

©2007 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted components of this work in
other works.

Paper V:
Challenges in Securing Networked J2ME
Applications

0018-9162/07/$25.00 © 2007 IEEE24 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O M P U T I N G P R A C T I C E S

Challenges in Securing
Networked J2ME
Applications

An increasing number of smart phones support Java 2,

Micro Edition. Mobile application developers must deal

with J2ME’s inherent security weaknesses as well as bugs

in implementations on real devices.The new Security and

Trust Services API for J2ME addresses some of these

challenges, although it too has shortcomings.

A smart phone combines a full-featured mobile phone with advanced data and
multimedia functionality including PDA capabilities, Internet and e-mail
access, and MP3 and video playback. It typically includes a large color touch
screen, a keyboard, Bluetooth technology to communicate with other devices,
and substantially more memory and processing power than a regular mobile

phone. Another key feature is the ability to install additional applications.
The smart phone market is growing fast,1 spurring development of new mobile

software for everything from gaming to online banking to GPS navigation. For
example, total global revenue in the mobile gaming market is expected to soar from
$2.6 billion in 2005 to $11.2 billion by 2010, with online multiplayer games gen-
erating 20.5 percent of market share.2

Many different development platforms exist for smart phones, categorized
by phone manufacturers, mobile operating systems, and device capabilities. The
most widespread is Java 2, Micro Edition (http:// java.sun.com/j2me), available on
nearly 80 percent of currently marketed smart phones.

Experience gained during a commercial development project demonstrates how
J2ME technologies, particularly security-related functionality, are implemented on
real devices and provides insights into the problems researchers encounter during the
development process.

J2ME TECHNOLOGIES
The Java 2 platform has several editions, including Enterprise Edition (J2EE) for

the server side and Standard Edition (J2SE) for desktop systems. J2ME is a highly
optimized Java runtime environment aimed at mobile phones, PDAs, and other
small devices.

Configurations and profiles
J2ME configurations are intended for devices with similar characteristics in

terms of processors and memory. Profiles target devices that are similar in terms
of screen type, input devices, and network connectivity; they complement the low-
level functionality of configurations by adding support for user interaction and
network connectivity.

André N.
Klingsheim,
Vebjørn Moen,
and Kjell J. Hole
University of Bergen

PAPER V: CHALLENGES IN SECURING NETWORKED J2ME APPLICATIONS 69

February 2007 25

A configuration specifies the supported Java virtual
machine features, the included Java programming lan-
guage features, and the supported Java libraries and
application programming interfaces (APIs). Two con-
figurations are widely available on J2ME devices:
Connected Limited Device Configuration 1.0, which has
been around for years, and CLDC 1.1, which is deployed
in newly released devices (http://java.sun.com/products/
cldc). The most notable difference between the two con-
figurations is that CLDC 1.1 adds support for floating-
point operations. Because CLDC 1.1 is a superset of
CLDC 1.0, Java applications built for CLDC 1.0 will
run without problems on CLDC 1.1.
Thus, unless any of the additions in
version 1.1 is specifically needed,
developers should build their appli-
cations for CLDC 1.0 to be compat-
ible with as many devices as possible.

Two profiles extend CLDC func-
tionality: Mobile Information De-
vice Profile 1.0 and 2.0 (http://java.
sun.com/products/midp). The MIDP
profiles add APIs for user interac-
tion, network connectivity, and per-
sistent storage. HTTP connections provide network
connectivity, while a record management system pro-
vides persistent storage. MIDP 2.0, a superset of MIDP
1.0, includes support for secure HTTP (HTTPS) con-
nections and more powerful graphics APIs for gaming.

Specifications
New J2EE/J2SE/J2ME specifications emerge through

the Java Community Process (JCP) program. Developers
first submit a Java Specification Request for acceptance
by an executive committee. Once the committee accepts
a JSR, an expert group assumes responsibility for spec-
ification development. The specification draft must first
pass a community review, then a public review. The
expert group presents a proposed final draft, and an
approval ballot decides if the specification is suitable
for release.

