounts of blood, however, continued to be used as prime additive.

Lilleaasen studied extreme hemodilution where all blood prime was replaced with non-

sanguineous fluid. This resulted in a 70% reduction in the use of donor blood perioperatively

(Lilleaasen 1977). Today lactated or acetated Ringer’s solution is the main prime component in

most cardiac surgery centers.

              The volume of prime utilized is determined by the patient’s body surface area, initial

hematocrit and the “minimum safe volume”, which is the amount needed to fill the circuit and

maintain an adequate volume in the venous reservoir. Commonly the prime volume is in the

range of 1400-2200 ml, resulting in a hematocrit level of 25-30 % after initiation of CPB. The

lowest safe hematocrit value has been a matter of debate. Hematocrit as low as 14 % or lower

has been associated with an increased risk for mortality (Fang et al. 1997). Other investigators

report adverse effects at much higher hematocrit levels. DeFoe and co-workers studied 7000

patients. Hematocrit values of 23 % or below tended to increase the risk of mortality (DeFoe et

al. 2001). This is in line with an analysis of 5000 cardiac operations where hematocrit levels

below 22 % were associated with peri-operative higher incidence of vital organ dysfunction,

prolonged hospital stay, as well as increased short-and intermediate mortality (Habib et al.

2003). Reviews of almost 11.000 patients strengthened these findings, showing that from

hematocrit values of 29 %, the odds of stroke increased by 10 % for each 1 %-decrease of

hematocrit during CPB (Karkouti et al. 2005).



30
               Mathew and co-workers found an associated risk of cerebral injury at low hematocrit

levels (hematocrit on CPB of 15-18 %) during CPB in their study of neurological outcome. This

study was interrupted due to higher incidence of adverse event in the low-hematocrit group,

including greater cognitive decline 6 weeks after surgery (Mathew et al. 2007).

In our animal studies the degree of hemodilution was similar in all groups, with a drop in

the Hct-values in the range of 26-28 %, except for the HES-group of study I, where Hct

decreased close to 40 % (table 1).

In our clinical study the reduction of hematocrit was in the range of 25 %, similar in both

groups, and well above any hematocrit level of concern.

Table 1.

CT-I Alb-I HES-I CT-II HSH-II CT-III HSD-III CT-IV HSH-IV
Hct
before
CPB

30.0(0.8) 30.0(0.8) 29.0(1.3) 30.0(2.5) 28.8(2.5) 29.5(2.8) 28.3(2.3) 30.1(1.2) 31.0(2.4)

Hct
after 60
minCPB

24.0(0.6) 23.0(0.9) 19.0(1.2) 24.4(2.1) 23.2(2.5) 23.1(2.4) 23.3(1.4) 23.0(2.3) 23.9(0.7)

Hct
after120
CPB

22.0(0.5) 22.0(1.0) 18.0(1.3) 21.8(1.8) 22.0(2.5) 20.7(0.9) 22.4(1.3) 23.7(3.0)* 23.7(0.9)*

  *tepid CPB

9.1.2. Hypothermia

Concomittant with hemodilution, - hypothermia was reintroduced to cardiac surgery in

1958 (Sealy et al. 1958). Moderate hypothermia (28-32 °C) decreases tissue oxygen

requirements by approximately 50% and provides organ protection against ischemic injury

(Bigelow et al.1954). A reduced tissue oxygen requirement implies the possibilities for lower

flow rates, which again might decrease shear stress of red cells and reduce hemolysis.

The blood viscosity changes inversely related to the changes of body temperature. The

higher blood viscosity under hypothermic conditions is counteracted by the effect of concomitant

hemodilution.

 During the last decade there has been a change in temperature strategy during CPB from

hypothermia (28°C) to a level of tepid temperature (34 °C) (Cook 1999). The change in

temperature level during CPB arose from studies of alternate cardioplegia techniques. Clinical

literature indicated advantages of warm continuous cardioplegia, and the investigation of

systemic normothermia followed (Lichtenstein et al. 1991). Normothermia allowed prompt

separation from CPB and cardiac output was found to improve. CK-MB release and the

incidence of myocardial infarction were less. 99 % of patients converted spontaneously to sinus
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rhythm, additionally these patients had much lower incidence of conduction abnormalities

postoperatively, and at long-term follow-up (Cook 1999).

