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Introduction

In this thesis, different mathematical techniques are applied to the linear and parabolic Radon
transforms. It includes a review of classical work, recent developments, and testing of two proposed
methods. Studies span from sampling and numerical stability to kinematic considerations, and
computational efficiency.

The thesis is organized into six chapters. In Chapter 1, the Radon transform is introduced by a
brief example. It is followed by a definition of the geophysical adaptation, known as the linear and
parabolic Radon transform. Analytic results, in form of sampling criterions and frequency domain
derivations, provide the mathematical background. An introduction to the discrete transform is
given, this defines the forward and inverse transforms. For comparison, a direct implementation
of the time-variant (hyperbolic) transform, including a discussion on interpolation, is given in the
last section.

In Chapter 2, the linear and parabolic Radon transforms are studied from a geometrical point
of view. Curves and their envelopes are studied using fundamental principles from differential
geometry. This gives some insight in what to expect from a ‘perfect’ solution (Radon panel).

Chapter 3 introduce theory on inverse and ill-conditioned problems. The least squares method
and different regularization techniques are studied from the viewpoint of mathematical optimization
(by differential operators) and singular value decomposition. Minimizing the least squares objective
function of a complex variable, is used as a motivation for a theoretical discussion on the complex
Newton method, complex (CR) differential operators and eigenvalue decomposition.

Chapter 4 focuses on the structure of Toeplitz operators and inversion methods. This in-
cludes techniques such as Cholesky factorization, the Levinson algorithm and the preconditioned
(bi)conjugate gradient method, efficiently calculated by the fast Fourier transform. Fundamental
theory concerning Toeplitz matrices and its relation to Fourier series is briefly introduced, with em-
phasis on eigenvalues and generating functions. The chapter concludes with numerical experiments,
using the different techniques.

Chapter 5 studies a low-pass filter with an impulse response in form of the characteristic Dirich-
let kernel. This impulse response generates the columns of the Toeplitz matrix, subject to inversion
in the forward Radon transform. A circular approximation of the filter, and fixed point iteration, is
considered as an alternative approach with computational advantages by the fast Fourier transform.

In Chapter 6, sparse approximations, also known as high-resolution Radon transforms, are
investigated. The theory is motivated by the desire to discriminate fast, short-period multiples
under limited offset situations. An industry standard high-resolution method is presented, reviewing
the original paper, using a Bayesian framework. A similar approach is then tested. That is,
solving the basis pursuit denoise problem, where the troublesome one-norm is handled by a modern
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optimization algorithm. The latter method is tested on both synthetic and real datasets, including
a multiple removal scheme.

Appendix A includes a complementary description of the geophysical parameters and frequency
domain derivations for the linear and parabolic Radon transform.

To facilitate the use of algorithms, discussed in Chapter 4 and 5, Appendix B includes MATLAB
programs for the numerical results.
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CHAPTER 1

The Radon Transform

The Radon transform is an integral transform, introduced by the mathematician Johan Radon
in 1917. It is defined by assuming a function f(x, y), illuminated by parallel rays. An image or
observation r(s, θ) is constructed in the following manner

r(s, θ) =

∫∫ ∞

−∞
f(x, y) δ(s − x cos θ − y sin θ) dxdy,

where s is the distance from the origin with θ as a reference direction for the rays. Figure 1 illustrates
the geometry. Explicit and efficient inversion formulas for the Radon transform are available in
literature on tomography (Deans, 1983; Jain, 1989; Ramm and Katsevich, 1996; Helgason, 1999).
In Figure 2, a square box is illuminated and reconstructed, analogous to the above definition.

Originally discovered without consideration to any practical problems, the Radon transform
finds applications with the development of modern technology. The most common application is
the process of reconstructing images in the field of medical tomography; the inverse Radon transform
is applied to data obtained from computed tomography (CT) scans. This led to a Nobel-price in
1979 for the groundbreaking concept of viewing organs from outside the body.

Figure 1: Illustrative example, geometry of the Radon transform.
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Figure 2: The Radon transform using built-in MATLAB functions. a) The original image f(x, y). b) The Radon transform of
the original image. Angles from 0 ≤ θ < 180◦ with ∆θ = 1. c) Reconstruction of the original image f(x, y), without filtering.

The present work focuses on modifications of this classical formulation, versions suitable for
geophysical problems. These modifications will be referred to as the linear Radon (tau-p) transform
and the parabolic Radon (tau-q) transform.

In this chapter, the transforms are defined in both the frequency and time domain, including
a review of sampling criterions. The tau-p transform is discretizised, representing a unified theory
for both transforms. This makes up a framework for analysis following in subsequent chapters. In
these chapters, inverse theory is presented in a general manner.

1. Time-invariant Radon Transform

The time-invariant tau-p transform is defined in time-offset as

r(p, τ) =

∫ ∞

−∞
f(x, t = τ + px) dx,(1)

where the data f(x, t), a function of offset and time, is summed along the straight line t = τ + px,
parametrized by the ray parameter p and intercept time τ . After filtering of r(p, τ), the seismic
data f(x, t) is reconstructed. The natural inverse operator can be written

f(x, t) =

∫ ∞

−∞
r(p, τ = t − px) dp.(2)

It should be noted that equations (1) and (2) are correct from a kinematical point of view only
(Maeland, 1998). From an amplitude point of view, a correction term is required.

The Radon transform can be generalized to curves other than straight lines

t = τ + ϕ(x).

Suitable choices for ϕ(x) could focus certain seismic events in the transform domain. This domain
may have parameters representing geophysical properties like curvature (residual moveout) q or seis-
mic velocity v. The parabolic formulation, summing along trajectories with ϕ(x) = qx2, also yield
a time-invariant transform. Figure 3 illustrates the geometrical principle with linear and parabolic
trajectories. These transforms serve a purpose in seismic data processing (Zhou and Greenhalgh,
1994), where they may be used in a range of methods: Velocity analysis, inversion (migration and
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modeling), interpretation, plane-wave decomposition, wave separation, noise attenuation and data
interpolation. Details on the geophysical properties and geometry of the parameters are included
in Appendix A.
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Figure 3: Geometrical principle of the time-invariant transforms. a) The tau-p transform. b) The tau-q transform.

1.1. Transforms in the frequency domain. An invariant is a property of a system which
remains unchanged under some transformation. The advantage of the tau-p and tau-q transforms
over e.g. the time-variant hyperbolic transform, lies in the fact that is it possible to take the
Fourier transform of both sides of the equations and solve them independently for each frequency
component (Hampson, 1986; Kostov, 1990). This reduces the computational cost considerably. For
convenience, only the tau-p transform is evaluated1 in the following derivations. Let f(x, ω) and
r(p, ω) denote the temporal Fourier transform of respectively f(x, t) and r(p, τ), such that

r(p, ω) =

∫∫ ∞

−∞
f(x, τ + px) e−iωτ dxdτ.(3)

The substitution τ ′ = τ + px, yields

r(p, ω) =

∫∫ ∞

−∞
f(x, τ ′) e−iω(τ ′−px) dxdτ ′ =

∫ ∞

−∞
f(x, ω) eiωpx dx.(4)

The time-shift is expressed as a multiplication by a complex number. Different frequency com-
ponents of the data can be transformed to the (p, ω)-domain independently from each other. An
inverse frequency formulation is then

f(x, ω) =

∫ ∞

−∞
r(p, ω) e−iωpx dp.(5)

Alternative frequency domain formulations using the two-dimensional Fourier and Fresnel trans-
forms, for respectively tau-p and tau-q, are included in Appendix A.

1Results are analogous with the parabolic Radon transform.
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2. Discrete Frequency Formulation

A frequency domain formulation of the time-invariant discrete Radon transform (Thorson, 1984;
Beylkin, 1987) is presented in this section. It is the basis of what will be discussed in the subsequent
chapters.

2.1. Forward transform, (x, t) → (p, τ ). Evaluating the linear Radon formulation, let
pm = m∆p and xn = n∆x, such that a discrete forward transform is given as

r(pm, ω) ≈
N∑

n=1

f(xn, ω) exp(iωxnpm),(6)

for m = 1, 2, . . . , M . The approximation is used to emphasize the fact that this is not an exact
solution, and that in general, M 6= N .

2.2. Inverse transform, (p, τ ) → (x, t). An inverse transform is given by

f(xn, ω) ≈
M∑

m=1

r(pm, ω) exp(−iωxnpm),(7)

for 1, 2, . . . , N . Let Anm = exp(−iωxnpm), fn = f(xn, ω) and rm = r(pm, ω), then the above
equation can be written




f1

f2
...

fN


 ≈




A11 A12 · · · A1M

A21 A22 · · · A2M
...

...
. . .

...
AN1 AN2 · · · ANM







r1

r2
...

rM


 .

When M < N , the set of equations will be overdetermined.

2.3. Least squares forward transform. It is common practice to replace the forward trans-
form with a least squares forward transform. This gives better resolution in the Radon domain,
which allows better signal and noise separation (Schonewille and Duijndam, 2001).

Multiplying fn by A∗
nj = exp(iωxnpj) where pj = j∆p with j = 1, 2, . . . , M , and summing over

n, yields an approximate solution r̃j

r̃j =
N∑

n=1

A∗
njfn ≈

N∑

n=1

exp(iωxnpj)
M∑

m=1

rm exp(−iωxnpm).

Further, let r̂m be the least squares (generalized inverse) solution

r̃j =

N∑

n=1

M∑

m=1

exp [−iω(pm − pj)xn] r̂m

=
M∑

m=1

r̂m

N∑

n=1

exp [−iω(m − j)∆p xn]

=

M∑

m=1

r̂m

N∑

n=1

An(m−j).
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The approximate solution r̃j , can be written as a convolution2

r̃j =
N∑

n=1

A∗
njfn =

N∑

n=1

fn exp(iωxnpj) =
M∑

m=1

r̂mhj−m,(8)

where hm is a low-pass filter, subject to investigation in Chapter 5. Formulating the discrete Radon
transform in this manner has both advantages and disadvantages. It obviously could give a detailed
insight to the problem, but by using a more general vector-matrix notation, techniques from linear
algebra can be denoted and utilized more easily.

2.4. Notation using linear algebra. The discrete analysis gives a linear transform for each
frequency. For the remainder of the present work, a linear system (without consideration to the
variable names introduced in the discretization) is denoted

Az = b,

where vector z represents the Radon panel, vector b represents the data, and the operator A rep-
resents a linear mapping. An operator AH denotes the Hermitian transpose (conjugate transpose)
and it is important to notice that A is generally not an unitary operator, i.e. it does not define the
inverse. For the Radon transform, AH represents a low-resolution forward Radon operator.

Let R(A) denote the range (column space) of a N × M matrix A. For a solution of the linear
system to exist, b ∈ R(A) has to be satisfied with b as

b = Az + u,

where Az is the projection of b onto R(A) and u is the residual vector, orthogonal to R(A)
(Maeland, 1998). A least squares solution is calculated by the normal equations

z̃ = AHb = AHAẑ.

Finding the least squares solution ẑ requires the matrix (Hessian) AHA to be nonsingular. This is
generally a difficult problem and is subject of further investigation in Chapter 3.

3. Sampling and Aliasing

Calculating the Radon transform is a computational expensive process, especially with large
datasets. Therefore, mathematical operations should be minimized by limiting the number of
samples. This section gives a summary of sampling criterions for both the linear and parabolic
transforms. It is important to note that aliasing in the Radon panel is diffused. Sampling cri-
terions are defined for the highest frequency in the signal, hence, all the lower frequencies will
be oversampled since a uniform sampling scheme is required. Therefore, datasets with a single
monochromatic signal of often used for illustrations.

3.1. Sampling and aliasing in tau-p. For a basic understanding of sampling and recon-
struction of the linear Radon transform, a harmonic monochromatic signal is evaluated. It can be
used to demonstrate how aliasing manifests itself, and how critical sampling intervals are defined.
Suppose a function f(x, t), described by a delta-function

f(x, t) = δ(x − x0) eiω0(t−t0)

2It is important to notice that this convolution cannot be classified as neither linear nor circular.
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and its two-dimensional Fourier transform

F{f(x, t)} =

∫ ∞

−∞
δ(x − x0)e

ixkx dx

∫ ∞

−∞
eiω0(t−t0)e−iωt dt

= eix0kx

∫ ∞

−∞
eiω0(t−t0)e−iωt dt

= eix0kxe−iω0t0

∫ ∞

−∞
eiω0te−iωt dt

= 2π δ(ω − ω0) ei(x0kx−ω0t0).

Substituting kx = pω gives

q(pω, ω) = 2π δ(ω − ω0) ei(x0pω−ω0t0),

and applying the inverse temporal Fourier transform

r(p, τ) = F
−1{q(pω, ω)} =

1

2π

∫ ∞

−∞
2π δ(ω − ω0) ei(x0pω−ω0t0)eiωτ dω.

The function δ(ω − ω0) is zero for all ω except when ω = ω0, such that

r(p, τ) = eiω0(x0p−t0+τ) = r(p + m
2π

ω0x0
, τ + n

2π

ω0
),

where m, n ∈ Z. This gives a periodicity in x

x̃0 = x0 +
2πm

ω0p
=⇒ X =

2π

ω0∆p
=

1

ν0∆p
,

where ν0 is the linear frequency and X is the period. Finally, a criterion for sampling and recon-
struction in tau-p,

∆p ≤ π

ω0x0
and ∆τ ≤ π

ω0
.

In Turner (1990), a more generalized version of tau-p sampling is given. The paper is based on a
geometrical principle of constructive summing along slants. The criterion is given as

∆p <
T

xr
=

1

xrνmax
,(9)

where xr is the range of x values, T is the period of the signal and νmax is the maximum linear
frequency. A similar criterion is given for spatial sampling

∆x ≤ 1

prνmax
=

1

2pmaxνmax
=

π

kmax
,(10)

where pr is the range of p values. Avoiding undersampling by the criterions described above will
in theory give perfect reconstruction. However, the fact that finite regions in are used, smearing
effects according to some resolution matrix will be introduced (Maeland, 2004).

Following the first theoretical derivation in this section, a simple example is given in Figure 4.
A cosine is sampled at ν0 = 20 Hz at x0 = 0.5 km. Using ∆x = 25 m with ∆p = 1/50 s/km on
Figure 4(b) and ∆p = 1/8 s/km on Figure 4(c). The latter demonstrates aliased events at x = 0.1
km and x = 0.9 km, when the period is X = 2/5 km whereas the period for critical sampling is
X = 2x0 = 1 km.

In a recent paper by (Dev and McMechan, 2009), a spatial antialias filter is presented. Their
filter is applied to spatially coarsely sampled seismic data, removing all energy above the first
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Figure 4: Demonstration of sampling and reconstruction in p-tau. a) Original signal. b) Properly sampled reconstruction. c)
Undersampled reconstruction.

Nyquist wavenumber, and aliased energy that is folded back across the Nyquist (in the slowness-
frequency domain). A novel approach to the tau-p transform is given in (Averbuch et al., 2001).
Their method relies on the discrete projection-slice theorem, relating this to what they call the
pseudopolar Fourier transform. The theory is presented as algebraically exact, geometrically faithful
and efficiently invertible.

3.2. Sampling and aliasing in tau-q. Sampling theorems for the parabolic Radon trans-
form are not as straightforward as with the linear transform. Let r(q, ω) be the temporal Fourier
transform of the Radon panel r(q, τ) and let f(x, ω) be the temporal Fourier transform of f(x, t),
such that

r(q, ω) =

∫ ∞

−∞
f(x, ω) eiωqx2

dx,(11)

and

f(x, ω) =

∫ ∞

−∞
r(q, ω) e−iωqx2

dq.(12)

A transform pair analogous to the previous analysis with tau-p.

3.2.1. Continuous convolution operator. Substituting Equation (12) into Equation (11), and
defining a new variable q′, gives

r′(q, ω) =

∫∫ ∞

−∞
r(q′, ω) eiω(q−q′)x2

dq′dx

=

∫ ∞

−∞
eiωx2(q−q′) dx

∫ ∞

−∞
r(q′, ω) dq′

=

∫ ∞

−∞
r(q′, ω) σ(q − q′, ω) dq′

= r(q, ω) ∗ σ(q, ω).

Studying the parabolic Radon transform by using the convolution/deconvolution formalism and the
Fourier transform, can be used determine critical sampling intervals for q. The convolution operator
σ(q, ω) with respect to q does not have an antiderivative expressed by an elementary function, hence
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integration in the complex plane is needed. For q, the operator is given as (Zhou and Greenhalgh,
1994)

σ(q, ω) = 2

∫ ∞

0
eiωqx2

dx = [1 + i sgn(q)]

√
π

2ω|q| , q, ω 6= 0

and in Fourier space, kq,

σ(kq, ω) = [1 + sgn(kq)]
π√
ω|kq|

, kq, ω 6= 0.(13)

When the range of x is finite, there is no analytical solution for the integral

σ(q, ω) =

∫ xmax

xmin

eiωqx2

dx.

Therefore, numerical implementations of the convolution operator introduce problems. This prob-
lem makes the aliasing phenomenon diffused for the parabolic Radon transform. Using regular
sampling, the operator is given as

σ(q, ω) = ∆x
∑

n

eiωq(n∆x)2 .(14)

3.2.2. Sampling criterions. In general, formulations where integrals are simply approximated
by a sum introduce vast amounts of arbitrariness and are too imprecise to constitute a definition of
a Radon transform for digital data; they should be avoided (Averbuch et al., 2001). However, fol-
lowing (Hugonnet and Canadas, 1995; Apeland, 2001), discretization in x, the convolution operator
σ(q, ω) becomes periodic in q with a period

Q =
2π

ω(∆x)2
.

This is not a problem with implementations as very high q-values are required.