An expert group typically consists of many partici-
pants. For example, the MIDP 2.0 expert group
included, among others, Ericsson, Motorola, Nokia,
Siemens, Sun Microsystems, Samsung, and Symbian.
Expert groups enable large industrial parties to collab-
orate in specifying new functionality for the Java plat-
form. This minimizes competition among different
vendor specifications and increases the likelihood of a
specification’s wide adoption. All CLDC versions and
MIDP versions resulted from JSRs, as did several other
J2ME components such as the Security and Trust
Services API (JSR-177), the Wireless Messaging API
(JSR-120), and the Java APIs for Bluetooth Wireless
Technology (JSR-82). All specifications are freely avail-
able at the JCP Web site (www.jcp.org).

CURRENT CHALLENGES
J2ME developers face several challenges. J2ME-

enabled smart phones generally have some software
quality issues, and developers are likely to spend time
solving problems resulting from the varying quality of
J2ME implementations. Specific phone models can have
their own bugs, forcing developers to maintain several
parallel versions of their source code to support as many
devices as possible.

This situation is inconsistent with the Java philosophy
of “write once, run anywhere,” and it severely increases
the complexity of mobile software development and

maintenance. In our experience,
MIDP 2.0 implementations have
fewer bugs than MIDP 1.0 imple-
mentations. However, to cover as
much of the market as possible,
developers must consider all existing
MIDP 1.0 devices. MIDP 2.0 devices
still constitute a minority of all J2ME
devices sold in recent years.

Insufficient testing
Many developers fail to recognize

that J2ME devices can behave inconsistently. Testing
J2ME applications on many different devices is critical
to ensuring that security-related functionality meets
expectations. Businesses that base their testing on only
four or five devices are often surprised when their appli-
cation does not run correctly on other devices. In our
opinion, too many businesses neglect the testing phase
and let their customers do the beta testing. For such a
strategy to succeed, the application must be unique and
customers must be both enthusiastic and understanding.

To truly appreciate how J2ME phones operate, devel-
opers should test several devices from each major ven-
dor, with each version of a vendor’s development
platform represented in the set of test devices. Of course,
testing 40 to 50 or more devices is expensive. Businesses
thus must carefully balance the cost of testing with the
risk of releasing an application that might not function
properly on some devices.

Permanent bugs
Desktop users commonly download patches from

Microsoft Windows Update or similar Web sites to
solve security issues and fix bugs in software. Mobile
phone vendors also release new software versions, but
these generally do not reach consumers who have
already bought the device. In most cases, users must
take their mobile phone to a repair shop to have a soft-
ware upgrade performed. Since few people actually do
this, the bugs on a new mobile phone usually stay there
for the device’s lifetime. However, a user who buys the
same phone a year later will probably get a newer soft-
ware version.

Many developers
fail to

recognize that
J2ME devices

can behave
inconsistently.

70 RISKS IN NETWORKED COMPUTER SYSTEMS

26 Computer

With mobile phone viruses starting to appear, there is
a growing need for a patching solution that lets con-
sumers upgrade the phone software themselves, similar
to what they hopefully do with their desktop systems.

Resource management
Although smart phones have more memory, process-

ing power, network bandwidth, and disk space than
standard mobile phones, they are still a resource-con-
strained platform compared to the desktop. In addition
to traditional functionality, developers must thus con-
sider effective resource utilization to make user-friendly
mobile applications.

Defensive programming is the key
to creating a well-functioning appli-
cation. For example, a program can
query available runtime memory
and storage memory while execut-
ing to ensure that the device has
enough memory to carry out the
program’s operations. Otherwise, if
the device runs out of memory, it
will show an error message and ter-
minate the application, giving the
user the impression that an error occurred when in fact
the application did not adapt to the available resources.