               However, normothermic CPB patients were reported to require larger doses of

vasoconstrictors, greater fluid supplementation or higher CPB pump flows to maintain mean

arterial pressure (MAP) during CPB (Christakis et al. 1992; Cook 1999). Tepid/drifted

temperature (34 °C) seemed to have less disadvantages than both hypothermia and

normothermia, and was recommended for CPB (Arom et al. 1995; Cook 1999).

           Studies confirmed similar neurological outcome following tepid, “drifted” CPB (32-

34°C) compared with hypothermic CPB (about 28 °C) (Grigore et al. 2001). Most surgical

centres now use ”tepid” strategy for uncomplicated CABG surgery.

            Previous studies in our group have demonstrated increased fluid shifts from the

circulation to the interstitial space during hypothermia (Farstad et al. 2003; Farstad et al. 2004;

Heltne et al. 2000). In study I-III there is an increase in fluid extravasation in the control groups

after induction of hypothermia, confirming earlier findings from our group. This increase in fluid

extravasation could be partly counteracted by the specific interventions in the respective groups

(see table 2).

Table 2.

CT-I Alb-I HES-I CT-II HSH-II CT-III HSD-III

FER normothermia

30-60 (ml/kg/min)

0.15(0.1) 0.14(0.05) 0.33(0.10) 0.19(0.05) 0.15(0.03) 0.25(0.23) 0.01(0.04)

FER hypothermia

60-150 (ml/kg/min)
0.55(0.21) 0.12(0.09) 0.32(0.07) 0.51(0.10) 0.33(0.08) 0.57(0.14) 0.17(0.07)

By changing the temperature level from hypothermia in the direction of tepid temperature

in study IV we observed a reduction in fluid extravasation in both groups. Compared with

previous studies obtained from our group (Heltne et al. 2001) the fluid extravasation rate in CT-

group during tepid CPB was 25 % above the values observed during normothermic CPB. Using

HSH as prime additive the fluid leakage was significantly reduced compared to the CT-group

(Table 3).
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Table 3.

0-60 min CPB
FER(ml/kg/min) /Hct

60-120 min CPB
FER(ml/kg/min) / Hct

HSH-group-tepid     0.47 (0.20) / 23.9 (0.7)     0.17 (0.08) / 23.7 (0.9)

CT-group-tepid      1.00 (0.29) / 23.0 (2.3)     0.30 (0.08) / 23.7 (3.0)

Normotermia*      0.80 (0.2) / 24.6 (0.8)     0.10 (0.1) / 23.9 (0.9)

Hypothermia*      1.80 (0.2) / 19.1 (1.1)     1.1 (0.2) /  19.0 (1.0)

*(Heltne, et al. 2001)

9.1.3. Inflammation

              Cardiac surgery is associated with a systemic inflammatory reaction. The contact of

blood with surfaces of the CPB circuit, ischemia-reperfusion injury and release of endotoxins all

contributes to trigger the inflammatory response (Paparella et al. 2002). Also cardiac surgery

without the use of CPB contributes to activate inflammation (Gu et al. 1999). Tissue injury itself

caused by the surgical trauma is enough to trigger the response. The consequense of the

inflammatory response is leukocyte activation and a generalized impairment of the endothelial

barrier, resulting in increased microvascular permeability and diffuse capillary leakage. This

leads to leak of proteins, electrolytes and water from the intravascular compartment to the

interstitial space (Seghaye et al. 1996). The activation of inflammation involves several complex

pathways, too extensive to handle in this thesis. Only one will be mentioned briefly.

                  Surgery and CPB triggers a cascade of events, mediated by cytokines, including

TNF-	, IL-6 and IL-8. Levels of these pro-inflammatory cytokines have all been shown to

increase after CPB, and they are recognised as early mediators of organ injury (Teoh et al. 1995).

The pro-inflammatory cytokines might depress human myocardial contractile function, increase

systemic vascular permeability, and induce pulmonary vascular barrier dysfunction with

increased lung water content (Paparella et al. 2002).