Hugonnet and Canadas (1995) introduced the terminology: Local summations in phase. That
is, secondary lobes at

q̃ = ± 1

2νmax|xmax|∆x
,(15)

are identified in implementations of σ(q, ω). It is clear that for smaller ∆x, sidelobes will appear
at higher q-values. High frequencies will make the sidelobes appear at lower q-values. These
sidelobes represent an unwanted build-up of energy. Applying the sampling criterions from the
linear transform given in Equation (10), with the substitution X = x2, such that ∆X = 2x∆x. A
new criterion is derived as

∆x ≤ 1

2νmax|x|max(qmax − qmin)
.(16)

From Equation (13), Hugonnet and Canadas (1995) derives a critical sampling interval in q,

∆qc =
1

νmaxx̂
,(17)

where x̂ = (x2)max−(x2)min. In a former master’s thesis, Apeland (2001) study the above criterions,
including how sampling affects stability of the least squares operator.
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Figure 5: The convolution operator at frequency ν = 23 Hz. a) The parabolic version, demonstrating sidelobes from undersam-
pling x. b) The linear version, which does not suffer from the sidelobes.

Figure 5 shows Equation (14), evaluated with parameters chosen as ν = 23 Hz, xmax = 1,
xmin = 0, ∆x = 1/32 km and ∆q = 1/200 s/km2. Arrows indicate where sidelobes start at
q̃ = ±1/2ν|x|max∆x. A version for the linear transform is included using the same sampling
intervals, demonstrating how this version does not suffer from the same energy build-up.

4. Time-variant Radon Transform and Interpolation

There are advantages and disadvantages of time-variant Radon transforms like the hyperbolic
or elliptic versus the linear or parabolic transforms. Several different considerations needs to be
taken into account; computational speed, focusing ability, stability and robustness. In seismic data
processing, summing along the paths which most closely approximate the actual traveltime curve
will in theory yield the best focusing of seismic events. For a shot gather with a source at offset
x = 0, the traveltime at zero offset from the base of the nth layer is

tn(0) = 2
n∑

j=1

hj/vj ,

where hj is the horizontal thickness and vj is the interval velocity of each layer (Maeland, 1998).
For small offsets, the traveltime curve can be approximated by the hyperbola

t2n(x) = t2n(0) + (x/v̄n)2 + · · · ≈ τ2
n + (x/v̄n)2,

where the rms velocity v̄n satisfies

v̄2
ntn(0) = 2

n∑

j=1

hjvj .

Based on these assumptions, defining the parameters v and τ as respectively velocity and intercept
time, the hyperbolic Radon transform (Thorson and Claerbout, 1985; Yilmaz, 1988), is given as

r(v, τ) =

∫ ∞

−∞
f(x, t =

√
τ2 + (x/v)2) dx.
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Discretization and implementation of this integral is straightforward in the time-offset domain,
but at the expense of heavy computational burden. It involves an interpolation scheme as the
hyperbolas does not match the existing grid where the seismic data are sampled. Using a time-
offset implementation, any curve could be used, e.g. non-linear and more complicated functions
which could include anisotropy effects. Other advantages of this formulation is the possibility to
have non-uniform sampling for velocity, using dense sampling where events are expected, and less
dense otherwise. Summing along hyperbolas and limiting the offset-range is another possibility, a
parameter choice which could be used to e.g. accommodate for amplitude versus offset effects.

For seismic data with large moveout, the hyperbolic Radon transform generally yields better
focus of different events. However, on NMO corrected gathers, the parabolic Radon transform with
the parameter q as residual moveout, manages to focus the NMO corrected events closely to zero.
This makes it easier to separate them from the multiples.

4.1. Interpolation. In a time-offset implementation of the Radon transform, the curves on
which the summation is carried out, defines new sampling points. These points regularly do not
match the existing grid in the vertical direction (time). Interpolation or extrapolation is used to
deal with this problem.

For the purpose of illustration, Figure 6(a) shows a matrix generated by translating and scaling
Gaussian distributions. On top of this grid, three straight lines are plotted with crosses indicating
their sampling points. For one column of the matrix, let the function fj = f(tj), with j ∈ N,
describe the signal. Using a constant sampling interval, ∆t = tj+1 − tj , it is possible to estimate
the value of f(t) in a point where tj−1 < t < tj . This could be done by linear interpolation

f(t) =
(tj+1 − t)fj + (t − tj)fj+1

∆t
.

This is a simple and efficient formulation, often sufficient for obtaining good results, however
more sophisticated methods are easily available. Using the sampling theorem (Folland, 2009), and
assuming a bandlimited function f(t), interpolation can be written as a convolution

f(t) =
∞∑

−∞

fj sinc[π(t − tj)/∆t].

In digital signal processing, the exact sinc interpolation kernel is replaced by the Dirichlet kernel
from a finite number of samples (Yaroslavsky, 1997). This method is most commonly implemented
by zero padding the frequency domain before applying the inverse discrete Fourier transform.

Using the sample system from Figure 6(a), the 9th column of the matrix is shown in Figure
6(b). Existing values fj are plotted as black circles while new points, not matching the existing
grid, are plotted as red and blue crosses at their respective sinc-interpolated values. For this specific
example, the sinc interpolation method seems to adapt well to the data, however, it does suffer
from oscillating effects which sometimes may distort data severely.

In Figures 7 and 8, time-offset implementations of the hyperbolic and parabolic Radon trans-
forms are compared to the standard least squares parabolic Radon transform. A CMP gather
(courtesy of the signal analysis and imaging group, University of Alberta) with a long period multi-
ple of v = 1500 m/s, is plotted in Figure 7(a). The data is sampled with ∆t = 1/250 s, ∆x = 50 m,
νmin = 1 Hz, νmax = 90 Hz and M = 40 sampling points for the residual moveout q and velocity v.
For comparison, the same transforms are applied to the NMO corrected gather in Figure 8(a). In
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the time-offset implementations, linear interpolation is used when needed, although, no significant
difference is observed when using e.g. nearest-neighbor or sinc interpolation. This exercise shows
how the different transforms and implementations focus events, both from a NMO corrected gather
and a regular shot. For the parabolic transform, the focusing power is investigated in Chapter 2.
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Figure 6: The need for interpolation with time-offset implementations of the Radon transform. a) An image generated by
translating and scaling Gaussian distributions, also showing three straight lines, defining new sampling points. b) A selection
of the 9th column with sinc (Dirichlet) interpolated values indicated with red and blue points.
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(d) ω-x calculated parabolic Radon panel.

Figure 7: Radon panels calculated by different methods, plotted at the same amplitude scale for comparison.
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(b) t-x calculated hyperbolic Radon panel.
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(d) ω-x calculated parabolic Radon panel.

Figure 8: Radon panels calculated by different methods, plotted at the same amplitude scale for comparison.
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CHAPTER 2

Envelopes and Focusing Aspects

An envelope is a curve E , made up from a family of curves L. A typical example could be the
formation of an astroid curve by a family of ellipses, illustrated in Figure 1. Envelopes are commonly
encountered in seismic imaging; seismic migration, modeling, wave refraction and diffraction could
be described by Huygens principle and envelopes. Huygens principle asserts that each point on an
advancing wavefront is an elementary wave, originating from a fixed source. This set of elementary
waves then form a propagating wavefront.

Figure 1: An astroid curve formed by a family of ellipses. Two curves are selected in red and blue.

Kinematics are the study of movement. In this setting, the terminology is used to describe how
geometrical shapes change between transform domains. It is useful to do the basic analysis without
the dynamics included, i.e. investigating strictly geometrical effects.

Suppose an impulse in (x0, t0), given as

f(x, t) = δ(x − x0) δ(t − t0).

The linear Radon transform of f(x, t) is then, formally

r(p, τ) =

∫ ∞

−∞
δ(x − x0) δ(τ + px − t0) dx = δ(τ + px0 − t0),

a straight line on the form τ = t0 − px0. A more thorough investigation is required to understand
how the linear Radon transform responds to curves, and not only points. Before moving on with
this analysis, a few fixed terms have to be established. A curve L is defined by:

L : τ = t − ϕ(x).
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An envelope E is found by solving the set of equations

Φ(p, τ ; x) = t(x) − ϕ(x) − τ = 0

∂Φ(p, τ ; x)/∂x = dt/dx − dϕ(x)/dx = 0.(18)

In the following subsections, a typical hyperbolic (seismic) event is used as a basis for the envelope
derivations. Representations are derived for both tau-p and tau-q, where the ‘seismic hyperbola’
takes the shape of a new curve. To keep track of which curves correspond to each other, a calli-
graphic font is used to denote them.

1. Envelopes and the Linear Radon Transform

Analogous to the previous chapter, the linear transform is evaluated first. Let ϕ(x) = px and
find the envelope of a hyperbolic traveltime curve,

C1 : t2(x) = a + bx2 =⇒ dt/dx = p = bx/t,

where a and b are constants. Using the Equations (18), this gives

Φ(p, τ ; x) =
√

a + bx2 − px − τ = 0

∂Φ(p, τ ; x)/∂x = bx/t − p = 0,

where the objective is to eliminate t and x. For this exercise, all algebraic manipulations are
included, starting with squaring of τ

τ2 = t2 − 2tpx + p2x2,

and elimination of t by C1. This gives

τ2 = a + bx2 − 2bx2 + p2x2 = x2(p2 − b) + a.(19)

To eliminate x, another expression is derived from C1,

p = dt/dx = bx/
√

a + bx2.

Squaring and algebraic manipulation of this expression, gives

(bx)2 = p2(a + bx)

−p2a/b = x2(p2 − b).

Substituting into Equation (19), eliminates x and gives the envelope E1, an ellipse in normal form

E1 :
τ2

a
+

p2

b
= 1.

Manipulating this hyperbola with intention to let it represent a seismic event. Let a = (2h/v)2 and
b = 1/v2, where h is the depth of the reflective boundary and v the velocity of the medium. This
yields a hyperbola in the t-x domain and an ellipse in the tau-p domain.

(vt)2 = x2 + (2h)2 ⇐⇒ τ2

(2h)2
+ p2 =

1

v2
.
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A synthetic example is given in Figure 2. A hyperbola, representing a reflective boundary at
depth h = 0.5 km with velocity v = 1 km/s. The linear Radon transform results in the expected
ellipse with major and minor semi-axes, a = 1/v2 = 1 and b = (2h/v)2 = 1.
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Figure 2: Kinematics and focusing of the linear Radon transform. The envelope of straight lines corresponding to points on
the hyperbola. a) Kinematic plot of a hyperbolic seismic event. b) The seismic event, including amplitudes. c) Corresponding
ellipse in transform domain. d) A synthetic Radon panel using a least squares implementation.
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2. Envelopes and the Parabolic Radon Transform

Focusing aspects of the parabolic Radon transform (Maeland, 1998) are important to gain
insight into what to expect from a perfectly sampled Radon panel of infinite aperture. With the
framework already established, let ϕ(x) = qx2 and assume a linear event C2 with a slope dt/dx = β,
on the form

C2 : t(x) = βx.

A single point on C2 is represented as a line L in the transform domain. This gives a trivial set of
equations; eliminating t yields

q = β/2x and τ = βx/2.

Eliminating x, the envelope E2 is

E2 : qτ = β2/4,

a hyperbola with asymptotes along the coordinate axes. Figure 3(a) shows a family of parabolas
tangential to the curve C2, which has a slope β = 2/3. In the corresponding transform domain, in
Figure 3(b), each parabola is a represented as a line, forming the envelope E2 in red.
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Figure 3: Kinematics of the parabolic Radon transform. A linear event is transformed to a hyperbola: C2 ⇐⇒ E2. Every
parabola, tangential to the red linear event, is represented as a line in the transform domain, forming the envelope E2 (red).
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To study how well the parabolic Radon transform focus typical seismic events, further analysis
are based on the hyperbolic curve C1, which was given earlier as

C1 : t2(x) = a + bx2.

Using Equations (18) with Φ(q, τ), the transform domain, is given parametrically as

q(x) = b/2t(x) and τ(x) = t(x)/2 + a/2t(x)

From this set of equations it is possible to eliminate t(x), resulting in the envelope

E3 : τ =
b

4q
+

aq

b
.

In context with a hyperbolic event, representing a seismic signal, a = (2h/c)2 and b = 1/c2 gives

(ct)2 = x2 + (2h)2 ⇐⇒ τ =
1

(2c)2q
+ (2h)2q.

The hyperbola C1, with depth h = 0.2 km and velocity v = 1.5 km/s, including a family of parabolas
tangential to the curve is shown in Figure 4(a). In the corresponding transform domain, shown in
Figure 4(b), each parabola is a represented as a line, forming the envelope E3 in red.
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Figure 4: Kinematics of the parabolic Radon transform. A hyperbolic event is transformed to another hyperbola: C1 ⇐⇒ E3.

Every parabola, tangential to the red hyperbolic event), is represented as a line in the transform domain, forming the envelope
E3 (red).
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3. Curvature and Focusing

Curvature of the hyperbolic event C1 is used for describing focusing power of the parabolic
Radon transform. Curvature is defined as

κ(x) =
∂2t/∂x2

(1 + (∂t/∂x)2)3/2
=

dp(x)/dx

(1 + p2(x))3/2
.

From the previous analysis, the relation between p and q is

dt/dx = p(x) = 2xq.

Let x = 0, then the following is true when symmetry of t(x) is assumed,

p(0) = 0 =⇒ κ(0) = dp(0)/dx =⇒ q(0) = κ(0)/2,

where q(0) is not defined unless p(0) = 0. The apex of E3 at (qa, τa) is given by dτ/dq = 0,

qa =
b

2
√

a
and τa =

√
a.

That is, curvature in the apex of E3 is

Ka =
d2τ

dq2

∣∣∣∣
a

=
b

2q3
a

=
τa

q2
a

=
4t(0)

κ2(0)
,

where κ(0) = b/
√

a is the curvature at the apex of the hyperbolic curve C1 (Maeland, 1998). As
a side note, it can be shown that the parabolic Radon transform of hyperbolic traveltime curves
with nonzero apex disrupts seismic images by changing geometry (Maeland, 2003). The hyperbola
in tau-q is split into two disjoint branches with a characteristic cusp.

It has been established a relation between the curvature in the apex of C1 and the hyperbolic
envelope E3. The curvature in apex of the envelope Ka is inverse proportional to the square of the
curvature κ of the hyperbolic traveltime curve at x = 0.

The largest curvature of κ will be from shallow reflections at zero-offset, while the curvature
of Ka will have highest value for deep reflectors. Hence, deep reflectors will yield better focus. In
practice, the parabolic Radon transform of a hyperbolic event is only represented as a small part
of the curve E3. This is a consequence of the limited aperture in x.

The parabolic Radon transform of a hyperbolic curve C1 is shown in Figure 5. It represents
a seismic event where h = 0.8 km is the depth of the reflective boundary and v = 1.8 km/s is
the velocity. A synthetic seismogram, using a ricker-wavelet with center-frequency ν0 = 7 Hz is
transformed by the standard damped least squares technique (discussed in the next chapter). In
figures 5(a) and 5(c) the apex point (qa, τa) is indicated with blue, while the dashed line represents
the complete theoretical hyperbola E3.

Figure 6 shows hyperbolas from depths h = {600, 1100, 1700} m with constant velocity v = 1.5
km/s (for simplicity). This illustrates how deep reflectors yield better focus.
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Figure 5: The parabolic Radon transform showing how the focus is limited to a certain part (red) of the theoretical hyperbola
(dashed). The apex shown as a blue circle in the Radon panel, with its corresponding parabola as a blue line in the time-offset
domain.
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Figure 6: Focusing of the parabolic Radon transform by three traveltime curves, representing different depths.
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CHAPTER 3

Least Squares and Regularization Techniques

Finding a solution to an inverse problem is the process of finding a model, x, fitting some
data, b. A transform or function is specified from either the laws of physics or derived from
mathematics. Further classification defines the forward problem (finding b given some x) and the
system identification problem (determining the operator A given examples of x and b). Inverse
problems could be both linear and non-linear, but the linear problem is the motivation for the
present work. A linear inverse problem can then be written

A(x) = Ax = b.

Linear systems obey superposition

A(x1 + x2) = A(x1) + A(x2)

and scaling

A(αx) = αA(x).

It is important to mathematically classify the solution of an inverse problem. There are several
issues that should be considered: existence, uniqueness and instability of the solution. Even if
an exact solution exist, it may not be unique, it may exist infinitely many solutions. Consider a
rank-deficient discrete linear inverse problem; the matrix A has a non-trivial null space. Let x0 be
a vector in the null space, then x0 is a solution to

Ax0 = 0.

This implies that any linear combination of vectors with basis in the null space can be added to any
model without changing its fit to the data. The solution could have infinitely many mathematically
acceptable models, because

A(x + x0) = Ax + Ax0 = b.

The process of calculating an inverse solution can be, and often is, numerically unstable. Small
changes in discretization or measurements can lead to an enormous change in the estimated model.
Inverse problems where this situation arises are referred to as ill-posed in the case of continuous
systems, or ill-conditioned in the case of discrete linear systems.

This chapter focuses on the least squares method, and different regularization techniques, appli-
cable to the ill-condition least squares Radon transform (Kostov, 1990; Schonewille and Duijndam,
2001). It is important to note that forward problem in inverse theory means the inverse Radon
transform r(p, τ) → f(x, t) (reconstruction). On the other hand, the inverse problem means the
forward Radon transform f(x, t) → r(p, τ). The latter involves inversion of a linear operator in the
least squares sense.
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To clarify notation used in this Chapter, the ℓp-norm is defined as

||z||p =




M∑

j=1

|zj |p



1

p

,

where p ≥ 1, z ∈ C
M and |z|2 = zz∗ is the modulus. As a motivational example, let x ∈ R

M and
assume the simplest norm approximation problem as an unconstrained problem of the form

min
x

||Ax − b||1.(20)

This yields an approximate solution Ax ≈ b unless the residuals r = Ax − b are zero. The norm
approximation problem in Equation (20) is a convex problem (Boyd and Vandenberghe, 2004) and
there is always at least one optimal solution. Expressing a linear system as

Ax = x1a1 + · · · + xMaM

where a1, . . . ,aM are the columns of A. These vectors are called regressors and the vector Ax,
where x is an optimal solution of the problem, is called the regression of b.