Scarce resources limit developers’ options, as func-
tionality-rich security libraries can be too complex to
bundle with an application. After all, if a J2ME imple-
mentation had the capacity to store and run such a
library, it could have included one in the first place.
The use of these libraries is not impossible, but older
devices might not have the capacity to install and run
the application.

Responsive applications
Applications must be responsive to provide a positive

user experience. To achieve this goal, intimate knowl-
edge of J2ME devices’ inner workings is helpful, since
mobile phones behave differently. One example is
actively triggering garbage collection to reclaim mem-
ory from unused objects. In most cases, running a
garbage collector in the background will minimally
impact the application, but some devices will freeze for
a few seconds while collecting memory, which is prob-
ably not what the developer wants or expects.

Multithreading is also important when developing
applications for mobile phones. A program’s execution
flow is event-driven, so the main thread must be idle and
ready to handle events. Time-consuming operations such
as lengthy calculations or network communication
should thus occur in a separate thread to retain a respon-
sive user interface. This should be familiar to those
developing graphical user interface applications on the
desktop, as the same UI versus non-UI thread consider-
ations apply.

MIDP 2.0 SECURITY FRAMEWORK
MIDP 2.0 includes several mechanisms to secure appli-

cations and communication channels. Applications can
be signed to obtain authenticity and integrity, while
HTTPS connections realize secure communication chan-
nels, which in most cases rely on the Secure Sockets Layer
(SSL) or Transport Layer Security (TLS) protocol. In addi-
tion, MIDP 2.0 tries to ensure that an application cannot
read other J2ME applications’ persistent data without
explicit permission.

However, studying MIDP 2.0’s details reveals that
some critical security functionality is actually optional

on J2ME devices or can be based on
insecure mechanisms. Developers
will also be disappointed to realize
that, when real testing begins, some
smart phones do not correctly
implement mandatory security func-
tionality.

Application signing
X.509 public-key infrastructure

(PKI)-based signature verification,3

an optional feature in the MIDP 2.0
specification, lets devices verify a signed J2ME applica-
tion’s origin and integrity. Signed applications are gen-
erally desirable for m-commerce and mobile government
services, but when users install a signed application on
devices that do not verify signatures, parts of the secu-
rity architecture crumble.

In fact, two newly released Samsung smart phones we
tested during our project refused to install J2ME appli-
cations signed with the private key belonging to a code-
signing certificate obtained from Verisign. However, the
Nokia devices we tested validated the certificate and
applications without problems.

To support all devices, developers must provide both
signed and unsigned versions of applications to cus-
tomers, effectively making the security architecture’s
signed application feature optional.

Certificate management and verification
All certificate verification procedures on a mobile

phone rely on a set of preinstalled root certificates
(belonging to certificate authorities), equivalent to what
is present in Web browsers. Of course, different mobile
phones have different root certificates installed.

Additional root certificates can be installed on smart
phones, which is very useful during a test phase. We suc-
cessfully created and installed a self-signed X.509v3 cer-
tificate on the Nokia 6600 by publishing it to a Web
server and then downloading it to the phone via the
Wireless Application Protocol (WAP). A certain level of
user interaction was needed after installing the certifi-
cate, as all certificates in this device have properties
describing their area of use. A user-installed certificate

Functionality-rich
security libraries

can be
too complex

to bundle with
an application.

PAPER V: CHALLENGES IN SECURING NETWORKED J2ME APPLICATIONS 71

February 2007 27

must thus be enabled for verification of signed applica-
tions or server authentication before it can be used.

An important requirement when working with
certificates is the ability to validate a certificate. Time-
limited validity is one mechanism, but support for cer-
tificate revocation is more critical. “Certificate
revocation can be performed if the appropriate mecha-
nism is implemented on the device,” MIDP 2.0 states.
“Such mechanisms are not part of MIDP implementa-
tion and thus do not form a part of the MIDP 2.0 secu-
rity framework.” Consequently, a certificate’s validity
must be based on the assumption that it has not been
revoked.