               The anti-inflammatory cytokine IL-10 is an inhibitor of pro-inflammatory cytokines,

and might have a role in limiting the duration and extent of the acute inflammatory response. IL-

10 either directly inhibits the release of pro-inflammatory cytokines or indirectly exerts an anti-

inflammatory effect (Wan et al. 1997). Increased values might suggest a lower systemic

inflammatory reaction and a better hemodynamic performance (Giomarelli et al. 2003). Studies
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indicate that inflammatory cytokines and their suppressive cytokines increase but maintain their

balance during cardiac surgery (Kawamura et al. 1997). The balance among these cytokines may

be important in determining the level of the inflammatory response. If the balance tips over to an

overtly pro-inflammatory state the consequences may lead to myocardial damage.

                  Levels of TNF-	, IL-6, IL-8, and also IL-10 have peak values after surgery, 2-6 hours

(Teoh et al.1995; Kawamura et al.1997). Some studies indicate a peak of IL –10 before the pro-

inflammatory cytokines (Risnes et al. 2003; Kawamura et al. 1997). This might represent a

physiolgical mechanism to limit tissue damage and inflammation, and can indicate a delayed

capillary leakage. The process starts probably peroperativly, but the leakage continues for hours

after surgery. Local release of cytokines in the heart might be a contributing factor causing the

transient post-operative myocardial dysfunction (“stunning”) the first hours after CPB (Wan et

al.1997).

                  Hydroxyethyl starch seems to exert beneficial anti-inflammatory effects (Handrigan

et al. 2005; Boldt 2006; Gurfinkel et al. 2003), and to inhibit cytokines in experimental sepis

(Tian et al. 2005). The use of hypertonic saline has also been shown to reduce systemic and

pulmonary inflammatory responses (reduced levels of TNF-	 and IL-6) (Gurfinkel et al. 2003).

               In our clinical study we evaluated TNF-	, IL-6, IL-8 and IL-10 at baseline (1), after

onset of CPB (2), before weaning from CPB (3), after 2 hours (4), after 6 hours (5) and next

morning (6). TNF-	 remained essentially unchanged compared with the initial values. IL-6, IL-8,

IL-10 changed in similar patterns as described in other studies (Kawamura et al.1997; Risnes et

al. 2003) with significant increases in both groups at 6 hours, but with no between-group

differences. In this study we did not observe any anti-inflammatory effect of HSH.

Figure 5.
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9.2. Negative impact of fluid overload
         Fluid overloading with edema formation is a regular finding following on-pump cardiac

surgery. Tølløfsrud and co-workers found a fluid load of 5200 ml at the end of surgery when

acetated Ringer`s solution was used as prime (Tølløfsrud et al. 1995). This is in line with a

previous report by Utley on extensive fluid overloading following cardiac surgery with the use of

CPB (Utley JR & Stephens DB 1982). A mean accumulation of 800 ml/m2/hour during CPB was

determined. Hallowell and co-workers, found that almost 50 % of CABG patients had a fluid

balance greater than 5000 ml (Hallowell et al. 1978). Today most centres experience lower fluid

accumulation. 2000-2500 ml is often reported (Sirvinskas et al. 2007; Eising et al. 2001;

Kvalheim et al. 2009). Explanations for reduced fluid load today, is related to a change in

temperature strategy with reduced CPB time as well as smaller CPB-circuits.

In a study of patients admitted to surgical ICU significantly greater morbidity and length

of ICU stay was observed for patients who gained more than 10 % weight, indicating fluid

overload. Also mortality tended to increase as fluid overload increased (Lowell et al. 1990).

          An association between highly positive intraoperative fluid loading and postoperative

adverse outcome has been demonstrated in cardiac patients in recent years (Toraman et al.

2004). In a study of 1200 patients undergoing on-pump CABG, a fluid load of more than 500 ml

at the end of surgery was one of the predictors for increased transfusion needs and increased

length of hospital stay.

 Also following pulmonary surgery adverse outcome has been associated with heavy fluid

loading (Møller et al. 2002). In a regression analysis of elective patients undergoing

pneumonectomy, fluid balance exceeding 4000 ml was found to be the strongest risk factor for

post-operative pulmonary complications and in-hospital mortality (Møller et al. 2002).