1. Least Squares and ℓp-norm Regularization

Assume a linear overdetermined system Ax = b where x ∈ R
M , b ∈ R

N and A ∈ R
N×M . The

least squares solution minimizes the residual sum of squared errors

arg min
x

f(x) =
N∑

n=1

|bn −
M∑

m=1

an,m xm|2 = ||Ax − b||22.(21)

This can be seen as a continuous differentiable and unconstrained convex optimization problem.
Expressing the objective as a quadratic function

f(x) = xTATAx − 2bTAx + bTb,(22)

and minimizing

∇f(x) = 2ATAx − 2ATb = 0,

gives the normal equations,

ATAx = ATb.(23)

The convex optimization problem is reduced to a set of linear equations. This is a closed form
solution to the least squares problem. The inverse operator

A† = (ATA)−1AT,

is referred to as the left inverse or generalized inverse. In case of an underdetermined problem
M > N , the operator is given as

AT(AAT)−1,

often referred to as the right inverse, yielding the minimum length solution. The present work
will focus on the least squares formulation which is used in further discussions on singular value
decomposition and regularization techniques.
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1.1. Singular value decomposition (SVD) and truncation. For a more in depth analysis
of the problem, singular value decomposition (Aster et al., 2005) is used. A valuable tool when
analyzing rank-deficient or ill-conditioned systems.

Definition 1 (Singular Value Decomposition). Let A ∈ R
N×M , the singular value decomposi-

tion of A is the factorization

A = UΣVT

where U (N × N) and V (M × M) are both unitary. Σ is an N × M diagonal matrix with
nonnegative diagonal elements called singular values. The singular values along the diagonal are
now arranged as σ1 ≥ σ2 ≥ . . . ≥ σmin(N,M) ≥ 0.

Suppose p = min(N, M), the matrix Σ is written

Σ =

(
Σp 0
0 0

)
,

where Σp is a p × p matrix. Writing

A =
(
Up U0

) (
Σp 0
0 0

) (
Vp V0

)T
,

the SVD can be reduced to its compact form

A = UpΣpV
T
p .

Simplicity and computer efficiency are consequences of having the SVD in this form. A common
application of SVD is computation of the generalized inverse, also known as the Moore-Penrose-
pseudoinverse (Golub and Van Loan, 1989), defined as

A† = VpΣ
−1
p UT

p .

The pseudoinverse is implemented in MATLAB as the function pinv, in which you can provide a
tolerance limit1, such that singular values smaller then this limit are not included in the computation
(Aster et al., 2005). Formulating Equation (23) using SVD, yields

x = (ATA)−1ATb

= VpΣ
−2
p VT

p VpΣpU
T
p b

= VpΣ
−1
p UT

p b

= A†b.

With the generalized inverse solution, there are no contributions from the null space. However, the
presence of very small singular values in the denominator can lead to a very large coefficient in the
corresponding model space basis vector vj , which can dominate the solution. In a worst case, this
could actually amplify noise (Aster et al., 2005). A common method for dealing with this problem
is to truncate very small singular values (decrease p), and thus eliminating model space vectors.

1By default the tolerance limit in MATLAB is given as max(size(A)) · norm(A) · ǫ, where ǫ is the ‘computer-
epsilon’.
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The solution becomes stable, but on the cost of reduced resolution. Suppose uj and vj are the
column-vectors of the matrices U and V, the truncated SVD is

x =

p′(α)∑

j=1

uT
j b

sj
vj , p′(α) < p

=

p∑

j=1

fj(α)
uT

j b

sj
vj ,

where

fj(α) =

{
1, sj ≥ α
0, sj < α,

and α is a parameter chosen by the user, referred to as the regularization parameter. Different
techniques have been developed for choosing an optimal regularization parameter, literature on this
subject (Hansen, 1998) discusses the L-curve method, the discrepancy principle and generalized
cross-validation.

1.2. Regularization by different penalty functions. Another technique, known as ridge
regression2 or Tikhonov regularization, addresses the problem in a more sophisticated manner. This
is referred to as ℓ2-norm regularization, an effective and tool for achieving numerical stability. The
minimization problem is

arg min
x

f(x) = ||Ax − b||22 + ||Γx||22,

where Γ is some selected Tikhonov matrix. This is often chosen as the identity matrix Γ = αI,
where α is the regularization parameter. With these assumptions, the minimization problem is
given as another convex quadratic optimization problem

f(x) = xT(ATA + α2I)x − 2bTAx + bTb.

Finding ∇f(x) = 0, the closed form solution is

x = (ATA + α2I)−1ATb.

A more explicit expression for how this stabilizes the solution, is given by the SVD formulation of
Tikhonov regularization

x =

min(N,M)∑

j=1

s2
j

s2
j + α2

uT
j b

sj
vj .

The regularization parameter α is adjusted to give the right trade-off between making the loss
function ||Ax − b||22 small, and the penalty function ||x||22 not too big (Boyd and Vandenberghe,
2004).

Unfortunately, when experimenting with the Radon transform, none of these techniques prove
to be superior. There are small differences, but they could not be considered significant. The
transform is computationally expensive and the minimal gain in resolution or exactness cannot
support the computational burden required by the techniques for calculating an optimal regular-
ization parameter. Utilizing the matrix (Toeplitz) structure for faster computations is discussed in
Chapter 4.

2Bridge regression for generalized ℓp-norm.
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The Radon transform suffers from different smearing effects (Thorson and Claerbout, 1985),
and it would be beneficial to find regularization techniques, able to focus separate events in the
Radon panel. Regularization techniques pursuing a sparse Radon panel is presented in Chapter 6.
One of the techniques presented is the basis pursuit method, thus, a short introduction to ℓ1-norm
regularization for real numbers are given here. Consider the minimization problem

arg min
x

f(x) = ||Ax − b||22 + 2α||x||1,(24)

where the residuals are minimized in the ℓ2-norm and the regularization is done by the ℓ1-norm.
This is an unconstrained convex optimization problem, non-differentiable with respect to x when
xm = 0. The objective function can be expressed as

f(x) = xTATAx − 2bTAx + bTb + q(x),

where q(x) = 2α||x||1. Ignoring the fact that q(x) is non-differentiable at any point where one of
the elements of x are zero, the derivatives can be expressed as

∇q(x) = 2αR(x)x,

where R = diag(1/|xm|), for m = 1, 2, . . . , M . Minimizing f(x), yields

∇f(x) = 2ATAx − 2ATb + 2αR(x)x = 0,

which since R depends on x leads to the non-linear system of equations

x = (ATA + αR(x))−1ATb.

To solve this problem an optimization algorithm is required. A simple approach is to use iteratively
reweighted least squares (Bjorck, 1996), with some stopping criterion (without guarantees for con-
vergence), noting that some perturbation factor has to be added when xm = 0. The problem with
this formulation is that many signal processing problems, including frequency domain methods for
time-invariant Radon transforms, are given in the complex plane. In fact, the complex absolute
value is continuous everywhere, but (complex) differentiable nowhere. The reminder of this chapter
is devoted to problems in the complex plane.

2. Complex Roots and Newton’s Method

Finding roots of equations are an important mathematical problem. In the field of applied
mathematics, it exists many methods for finding complex (and real) roots. Newton’s method is a
well established and efficient method, regularly used in optimization problems. Considering real
valued functions, the geometric principle of the method is as follows. Draw a tangent line at the
initial guess (x0, f(x0)), and find the intercept at x1. If the solution converges, this intercept will be
closer to the root than x0. In the complex case this geometric principle is not as trivial. However,
if f(z) is analytic, the method makes formal sense for complex numbers.

Finding the roots of f(z) = 0 require a function f(z) to be differentiable, with an initial guess
z = z0. Suppose the elements x and y are the real and imaginary part of the complex number z,
defined as z = x + iy. The function f(z) is said to be differentiable at z0, if its derivative at z0

exists. For a complex function to be differentiable, it has to satisfy the Cauchy-Riemann equations
(Brown and Churchill, 1974).
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From this, a function f of a complex variable z is analytic in an open set3, if it has a derivative
at each point in that set. The complex Newton method (Devaney, 1994) is given as

zk+1 = zk − f(zk)

f ′(zk)
,

for k = 0, 1, 2, . . .. Newtons method could be used for finding minimum or maximum of a function
by applying it to its derivative, assuming the function is twice differentiable, this is known as
Newton’s method in optimization.

Stopping criterions for this algorithm is either when the convergence reaches some tolerance
limit where the approximation is acceptable, or when reaching a defined maximum number of
iterations. Even though Newton’s method is an attractive and much used method, is has drawbacks
worth mentioning: 1) Divergence near inflection points. 2) Division by zero. 3) Divergence from
oscillations near local maximum and minimum. 4) Root jumping.

Checking the Newton basins (Devaney, 1994) of attraction of a function f(z), with roots out-
and inside the unit circle, yields different fractional patterns. As an exercise, Figure 1 demonstrates
four different equations and their Newton basins. A red cross marks a root in the complex plane.
Different colors in the image indicate how many iterations was required for convergence from an
initial guess. The tolerance limit is ǫ = 10−2 and a maximum number of iterations is set to k = 20.
For the examples in figures 1(c) and 1(d), let f(z) have the roots a and b, in the following form

f(z) = (z − a)(z + b)(z2 − 1) = 0,

and the derivative

f ′(z) = (z2 − 1)[(z − a) + (z + b)] + 2z(z − a)(z + b).

The roots are given as z = {a,−b,±1}. Figure 1(c) shows a = 2i and b = 3/2 + i and Figure 1(d)
shows a = (2/10)i and b = 1/8 + (3/2)i.

2.1. Multivariable Newton’s method. Considering a real-valued function f(x) of the vec-
tor x ∈ R

M . A generalization of Newton’s method to higher dimensions is straightforward by
introducing a gradient and the inverse of the Hessian matrix, i.e.

xk+1 = xk − (H f(xk))
−1 ∇f(xk), k = 0, 1, 2, . . .

with det(Hf(xk)) 6= 0. This is also known as the pure Newton’s method with a fixed step size of
one, and with the Newton decrement

λ(x) = [∇f(x)T(Hf(x))−1∇f(x)]1/2,

at x as a stopping criterion based on some tolerance limit (Boyd and Vandenberghe, 2004). Cal-
culations of a M -dimensional quadratic function will converge in only one step from any starting
point, thus the algorithm applied to a system of this kind does not require any stopping criterion
with respect to convergence. For a complex Newton method, definitions of a complex gradient and
Hessian operator is needed. This is used as a motivation for the following analysis.

3A set is open if it contains none of its boundary points.
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Figure 1: Newton basins of attraction with roots indicated by red crosses. Colors represent the number of iterations before
reaching a given tolerance limit of ǫ = 10−2, with a maximum iteration count of k = 20. Roots of a) f(z) = z3 − 1. b)
f(z) = z4 − 1. c,d) f(z) = (z − a)(z + b)(z2 − 1).
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3. Complex Differential Operators Using CR-Calculus

In signal processing, complex-valued data are encountered and is often subject to different
engineering shortcuts. Prior to generalizing the complex Newton method to multiple variables, the
complex gradient and Hessian are discussed. It is important to note the difference between the
complex and real gradient operators, and recognize that the complex results are not obtained by
simply replacing real variables with complex ones. Utilizing the full power of the complex domain
with real and imaginary parts leads to a more complicated analysis, although in some cases, it
could yield the same end result.

In many optimization problems, the objective functions are typically f : C → R, which im-
ply that f is not complex analytic by the Cauchy-Riemann equations. Wirtinger (1927) relaxed
the strong requirement for differentiability from the Cauchy-Riemann equations, and introduced
Wirtinger calculus using real differentiation rules. Regarding a function f : C → C as f : R×R → C,
by writing f(z) = f(x, y), thus making use of the underlying R

2 structure, forms a basis for the
following theorem.

Theorem 1 (Li and Adali (2008)). Let f : R × R → C be a function of real variables x
and y such that g(z, z∗) = f(x, y), where z = x + iy, and g is analytic with respect to z∗ and z
independently. Then,

i. the partial derivatives

∂g

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂g

∂z∗
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)

can be computed by treating z∗ as a constant in g and z as a constant, respectively;
ii. a necessary and sufficient condition for f to have a stationary point is that ∂g/∂z = 0.

Similarly, ∂g/∂z∗ = 0 is also a necessary and sufficient condition.

This makes up the framework for further development using several complex variables. A
complex gradient and Hessian (Brandwood, 1983; Van Den Bos, 1994) is summarized in a note by
Kreutz-Delgado (2005). A note from the electrical engineering community, reviewing development
within the field of complex multivariable calculus. The present section contains a brief summary of
some important points which are used to derive the linear least squares problem and the complex
Newton update.

Complex vectors z = x + iy can be represented in three different vector spaces. First, the
canonical M -dimensional complex vector space z ∈ C

M . A second, is the canonical real vector
space

r =

(
x
y

)
∈ R , R

2M ,

and a third given by a set of conjugate coordinate vectors

c =

(
z
z∗

)
∈ C ⊂ C

2M ,

where C is a subset of the 4M dimensional complex vector space C
2M . The subset C can be viewed

as a complex subset of C
2M or as a real vector space isomorphic to R

2M (Fraieigh, 1994). With
these definitions, the parameters c, (z, z∗), z, (x,y), all denote the same point

f(c) = f(z, z∗) = f(z) = f(x,y) ∈ C
N .
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The cogradient and conjugate cogradient operators are then defined respectively as row operators

∂

∂z
,

(
∂

∂z1
, · · · ,

∂

∂zM

)
and

∂

∂z∗
,

(
∂

∂z∗1
, · · · ,

∂

∂z∗M

)
.

The formalism in Theorem 1 is also at true for the multivariable case. When applying the cogradient
operator ∂/∂z, then z∗ is formally treated as a constant, and when applying the cogradient operator
∂/∂z∗, then z is formally treated as a constant.

The linear mapping between the coordinate systems R and C is defined by

c = Jr =

(
I i I
I −i I

) (
x
y

)

where I is the M × M identity matrix. It can be shown that J−1 = (1/2)JH, i.e. the mapping
between R and C is one-to-one, and both spaces are isomorphic real vector spaces of dimension
2M , with a Jacobian

Jc ,
∂

∂r
c(r) =

∂

∂r
Jr = J.

The Jacobian of the inverse transformation r = r(c) is

Jr = J−1
c = J−1 = (1/2)JH.

This gives the following first-order relationships

∆c = Jc∆r = J∆r and ∆r = Jr∆c = (1/2)JH∆c.

From this framework the cogradient operators are

∂(·)
∂c

=
∂(·)
∂r

Jr =
1

2

∂(·)
∂r

JH and
∂(·)
∂r

=
∂(·)
∂c

Jc =
∂(·)
∂c

J.

The purpose of this section is to introduce the basic definitions, enough to define a complex gradient
(or cogradient) and a complex Hessian operator. Using these definitions the linear least squares
and Newton’s method could be presented. In the next subsection a complex gradient operator for
real-valued functions is defined as it was first proposed by Brandwood (1983).

3.1. The complex gradient of real-valued functions. The following theorem defines a
complex gradient operator for real-valued functions

∇z = [∂/∂z1, ∂/∂z2, . . . , ∂/∂zm]T, ∇z∗ = [∂/∂z∗1 , ∂/∂z∗2 , . . . , ∂/∂z∗m]T,

a definition sufficient for the present problems.

Theorem 2 (Brandwood (1983)). Let f : C
M → R be a real-valued scalar function of a complex

vector z. Let f(z) = g(z, z∗), where g : C
M × C

M → R is a real-valued function of two complex
variables and g is analytic with respect to each zk and z∗k. Then either of the conditions ∇zg = 0
or ∇z∗g = 0 is necessary and sufficient to determine stationary points of f .

Investigating three scalar functions gives some general results which can easily be adapted to
different problems. Suppose a ∈ C

M and R ∈ C
M×M , then the following is true,

∇z∗(a
Hz) = 0, ∇z∗(z

Ha) = a, ∇z∗(z
HRz) = Rz

and

∇z(a
Hz) = a∗, ∇z(z

Ha) = 0, ∇z(z
HRz) = RTz∗ = (RHz)∗.
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3.2. Complex linear least squares. From the previously discussed least squares minimiza-
tion problem in Equation (21), a complex variant is defined

arg min
z

f(z) = ||Az − b||22,(25)

where z ∈ C
M , b ∈ C

N and A ∈ C
N×M . The function f(z) generates a real-valued scalar, and from

Theorem 2, this is a sufficient criterion to minimize the objective function. The complex gradient
operator ∇z, with respect to a complex M -dimensional vector z, generates another complex M -
dimensional vector from a scalar function of z. Let AH denote the conjugate transpose of A, and
consider the objective function of the least squares problem

f(z) = (Az − b)H(Az − b)

= (zHAH − bH)(Az − b)

= zHAHAz − zHAHb − bHAz + bHb,

where the matrix AHA ∈ C
M×M . Stationary points of f(z) are now determined by

∇z∗f(z) = AHAz − AHb = 0

or

∇zf(z) = (AHA)Tz∗ − ATb∗

= [(AHA)Hz]∗ − ATb∗.

Because (AHA)H = AHA (Hermitian matrix), the gradient can be written

∇zf(z) = (AHAz)∗ − ATb∗ = 0.

From this, the symmetry ∇z∗f(z) = (∇zf(z))∗ is revealed and a closed form solution for complex
numbers is

AHAz = AHb.

Not surprisingly, the real equivalent, except for the Hermitian conjugate transpose operator.

3.3. The complex Hessian of real-valued functions. A derivation of the complex Hessian
is presented in Kreutz-Delgado (2005), where it is established in relation to Newton’s method. The
Hessian of a real-valued function on C

M is given by

H
C
cc =

∂

∂c

(
∂f

∂c

)H

=

(
Hzz Hz∗z

Hzz∗ Hz∗z∗

)
,

where the partial Hessians are

Hzz ,
∂

∂z

(
∂f

∂z

)H

, Hz∗z ,
∂

∂z∗

(
∂f

∂z

)H

Hzz∗ ,
∂

∂z

(
∂f

∂z∗

)H

, Hz∗z∗ ,
∂

∂z∗

(
∂f

∂z∗

)H

.