During our project, we observed
that the Samsung SGH-E720 had
preinstalled Verisign class 1, 2, 3,
and 4 root certificates reported valid
from 1 October 1999 to 1 January
1970. (Other preinstalled certificates
showed sensible validity intervals.)
The same Verisign root certificates
on the Nokia 6600 all had a 1
October 2049 expiration date.
Giving Samsung the benefit of the
doubt, we assume that the invalid date is not the value
actually stored in the certificate. However, because the
date is not presented correctly, the expiration date might
not be interpreted correctly during the certificate vali-
dation process. Unfortunately, we could not verify this,
as finding a Web site that uses a certificate signed by a
specific root certificate is not a trivial task.

Secure communication
Secure connections in MIDP 2.0 must be implemented

by one or more of the following specifications:

• HTTP over TLS (RFC 2818) with TLS v1.0 (RFC
2246),

• SSL v3.0,
• Wireless Transport Layer Security (WTLS), or
• WAP TLS Profile and Tunneling Specification.

A developer cannot know which specifications are
implemented on a specific device without actually test-
ing it. In the case of WTLS, end-to-end encryption is not
provided. Secure connections will then exist between the
phone and the WAP gateway and from the gateway to
the final destination. Thus, the gateway has access to
unencrypted data and must be fully trusted. This is unac-
ceptable for a high-security application, as the mobile
network provider usually operates the gateway.

In addition, secure connections in MIDP 2.0 require
the server to have a valid certificate for authentication.
However, there is no support for certificate-based
authentication of the client, so the client must be authen-
ticated at the application level by other means.

Secure storage
MIDP 2.0 does not support encrypted storage, making

it vulnerable to hardware attacks. On some devices it is
possible to install a file system explorer, locate the files
that J2ME uses, and send those files to another device
via Bluetooth technology. Thus, J2ME’s storage system
cannot be trusted with sensitive data unless the applica-
tion itself secures the data. Cryptographic libraries for
Java might be a partial solution—for example, Bouncy
Castle’s lightweight cryptography API supports several
symmetric ciphers. However, the availability of crypto-
graphic APIs does not automatically solve the plaintext

storage problem.
Encryption is a computation-

intensive task, and when imple-
mented in Java it can be time-
consuming because low-level opti-
mizations such as those for CPU
architecture are impossible. Native
libraries or cryptographic hardware
are likely to perform encryption
more efficiently.

Another important issue is the lack
of sources of randomness in J2ME

implementations. A strong cipher can be used, but the
encryption key must be impossible to guess. MIDP 2.0
does not provide a cryptographically strong pseudoran-
dom number generator similar to SecureRandom in
J2SE. Thus, the PRNG in J2ME is not suitable for gen-
erating encryption keys. Nevertheless, developers use it
for other purposes, and this can have a major impact on
a system’s security, especially since they tend to seed the
PRNG with the current time.4 One example is an attack
on SSL in Sun’s MIDP reference implementation.5

Because MIDP 2.0 does not provide encrypted stor-
age and MIDP 1.0 does not provide HTTPS links, some
J2ME development companies specify their own light-
weight cryptographic schemes. In most cases, these well-
meaning efforts to create new cryptographic algorithms
result in solutions that keep data hidden from average
users but are rarely cryptographically strong. Such ini-
tiatives usually rely on the secrecy of the encryption algo-
rithm, which is considered very bad practice.4

Many countries have laws regulating the protection
of private data during transportation over a medium
that the two communicating parties do not control.
These laws often require encrypting the data with an
algorithm of strength equal to or better than the Triple
Data Encryption Standard; its successor, the Advanced
Encryption Standard, also fulfills this requirement.
However, homemade cryptographic solutions almost
certainly lack the strength of well-tested encryption algo-
rithms such as 3DES or AES.

USING CLIENTS TO ATTACK THE SERVER
Beyond the well-known problem of Internet server

The lack of sources
of randomness

in J2ME
implementations

is an important
issue.