Several authors have found fewer complications and earlier discharge by restrictive fluid

therapy in gastric patients (Lobo et al. 2006; Tambyraja et al. 2004).

 In a randomized multicenter trial (Brandstrup et al. 2003) patients were allocated to a

restricted or a standard fluid regimen during and after gastrointestinal surgery. Complications,

including anastomotic leakage, infections and transfusion needs were reduced in the restricted

fluid regimen group. Impeded tissue healing due to general edema may be one of the possible

explanations.
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9.2.1. Heart

             Myocardial edema has been reported to impair both systolic and diastolic function

(Mehlhorn et al. 2001). One study demonstrated a decrease in cardiac output by 40% for a given

preload when myocardial water content was increased by 3.5% (Laine & Allen 1991). Several

mechanisms may account for the reduction in cardiac performance. Tissue edema accumulates in

the interstitial spaces, thus increasing chamber stiffness and compromises the hearts ability to

contract efficiently. An increase in interstitial volume and pressure may also displace collagen

fibers, which might impact negatively on heart function (Laine & Allen 1991). Additionally,

myocardial edema will increase the diffusion distance for oxygen to the myocytes, resulting in

ischemia (Ziegler & Goresky 1971).

In our studies I-III, we observed significantly reduced water content in the heart tissue of

the study groups receiving colloides compared to the control groups. In study IV we used tepid

temperature, and the fluid leakage was less than that obtained in hypothermic studies (I-III).

                In the clinical study (V), a more favourable fluid balance was observed in the HSH-

group that was aproximatly 30 % below the values of the CT-group. The reduction, about 75%,

was most pronounced during the first 6-postoperative hours. Concomittant with this observation

CI (normalized values) was significantly higher in the HSH-group compared with CT-group.

Similar observations from previous studies confirms an association of reduced fluid load and

improved cardiac function (Oliveira et al. 1995; Tølløfsrud & Noddeland 1998; Schroth et al.

2006; Sirvinskas et al. 2007).

9.2.2. Lungs

            In a review of more than 8000 patients undergoing major surgery, Arieff found that the

overall incidence of postoperative pulmonary edema was 7.6 %, being fatal in 11.9 % of the

cases (Arieff 1999).

Edema might compromise both pulmonary gas exchange and tissue oxygenation leading

to decreased pulmonary function. In a study of healthy volunteers receiving 40 ml/kg of Ringer`s

solution, Holte and co-workers found a decreased pulmonary function for 8 hours and a

significant weight gain after 24 hours (Holte et al. 2003). Boldt and co-workers found that an

increase in extravascular lung water was accompanied by deterioration of pulmonary gas

exchange (Boldt et al. 1986). In study I, we found a significant increase in water content in the

lungs in the CT-group compared to a group of non-CPB animals. This fluid accumulation was

not found in the albumin and HES group. Preservation of COP seemed to prohibit the increase in

water accumulation in the lungs. In study II, we observed a significant reduction in total tissue

water in the lungs of the animals in the HSH-group compared to the animals of the CT-group.
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These findings were not reproduced in study III and IV, where no significant differences were

found. In study IV shorter CPB time and changed temperature strategy might explain these

results.

In study V, the clinical study, we were unable to find a significant difference in EVLWI

in the two groups, but normalized values of ITBVI was significantly higher in CT-group, and

GEDVI was significantly larger in HSH-group. These results are in line with the presence of an

increased intravascular pulmonary blood volume. The implications of that can so far only be

speculated on.

PaO2/FiO2 ratio behaved similarily in the two study groups initially. After 6 h the

PaO2/FiO2 ratio tended to rise more rapidly in the HSH-group compared to the CT-group. The

lack of significance between these two groups might be related to the variability of the patients

within the respective groups. Preoperative lung-examination was not done in these patients, and

even though the patients were described as healthy when considering lung disease, a greater

variation might be expected with increasing age (Gunnarsson et al. 1996).

9.2.3. Brain

            Cerebral injury is a frequent and feared complication after cardiac surgery.