According to Kreutz-Delgado (2005), the Newton update ∆̂c is

H
C
cc∆̂c = −

(
∂f(c)

∂c

)H

,

which can be expanded to

∆̂z = (Hzz − Hz∗zH
−1
z∗z∗

Hzz∗)
−1

[
Hz∗zH

−1
z∗z∗

(
∂f

∂z∗

)H

−
(

∂f

∂z

)H
]

.(26)
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At this point the complex operators (gradient and Hessian) have been defined and it is possible
to evaluate the complex least squares objective function f : C

M → R, given by

f(z) = zHRz − zHAHb − bHAz + bHb,

where R = AHA. Finding the explicit cogradients
(

∂f

∂z

)H

=
(
zHR − bHA

)H
= RHz − AHb,

(
∂f

∂z∗

)H

=
(
Rz − AHb

)H
= zHRH − bHA,

and using this to find the partial Hessians

Hzz =
∂

∂z

(
RHz − AHb

)
= R

Hz∗z =
∂

∂z∗
(
RHz − AHb

)
= 0

Hzz∗ =
∂

∂z

(
zHRH − bHA

)
= 0

Hz∗z∗ =
∂

∂z∗
(
zHRH − bHA

)
= R,

satisfying RH = R. The complex multivariable Newton update of f(z) is then

∆̂z = −R−1
(
RHz − AHb

)

= −(AHA)−1
(
AHAz − AHb

)
,(27)

which again is the real equivalent, only the Hermitian conjugate transpose operator is used. Sim-
ilarity to the real case is a consequence of symmetry properties in the least squares objective
function.

4. Diagonalization of the Complex Newton Update

The complex multivariable formulation of the Newton method could be further analyzed in
scalar form. If R is diagonalizable, then there exists a basis B for C

M , formed by the eigenvectors
of R. The M × M matrix R is diagonalizable if and only if R has M linearly independent
eigenvectors. Then, formally

R = PΛP−1 and Λ = P−1RP,

where Λ is a diagonal M ×M matrix. If B is the basis for C
M , formed from the columns of P, the

following diagram describe the mappings.

C
M

P−1

��

R−1

//
C

M

C
M
B

Λ−1

// CM
B

P

OO

The change of coordinates can be written

P[z]B = z and [z]B = P−1z.
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Suppose the complex multivariable Newton step on the following form

zk+1 = zk + ∆̂z

= zk − R−1

(
∂f

∂z

)H

= zk − R−1u, k = 0, 1, 2, . . .

where u = (∂f/∂z)H. Diagonalization of this expression yields

[zk+1]B = [zk]B − P−1(PΛP−1)−1u

= [zk]B − P−1PΛ−1P−1u

= [zk]B − Λ−1 [u]B .

Manipulating the vector [u]B, yields a more explicit expression

[u]B = P−1u = P−1(Rzk − AHb)

= P−1(RP [zk]B − AHb)

= Λ [zk]B − w,

where w = P−1AHb. With the eigenvalues λ = diag(Λ) = [λ1, . . . , λM ]T, the problem is evaluated
by scalar operations in the new coordinate system. The recursion is given as

[z(m)k+1]B = [z(m)k]B − [um]B λ−1
m

= [z(m)k]B −
(
[z(m)k]B − wmλ−1

m

)
,

where z(m) denotes an element in z for m = 1, 2, . . . , M . This gives the simple form

[zm]B = wmλ−1
m .

From the invertible matrix theorem (Lay, 2006), the matrix R is invertible if and only if the number
0 is not an eigenvalue of R.

It is important to notice that when doing calculations with the ℓ2-norm, an M -dimensional
quadratic function will converge in only one step from any starting point. Thus, the algorithm
does not require any stopping criterion with respect to convergence. It is clear that Equation (27)
is just the normal equations, when z is initialized with zeros.

4.1. Relation between SVD and Eigenvalue Decomposition. Following the theory in
this chapter, it is relevant to discuss the relation between singular value decomposition and eigen-
value decomposition (diagonalization). Considering examples with the same structures as exhibited
by the Radon transform (discussed more in depth in Chapter 4 and 5). The eigenvalues and eigen-
vectors of a real symmetric matrix are real and the matrix of eigenvectors can be chosen orthogonal.
For a complex Hermitian matrix the eigenvalues are also real, but with complex eigenvectors, these
eigenvectors could be chosen such that they form a unitary matrix. For symmetric and Hermitian
matrices, singular values and eigenvalues are related; a non-negative eigenvalue is also a singular
value σ = λ, and the corresponding eigenvectors are equal. Suppose the matrix AHA is Hermitian
symmetric with an eigenvalue decomposition

AHA = PΛPH,

where P is a unitary matrix of eigenvectors and Λ is diagonal matrix with the corresponding
eigenvalues.
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With an objective of finding a relation between the eigenvalues of AHA, and the singular values
of A, let A = UΣVH be a singular value decomposition such that

AHA = VΣHUHUΣVH = VΣHΣVH = PΛPH.

This implies that the singular values σ of A are squares of the eigenvalues λ of AHA,

σ =
√

λ.

To summarize: It is possible to factorize the matrix A if its eigenvectors are linearly independent.
If matrix A can be eigendecomposed and none of its eigenvalues are zero, then A is nonsingular
and its inverse is given by A−1 = PΛ−1P−1.
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CHAPTER 4

Direct and Iterative Inversion Methods

In high-performance computing, fast, accurate and parallelizable methods for solving linear
systems are important. Specific algorithms are developed for systems where the inverse operator
possess structure or symmetry. Exploiting these properties is about selecting a suitable regulariza-
tion technique and computational method.

As an introduction, the method of Cholesky factorization (Golub and Van Loan, 1989) is pre-
sented. Using this factorization to solve symmetric positive definite (Lay, 2006) systems, is possibly
the most common method for solving least squares problems efficiently. Suppose a linear system
Ax = b. If A is a symmetric positive definite matrix, there exists a unique lower triangular
matrix G, with positive diagonal entries, such that A = GGT. After computing the Cholesky
factorization, the following triangular systems are solved

Gy = b and GTx = y.

These systems are efficiently solved by the iterative process of forward (for lower triangular matrices)
and backward (upper triangular matrices) substitution. Applying this to the (stabilized) least
squares problem leads to faster computational times then implementations of the classical Gaussian
elimination.

This chapter discuss different methods for solving linear Toeplitz systems efficiently, including
numerical experiments. Working with a high-level matrix computation language (MATLAB), much
of the underlying structure is hidden and detailed documentation on built-in functions may not be
easily available to the user. Generalizations in the built-in algorithms could cause speed-ups or slow-
downs unknown to the user; a commonly used operator such as the backslash operator1 includes
routines for checking the structure of a matrix before choosing the fastest method. Although
documentation is available (Anderson et al., 1999), a study of all the technical details for a specific
algorithm can be a very time consuming task.

Another important aspect is the development within the field of computer science. Recently,
geoscientists have started to move from conventional CPUs (central processing unit) to GPUs
(graphics processing unit). These processing units deliver huge computing power, sometimes several
orders of magnitude larger, but at the expense of specialization in code development. With these
elements in mind, a set of conventional approaches for solving large-scale linear problems, are
presented in this chapter.

1Solving a linear system Ax = b by the MATLAB syntax x = A\b.
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1. Toeplitz Structure

Linear systems of the form Tx = b, where the matrix T has Toeplitz structure, arise in
solutions to differential and integral equations, spline functions, problems and methods in physics,
mathematics, statistics, and signal processing. Originally named after the German mathematician
Otto Toeplitz, matrices whose entries are constant along each diagonal are called Toeplitz matrices.

Definition (Toeplitz matrix). Let T ∈ R
M×M matrix. The matrix is Toeplitz if there exist

scalars t−M+1, . . . , t0, . . . , tM−1 such that rmn = tn−m for all m and n. Thus, with M = 4,

T =




t0 t1 t2 t3
t−1 t0 t1 t2
t−2 t−1 t0 t1
t−3 t−2 t−1 t0




is known as a Toeplitz matrix. Suppose T ∈ C
M×M , this class of Toeplitz matrices can often be

referred to as having Hermitian Toeplitz structure. In that case the strictly lower triangular part is
the complex conjugate of the strictly upper triangular part, hence with M = 4,

T =




t0 t1 t2 t3
t∗1 t0 t1 t2
t∗2 t∗1 t0 t1
t∗3 t∗2 t∗1 t0


 .

where t∗m denotes the complex conjugate.

A Toeplitz matrix is completely determined by 2M − 1 entries, this property eliminates the
need for explicit matrix storage. Utilizing its structure has led to discoveries of several fast and
stable methods for finding inverse solutions.

Solving a linear system by straightforward Gaussian elimination involves O(M3) operations, it
is desirable to use faster algorithms, often referred to as Toeplitz solvers. The Levinson algorithm
(Golub and Van Loan, 1989) solves a symmetric positive definite Toeplitz system with an arbitrary
right-hand side, reducing the number of operations to O(4M2). A complete outline of the Levinson
algorithm is given in Appendix B, Algorithm 3. Note that a modification, introducing complex
conjugates, is required for Hermitian Toeplitz systems. A MATLAB implementation for Hermitian
Toeplitz systems is included in Appendix B, Listing B.1.

An explicit inverse operator for a Toeplitz system can be calculated in O(M2) flops by the
Trench algorithm (Golub and Van Loan, 1989), but even faster algorithms with O(M log2 M) com-
plexity have been developed (Chan and Ng, 1996). Unfortunately break-downs still occur with
ill-conditioned systems and regularization has to be taken into account. Look-ahead variants of
the Levinson recursion exists, but preconditioned iterative methods have gained more attention as
the number of operations can be reduced to O(M log M) by circulant preconditioners, and the fast
Fourier transform.
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1.1. Eigenvalues of Toeplitz matrices. A great deal is known about the behavior of Toeplitz
matrices, the most common and complete reference being Grenander and Szegö (1958). More ac-
cessible references, directed at the applied mathematician, is found in Gray (2006); Chan and Jin
(2007), including simplified proofs for important theorems from the original work by Grenander
and Szegö. The most common result describing Toeplitz matrices is a theorem for sequences of
Toeplitz matrices, dealing with the behavior of the eigenvalues as M goes to infinity. Utilizing this
theoretical framework is of significant value when analyzing a specific problem.

Following Chan and Jin (2007), the concept of generating functions is presented. Suppose a

Toeplitz matrix represented by the diagonals {tm}M−1
m=−M−1. Then, formally, this is the Fourier

coefficients

tm =
1

2π

∫ π

−π
f(ξ) e−imξ dξ,(28)

where f(ξ) is called the generating function, given by

f(ξ) =
∞∑

m=−∞

tm eimξ.

Let C2π be a space of 2π-periodic continuous real-valued functions defined on [−π, π]. A generating
function f with these properties is then used with the following theorem, giving upper and lower
bounds to eigenvalues and determining their distribution.

Theorem 3 (Grenander-Szegö theorem, Chan and Jin (2007)). Suppose a Toeplitz matrix T
with a generating function f ∈ C2π. Let λmin and λmax denote the smallest and largest eigenvalue
of T, respectively. Then

fmin ≤ λmin ≤ λmax ≤ fmax,

where fmin and fmax denote the minimum and maximum values of f(x), respectively. In particular,
if fmin > 0, then T is positive definite. Moreover, the eigenvalues λj, j = 0, 1, . . . , M − 1, are
equally distributed as f(2πj/M), i.e.,

lim
M→∞

1

M

M−1∑

j=0

[g(λj) − g(f(2πj/M))] = 0

for any g ∈ C2π.

Uniform convergence of the Fourier series f(ξ) is ensured if the coefficients tm are absolutely
summable

∞∑

m=−∞

|tm| < ∞.(29)

If this equation holds, the function f is Riemann integrable and is said to be in the Wiener class.
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1.2. Example. To illustrate Theorem 3, the eigenvalues of a tridiagonal (one-dimensional
discrete Laplacian) matrix are evaluated. Suppose a generating function f on the form

f(ξ) = − cos(−ξ) + 2 − cos(ξ) = 4 sin2 (ξ/2) .

From Equation (28), the diagonals of a Toeplitz matrix with f as a generating function, is given as

tm =
2

π

∫ π

−π
sin2 (ξ/2) e−imξ dξ =

2

π

(
sin(πm)

m
+

m sin(πm)

m2 − 1

)

Using l’Hôpitals rule, the diagonals t0 and t±1 are, respectively

lim
m→0

tm = lim
m→0

2 cos(πm) = 2, lim
m→±1

tm = lim
m→±1

sin(πm) + m cos(πm)

m
= −1.

For all other values m = ±2,±3, . . . the coefficients tm = 0. The framework is established with
a 2π-periodic generating function f and its Fourier coefficients tm. From the Grenander-Szegö
theorem it is possible to determine the distribution of eigenvalues λj for j = 0, 1, . . . , M − 1.

In Figure, 1 the Toeplitz matrix T is demonstrated using M = 32 samples. The generating
function f(ξ) = 4 sin2(ξ/2) on [−π, π] has a maximum at fmax = 4 and a minimum fmin = 0, such
that the eigenvalues λj are restricted to 0 ≤ λmin ≤ λmax ≤ 4. The discrete sequence in Figure
1(b) shows the numerically calculated eigenvalues plotted by index j.
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Figure 1: Eigenvalues of a tridiagonal Toeplitz matrix. a) The generating function f(ξ) = 4 sin2(ξ/2). b) Numerically calculated
eigenvalues of T. c) One-dimensional plot of the eigenvalue distribution.
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2. Quadratic Forms and the Conjugate Gradient Method

Iterative solvers may require several technical conditions to be satisfied to guarantee conver-
gence. The method of conjugate gradient (Hestenes, 1973) is an iterative algorithm for systems
with the property of being positive definite. Studying its concepts is a good introduction to math-
ematical optimization theory, and gives new perspectives on how linear systems can be solved. A
central part of the conjugate gradient (CG) algorithm, is the method of gradient descent (often
referred to as method of steepest descent), backed up by quadratic forms. An introduction to these
algorithms is presented in this section.

Suppose a quadratic form f : R
M → R as

f(x) =
1

2
xTAx − bTx + c,

where b ∈ R
M , c is a constant and the matrix A ∈ R

M×M . From this equation, it can be shown
that f(x) is minimized by the solution to Ax = b when A is symmetric and positive definite.

(a) (b) (c)

Figure 2: Different classification of quadratic forms. a) Positive definite by equation f(x, y) = 3x2 + 7y2. b) Indefinite by
equation f(x, y) = 3x2 − 7y2. c) Negative definite by equation f(x, y) = −3x2 − 7y2.

2.1. The method of gradient descent. To derive the conjugate gradient method, the first
step is to introduce the theory of gradient descent. The gradient of the quadratic form is

∇f(x) =
1

2
ATx +

1

2
Ax − b,

which by symmetry in A, is reduced to

∇f(x) = Ax − b.

Solving ∇f(x) = 0 gives a stationary point (and solution to the inverse problem), representing a
local minimum for a positive definite system. Positive definiteness is defined as xTAx > 0, but it
is also possible to evaluate this property by looking at the operators eigenvalues, i.e. a symmetric
matrix is positive definite if and only if its eigenvalues are all positive.

Following Shewchuk (1994), an intuitive understanding of the gradient descent algorithm is
best described in three-dimensions by thinking of it as sliding down a positive definite paraboloid,
starting from an arbitrary point x0 and then continue iterating until reaching the bottom at some
xk, which gives the solution to the linear system. The iterative procedure is given as

xk+1 = xk − α∇f(xk), k = 0, 1, 2, . . .
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where α is the step size. Choosing the α which minimizes f along a line is called a line search.
This is done by differentiating f(xk+1) with respect to α, and finding its minimum

d

dα
f(xk+1) = ∇f(xk+1)

T d

dα
xk = −∇f(xk+1)

T∇f(xk) = 0.

This implies that α must be chosen such that the gradients ∇f(xk+1) and −∇f(xk) are orthogonal.
Golub and Van Loan (1989) remark that the function f decreases most rapidly in the direction of
the negative gradient

rk = −∇f(xk) = b − Axk.

To isolate α and get an explicit expression, further algebraic manipulations are needed

rT
k+1rk = (b − Axk+1)

Trk = (b − A(xk + αrk))
Trk.

This gives the exact line search as

α =
rT
k rk

rT
k Ark

.

The gradient descent method now consists of a initialization step where an initial guess of x is done,
before the residual is calculated. The recursive part then consists of three steps: 1) Calculate the
exact line search based on the residual vectors. 2) Calculate the new point xk+1. 3) Recalculate
the new residual vector. The complete procedure is outlined in Appendix B, Algorithm 2.
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Figure 3: The method of gradient descent. a) Residual norm after k iterations. b) Contour plot of the positive definite linear

system.

To illustrate the gradient descent method, a simple three-dimensional example is presented.
The sample problem is chosen as

A =

(
3 0
0 7

)
and b =

(
12
63

)
.

This gives the following quadratic form

f(x) =
1

2

(
3x2

1 + 7x2
2

)
− (12x1 + 63x2),
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shown as a contour plot in Figure 3(b). Initializing with x0 = [−40,−33]T (black circle), Figure
3(a) shows how the norm of the residuals decrease when xk, converges against the true solution
x = [4, 9]T. From the illustration in 3(b), it is shown how each step (blue lines) is orthogonal to
the previous, and how the step size decrease.

A thorough investigation on the convergence properties of the gradient descent method is pre-
sented in Shewchuk (1994) by use of eigenvectors and eigenvalues. Further progress against under-
standing the complete CG algorithm requires a definition of conjugate directions.

2.2. The conjugate gradient method. The gradient descent method often steps in the
same direction. It would be desirable to only step in the same direction once. Selecting a new set
of orthogonal search directions {p1, . . . ,pM}, such that

pT
i Apj = 0, i 6= j

is the ideal choice for this purpose. A sequence of vectors with this property is called mutually
conjugate with respect to A, also known as A-conjugate or A-orthogonal, this sequence consists
of M mutually conjugate directions. A sequence {pk} forms a basis for R

M where the solution of
Ax = b can exist:

x̃ =
M∑

i=1

αipi.

Assuming the new search directions are known, the procedure of finding αk is straightforward by
multiplying with pT

k A

pT
k Ax̃ = pT

k b =
M∑

i=1

αip
T
k Api = αkp

T
k Apk,

and finding the corresponding step size in that specific direction

αk =
pT

k b

pT
k Apk

.