72 RISKS IN NETWORKED COMPUTER SYSTEMS

28 Computer

attacks from viruses and worms and distributed denial-
of-service attacks, developers must consider the many
ways in which client applications can attack the server
application. Two examples are clients sending commands
out of order or sending unexpectedly large data chunks
as input to an application.

Client software can find its way into the hands of all
kinds of people, including those who cannot resist try-
ing to break it. Hackers can reverse engineer software
and study the source code or, short of that, simply tam-
per with the binary code. The gaming industry is expe-
riencing the problem of games being cracked to avoid
license key checks on a daily basis.
Another strategy hackers employ is
to use a network sniffer to identify
the application protocol and then
write their own malicious client that
behaves similarly to the original one.

Developers can take several mea-
sures to increase the level of security
in a client-server application, but in
our experience, most place too much
trust in their client software. Their
arguments are along the lines of:
“Hey, we wrote it. Why shouldn’t we trust it?” In our
opinion, this is a dangerous attitude.

FUTURE J2ME SECURITY: SATSA
The new Security and Trust Services API (http://

java.sun.com/products/satsa) for J2ME addresses sev-
eral shortcomings in the MIDP 2.0 security architecture.
SATSA relies on a security element implemented in either
software or hardware. This implies that the SE can take
different forms such as a software component, dedicated
hardware in the device, or a removable smart card.
Several SEs can be available in one device. The exact
form of the SE is transparent to the application devel-
oper, as the SATSA implementation handles interaction
with the SE.

Support for cryptographic smart cards is particularly
useful to developers writing J2ME applications for smart
phones. A smart card can store keys and certificates and
sign data without the private key ever leaving the card.
High-end smart cards are tamper-resistant and provide
authentication schemes, such as requiring a PIN or a
password before granting access. Private keys need not
be stored on diverse insecure clients, enabling vendors to
focus on protecting the smart card from physical intru-
sion and, just as important, API exploitation.6

Many banks already issue smart cards that include a
magnetic strip to be compatible with old ATMs. By giv-
ing customers smart cards with cryptographic tools, a
bank could also provide client software for mobile
phones, PDAs, and desktop computers, thereby extend-
ing nearly the same level of security for key storage on
all platforms. Of course, different operating systems

have different levels of security, so the bank would have
to carefully analyze each platform to control smart
card access.

SATSA APIs
The SATSA specification defines four APIs: APDU,

JCRMI, PKI, and CRYPTO. The first two add func-
tionality for smart card interaction. SATSA-APDU
enables communication with smart cards using the
Application Protocol Data Unit protocol that the
ISO7816-4 specification defines, while SATSA-JCRMI
enables high-level communication with smart cards

through the Java Card Remote
Method Invocation Protocol.

SATSA-PKI lets applications re-
quest digital signatures from an SE,
thereby providing authentication and
possibly nonrepudiation3 using keys
stored on a smart card. Certificate
management gives applications the
opportunity to add or remove client
certificates from an SE. It also
includes the possibility to request
generation of a new key-pair and

then produce a Certificate Signing Request. Having the
client generate its own keys is a critical element in sup-
porting nonrepudiation in a system. Because the SE might
not support key generation, the developer must choose
it with care, considering the application requirements.

SATSA-CRYPTO offers cryptographic tools includ-
ing message digests, digital signature verification, and
ciphers that let applications store data encrypted and
signed on a mobile device, ensuring both confidential-
ity and integrity for sensitive information. It is up to the
SATSA implementer to decide which ciphers and digest
algorithms to include. The specification recommends
DES, 3DES, and AES as symmetric ciphers, RSA as an
asymmetric cipher, and the Secure Hash Algorithm ver-
sion 1 as the digest algorithm. SHA1 with RSA is the
recommended algorithm for digital signatures.