Manifestations might vary from severe stroke resulting in death, paralysis /paresis to temporary

cognitive dysfunction. Mechanisms of cerebral injury from cardiac surgery might be caused by

air, by emboli, by peri-operative anemia or by hypoperfusion related to loss of cerebral

autoregulation (Hogue et al. 2008). Increased ICP and cerebral edema may worsen this ischemia.

By reducing ICP and brain water, improved cerebral perfusion pressure may be obtained.

              The use of HES in the prime-solution during coronary artery bypass was associated with

significant positive effects on informative-cognitive tests when compared to Ringer’s solution

(Iriz et al. 2005). The infusion of hypertonic saline/dextran in pigs before and after hypothermic

circulatory arrest was found to lower ICP and to significantly improve neurologic recovery in the

HSD –group (Kaakinen et al. 2006). McDaniel and co-workers added hypertonic saline/dextran

in the prime in an animal study, and observed stable ICP values and reduced cerebellar water

content in the animals (McDaniel et al. 1994). This is in line with our findings. In study II and III

we observed an increased ICP in the CT-group, whereas the ICP in the HSD- and HSH-groups

remained stable.
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9.3. Effects of colloid additives during CPB
          Hemodilution with crystalloid additives causes a reduction in COP. Approaches to reduce

this fall in COP could have a positive effect on outcomes after cardiac surgery. In animal studies

colloid hemodilution has been found to prevent the development of myocardial edema which

occurred with crystalloid hemodilution (Laks et al. 1977). Also pulmonary edema is found to be

reduced by colloid hemodilution (Eising et al. 2001). This is in line with our observations. In

study I we maintained COP by using colloides in the prime, and the fluid overload was

significantly reduced. We observed reduced tissue water in the hearts of the animals receiving

colloid compared to the animals receiving crystalloid prime. In study II and III the colloides

were administrated as a peroperative infusion. In both studies we observed more stable COP

values and reduction in fluid extravasation. As a result we observed a reduction of total tissue

water content in the heart, lungs and intestinal organs compared to the control animals.

Table 4 presents the average extravasation rate from initiation of CPB till the end of the

experiments, which was 150 min in study I-III, and 120 min in study IV.

Table 4.

Total FER during CPB

Study group FER ml/kg/min Study group FER ml/kg/min

 CT-I 0.58 (0.14)  Alb-I 0.13 (0.10)

 HES-I 0.20 (0.08)

 CT-II 0.66 (0.17)  HSH-I 0.39 (0.03)

 CT-III 0.78 (0.17)  HSD-II 0.41 (0.06)

*CT-IV 0.66 (0.18) *HSH-IV 0.31 (0.08)

 *tepid CPB

In study I fluid addition to the reservoir as well as blood replacements were isooncotic.

Consequently COP was maintained throughout the study, and might explain the low FER values

in study I.

9.3.1. Albumin

         In study I the CPB circuit was primed with Albumin 4 %, and when needed, albumin was

added to the reservoir. The cold-induced fluid leakage, as previously reported (Farstad et al.

2004; Heltne et al. 2000), was significantly reduced in the presence of albumin. Similar findings

were reported from a meta-analysis involving more than 1300 patients (Russell et al. 2004)
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where albumin favourably influenced COP and fluid balance. Marelli and co-workers

concluded on the other hand that there was no advantage adding albumin in the prime (Marelli et

al. 1989). Himpe reports in a meta-analysis including almost 1000 patients of a more favourably

fluid balance when colloids were added to the priming solution. Albumin was, however, not

associated with better outcome than other colloides in this review (Himpe 2003).

              In a retrospective study (Sedrakyan et al. 2003) of 20.000 patients undergoing cardiac

surgery through 1997 and 1998 albumin appeared to be associated with lower incidence of

mortality. Albumin was however, compared with all non-protein colloides, including dextrans,

gelantines and first generations of starch, and no separation of under-groups was done.

             A Cochran meta-analysis in 1998 suggested a worse outcome for patients given albumin

in ICU (Cochran 1998). In the SAFE study (Finfer et al. 2004), which was a prospective study

including 7000 intensive care  patients, no advantages of albumin as a plasma substitute was

observed and the worsended outcome as proposed the Cochran meta-analysis could not be

confirmed. Whether it is worth the price or not, is a still matter of debate.