By these assumptions, the iteration is given as

xk+1 = xk + αkpk,

with the residuals

rk+1 = b − Axk+1

= b − A(xk + αkpk)

= (b − Axk) − αkApk

= rk − αkApk.

The next step to complete the CG algorithm, is to construct the basis vectors pk. This is done in
an iterative manner (as the CG algorithm progresses) using a method similar to the Gram-Schmidt
process (Lay, 2006). The formalism for deriving the mutually conjugate basis vectors differs in the
literature (Golub and Van Loan, 1989; Shewchuk, 1994; Aster et al., 2005), and is well understood.
For a complete derivation a fair bit of algebraic manipulations, not covered in the present work, are
required. In theory, the algorithm will find an exact solution to the linear system in M iterations,
however numerical round-off errors could produce problems and it may require more. In practice,
the algorithm will run until some tolerance limit for convergence is reached. Using the same sample
system as in the previous example, the CG method is demonstrated in Figure 4.
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Figure 4: The method of conjugate gradient. a) Residual norm after k iterations. b) Contour plot of the positive definite linear
system.

2.3. The complex biconjugate gradient method. In the preceding derivations, the conju-
gate gradient method was derived for real positive definite and symmetric systems. For asymmet-
ric systems, the biconjugate gradient method (Fletcher, 1975) has been developed. This method
is generalized to a complex form called the complex biconjugate gradient method (Jacobs, 1986;
Joly and Meurant, 1993), a generalization of both biconjugate gradient and conjugate gradient.

Suppose a system Az = b, with A ∈ C
M×M , b ∈ C

M and an initial estimate z0. Following
Jacobs (1986), define a residual r0 = b − Az0 and an initial search direction p0 = r0. In parallel,
define a biresidual r̂0 = r∗0 and a bidirection r̂0 = r∗0, where ∗ denotes the complex conjugate. With
the inner product denoted 〈x,y〉 = xHy, the step length is given as

αk =
〈r̂k, rk〉

〈p̂k,Apk〉
,

with a new solution obtained by zk+1 = zk + αkpk. The new residual and biresidual are

rk+1 = rk − αkApk, r̂k+1 = r̂k − α∗
kA

Hp̂k,

and the biconjugacy coefficient is

βk = −〈AHp̂k, rk+1〉
〈p̂k,Apk〉

.

The next direction vector and bidirection vector is then

pk+1 = rk+1 + βkpk, p̂k+1 = r̂k+1 + β∗
kp̂k.

With these generalizations, the complete method is presented in Algorithm 1.
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Algorithm 1 (Complex Biconjugate Gradient Method). Given a system of equations Az = b,
where the matrix A ∈ C

M×M and b ∈ C
M . Initialize the following variables r0 = b−Az0, p0 = r0,

r̂0 = r∗0, p̂0 = p∗
0 and k = 0, then begin the iteration:

while rk 6= 0 do

αk = 〈r̂k, rk〉 / 〈p̂k,Apk〉
zk+1 = zk + αkpk

rk+1 = rk − αkApk

r̂k+1 = r̂k − α∗
kA

Hp̂k

βk = −〈AHp̂k, rk+1〉 / 〈p̂k,Apk〉
pk+1 = rk+1 + βkpk

p̂k+1 = r̂k+1 + β∗
kp̂k

k = k + 1
end while

The main holdup in the algorithm is the matrix-vector multiplication. However, by exploiting
the matrix structure further improvements can be done. The CG method can be used directly on
the least squares problem by applying it to the normal equations. The system still has to be well-
conditioned to obtain a stable solution, i.e. applying the CG algorithm to a Tikhonov regularized
problem is a common approach if the system is ill-conditioned, although more elegant methods
using preconditioners have been developed.

3. Preconditioned Conjugate Gradient

The conjugate gradient method applies to matrices that are either well-conditioned or have just
a few distinct eigenvalues. If this is not the case, it is possible to precondition a linear system to
take one of these forms. The preconditioned conjugate gradient (PCG) involves applying the CG
method to the transformed system

T̃z̃ = b̃,

where T̃ = C−1TC−1, z̃ = Cz, b̃ = C−1b and C is a symmetric positive definite matrix, known

as a preconditioner. The preconditioner is chosen with respect to the problem, i.e. the matrix T̃
should be well-conditioned or have clustered eigenvalues. The use of PCG with circulant matrices
as preconditioners for solving Toeplitz systems, was proposed independently by Strang (1986) and
Olkin (1986). It resulted in an efficient inversion method, using the fast Fourier transform.

A preconditioner is used both for well- and ill-conditioned systems, having the effect of promot-
ing convergence and stabilizing the problem. A wide range of Toeplitz preconditioners have been
developed (Chan and Jin, 2007), where many of the more advanced are based on the framework
by Grenander and Szegö (1958). The most straightforward approach is to use an existing Toeplitz
matrix T, without knowledge of the generating function f . One of the first preconditioners, called
the optimal circulant preconditioner (Chan, 1988), is derived using only the Toeplitz coefficients
(with a finite range). This is presented in the next section.
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4. Circulant Preconditioning of Toeplitz Matrices

Circulant matrices are a natural choice as preconditioner for Toeplitz matrices because they
are inexpensive to construct and use (Hansen, 2002), they are also classified as a special class of
Toeplitz matrices.

Definition (Circulant Matrix). Let C ∈ C
M×M matrix with the form

C =




c0 cM−1 cM−2 · · · c1

c1 c0 cM−1 · · · c2

c2 c1 c0 · · · c3
...

...
...

. . .
...

cM−1 cM−2 cM−3 · · · c0




,

known as a circulant matrix, with the property of being determined by its first column.

The optimal circulant approximation (preconditioner) or T. Chan’s preconditioner (Chan, 1988)
is presented in this section.

Assume that T ∈ C
M×M is a Hermitian Toeplitz matrix where the t0 diagonal is real. The

preconditioner is defined to be the circulant matrix C ∈ C
M×M which minimizes the ℓ2-norm

e = ||T − C||22
amongst all circulant matrices. The ℓ2-norm of a matrix is defined as

||T||22 =
∑

m,n

|tm,n|2.

The residual error e, can be written

e = M |t0 − c0|2 +
M−1∑

m=1

(M − m)
{
|tm − cm|2 + |t∗m − cM−m|2

}
,

or changing index in the last part of the sum to (M − m) = m, the result is

e = M |t0 − c0|2 +
M−1∑

m=1

{
(M − m)|tm − cm|2 + m|t∗M−m − cm|2

}
.

Minimizing e, by ∂e/∂cm = 0, yields

cm =
1

M

[
(M − m)tm + mt∗M−m

]
.

The circulant preconditioner could be derived in a more general manner; based on the framework
which was presented in the discussion on Toeplitz matrices and eigenvalues. With convolution of
the generating function and some given kernel, it is possible to obtain the optimal preconditioner
(and a range of others). Details are covered in Chan and Jin (2007).
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4.1. Circulant preconditioner for ill-conditioned Hermitian Toeplitz systems. Al-
though the main focus in the present work is the optimal circulant approximation, some of the
numerical exercises include results from a more modern circulant approximation. This approxi-
mation will be referred to as a preconditioner from the generalized Jackson kernel (Chan and Jin,
2007). Modern theory on circulant approximations discuss preconditioners with respect to a gen-
erating function f(ξ). For certain generating functions (classified by the number of zeros), it has
been proved that the optimal circulant approximations fail to stabilize the system (Chan et al.,
2002). It is possible to construct preconditioners for ill-conditioned systems when the generating
function is known (Chan et al., 2001a), but when the function is unknown or not in the Wiener
class, a different approach is needed.

To tackle an ill-conditioned problem with an unknown generating function (which is the case
in the present work), Chan et al. (2001b) propose to construct a preconditioner by approximating
f(ξ). This is done using the convolution product K ∗ f , where K is the generalized Jackson kernel
(Lorentz, 2005).

For very ill-conditioned problems, even a preconditioner based on the generalized Jackson kernel
may require regularization of the Toeplitz operator in advance. If this is the case, preconditioners
serves a purpose, promoting convergence of the iterative Toeplitz solver. For the optimal circulant
preconditioner, a MATLAB program is included in Appendix B, Listing B.6. In Chan and Jin
(2007), a range of different preconditioners are easily available, including MATLAB code.

5. Matrix-vector Multiplication by the Fast Fourier Transform

The iterative methods presented in this chapter are dominated by matrix-vector multiplications.
In general, a matrix has to be formed in memory and O(M2) operations is performed to compute
a new vector. Techniques have been discovered for Toeplitz matrices (Strang, 1986), reducing the
number of operations substantially. Suppose a Toeplitz matrix T with M = 3

b =




b0

b1

b2


 =




t0 t−1 t−2

t1 t0 t−1

t2 t1 t0







z0

z1

z2


 = Tz.

Instead of using the conventional method, the multiplication Tz could be carried out by constructing

a (2M − 1) × (2M − 1) circulant matrix T̂ on the form

b̂ =




b0

b1

b2

×
×




=




t0 t−1 t−2 t2 t1
t1 t0 t−1 t−2 t2
t2 t1 t0 t−1 t−2

t−2 t2 t1 t0 t−1

t−1 t−2 t2 t1 t0







z0

z1

z2

0
0




= T̂ẑ.

When embedding a Toeplitz matrix into a circulant matrix, the system size is larger, but the
formulation now has a computational advantage which can be accredited the fast Fourier transform.
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Figure 5: Toeplitz and circulant matrices and their corresponding spectrum. a) Toeplitz matrix T. b) Diagonalization of T by

the Fourier basis. c) Circulant matrix bT (embedded Toeplitz). d) Diagonalization of bT by the Fourier basis.

Diagonalization of the circulant matrix T̂ is done by the Fourier basis W, such that

T̂ = WHΛW,

where Λ is a diagonal matrix, holding the eigenvalues of T̂. Denoting elementwise product as ⊙,

the matrix-vector multiplication T̂ẑ can be written

diag(Λ) ⊙ Wẑ = diag(Λ) ⊙ F {ẑ} = F{b̂}
In practice, only one column of the circulant matrix is formed and a fast Fourier transform is
used for calculating the eigenvalues. The need for matrix storage is eliminated and the number of
operations are reduced to O[(2M − 1) log(2M − 1)]. From this, it is clear that circulant matrices
(e.g. the circulant approximation) are efficiently invertible using the FFT.

5.1. Preconditioned conjugate gradient, an example. To illustrate the theory of PCG, a
full rank problem is analyzed using the preceding fast computational methods. Suppose a Toeplitz
system Tx = b with coefficients tm given as

tm =





(1 + i)/(1 + m)1.1, m > 0
2, m = 0
t∗−m, m < 0

.(30)

According to Chan and Jin (2007), the coefficients have an underlying generating function f , given
by

f(ξ) = 2
∞∑

m=0

sin(mξ) + cos(mξ)

(1 + m)1.1
.

With a tolerance limit of ǫ = 10−7 and b initialized as ones, the linear system Tx = b is solved
by the preconditioned conjugate gradient method. Table 1 lists the results for different M . The
preconditioners are chosen either as the identity matrix I, or the optimal preconditioner C. After
preconditioning C−1T the eigenvalues are clustered around one, thus promoting convergence. Their
distribution is illustrated in Figure 6. From this exercise it is demonstrated how preconditioning
promotes convergence and how large linear systems can be solved efficiently using the FFT. In-
memory storage is also an asset since it is no need to form any explicit matrices. Figure 5 shows
the matrices involved in the computation when M = 16.
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Iterations CPU-time
M C I C I
24 7 12 n/a n/a
210 8 22 0.01 s 0.01 s
212 8 23 0.03 s 0.07 s
213 8 23 0.06 s 0.18 s
218 8 22 3.78 s 9.97 s

Table 1: Solving the linear system Tx = b using the preconditioned conjugate gradient method. M denotes the matrix size
while I and C denotes the identity and circulant preconditioner, respectively.
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Figure 6: a) Eigenvalues of the original Toeplitz system. b) Preconditioned system C−1T.

6. Numerical Results

The different methods, presented in this chapter, are tested with the parabolic Radon transform.
Motivated by the computational aspects, methods have been compared with respect to the number
of operations required to reach convergence and CPU-time. The latter is a common (empirical)
measure of algorithm efficiency.

6.1. Computational aspects. It is important to minimize the number of matrix operations
when evaluating efficient implementations of the Radon transform. Using the discretization scheme
presented in Chapter 1, no explicit matrices are formed in memory. With the least squares formu-
lation of the parabolic Radon transform, AHAz = AHb, the right hand side is evaluated by

[AHb]j =
N−1∑

n=0

fn exp(iωx2
nqj),

where j = 0, 1, . . . , M−1 and fn is the seismic data for one fixed frequency. The Hermitian Toeplitz
matrix AHA ∈ C

M×M is given by

[AHA]j−m = hj−m =
N−1∑

n=0

exp[iωx2
n(j − m)∆q].

This matrix is created by keeping either j or m fixed and only building one row or column2. If
explicit evaluation of the entire matrix is needed, it can easily be built by the MATLAB toeplitz

2It is possible to evaluate this expression even faster with the linear Radon transform as an explicit geometric
series exists.
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method. However, with Toeplitz solvers this is not needed. The fact that these calculations are
performed multiple times for a range of frequencies emphasize the importance of optimization. The
next step is to choose a linear (Toeplitz) solver. This is also important and can greatly improve
the computational speed.

6.2. Benchmarks. In Figure 7, benchmarks (measure of relative performance, computed mul-
tiple times and averaged) are plotted for three selected methods: Cholesky factorization, the Levin-
son algorithm and conjugate gradient. Points represent measured CPU-time in seconds and the
lines represent a moving average of the points. For this exercise, the system is defined by ∆t = 1/25,
with a period T = 2.25. Frequencies range from 1 ≤ ν ≤ 12 and the number of samples in offset is
fixed to N = 122. A linear transform is computed for each frequency and the problem is stabilized
by a regularization parameter α = 0.1 (regularization involves one scalar operation, adding α to
the first element of the Toeplitz column). It is important to note that the Cholesky factorization
is the only method that uses explicit matrices in memory. However, they are formed in a very effi-
ciency manner by just shifting the Toeplitz coefficients (and complex conjugate). Results show that
the iterative methods, tailored for Toeplitz systems, does perform better than more conventional
methods, especially for large systems.
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Figure 7: Benchmarks by algorithm CPU-time, plotted for tree selected methods: Cholesky, Levinson and FFT conjugate

gradient.
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6.3. Stability and condition number. In order to do a systematic numerical exercise, a
fixed system is defined and used as a starting point for varying selected parameters. The system is
defined by ∆t = 1/55, with a period T = 2.25. Frequencies range from 1 ≤ ν ≤ 30 Hz with N = 35
samples in offset and M = 30 samples for the residual-moveout. Let σm denote the singular values
(SVD) of a stabilized Toeplitz operator

H = AHA + αI,

where α is the regularization parameter. Denoting the condition number κ as the largest singular
value σmax, divided by the smallest σmin, this is written

κα(H) = ||H||2 · ||H−1||2 = σmax/σmin.

For the fixed sample system, Figure 8 gives an indication of how the condition number is affected by
choice of α. Red crosses mark a selected α̂, this is the regularization parameter of choice for further
analysis. This specific choice stabilizes the solution enough for iterative procedures to succeed,
while not introducing too much bias in the solution.PSfrag replacemen
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Figure 8: Condition number κ(H) for different choices of the regularization parameter α.

For the selected α̂, Figure 9(a), shows the distribution of singular values. This can be compared
to Figure 9(b), where the values of σm are plotted on a logarithmic scale.
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Figure 9: Singular values σm, visualized for a selected regularization parameter α̂.
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6.4. Circulant preconditioning. To increase convergence rate of the conjugate gradient
method with Toeplitz systems, circulant preconditioners haven been discussed as a suitable choice.
This is based on its similarity to the original matrix and computational advantages by the fast
Fourier transform. It exists a range of circulant approximations and choosing the correct one
depends on the problem at hand. To avoid confusion, the optimal circulant preconditioner is
discussed first, in this section. For the preconditioner by the generalized Jackson kernel, results are
presented in the end of this chapter.

Let B ∈ C
M×M denote the preconditioned system of the stabilized Toeplitz operator H. Fur-

ther, let C be a circulant preconditioner, such that

B = C−1H = C−1(AHA + αI).

The matrix H is Hermitian Toeplitz with real eigenvalues (or singular values), however, there is no
such guarantee for B.

In Figure 10, the condition number κα(B) is evaluated for the preconditioned system. This
shows how the preconditioned system responds to different stabilization. From this, it is observed
how preconditioning with the optimal preconditioner does not have any radical effect on κα(B)
compared to κα(H). Preconditioning of a system with α = 0 is obviously the preferred approach,
but as demonstrated in this figure, smaller α gives a larger κ and the system becomes ill-conditioned
for very small α.
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Figure 10: Condition number κ(B) for different choices of the regularization parameter α.
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6.5. Convergence and the preconditioned conjugate gradient method. By comparing
κα(B) and κα(H), it is observed that the circulant preconditioner did not have a significant influence
on the condition number of the operator B. The effectiveness of a preconditioner C is determined
by the condition number of B = C−1H, and occasionally by its clustering of eigenvalues. For the
selected α̂, distribution of singular values σm(H) was shown in Figure 9(a). For comparison, the
singular values of the preconditioned operator σm(BHB) is shown in Figure 11(a). Notice that,
in order to get real values, the matrix product BHB is formed. The spectra σm(H) has changed
in σm(BHB), and exhibits clustering to some extent. Although the results are far from optimal.
To see the effect of this change, Figure 11(b) shows the number of iterations (steps in the PCG
method). The number of iterations are plotted for each linear transform at frequencies ν. The
red line represents PCG iterations, while the black line represents iterations by the standard CG
method. In figures 12 and 13, the same exercise is shown for a preconditioner from the generalized
Jackson kernel. This preconditioner is designed for ill-conditioned problems and yields a slightly
better result.

To sum up, the following results were identified from this exercise:

(1) None of the tested circulant preconditioners could stabilize the problem on their own.
(2) Different frequencies in the signal may require a more dynamic way of selecting the pre-

conditioner. Choice of sampling (and regularization) parameters, also have a significant
effect on stability of the operator.