Operating system issues
SATSA is distributed as a part of the Java Runtime

Environment in some smart phones. The phone’s oper-
ating system must thus be fully trusted, as the JRE
depends on services from the OS. The SATSA specifica-
tion states that both SATSA and the application using
it must trust the OS. When SATSA assumes UI control—
for example, when asking the user for the smart card
PIN—the UI must be distinguishable from one gener-
ated by external sources to prevent a malicious appli-
cation from mimicking the SATSA UI. Further, external
sources cannot be able to retrieve or insert the PIN.
These requirements put a lot of responsibility on the OS.

Because a user enters the PIN on the device through
the keypad, a keylogger application could possibly

Support for cryptographic
smart cards is

particularly useful
to developers writing

J2ME applications
for smart phones.

PAPER V: CHALLENGES IN SECURING NETWORKED J2ME APPLICATIONS 73

February 2007 29

obtain the number. Thus, the OS must limit the distri-
bution of key-pressed events to the SATSA implemen-
tation exclusively. Keyloggers exist for Symbian OS
versions prior to version 9, so this could be a real issue.
Another potential problem is that the OS stores the PIN
in memory before handing it over to the smart card;
other applications could possibly read this memory.

J2ME applications use a per-application dedicated
logical channel to communicate with the smart card.
This channel might be vulnerable to hijacking via the
OS’s low-level functionality. A hacker who acquires
access to the smart card on a level below the SATSA
implementation could send requests
to the smart card, circumventing the
implementation. If this functionality
was included in, for example, a
Trojan horse, the attacker could
have full access to the smart card
without the user’s knowledge.

These scenarios illustrate prob-
lems with putting complete trust in
the OS. In our opinion, an applica-
tion cannot be more secure than the
OS it runs on. It remains to be seen how the mobile
platform copes with viral threats, as mobile phone
viruses are only beginning to emerge.

The Trusted Computing Group has proposed an ini-
tiative to make OSs on mobile devices more secure
(www.trustedcomputinggroup.org/groups/mobile). In the
future, mobile devices are likely to become more trust-
worthy, facilitating development of secure applications.

SATSA shortcomings
Client certificates that the SATSA implementation

stores cannot be used for authentication while setting
up HTTPS links using SSL or TLS. Developers thus
must handle certificate-based client authentication
themselves.

One alternative is to open an SSL connection to a
server, which authenticates the server and provides a
secure communication channel. Client authentication
can then be carried out using a certificate provided by
the client application and having the client sign a chal-
lenge from the server.

This scheme withstands dictionary or brute-force
attacks and is thus more robust than widely used pass-
word authentication. Consequently, SATSA can improve
security in current client-server applications by replac-
ing old-fashioned authentication schemes. However, it
would be convenient if SSL or TLS implementations
found in most newer smart phones could use the client
certificates the SATSA implementation stores.

Signature verification with SATSA is more difficult
than signature creation. SATSA generates signed mes-
sages on the Cryptographic Message Syntax format but
does not easily validate them. To verify a signature, the

application must first split a message into its respective
data and signature parts and then supply a public key.
Libraries exist for handling CMS messages, so develop-
ers need not implement CMS message parsing. However,
it would be easier if SATSA could verify its own
signed messages.

In addition, SATSA handles signature generation and
verification differently. The underlying SATSA imple-
mentation takes control of the UI and presents the user
with the certificate for signing along with the data to
sign. The user can then be confident in signing the
intended data. Signature verification is just as impor-

tant, but in this case the application
must present details about the signa-
ture to the user. In other words, you
trust SATSA when signing data and
the application to show you correct
information when verifying signa-
tures. Ideally, SATSA should be
trusted on both occasions.

Moreover, SATSA does not sup-
port certificate verification. The
developer must implement the cer-

tificate verification process and public-key extraction
from the certificate, along with presenting the certificate
and signed data to the user. SATSA provides the most
basic building blocks for PKI-enabled applications, but
it does not include any certificate validation functional-
ity present in J2SE.