9.3.2. Hydroxyethyl starch (HES)

              HES is the most often used colloid in Europe (Schortgen et al. 2004). A variety of

different solutions exist, which differ greatly in their pharmacological properties.

              Postoperative bleeding is a common complication of cardiac surgery, and it is estimated

that 50 % of cases undergoing re-operation because of bleeding results from multifactorial

coagulopathy (Paparella et al. 2004). It is of great importance that fluids added during and after

CPB do not worsen bleeding.

            Hydroxyethyl starches can interfere with normal hemostasis at different levels and an

impact on coagulation might occur (Kozek-Langenecker 2005).These findings are mostly based

on the use of first-generation starch-preparations with a molecular weight of 450 kD or higher,

and a high degree of molar substitution. The negative effect of HES on coagulation and bleeding

can probably be avoided by use of low- molar-weight, low-degree substitution HES in

recommended amounts ( Boldt 2009a; Thyes et al. 2006; Kozek-Langenecker 2005).

            Starch with lower Mw (130-200) and lower molar substitution (0.5 or less) have

significantly less impact on coagulation (Entholzner et al. 2000; Treib et al. 1996). Not only

weight and molar substitution but also the administered volume, have an influence on

coagulation (Thyes et al. 2006). Nevertheless, some studies demonstrate no adverse effects after

administration of larger volumes to multitrauma or orthopedic patients (Shatney et al. 1983;

Vogt et al. 1996). Also in cardiac surgery, low weight, low molar HES (130/0.40) at larger doses

has been found to be safe with regard to hemostasis (Boldt et al. 2009; Kasper et al. 2003).
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              A large meta-analysis reports increased blood loss in CPB patients exposed to HES

(Wilkes et al. 2001). This meta-analysis compared studies from the previous 20 years, - where

both HES 200 kD and HES 450 kD were used. There was no subgroup analysis, neither

according to molar substitution nor volume of transfusion.

             In study I-IV the effect on coagulation was not measured, as the animals were killed

after CPB and on-pump values are of limited interest. In study V, the effect on coagulation was

evaluated by the amount of bleeding from the chest drains, transfusions needs, as well as the

direct impact on the TEG-values. The TEG values were within normal range in both groups,

although a significant difference between the groups could indicate that HSH impaired

coagulation slightly. Coagulation index postoperatively was in HSH-group –1.3 (1.9) and in CT-

group -0.10 (1.7) (P = 0.024). Despite differences in TEG values, blood loss and transfusion

needs were similiar in the two groups.

          Others have experienced similiar observation; HES (200/0.5 or 130/0.4) solutions can

induce an impairment in fibrin formation and clot seen in TEG values, although no clinical

impacts concerning chest tube drainage and transfusion needs were observed (Schramko et al.

2009; Kuitunen et al. 2004).

              Renal dysfunction after cardiac surgery is in the range of 5 % (Antunes et al. 2004;

Boldt et al. 2003) and the causes  are multifactorial, though usually attributed to the use of CPB.

A possible detrimental impact of HES on kidney function has become an objection to use HES.

In a multicenter study of patients with severe sepsis higher frequency of acute renal

failure in the HES group than in the gelantin group was observed (Schortgen et al. 2001).

However, in this study HES 200/0.62 at doses of 31ml/kg were used. Additionally the study was

followed by criticism since serum creatinine was higher in the HES-group at baseline. In a study

of patients undergoing CABG, the use of HES was associated with a modest impairment in renal

function (Winkelmayer et al. 2003).In this study HES 670/0.75 was used.

Several studies show no negative effects on kidney function by use of HES; a large

observational study of 3147 critically ill intensive-care patients did not show higher incidence of

acute renal dysfunction in HES-treated patients compared to other plasma substitutes (Sakr et al.

2007). The use of HES 200/05 at doses of 15 ml/kg/day over five days to patients at ICU

including septic and trauma patients was also without negative effects on renal function (Boldt

2009b). By using the latest generations low weight (Mw< 200 kD), low molar substitution (MS

< 0.5), kidney function is not affected, suggesting no negative effects even in patients with

significantly altered kidney function (Boldt et al. 2007).