(3) With the stabilized Toeplitz operator, larger α gives a lower condition number, hence a
decrease in number of PCG (and CG) iterations. This is at the expense of bias being
introduced in the solution.

(4) At frequencies where the number of iterations are low (with the PCG method), the clus-
tering properties of the singular values tend to be better. This coincide with the theory
on preconditioners.

(5) The condition numbers of the preconditioned system, based on the generalized Jackson
kernel in Figure 13, tend to be lower for higher frequencies. This is a positive effect which
is reflected in the number of PCG iterations.

It has been shown that is it possible to compute the parabolic Radon transform by precondi-
tioning with circulant matrices. The average number of iterations by the PCG method was lower
then with the standard CG method, although for this parameter choice, the PCG method does
not perform well for the lower frequencies. The computational gain (by less iterations) might not
be worth the effort; it could sacrifice some of the robustness of the standard methods like just ap-
plying the Levinson algorithm to the stabilized problem. The advantage of faster convergence also
needs to offset the computational cost of calculating the preconditioner. The conjugate gradient
methods uses a tolerance limit for when convergence is reached, adjusting this has a big influence
on computational efficiency. A standard limit of ǫ = 10−7 have been used for tests in this section.

6.5.1. Comments. Numerical test with this problem, trying different parameters systematically,
might yield a more exact criterion for when to use or not to use a preconditioner. However,
the standard methods, without preconditioning, are already very fast and the effort of PCG is
questionable. From previous chapters, it is clear that there is no need for oversampling and the
system will typically not be as big as demonstrated in Figure 7. On the other hand, the benchmarks
shows that the problems scale well, an important asset which can be related to other problems with
Toeplitz structure.
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Figure 11: Performance of the circulant preconditioner, stabilized with α̂. a) Distribution of the singular values for different

frequencies. b) Number of iterations before reaching convergence of the CG method versus the PCG method (red line).
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Figure 12: Performance of the circulant preconditioner, with C from the generalized Jackson kernel, stabilized with α̂. a)

Distribution of the singular values for different frequencies. b) Number of iterations before reaching convergence of the CG
method versus the PCG method (red line).
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Figure 13: Condition number κ(B), with C from the generalized Jackson Kernel, for different choices of the regularization

parameter α.
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CHAPTER 5

Analysis of the Low-pass Filter

The preceding chapters have reviewed well established methods for solving and stabilizing the
time-invariant Radon transforms. Very small singular values yield a large condition number and
the problem is classified as ill-conditioned for a range of frequencies. For a different perspective,
this chapter will return to the analysis in Chapter 1 (discretization of the time-invariant Radon
transform). The theory on Toeplitz structure and circulant matrices from Chapter 4 is also a
prerequisite for the following analysis.

The approximate forward transform z̃ = AHb is in fact a filtered version of the least squares
forward transform ẑ = (AHA)−1AHb = H−1z̃. Analysing the filter yields more direct insight
into the problem. Following the notation from Chapter 1, let r̃j be the approximate solution (low
resolution Radon panel) and r̂m the least squares solution (higher resolution Radon panel). Then,
the convolution is given as

r̃j =
M−1∑

m=0

r̂mhj−m, j = 0, 1, . . . , M − 1.(31)

For M = 4, this is written in explicit matrix form as



r̃0

r̃1

r̃2

r̃3


 =




h0 h−1 h−2 h−3

h1 h0 h−1 h−2

h2 h1 h0 h−1

h3 h2 h1 h0







r̂0

r̂1

r̂2

r̂3


 =




h0 h∗
1 h∗

2 h∗
3

h1 h0 h∗
1 h∗

2

h2 h1 h0 h∗
1

h3 h2 h1 h0







r̂0

r̂1

r̂2

r̂3


 ,(32)

with coefficients hm forming the diagonals of a Hermitian Toeplitz matrix. This matrix structure
has an important property of one column being enough to characterize the entire matrix. Notice
that the coefficients does not form a circulant structure, hence, the convolution cannot be evalutated
by the discrete Fourier transform.

The low-pass filter hm = hm(ω∆p∆x) is a geometric series on the form

hm =

N−1∑

n=0

exp(iωm∆pn∆x) = 1 + Em + E2
m + · · · + EN−1

m =
1 − EN

m

1 − Em
,

where E = exp(iωm∆p∆x). For the more complicated parabolic Radon transform, the filter would
contain a squared term for the offset variable; no explicit expression for the series exist. The filter
hm (for the linear Radon transform) is then a natural choice for further analysis.
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1. Zero-phase Low-pass Filter

A zero-phase filter has a phase spectrum (imaginary part) consisting of only zeros, and a real
and symmetric impulse response. With uniform sampling, it is practical to assume symmetrical
sampling about p = 0. Let p = [p−M , . . . , p0, . . . , pM ] and xn = n∆x for |n| ≤ N . This gives the
well known geometric series in the form of the Dirichlet kernel

hm =
N∑

n=−N

exp(iωn∆x pm) =
sin [(2N + 1)ω∆xpm/2]

sin(ω∆xpm/2)
.

The impulse response is real and symmetric, with a corresponding real and symmetric Fourier
spectrum. These are properties which simplify interpretation and intuitive understanding of the
filter. It is obvious that the sine waves will vary from rapid to more moderate oscillations, depending
on the input parameters ω∆p∆x. Choosing a critical sampling interval (according to the sampling
theorem), for hm(ωmax∆x∆p), will generally lead to oversampling of the filter hm(ωmin∆x∆p). This
is a consequence a uniform sampling scheme being used for different frequencies (fixed sampling
intervals for offset and ray-parameter in the seismic data).

For convenience, the filter is denoted hm = h(m∆p) = h(pm). With this definition, h(pm) has
a periodicity

Pm =
2π ℓ

ω∆x
, ℓ = 0,±1,±2, . . .

which is evaluated as limit problem

lim
ℓ→0,±1,±2,...

h(Pm) = lim
ℓ→0,±1,±2,...

sin [(2N + 1)πℓ]

sin(πℓ)
= 2N + 1.

The roots are given by

p̃m =
2π ℓ

ω∆x(2N + 1)
, ℓ = ±1,±2, . . .

which gives

h(p̃m) =
sin(πℓ)

sin [πℓ/(2N + 1)]
= 0,

unless ℓ = ±(2N + 1) or ℓ = 0. These expressions are mainly of theoretical interest. It is observed
that p̃m closely resembles the sampling criterion which is discussed in the next section.

Figure 1(a) shows a Toeplitz matrix from a symmetric impulse response. The matrix is diago-
nalized by the Fourier basis, yielding a box-car low-pass filter (on the diagonal), shown in Figure
1(b). It is important to notice that diagonalization by the Fourier basis is not a general property
for Toeplitz matrices.
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Figure 1: a) The Toeplitz matrix formed by the coefficients hm (symmetric sampling). b) The corresponding spectrum by
Fourier basis decomposition.
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2. Sampling and Aliasing

The filter hm defines a Hermitian Toeplitz matrix which changes characteristics for each fre-
quency ω (or sampling interval ∆p and ∆x). To simplify the analysis, the parameter β is defined
as

ω∆p∆x =
2πβ

2N + 1
.(33)

This gives the filter hm = hm(β) on the form

hm(β) =
sin(πβm)

sin [πβm/(2N + 1)]
.

A low-pass filter, changing characteristics by the parameter β. Increasing β will push the signal
towards higher frequencies which will lead to a requirement for more samples. Adjusting the
parameter also corresponds to shrinking the sampling period of the discrete signal if 0 < β < 1 or
stretching if β > 1. The discrete Fourier transform Hk of hm, with β = 1, gives

Hk =
2M+1∑

m=1

sin(πm)

sin [πm/(2N + 1)]
e2πikm/(2M+1) = 2N + 1,

for k = 1, 2, . . . , (2M + 1). This is an ‘all-pass’ filter, corresponding to a Dirichlet kernel, sampled
at the roots (unless m = 2M + 1). For 0 < β < 1 the filter hm(β) becomes a low-pass filter where
well-known numerical effects like Gibbs phenomenon will influence the result. For β > 1, aliasing
in form of folding will distort the filter, an effect which should be avoided. The behavior when
changing β is a consequence of the similarity theorem.

From this discussion, a sampling criterion for ∆p could be derived with respect to a fixed offset
sampling interval and a maximum frequency ωmax. Suppose β = 1 such that Equation (33) is given
as

ωmax∆p∆x =
2π

2N + 1
.

Rearranging this expression, and denoting the offset range xr = (2N + 1)∆x, a sampling criterion
for the linear Radon transform is given as

∆p ≤ 2π

xrωmax
.

With this sampling criterion, the filter hm(ω∆p∆x) will not be influenced by aliasing effects for
any frequencies in the signal. The same criterion was derived in Chapter 1, where it was based on
the local summations in phase principle (Turner, 1990).

In Figure 2, the symmetric filter hm and its spectrum Hk are plotted for different frequencies
ν = ω/2π. The parameters are defined as ∆x = 25 m and ∆p = 1/80 s/km, with the number of
samples given as N = 63 and M = 21. This gives a range in offset as

xr = (2N + 1)∆x = 3.175 km.

With this specific sample system, the critical frequency νc is

νc =
1

xr∆p
=

1

1/3.175 km (1/80) s/km
≈ 25 [1/s](Hz).

At this frequency, the filter becomes an ‘all-pass’ filter, and above this limit, aliasing in the form
of folding is clearly in effect.
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Figure 2: Impulse response hm (symmetric sampling) and frequency spectrum Hk (zero-phase).
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3. Optimal Circulant Approximation

The convolution in Equation (32) does not have a circulant structure; it cannot be evaluated
by the discrete Fourier transform. With this in mind, a circulant approximation of the convolution
is studied. An (optimal) circulant approximation cm of the filter hm was derived in the previous
chapter as

cm =
1

M

[
(M − m)hm + mh∗

M−m

]
.(34)

These coefficients have the important property of Hermitian symmetry

cm = c∗M−m.

Replacing the right hand side of Equation (31), gives a new convolution on the form

r̃j ≈
M−1∑

m=0

ŝmcj−m =
M−1∑

m=0

ŝm

∞∑

ℓ=−∞

cj−ℓM .(35)

If the new solution ŝm is a good approximation to r̂m or not, is uncertain at this point. However,
with this formulation, the problem is given as a circular convolution. A circular convolution has
the property cM−m = c−m, i.e. when M = 4 it is written on the following matrix form




r̃0

r̃1

r̃2

r̃3


 ≈




c0 c−1 c−2 c−3

c1 c0 c−1 c−2

c2 c1 c0 c−1

c3 c2 c1 c0







ŝ0

ŝ1

ŝ2

ŝ3


 =




c0 c3 c2 c1

c1 c0 c3 c2

c2 c1 c0 c3

c3 c2 c1 c0







ŝ0

ŝ1

ŝ2

ŝ3


 .

Let the frequency spectrum of r̃j , ŝm and cm be denoted respectively R̃k, Ŝk and Ck, such that the
circular convolution is written as a multiplication

R̃k = Ŝk Ck,

for k = 0, 1, . . . , M − 1. A formulation with well known computational advantages by the fast
Fourier transform.

3.1. Comparison with the Toeplitz low-pass filter. The residual error em = hm − cm,
for each coefficient, is given as

em =
m

M
(hm − h∗

M−m) =
m

M

N−1∑

n=0

[
eiω∆xn∆pm(1 − e−iω∆xn∆pM )

]
.

The expression might not give any new insight, however it is visualized in Figure 3. The filter Ck is
plotted for ω∆p∆x = 1/25 with N = 32 and M = 41. The (corresponding) filter Hk is generated
from the same set of parameters and plotted with dashed lines.

The Hermitian symmetry cm = c∗M−m is seen from the symmetric real part ℜ{cm} = ℜ{c−m}
in Figure 3(a), and the antisymmetric imaginary part ℑ{c−m} = −ℑ{cm} in Figure 3(b). Figures
3(c) and 3(d) show the real and imaginary frequency spectra, from which it is observed that the
filter coefficients Ck are real-valued with zero-phase.

Figure 4 shows the impulse response of (non-symmetric sampling) hm and its circulant approx-
imation cm, for the indexes m = 0, 1, . . . , M − 1. The parameters are defined as ∆x = 25 m and
∆p = 1/45 s/km, with the number of samples given as N = 63 and M = 21.
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Figure 3: The filter Ck and the Hermitian impulse response cm. The dashed line represents the corresponding, non-circular

filter, Hk and impulse response hm.
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Figure 4: Impulse response of |hm| (complex, non-symmetric sampling) and |cm| (circulant approximation).
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4. Circulant Approximation and Fixed Point Iteration

In general, the circulant approximation C should not be used directly as a replacement for the
square Toeplitz operator H. This means that an iterative method, with the ability to converge
towards the generalized inverse solution r̂m, is needed. The method of choice is fixed point iteration.

A number a, satisfying the equation g(a) = a, is called a fixed-point of the function g. Suppose
that an equation of the type f(z) = 0, has a solution z. Adding z on both sides gives

g(z) = z + f(z) = z.

For certain kinds of functions, fixed points can be found by starting with an initial guess and
calculating successive approximations. In general,

zk+1 = g(zk), k = 0, 1, 2, . . .

where

lim
k→∞

zk = z.

Fixed points of functions in the complex plane commonly leads to fractal patterns, analogous to
what was demonstrated with Newton’s method in Chapter 3.

Let the convolution with the original Toeplitz filter, in Equation (31), be denoted Hz = w,
with a solution z. Adding the circulant approximation Cz,

Cz + Hz = w + Cz,

and defining the Richardson iteration (Kelley, 1995), the fixed point recursion for the circulant
approximation is given as

Czk+1 = w − (H − C)zk, k = 0, 1, 2, . . .(36)

The matrix C is efficiently invertible, and the system can be written

zk+1 = C−1w − C−1(H − C)zk

= C−1w − Bzk,

where B = C−1(H − C) is called the iteration matrix. A solution z is then found by

lim
k→∞

zk = z.

The advantage of this formulation is that it can be calculated by the fast Fourier transform. To
facilitate the FFT-implementation of this recursion, MATLAB code is included in Appendix B,
Listing B.5.

4.1. Convergence. For convergence of the recursion, specific spectral properties has to be
satisfied. The concept of spectral radius is used to to make a complete description. Let λm denote
the eigenvalues of B ∈ C

M×M , this gives the spectral radius of B as

ρ(B) = max
m

|λm|.

Convergence of the recursion in Equation (36) is now guaranteed for all w if and only if

ρ(B) < 1.

Another important factor is the size of the spectral radius; the smaller ρ(B), the faster the conver-
gence. A detailed discussion, including proofs for the convergence criterions, is found in the much
cited book by Kelley (1995).
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5. Numerical results

A fundamental theory has been established with respect to convergence of the circulant ap-
proximation and fixed point iteration. This gives a starting point for numerical analysis of the
problem, applied to the Radon transform. It is clear from the results in Chapter 4, that none
of the available circulant preconditioners could stabilize the inversion matrix on their own. Let
B ∈ C

M×M denote the iteration matrix with the stabilized Toeplitz operator H. Further, let C
be the circulant approximation of H, such that the iteration matrix for the fixed point recursion is
given as

B = C−1(H − C) = C−1(AHA + αI − C),

where α is the regularization parameter. A big condition number of the matrix B imply that the
spectral radius ρ(B) >> 1, i.e. the circulant approximation method does not converge. This means
that regularization is needed in order to test the fixed point iteration method.

Using a constant parameter α, for all frequencies, Figure 5 gives an indication of how to choose α.
The figure shows the ℓ2-norm of reconstructed seismic, subtracted from the original seismic, versus
different α (logarithmic scale). Higher values of the norm means that the solution is influenced
strongly by α, i.e. the solution is less accurate. For this exercise, the system is defined by ∆t = 1/55,
with a period T = 2.25. Frequencies range from 1 ≤ ν ≤ 30 Hz with N = 35 samples in offset
and M = 30 samples for the residual-moveout. Visual inspection shows that 0.1 < α < 1 are good
choices, and that in this example, the best choice is αb (blue circle). The red and green circle are
values of α, respectively denoted αr and αg. These values are used in subsequent exercises.
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Figure 5: The ℓ2-norm of reconstructed seismic, subtracted from the original seismic, versus different α (logarithmic scale).
Colored circles indicate αb (blue), αr (red) and αg (green).

To demonstrate the circulant approximation method, a regularization parameter α has to be
chosen such that the spectral radius ρ(B) < 1 for all frequencies. The regularization parameter
should also minimize the residual norm of the reconstruction, subtracted from the original seismic.
Assume this means minimizing α. These criterions are stated in compact form as

min
α

ρα(B) < 1 ∀ ν.(37)
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Figure 6: The spectral radius is evaluated for different frequencies ν and regularization parameters α. Crosses mark points

where ρ(B) < 1.
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In Figure 6, the spectral radius ρ(B) is evaluated for two different circulant approximations.
Circulant approximation by the generalized Jackson kernel in 6(a) and the optimal circulant ap-
proximation in Figure 6(b). The red (αr) and green (αg) circles indicate where Equation (37) is
satisfied. These choices of α lead to convergence of the fixed point iteration for all frequencies.
However, optimality of the solution (and reconstruction) is sacrificed as a consequence of αr >> αb

and αg >> αb. That is, both choices of α = {αg, αr}, will lead to a loss of energy in the Radon
panel and reconstruction. Notice that the sample system is the same as the one used in Figure 5,
where the red, green and blue α-values are indicated.

5.1. Convergence and number of iterations. Another aspect is convergence and number
of iterations in the fixed point recursion. Even though convergence is guaranteed if ρ(B) < 1, the
size of ρ(B) determines the rate of convergence. This is important since it can have big effects on
computational speed. For the fixed point algorithm to qualify as a fast method, a more thorough
investigation of the spectral radius is needed.

In Figure 7, the spectral radius ρ(B) is shown for both approximations. In parallel, the number
of fixed point iterations are shown. From this, it is clear that although the Jackson approximation
does a better job at lowering α, the optimal approximation gives lower values for the spectral
radius. Hence, the optimal approximation requires much less iterations to reach convergence when
the tolerance limit is ǫ = 10−7.