Finally, private keys stored on the smart card cannot
be used for decryption, as they are accessible only for
signing. SATSA supports asymmetric cryptography, and
the ability to select a certificate and its corresponding
private key for decryption would be convenient. Data
could then be decrypted on the smart card, without
exposing the private key to the application or OS.

D eveloping secure J2ME applications is difficult due
to limitations in the J2ME security model as well
as bugs in real devices. A proper security analysis

and testing of real devices must be carried out to deter-
mine the level of security that can be achieved.

The SATSA specification adds cryptographic capabil-
ities to the J2ME platform. With SATSA, symmetric
encryption is possible, and authentication schemes can
rely on public-key cryptography instead of the usual
username and password authentication. User certificate
storage and support for digital signatures in smart cards
open up possibilities for applications that require a high
level of security.

Although SATSA is a good fit for scenarios requiring
strong client authentication and digital signatures on
behalf of the client, it provides only the basic crypto-
graphic building blocks for a PKI. Important function-
ality found in J2SE such as certificate parsing,

An application
cannot be

more secure
than the OS
it runs on.

74 RISKS IN NETWORKED COMPUTER SYSTEMS

30 Computer

validation, and storage is left to the developer.
Implementing signature validation and public-key cryp-
tography based on public keys in certificates thus
remain complex tasks. ■

Acknowledgment
We thank World Medical Center Norway for its

cooperation during this project and for giving us access
to the mobile phones needed to conduct the security-
related tests.

References
1. Canalys.com, “Worldwide Smart Phone Market Soars in Q3,”

25 Oct. 2005; www.canalys.com/pr/2006/r2006071.htm.
2. Telecoms.com, “Mobile Games Industry Worth USD $11.2

Billion by 2010,” 19 May 2005; www.telecoms.com/
itmgcontent/tcoms/search/articles/20017303052.html.

3. C. Adams and S. Lloyd, Understanding PKI: Concepts, Stan-
dards, and Deployment Considerations, Addison-Wesley Pro-
fessional, 2nd ed., 2002.

4. J. Viega and G. McGraw, Building Secure Software: How to
Avoid Security Problems the Right Way, Addison-Wesley Pro-
fessional, 2001.

5. K.I.F. Simonsen, V. Moen, and K.J. Hole, “Attack on Sun’s
MIDP Reference Implementation of SSL,” Proc. 10th Nordic
Workshop Secure IT-Systems, 2005, pp. 96-103; www.
nowires.org/Papers-PDF/MIDP-SSL.pdf.

6. R. Anderson et al., “Cryptographic Processors—A Survey,”
Proc. IEEE, vol. 94, no. 2, 2006, pp. 357-369.

André N. Klingsheim is a PhD student in the Department
of Informatics, University of Bergen, Norway. His research
interests include network and application security. Kling-
sheim received an MSc in computer science from the Uni-
versity of Bergen. He is a member of the IEEE Computer
Society. Contact him at klings@ii.uib.no.

Vebjørn Moen is a researcher in the Department of Infor-
matics, University of Bergen. His research interests include
network and application security. Moen received a PhD in
computer science from the University of Bergen. Contact
him at moen@ii.uib.no.

Kjell J. Hole is a professor in the Department of Informat-
ics, University of Bergen. His research interests include net-
work and application security. Hole received a PhD in
computer science from the University of Bergen. He is a
member of the IEEE Computer Society. Contact him at
kjell.hole@ii.uib.no.

■ Monthly updates highlight the latest additions to the digital library
 from all 23 peer-reviewed Computer Society periodicals.

■ New links access recent Computer Society conference publications.

■ Sponsors offer readers special deals on products and events.

Available for FREE to members, students, and computing professionals.

Visit http://www.computer.org/services/csdl_subscribe

For the
IEEE
Computer Society
Digital Library
E-Mail Newsletter

Si
gn

 U
p

To
da

y

PAPER V: CHALLENGES IN SECURING NETWORKED J2ME APPLICATIONS 75