             Adverse renal effects were not evaluted in the experimental studies (I-IV). In study V,

however, we followed serum-creatinine levels during day 1, 2 and 3. No increases in the
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creatinine levels were found. We observed significantly higher diuresis the first 24-h in the

HSH-group compared to the CT-group.

9.3.3. Dextran

             Dextrans have well documented plasma expanding effects, and was the first colloid

combined in solution with hypertonic saline (Kramer 2003). Because of dextrans anticoagulant

effects they have shown to be effective in preventing postoperative venous thrombosis and

pulmonary embolism (Coats & Heron 2004). This effect might however be difficult to control in

the cardiac surgery patient, and combined with potential allergic reactions, a decrease in use is

seen. Dextrans do not longer play a role in cardiac surgery (Van der Linden & Ickx 2006;

Kreimeier & Peter 1998; Schumacher 2009).

             In study III we used the same protocol as in study II, which gave us an opportunity to

compare HSD and HSH with regard to their effect on fluid extravasation. No significant

between-groups values were observed. Total FER was more or less identical in the two groups,

0.39 (0.03) ml/kg/min in HSH group, and 0.41(0.06) ml/kg/min in HSD-group (table 4).

Fig.6.

9.3.4. Combination fluids

          The main use of combination fluids has been as small volume resuscitation in emergency

situations. There is no study demonstrating obvious adverse effects of hypertonic saline when

used in recommended amounts.

               An increased plasma chloride concentration could produce metabolic acidose that might

compromise cardiac function or cause arrhythmia. In a study from Vassar concerning potential
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risk associated with infusion of hypertonic saline in resuscitation situations a non-significant

correlation between pH and chloride concentration was found (Vassar et al. 1990). This is in line

with our findings. Although serum-chloride increased significantly, acid-base parameters

remained within normal ranges with no between-group differences.

            Austria was one of the first countries to approve hypertonic saline/ colloidal solutions,

and the patient material for registration of adverse drug reactions (ADR) is large. A review of a

10-year period concluded that ADR after use of HSH/HSD was low, and these solutions couldt

be considered relatively safe (Schimetta et al. 2002).

           Considerably elevated serum sodium levels have been reported after use of HSD/HSH in

cardiac surgery. Levels of 166 mmol/l has been seen by use of bolus administration of 3-4 ml/kg

of HSD (Oliveira et al.1995), however, with no neurological symptoms observed. In study II-V

serum sodium increased significantly, but remained at or below 150 mmol/l and no adverse

effects were seen.

Experience with use of HSH/HSD is mostly obtained from treatment of severe hypovolemia and

shock, and recommended doses have been 4 ml/kg. Also studies dealing with administration of

HSD/HSH in cardiac surgery reports of doses reaching 4.5 ml/kg at most (Tølløfsrud et al.

1998).

9.4. Administration forms
           Administration of hyperosmolar and/or colloidal additives has been given before and after

CPB, as well as an additive to the priming solution.

         Bueno and co-workers infused HSD as a bolus before valve surgery (Bueno et al. 2004).

Hemodynamic and respiratory function improved, peak values were obtainded shortly after

administration. Altough the effect declined postoperatively, the cardiorespiratory function were

better in the HSD-group compared to the control-group. Similiar findings were observed in a

group of Jehovaha`s witness (Oliveira et al.1995). Hemodynamic parameters improved shortly

after administration. In this study the effects on on hemodynamic were short-lived. In both

studies the fluid balance was favourable with the use of HSD.

                Eising and co-workers used HES in the prime, and observed improved CI and reduced

EVLW in the HES-group compared to a group with only crystalloid solution in the prime (Eising

et al. 2001). The improved hemodynamic and respiratory effects did not have peak values, but

seemed to gradually improve postoperatively. A significantly reduced fluid load was observed in

the HES-group.
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         Tølløfsrud and co-workers administered a bolus of HSD immediately after cardiac

surgery (Tølløfsrud & Noddeland 1998). They observed improved cardiac output, with peak

values shortly after administration. Fluid balance was lower in the HSD-group compared to the

control-group. Similiar findings were observed when HSH was administered as a bolus infusion

after arrival at the ICU (Sirvinskas et al. 2007). Positive impacts on hemodynamic parameters

were observed, also here peak values obtained shortly after infusion. Improved fluid balance in

the HSH-group compared to the control-group was found.