Figure 8 shows the seismic data and parabolic Radon panels. As a reference, Figure 8(b)
shows the Radon panel for αb, calculated by the standard method (e.g. Levinson algorithm).
Further, Figure 8(c) shows the Radon panel calculated by the circulant approximation and fixed
point iteration1 with α = αr. Reconstruction is included in Figure 8(d). All images are plotted
at the same scale, this illustrates some loss of amplitude in Figure 8(c). This is a consequence of
regularization, i.e. the parameter αr has too much influence on the solution.

5.2. Comments. Under specific conditions, it is possible to calculate the Radon transform by
the fast Fourier transform and fixed point iteration. Imposed regularization is the most important
factor for success. The method loses some of its elegance (and advantage) when the problem needs
to be stabilized in advance. It is still an interesting approach, applicable to other signal processing
problems.

It is important to emphasize that although it is possible to calculate the Radon panel in this
manner, it is demonstrated that this method should not be used as a replacement for other algo-
rithms like the Levinson or CG-FFT. These methods have more relaxed criterions for success, an
important property for obtaining reliable solutions of problems with varying parameter choices.

1Implemented with matrix-vector operations performed by the fast Fourier transform.
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Figure 7: Convergence rate compared to spectral radius, plotted for both approximations.
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Figure 8: The parabolic Radon transform for different choices of α (αr >> αb) and corresponding methods.
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CHAPTER 6

Sparse Approximations - High-Resolution Methods

Different regularization techniques such as Tikhonov and TSVD was discussed in Chapter 3.
These familiar methods produce stable results, but without the ability to promote sparseness in
the solution. Regularization of linear systems with sparsity constraints seeks out to find a sparse
approximation (Chen et al., 2001) x such that Ax ≈ b. Sparsity constraints often require that
the solution has few nonzero entries relative to its dimensions. With the Radon transform, it is
desirable to have a method able to discriminate fast, short-period multiples under limited offset
situations (typically the situation for real data, where events in the Radon panel are clustered
together). This is the motivation for the development of different ‘ad-hoc’ methods, serving the
purpose of obtaining a clean and simple Radon panel without artifacts from limited aperture and
aliasing, referred to as high-resolution Radon transforms. Development of these methods play
an important role in industrial directed research. Several different techniques (Tropp and Wright,
2010) exists for computing a sparse approximation problem: greedy pursuit, convex relaxation,
Bayesian framework, nonconvex optimization and brute force.

1. The Bayesian Approach

Stochastic inversion for velocity stacking was originally proposed by Thorson and Claerbout
(1985). Enforcing sparseness in the hyperbolic Radon panel would fill gaps in CMP gathers after
reconstruction. Their method however was expensive to calculate, and the time-invariant parabolic
transform (Hampson, 1986) would become the preferred implementation. With this frequency
domain formulation Sacchi and Ulrych (1995) introduced a high-resolution Radon transform, also
derived in a stochastic framework. The basic concepts from this paper is reviewed in the following
sections.

It should be noted that the time-variant hyperbolic Radon transform has been revisited by
Trad et al. (2002, 2003), proposing methods which keeps calculation costs of a high-resolution
hyperbolic Radon panel low enough for practical implementations.

The relation between model space and data space is given by Ax + e = b, where e is a noise
term. Bayes formula is written

p(x|b) =
p(b|x) p(x)∫
p(b|x) p(x) dx

∝ p(b|x) p(x),(38)

where p(b|x) is the probability density function of b given x, p(x) is the prior probability density
function of the model and p(x|b) is the posterior probability density function of the model. The
model x is a random variable and the solution is a probability density function for the model
parameters. Bayes formula relates a priori information and measured data (in many physical
applications), constructing the most probable x. A specific prior could then produce a Radon
panel with desired properties such as sparseness.
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2. The Principle of Maximum Entropy

Finding the correct posterior probability density function p(x) is a difficult problem in inverse
theory. It gives raise to problems like incorporating subjective decisions into the model and possibly
producing misleading results. Deriving a posterior distribution with the mathematical method
of maximum entropy is in some sense a way to avoid subjective influence on the results. The
maximum entropy principle makes inference about the probability law of a random variable, and
finds a probability density function which best represents the observed data.

The entropy h is defined as

h = −
∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x) ln p(x) dx,

maximized to the constraints∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x) dx = 1 and

∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x) gr(x) dx = E[gr(x)] = µr,

where gr(x) defines the constraints and µr is the expected value for r = 1, 2, . . .. Using only one
constraint, the resulting distribution (Karmeshu, 2003) is

p(x) ∝ exp[−λ0 − λ1 g(x)],(39)

where λ are Langrangian multipliers determined from the constraints. Pursuing a sparse Radon
panel with isolated seismic events, a suitable constraint has to be defined. A constrain which
quantifies the amount of sparseness of a vector is chosen as

g(x) =
∑

i

ln(|xi|2 + c),(40)

where c is a small perturbation factor. The prior probability density function is then given as

p(x) ∝
e−λ0

∏
i(|xi|2 + c)λ1

.

For the present problem, finding the Lagrange multipliers is not of interest. They are chosen by the
user, controlling the amount of sparseness in the solution. Assuming the noise vector e is Gaussian
distributed, the likelihood function p(b|x) is

p(b|x) = Kexp(−(1/2)(Ax − b)HC−1(Ax − b)),

where K is a normalization constant and C is the covariance matrix (Johnson and Wichern, 1998)
of the noise. The posterior probability density function is then given by Bayes formula

p(x|b) = p(b|x) p(x) = Kexp(−λ0 − λ1g1(x) − (1/2)(Ax − b)HC−1(Ax − b)).

This formulation also needs instructions for how to select a single model. This is done by finding
the maximum a posteriori solution.
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3. Maximum a Posteriori Solution

If a single model is the preferred solution, choosing the one which maximizes p(x|b) is an
appropriate choice. This is referred to as the maximum a posteriori (MAP) solution. The MAP
solution is found by

− ∂

∂x
ln p(x|b) = 0,

which leads to a solution on the form

x = (AHC−1A + λP(x)−1)−1AHC−1b,

where λ = 2λ1 and

P(x) = diag(|xi|2 + c).

This system is solved by the iterative reweighted least squares method. Experiments show that four
or five iterations are sufficient for obtaining a sparse solution (Sacchi and Ulrych, 1995). While the
model covariance matrix plays an important role when designing high-resolution Radon operators
(Trad et al., 2002), only having elements on the diagonal imply no spatial correlation of noise.

A typical multiple removal scheme is used as an exercise with the Bayesian high-resolution
method. Using the same sample system as in Chapter 1, section 4, Figure 2(b) shows a NMO
corrected and muted CMP gather with its corresponding parabolic Radon transforms in Figure 1.
The high-resolution Radon panel in Figure 1(b) is calculated using five iterations with the covariance
matrix chosen as the identity matrix and λ = β||x||22 (initiated by the approximate solution and
recalculated for each iteration). The parameter λ is now adjusted automatically based on energy
levels1 for each frequency. With β = 2.5 this yields a result which balances loss of amplitudes and
the degree of sparseness. The Radon panel in Figure 1(a) is calculated using the standard damped
least squares and for visual reference, the frequency-q domains are included for both variants in
Figure 1(c) and 1(d). Filtering of primary events are done using a cut-off set to [qmin, qcut] where
qcut = 0.1 s. Reconstruction of the data in Figure 2(c) then leaves only the multiples, which is
subtracted from the original NMO corrected data giving the final image in Figure 2(d).

The Sacchi method works well and is easy to implement using the iterative reweighted least
squares method. It is considered the industry standard, occurring with different constraints, i.e.
priors. A drawback is the fact that the regularization term breaks the Toeplitz structure leading
to increased computational time.

1This is a choice made for this exercise. Theoretical methods for picking a suitable parameter λ (often referred
to as the hyperparameter) is unknown to the author.
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(a) Standard Radon panel.
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(b) High-Resolution Radon panel.
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(c) Frequency components.
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(d) Frequency components.

Figure 1: The parabolic Radon transform of a NMO corrected CMP gather given in Figure 2(b). a) Standard damped least
squares solution with corresponding frequency components in c). b) Radon panel calculated by Bayesian a priori regularization,
exhibits better focusing. Corresponding frequency components shown in d).
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(a) CMP gather.
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(b) NMO corrected.
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(c) Filtered reconstruction.
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(d) Multiples subtracted.

Figure 2: A high-resolution Radon demultiple work flow. a) Original CMP gather from the (demo dataset in the SeismicLab
package). b) NMO corrected data (including mute), subject of the Radon transform c) Reconstruction of multiples with

primaries removed. d) Multiples subtracted from the original CMP gather, leaving only the primaries.

77



4. One-norm Regularization and Basis Pursuit Solutions

In this section, ℓ1-norm solutions are studied with application to the Radon transform. A vast
amount of theory concerning sparse approximations from different ℓ1-norm formulations have been
developed (Tropp and Wright, 2010), many of whom are awaiting testing on real data applications.
The aim is to find a sparse solution of the system of equations Ax = b. Suppose this is an
underdetermined problem, retrieving a maximally sparse solution among the infinite number of
solutions to the system is done by minimizing

min
x

||x||0 subject to Ax = b,

where the ℓ0-norm is the number of non-zero elements of x. Unfortunately the ℓ0-norm is a non-
convex function, making this a difficult problem. Replacing the ℓ0-norm with a ℓ1-norm yield
a convex optimization problem that admit tractable algorithms (Tropp and Wright, 2010). This
relaxed formulation is often known as a basis pursuit problem (Chen et al., 2001), given as

min
x

||x||1 subject to Ax = b.

In the presence of noisy data, it is undesirable to fit this data exactly. Relaxing the constraints
gives the basis pursuit denoise problem on the form

min
x

||x||1 subject to ||Ax − b||2 ≤ σ,(41)

where σ is a measure of the noise level. A second formulation is the ℓ1-penalized least squares

min
x

||Ax − b||2 + λ||x||1,(42)

where λ is the regularization parameter. This formulation is often preferred for its connection to
convex quadratic programming (Boyd and Vandenberghe, 2004). It was discussed in Chapter 3,
where the iterative reweighted least squares technique was suggested as an algorithm to solve the
set of non-linear equations. A third formulation is often known as least absolute shrinkage and
selection operator (Tibshirani, 1996) or LASSO. It is given as

min
x

||Ax − b||2 subject to ||x||1 ≤ γ,(43)

where γ is a parameter adjusting the trade off between the objectives. For appropriate parameter
choices of σ, λ and γ, the solutions of equations (41), (42) and (43) coincide and these problems
are in some sense equivalent (Berg and Friedlander, 2008).

In the scientific computing community, a great deal of research has gone into developing algo-
rithms for solving these optimization problems. Picking one for testing with the present work is
based on the following criterions:

(1) Suitable for large-scale problems in the complex domain.
(2) Easily available routines for implementation and testing.

Berg and Friedlander (2008) presents an algorithm for solving the basis pursuit denoise prob-
lem, satisfying the desired criterions. The authors provide a MATLAB implementation named
SPGL1 (Spectral Projected Gradient for ℓ1-minimization), available under the GNU General Pub-
lic License. Focusing on the basis pursuit denoise problem, with an approximately known σ, their
algorithm is attractive for several different signal processing problems.
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5. Basis Pursuit Denoise and the Radon Transform

The basis pursuit denoise and SPGL1 toolkit have already found applications to seismic data
(Hennenfent and Herrmann, 2005, 2008). Testing of a ℓ1-penalized Radon transform is unknown to
the author. Computations are done in the complex ω-q domain, typically on a large-scale dataset
with an explicitly known linear operator Aω. For selection of the parameter σ, some dynamic
scheme is needed as the basis pursuit denoise procedure is done for each frequency in the signal.
Initiating xω, using either the damped least squares or approximate solution, gives a measure of
the energy in the signal. Hence, σω can be written

σω = β||xω||1, β > 0.

This gives a dynamic parameter, where β quantifies the amount of sparseness. Numerical exper-
iments (not included in this thesis) shows that keeping σ fixed for all frequencies, tend to create
distortion of the image.

5.1. Results. A set of exercises will demonstrate the merits of the basis pursuit denoise
method applied to the parabolic Radon transform. Emphasis has been made to include a com-
plete multiple removal scheme, in order to show how loss of amplitudes may introduce a problem
with applications in seismic processing.

Using the same sample system as the previous exercise (Figure 2), the parabolic Radon panel
in Figure 3 is calculated by the basis pursuit denoise method for β = {0.6, 0.8, 1, 1.2}. In Figure 4,
the frequency components are shown for the same panels, revealing more of how the regularization
directly affects the (frequency-q) Radon panel. The dashed red line at ω = 158 rad/sec represents
a selected frequency which is inspected in Figure 5. In these figures, the stairs plot represent the
basis pursuit denoise solution while the red dashed line show the standard least squares solution.
This exercise show how an increase in β gives an increase in sparseness, however at the cost of
loss in amplitude. For comparison, the standard damped least squares solution is the same as in
Figures 1(a) and 1(c).

In Figure 6, the NMO corrected CMP gather from Figure 2(a) is transformed by the basis
pursuit denoise method using β = 0.5. Filtering, reconstruction and multiple removal reveals a
Radon panel with better resolution, but at the expense of some loss of amplitude. Using the same
algorithms and work flow with β = 0.35, a NMO corrected CMP gather from the Gulf of Mexico
(courtesy of the signal analysis and imaging group, University of Alberta) is shown in Figure 7. A
comparison between the standard Radon panel and the basis pursuit solution for this real dataset,
including their frequency components are shown in Figure 8. A typical deep water CDP gather
from the Knipovich Ridge2 is shown in Figure 9. Its basis pursuit denoise Radon panel is calculated
with β = 0.35.

2A joint survey by the Institute of Seismology and Vulcanology, Hokkaido University and Institute of Solid Earth
Physics, University of Bergen. The survey was conducted by the research vessel ‘Haakon Mosby’ in 2002.
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(a) β = 0.6
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(b) β = 0.8
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(c) β = 1
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(d) β = 1.2

Figure 3: Parabolic Radon panel for the basis pursuit denoise solution with different values of β.
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(a) β = 0.6
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(b) β = 0.8
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(c) β = 1
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(d) β = 1.2

Figure 4: The ω-q domain for different values of β. Dashed red line marks a selected frequency, inspected in Figure 5.
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Figure 5: Selected frequency at the constant c = 158 rad/sec for different values of β. Dashed red line represents the damped
least squares panel, while the stairs show the basis pursuit denoise solution.
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(a) NMO corrected.
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(b) BPDN Radon panel.
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(c) Filtered reconstruction.
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(d) Multiples subtracted.

Figure 6: A Basis pursuit denoise (BPDN) Radon demultiple work flow. a) Original CMP gather from the (demo dataset in the

SeismicLab package). b) NMO corrected data (including mute), subject of the Radon transform c) Reconstruction of multiples
with primaries removed. d) Multiples subtracted from the original CMP gather, leaving only the primaries.
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(a) NMO corrected gather
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(b) BPDN Radon panel.
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(c) Filtered reconstruction.
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(d) Multiples subtracted.

Figure 7: A real data example from the Gulf of Mexico.
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(a) Standard Radon panel.
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(b) BPDN Radon panel.
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(c) Frequency components (standard).
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(d) Frequency components (BPDN).

Figure 8: Real data from the Gulf of Mexico, Radon panels and their corresponding frequency components.
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(a) NMO corrected CDP gather.
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(b) Multiples subtracted.
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(c) Standard Radon panel.
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(d) BPDN Radon panel.

Figure 9: Real data from the Knipovich Ridge, showing clustered sea-bed (or close to) multiples.
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6. Recent Developments and Greedy Methods

Previous application of the basis pursuit method (or ℓ1-norm penalty in general) to the geo-
physical Radon transform is unknown to the author. The threshold for understanding many of the
technical details, required for implementation, might be one of the reason for this. Recently several
libraries have appeared, thus providing the tools for testing the algorithms on real problems with-
out the requirements of being an expert in the field. As the techniques develop, new applications
of the ℓ1-norm in seismic imaging could see the light of day.

Novel methods, using a greedy approach, have been implemented by the industry. Methods
restricting in both q and τ directions, by some authors referred to as ‘super high-resolution’. A
time-offset algorithm based on the Gauss-Seidel method and prioritized moveout parameters require
quite a bit of graphical material for a good understanding, it was presented at Denver, Colorado
2004 SEG annual meeting (Ng and Perz, 2004). Detailed information on the algorithm is available
from the authors in the form of slides from presentations. At the Houston, Texas 2009 SEG
annual meeting, Wang and Ng (2009) presented another high-resolution algorithm. The method
uses a greedy approach, solving small regions of moveout parameters using conjugate gradients.
Implementation and review of these methods are not covered in the present work, but it is clear
that the latest trend has been to move away from analytical solutions and instead develop greedy
methods which focus energies using time-offset Radon (Yilmaz and Taner, 1994) implementation.
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CHAPTER 7

Summary and Conclusions

During the recent years, time-offset implementations of the Radon transform have gained pop-
ularity, much in line with the increased computing power. Direct approaches in this manner has
algorithmic advantages that can be used to construct e.g. sparse Radon panels. Chapter 1 focused
on the time-invariant frequency domain formulation, and discussed a direct implementation of the
time-variant hyperbolic Radon transform. The recurring problem of curves not matching the exist-
ing seismic data grid is an obvious weakness of the latter method. For the linear Radon transform,
this problem has been studied by others, in the interesting setting of switching to a pseudopolar
grid.

Chapter 4 focused on inversion using direct and iterative solvers for matrices with Toeplitz
structure. Inversion of the time-invariant Radon transform involves computing a set of different
Toeplitz systems, i.e. fast methods are essential. Numerical results showed that choice of solver
depends on the system size. For relatively large systems, the conjugate gradient methods, combined
with the fast Fourier transform, proved to be most efficient. It was shown how circulant precon-
ditioners influence the eigenvalues, promoting convergence of the conjugate gradient method. The
fact that none of the preconditioners (listed in the references) are able to stabilize the problem
on their own, was demonstrated by a numerical example. Thus, finding a preconditioner with the
correct properties to stabilize the problem in a general manner is still unresolved. This is substan-
tiated by not having a generating function (forming the Toeplitz coefficients) in the Wiener class.
A generating function of this class is needed to utilize most of the existing Toeplitz framework.