           Bolus administration of HSH has also been used after pediatric cardiac surgery (Schroth

et al. 2006). They observed improved CI, reduced SVRI, as well as reduced ELWI. Also in this

study group peak values were obtained shortly after administration of HSH.

           In our clinical practice we have used HSD or HSH as an infusion of 1ml/kg/h during 4

hours during resuscitation of victims with accidental hyopthermia. We observed lower fluid

needs and more stable hemodynamic variables during rewarming compared with treatment

protocols using crystalloid solution alone. In study V we used this administration form, 1ml/kg/h

HSH during 4 hours, starting preoperatively. We observed still increasing CI values 6 hours

postoperatively, and belive this administration form might be of benefit during the first

vulnerable hours postoperatively.

          Both the experimental studies and the clinical study confirm the effect of reduced fluid

load. Weather a slow peroperative infusion is favourable compared to a bolus infusion

conserning amount of fluid overload is uncertain.

 Administration of HSH as a bolus, given within minutes, might under given

circumstances induce post-infusion hypervolemic left heart failure and/or pulmonary edema, as

Prien and co-workers observed as transient findings after bolus infusion of HSH in CABG

patients (Prien et al. 1993). A review of hypertonic solutions in the operating room concludes

with benificial hemodynamic effects, and suggests that the rate of infusion should be slow

(Azoubel et al. 2008).To our knowledge there is no former study where HSH/HSD have been

administrated as a slow peroperative infusion during cardiac surgery. We observed that this

administration form caused a reduction in the total fluid load and an improvement of cardiac

performance in the early post-operative period.
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9.5. Future aspects
          The focus in fluid treatment for cardiac surgery should be to prohibit fluid loading, not to

replace losses. Numerous studies conserning negative impact of fluid overload exisist. Also the

adverse effects of high degree hemodilution are described. High-risk patients are an increasing

population in cardiac surgery, and these patients are vulnerable to the negative impacts of

hemodilution as well as fluid overload. The most obvious strategies to counteract these effects of

CPB are changes in the fluid additives and/or a reduction in the prime volume.

          The ideal fluid additive during and after cardiac surgery does still not exist. Controversy

consering crystalloid-colloid as well as colloid-colloid is still exisisting. The latest generation of

HES gives promising results, though further investigations are needed.

           By using a small volume of HSH as a slow infusion, we obtained favourable results

observing CABG patients with no co-morbidity, although these patients usually recover fast

anyway. We belive high-risk patients will have even more benefit of reduced fluid loading. Their

tolerance for hypervolemia is lower and the incidence for hemodynamic instability first hours

postoperatively is greater. A clinical study including high-risk patients is planned and has to be

performed.

Mini-bypass circuits are gaining increasing popularity. The reduced prime volume and

the antegrad priming of these circuits results in redused hemodilution, and lowered transcapillary

fluid leakage. Different priming alternatives in these mini-systems could contribute to even more

sophisticated fluid treatments protocols in the future.
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10. Conclusion

Based on the results from these studies we conclude;

• Maintainance of COP with an iso-oncotic prime during CPB reduces the cold-induced fluid

leakage

• A small infusion, 1ml/kg/h, of hyperosmolar/colloidal solution during CPB reduces FER and

NFB in pigs

• The infusions of HSH/HSD contributed to maintenance of ICP during hypothermic CPB,

while an increase of ICP was observed in the control group

• An additon of 4 ml/kg hyperosmolar/colloid solution in the prime reduced transcapillary

fluid leakage and NFB during tepid CPB

• Initiation of CPB caused highest FER values, this was significantly reduced by using

hyperosmolar/colloid in prime

• A small infusion, 1ml/kg/h during 4 h of hyperosmolar/colloid solution to elective CABG

patients reduced NFB and improved cardiac function

•  By using small volumes of HSD/HSH as a slow infusion during CPB we obtained

significantly less fluid load and organ edema. No adverse effects neither in the animals

studies, nor in the clinical study were observed.
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