The approximate solution of the time-invariant Radon transform could be seen as a filtering of
the least squares solution. In Chapter 5, the low-pass filter was studied, demonstrating how the
filter characteristics change with different parameter choices. Evaluating this filter by fixed point
iteration with a circulant approximation, yields an inversion method which can be evaluated by
the fast Fourier transform. The fixed point recursive scheme with a circulant approximation, was
successfully applied to the Radon transform, although, the Toeplitz operator needs stabilization in
advance. The imposed regularization is not a desired effect.

In Chapter 6, the basis pursuit denoise method was successfully applied to the parabolic Radon
transform. This showed that one-norm regularization techniques can be used to calculate a sparse
approximation of the Radon panel. The proposed method was presented as an alternative to the
popular Bayesian method. Tests included synthetic data, as well as field data examples from the
Gulf of Mexico and Svalbard. Using the basis pursuit denoise method for linear problems in the
complex plane has also gained attention in other fields of signal processing, and has interesting
applications in geophysics. This is a consequence of rapid development in computing power and
research on efficient optimization routines.
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APPENDIX A

Alternative Frequency Domain Formulations

The linear Radon transform was not invented in the field of geophysics, however, the term
slant stack was introduced by Schultz and Claerbout (1978) as a part of a migration method.
A mathematical operation transforming a seismic section f(x, t) to the (p, τ)-domain with the
convenience of providing certain geophysical properties. Suppose p is the horizontal ray parameter
and τ is the intercept time

p =
kx

ω
=

1

cx
=

cos α

c
, τ = t − px =

h

c
cos α,

where α is the angle of a planar wave with respect to the horizontal axis, c is the (phase) velocity,
cx is the apparent (phase) velocity in the offset direction, kx is the wavenumber, ω is the angular
frequency and h is the depth of the plane reflector. Parameters and their physical properties are
described in Table 1. Figure 1 shows geometric interpretation of the parameters.

x

z

t

Ray

Wavefront

Figure 1: A geometric illustration of the different parameters involved in the linear Radon transform.
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α Angle of a planar wave wrt. the x-axis.
Dimension, [radians or degrees]

c The (phase)velocity in the medium.
Dimension, meter pr. second [m/s].

cx Apparent (phase)velocity in the x offset direction.
Dimension, meter pr. second [m/s].

h Distance from surface to first horizontal seismic boundary.
Dimension, meter [m].

kx = 2π/λ Wavenumber, the spatial analog of frequency, with wavelength λ.
Dimension, number of wavelengths per unit distance [1/m].

ω = 2πf Angular frequency. With frequency f measured in hertz.
Dimension, radians pr. second. [1/s].

p Horizontal ray parameter, unique parameter for each ray.
Dimension, seconds pr. kilometer [s/km].

τ Intercept time.
Dimension, seconds [s].

Table 1: Description of the parameters involved in the (p, τ)-transform.

1. Linear Radon in the FK-domain

A continuous formulation of the linear Radon transform is given as

r(p, τ) =

∫ ∞

−∞
f(x, t = τ + px) dx.(44)

For more insight, the analysis is done in the frequency domain. The two-dimensional Fourier
transform of the seismic signal f(x, t) gives

q(kx, ω) =

∫∫ ∞

−∞
f(x, t) ei(xkx−ωt) dx dt.

Substituting kx = pω, the transform is given as

q(pω, ω) =

∫∫ ∞

−∞
f(x, t) eiω(px−t) dx dt.(45)

By introducing new variables

τ = t − px and ξ = x,

the Jacobian is

J =
∂(x, t)

∂(ξ, τ)
=

∣∣∣∣
∂x/∂ξ ∂x/∂τ
∂t/∂ξ ∂t/∂τ

∣∣∣∣ = 1,

i.e. dx dt = J dξ dτ . The integral in Equation (45) is then

q(pω, ω) =

∫∫ ∞

−∞
f(ξ, τ + pξ) e−iωτ dξ dτ.

Using Equation (44),

q(pω, ω) =

∫ ∞

−∞
r(p, τ) e−iωτ dτ,
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and then the inverse Fourier transform of q(pω, ω), yields the Radon panel

r(p, τ) =
1

2π

∫ ∞

−∞
q(pω, ω) eiωτ dω(46)

Direct numerical implementation of this method will lead to the problems with grids points not
matching after the substitution kx = pω, this can be resolved using interpolation. Trade-offs for
using interpolation is possible distortion of the data and uncertainties which is hard to control.
Computational speed may also decrease dramatically when using certain interpolation methods.

1.1. Inverse linear Radon transform. The mapping from (p, τ) to (x, t) is defined by an
inverse operator. Starting with a Fourier transform of f(x, t) with respect to the temporal variable

s(x, ω) =

∫ ∞

−∞
f(x, t) e−iωt dt =

1

2π

∫ ∞

−∞
q(kx, ω) e−ixkx dkx.

Substituting kx = pω i.e. dkx/dp = ω, yields

s(x, ω) =
ω

2π

∫ ∞

−∞
q(pω, ω) e−ipωx dp.

Applying an inverse Fourier transform with respect to the temporal variable and keeping the inte-
gration in the conventional sense of negative to positive, the rho-filter on the form |ω| is introduced

f(x, t) = F
−1{s(x, ω)} =

1

4π2

∫∫ ∞

−∞
|ω| q(pω, ω) eiω(t−px) dωdp.

The rho-filter is the derivative of the Hilbert transform

|ω| = (iω) × (−i sgn ω) = F{ρ(t)},
with the filters impulse response denoted ρ(t). From Equation (46) the inverse transform is given
as

2πf(x, t) = ρ(t) ∗
∫ ∞

−∞
r(p, t − px) dp =

∫ ∞

−∞

d

dt
H {r(p, t − px)} dp,

where the operator ∗ denotes convolution and H denotes the Hilbert transform.

2. Parabolic Radon and the Fresnel transform

In optics and diffraction theory the Fresnel transform (Gori, 1981) is a useful tool, but it has
not found many significant applications in geophysics. Maeland (2000) suggests to modify the
parabolic Radon transform with the substitution t = τ + q(x − ξ)2, thus introducing the Fresnel
transform. If g(ξ, q, ω) is an image of r(q, ω) at ξ = 0 it is possible to obtain another closed-form
derivation of the parabolic Radon transform.

g(ξ, q, ω) =

∫ ∞

−∞
f(x, ω) eiωq(x−ξ)2 dx =

∫ ∞

−∞
f(x, ω) E(x − ξ) dx = (f ∗ E)(x)

The integral can be evaluated as a convolution in x and at zero offset

r(q, ω) = g(ξ = 0, q, ω).

Applying the spatial Fourier transform yields

ĝ(kx, q, ω) =

∫ ∞

−∞
g(ξ, q, ω) eiξkx dξ = f̂(kx)Ê(kx).
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Taking the DC component, ξ = 0 of ĝ(kx, q, ω) gives in explicit notation

ĝ(kx, q, ω) =

∫ ∞

−∞
f(x, ω) eikxx dx

∫ ∞

−∞
eiωqx2

eikxx dx

=
√

(iπ/ωq)e−ik2
x/4ωq

∫ ∞

−∞
f(x, ω) eikxx dx.

This is a simplification which is possible to implement numerically without any elaborate techniques.
An inverse spatial Fourier transform involving only the DC component yields

r(q, ω) = g(ξ = 0, q, ω) =

∫ ∞

−∞
ĝ(kx, q, ω) dkx.

The parabolic Radon transform has been evaluated in the spatial wavenumber domain by the
Fresnel transform. Maeland (2005) makes use of this result to establish a relation between zero
offset migration within the paraxial approximation of the wave equation and the parabolic Radon
transform. His paper focuses on structural stability and how the different images (methods) are
related.
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APPENDIX B

Algorithms, Code Examples and Parameters

1. Algorithms

This section contains different algorithms which was discussed in the text.

Algorithm 2 (The Gradient Decent Method). Given b ∈ R
m and A ∈ R

m×m is assumed to
be positive definite and symmetric.

k = 0, x0 = 0, r0 = b
while rk 6= 0 do

k = k + 1
αk = rT

k−1rk−1/rT
k−1Ark−1

xk = xk−1 + αkrk−1

rk = b − Axk

end while

Algorithm 3 (Levinson, Golub and Van Loan (1989)). Given b ∈ R
m and real numbers 1 =

r0, r1, . . . , rn such that T = (ri−j) ∈ R
m×m is positive definite, the following algorithm computes

x ∈ R
m such that Tx = b.

y(1) = −r(1);x(1) = b(1);β = 1;α = −r(1)
for k = 1 : n − 1 do

β = (1 − α2)β
µ = (b(k + 1) − r(1 : k)T x(k : −1 : 1))/β
v(1 : k) = x(1 : k) + µy(k : −1 : 1)
x(1 : k) = v(1 : k)
x(k + 1) = µ
if k < n − 1 then

α = −(r(k + 1) + r(1 : k)T y(k : −1 : 1))/β
z(1 : k) = y(1 : k) + αy(k : −1 : 1)
y(1 : k) = z(1 : k)
y(k + 1) = α

end if

end for

Note that the MATLAB implementation given in Listing B.1 is a modified version for complex
Hermitian Toeplitz systems, including correction of a misprint from Golub and Van Loan (1989).
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2. MATLAB Code

To facilitate the use of algorithms, discussed in Chapter 4 and 5, this section includes MATLAB
functions used for the numerical experiments.

Listing B.1: Levinson.

1 % LEVINSON SOLVER: Solves a Hermitian Toeplitz system Tz = b.

2 %

3 % [z] = levinson solver(col, b)

4 %

5 % IN: col: the first column of the Toeplitz matrix

6 % b: the right−hand side vector

7 % OUT: z: the complex solution vector

8 %

9 % Reference: Golub, Van Loan, 1989, Matrix Computations: Second Edition

10 %

11 % Comments: A modified version of the algorithm in Golub, Van Loan. Works

12 % for a complex Hermitian Toeplitz systems. Also including a

13 % misprint correction.

14 %

15 function [z] = levinson solver(col, b)

16 konst = col(1);

17 col = col ./ konst;

18 b = b ./ konst;

19 r = col(2: end)';

20 n = length(r)+1;

21 z = zeros(n,1); y = zeros(n,1);

22

23 y(1) = − r(1);

24 z(1) = b(1);

25 beta = 1;

26 alpha = − r(1);

27

28 for k = 1:(n − 1)

29 beta = (1 − alpha * conj(alpha)) * beta;

30 mu = (b(k+1) − r(1:k).' * z(k: −1:1)) / beta;

31 z(1:k+1) = [z(1:k) + mu * conj(y(k: −1:1)) ; mu];

32

33 if k < (n − 1)

34 alpha = −(r(k+1) + r(1:k).' * y(k: −1:1)) / beta;

35 y(1:k+1) = [y(1:k) + alpha * conj(y(k: −1:1)) ; alpha];

36 end

37 end

38 end
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Listing B.2: Conjugate Gradient for a Hermitian Toeplitz system.

1 % CG FFT: The conjugate gradient algorithm with a Hermitian Toeplitz system Tz = b.

2 %

3 % [z] = cg fft(col, b, tol)

4 %

5 % IN: col: the first column of the Toeplitz matrix

6 % b: the right−hand side vector

7 % tol: tolerance limit for convergence

8 %

9 % OUT: z: the complex solution vector

10 %

11 % Comments: This algorithm augments a M x M Hermitian Toeplitz matrix into

12 % a 2M x 2M circulant matrix before solving the matrix−vector

13 % multiplication by the fast Fourier transform.

14 %

15 function [z] = cg fft(t, b, tol)

16 n = length(t);

17 z = zeros(n, 1);

18 r = b;

19 d = [r ; zeros(n −1, 1)];

20

21 colhat = fft([t ; conj(t( end: −1:2))]);

22 while norm(r) > tol

23 r cur = r;

24 g = ifft(colhat . * fft(d));

25

26 alpha = (r' * r) / (d(1:n)' * g(1:n));

27 z = z + alpha * d(1:n);

28 r = r − alpha * g(1:n);

29 beta = (r' * r) / (r cur' * r cur);

30 d(1:n) = r + beta * d(1:n);

31 end

32 end
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Listing B.3: Complex biconjugate gradient method.

1 % COMPLEX BI CG: The complex−biconjugate gradient algorithm with system Az = b.

2 %

3 % [z] = complex bi cg(A, b, tol)

4 %

5 % IN: A: the complex operator (matrix)

6 % b: the right−hand side vector

7 % tol: tolerance limit for convergence

8 %

9 % OUT: z: the complex solution vector

10 %

11 % Reference: Jacobs, D. A. H., 1986, A Generalization of the Conjugate−Gradient

12 % method to solve Complex Systems: Journal of Numerical Analysis,

13 % 6, 447−452

14 %

15 function [z] = complex bi cg(A, b, tol)

16 [n m] = size(A);

17 z = zeros(n, 1);

18 r = b − A * z;

19 rhat = conj(r);

20 p = r;

21 phat = conj(p);

22

23 while norm(r) > tol

24 g = A * p;

25 ghat = A' * phat;

26 alpha = (rhat' * r) / (phat' * g);

27 z = z + alpha * p;

28 r = r − alpha * g;

29 rhat = rhat − conj(alpha) * ghat;

30 beta = − (ghat' * r) / (phat' * g);

31 p = r + beta * p;

32 phat = rhat + conj(beta) * phat;

33 end

34 end
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Listing B.4: Preconditioned (circulant, fft) gradient method.

1 % PCG FFT CIRCULAR: The preconditioned conjugate gradient algorithm solving a

2 % Hermitian Toeplitz system Tz = b, using a circulant preconditioner.

3 %

4 % [z] = pcg fft circular(col, b, tol, c)

5 %

6 % IN: col: the first column of the Toeplitz matrix

7 % b: the right−hand side vector

8 % tol: tolerance limit for convergence

9 % c: the first column of the circulant approximation.

10 %

11 % OUT: z: the complex solution vector

12 %

13 % Comments: This algorithm augments a M x M Hermitian Toeplitz matrix into

14 % a 2M x 2M circulant matrix before solving the matrix−vector

15 % multiplication by the fast Fourier transform. Matrix−vector

16 % division (inversion) with the circulant approximation is also

17 % done by FFT, without the need for augmentation.

18 %

19 function [z] = pcg fft circular(t, b, tol, c)

20 m = length(t);

21 z = zeros(m, 1);

22 r = b;

23 chat = fft(c);

24 p = ifft(fft(r) ./ chat);

25 d = [p ; zeros(m −1, 1)];

26

27 colhat = fft([t conj(t( end: −1:2))]).';

28

29 while norm(r) > tol

30 g = ifft(colhat . * fft(d));

31 p prev = p;

32 r prev = r;

33 alpha = p' * r / (d(1:m)' * g(1:m));

34 z = z + alpha * d(1:m);

35 r = r − alpha * g(1:m);

36 p = ifft(fft(r) ./ chat);

37 beta = p' * r / (p prev' * r prev);

38 d(1:m) = p + beta * d(1:m);

39 end

40

41 end
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Listing B.5: Circulant approximation, classical iteration.

1 % CA FFT SOLVER: Solves the classical iteration on the form C z(n+1) = b − (H−C) z(n),

2 % where C is a circulant approximation to H.

3 %

4 % [z] = ca fft solver(t, c, b, tol)

5 %

6 % IN: t: first column of Toeplitz vector Q(:,1),

7 % from the residual, Q = H − C

8 % b: right hand side of the linear system

9 % c: first column of the circulant approximation

10 % tol: tolerance limit for convergence

11 %

12 % OUT: the complex solution vector

13 %

14 % Comments: This function is tested with the Generalized Jackson

15 % kernel. Other circulant approximation might yield a

16 % different structure, hence the Toeplitz augmentation

17 % could require modification (generalization).

18 %

19 function [z] = ca fft solver(t, b, c, tol)

20 m = length(c);

21 z = zeros(m,1);

22 r = b;

23 chat = fft(c);

24 cb = fft(b) ./ chat;

25 that = fft([t conj(t( end: −1:2))]).';

26

27 while norm(r) > tol

28 z p = z;

29 % Interpolate the Fouier domain by padding zeros.

30 zpad = fft(z, 2 * m−1);

31 % Matrix−vector multiplication in the Fourier domain.

32 g = ifft(that . * zpad);

33 % Fourier transform only the solution.

34 sol = fft(g(1:m));

35 % Compute the fixed point iteration.

36 z = ifft(cb − sol ./ chat);

37 r = z p − z;

38 end

39 end
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Listing B.6: Circulant approximation.

1 % CIRC GEN: Generate a circulant preconditioner based on a Toeplitz column.

2 %

3 % [c] = circ gen(t)

4 %

5 % IN: t: the first column of the Toeplitz matrix

6 %

7 % OUT: c: circulant approximation with Hermitian symmetry (vector)

8 %

9 % Reference: Chan, T. F., 1988, An optimal circulant preconditioner for

10 % Toeplitz systems: SIAM Journal on Scientific and Statistical

11 % omputing, 9, 766−771

12 %

13 % Comments: The MATLAB command circshift (shifts an array circularly) could be

14 % used to generate the complete circulant matrix.

15 %

16 function [c] = circ gen(t)

17 m = length(t);

18 c = zeros(m, 1);

19 c(1) = t(1);

20 k = 1:m −1;

21 c(k+1) = ((m − k). * t(k+1) + k. * conj(t(m+1 −k))) / m;

22 end

Listing B.7: Cholesky factorization.

1 % CHOLESKY SOLVER: Solves a linear system Tz = b by Cholesky factorization.

2 %

3 % [z] = cholesky solver(t, b)

4 %

5 % IN: t: the first column of the Toeplitz matrix

6 % b: the right−hand side vector

7 %

8 % OUT: z: the complex solution vector.

9 %

10 function [z] = cholesky solver(t, b)

11 T = toeplitz(t);

12 C = chol(T);

13 z = C \ (C' \ b);

14 end
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