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Introduction

Loewner’s parametric method based on the Loewner equation proved to be one of the most
powerful tools for solution of extremal problems in the theory of univalent functions. It
was first applied in 1923 for proving the Bieberbach conjecture for the third coefficient
(namely, that if f = z + a2z

2 + a3z
3 + . . . is univalent in D, then |a3| ≤ 3). Later, in 1984

it was used to prove finally the Bieberbach conjecture for all coefficients, and after that
interest in the Loewner equation waned.

In 2000 Oded Schramm revived the interest when he considered a stochastic version of
the Loewner equation. This allowed to find solutions to several problems of mathematical
physics which previously seemed to be insoluble. The solution to this equation is now
known as the Schramm-Loewner evolution. Despite considerable interest in this equation
now, very little is known about geometric properties of its solutions. In 1940’s Kufarev
constructed an example in which the Loewner equation generated a non-slit solution. He
also formulated a condition for the driving term guaranteeing that the Loewner equation
generates slit solutions. The next sufficient condition was found only in 2005 and was given
in terms of the Lipschitz-1/2 norm of the driving term, and the non-slit example remained
the only known of its kind.

In this thesis we consider examples of non-slit solutions given by Prokhorov and Vasil’ev
and study Lipschitz properties of the corresponding driving terms. We also construct a
new family of non-slit examples which generalize Kufarev’s example, and in which the
local Lipschitz characteristic of the driving term takes values from 3

√
2
√

5−1√
3
√

5−5
≈ 4.01 to

+∞. This should be compared to the results by Marshall, Rohde and Lind, which say that
driving terms with local characteristic less than 4 always generate slits.

The first chapter contains basic prerequisites from the theory of univalent functions
and also several other definitions and results that we will use in this thesis. In the second
chapter we consider different types of the Loewner and Loewner-Kufarev equations and
describe Loewner’s parametric method. In the third chapter we focus attention on relations
between geometric properties of solutions and analytic properties of the driving term. The
last chapter contains the main results of this thesis.





Chapter 1

Preliminaries

In this chapter we give a brief summary of fundamental facts from complex and real analysis
and, in particular, from the theory of univalent functions that we will use further in this
work. Some of them (e. g., properties of the class S and the Carathéodory convergence
theorem) are not mentioned that often in basic complex analysis courses, whereas others
(normal families and the Riemann mapping theorem) are covered in most textbooks.

Regarding the Lipschitz condition, only the case of order 1 is usually mentioned in
courses of ordinary differential equations, but the general case of α ≤ 1 and the local
Lipschitz conditions are used quite infrequently. So, it might be useful to collect all this
information in one chapter for future reference. In our presentation we mostly follow the
classical texts [Ahl78], [Dur83] and [Rud87].

1.1 Local Uniform Convergence and Normal Families

One of the most widely used notions of functional convergence in the theory of analytic
functions is the so-called local uniform convergence.

Definition 1.1. A sequence {fj} of functions in a domain D is said to converge to f
locally uniformly if to every z0 ∈ D and to every ε > 0 there corresponds δ > 0 and an
integer N such that |fj(z)− f(z)| < ε for all z in the δ-neighborhood of z0 and all j > N .

Since the complex plane is a locally compact topological space, local uniform conver-
gence in D is equivalent to compact convergence in D, that is, uniform convergence on all
compact subsets of D.

The topology of local uniform convergence is metrizable (an example of a distance
function inducing it can be found in [Ahl78, p. 220]), and thus, sequential compactness is
equivalent to compactness in this topology.

An important property of local uniform convergence is the fact that it preserves ana-
lyticity. The precise statement of this is given in the following theorem.
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Theorem 1.2 (Weierstrass). Suppose that the functions fn are analytic in a domain D,
and that the sequence {fn} converges to f locally uniformly in D. Then f is analytic in D.
Moreover, f ′n converges uniformly to f ′ locally uniformly in D.

Hurwitz’s theorem, given below, or rather its corollary, can be used for showing univa-
lence of the locally uniform limit of a sequence of univalent functions (recall that a function
is called univalent in a domain D if it is meromorphic and injective there).

Theorem 1.3 (Hurwitz). If the functions fn are analytic and nonvanishing in a domain
D, and if fn → f as n → ∞ locally uniformly in D, then f is either identically zero or
never equal to zero in D.

Corollary 1.4. Let fn be analytic and univalent in a domain D, and suppose fn → f as
n→∞ locally uniformly in D. Then f is either univalent or constant in D.

The notion and properties of the local uniform convergence lead to the definition of
normal families.

Definition 1.5. A family F of functions analytic in a domain D is called normal if every
sequence {fn} ⊂ F contains a subsequence converging locally uniformly in D.

In other words, a normal family is a family whose closure is compact in the topology
of local uniform convergence.

Montel’s theorem gives a simple characterization of normal families.

Theorem 1.6 (Montel). A family of functions F analytic in a domain D is normal if and
only if it is uniformly bounded on each compact subset of D.

We conclude this section with the Vitali theorem, which states that for normal families
pointwise convergence is equivalent to local uniform convergence.

Theorem 1.7 (Vitali). Let the functions fn be analytic and uniformly bounded on compact
subsets in a domain D, and suppose that {fn(z)} converges at each point of a set which
has a limit point in D. Then {fn} converges locally uniformly in D.

1.2 The Riemann Mapping Theorem

We mention first a simple, but nevertheless a useful result by Schwarz. By D we denote
the open unit disc {z : |z| < 1}.

Theorem 1.8 (Schwarz’s Lemma). If f is analytic in D and satisfies the conditions
|f(z)| ≤ 1, f(0) = 0, then |f(z)| ≤ |z| and |f ′(0)| ≤ 1. If |f(z)| = |z| for some z 6= 0, or if
|f ′(0)| = 1, then f(z) = cz with a constant c of absolute value 1.

This statement, as well as properties of normal families, are used substantially in the
proof of the following theorem, which is in fact, one of the main results of complex analysis.
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Theorem 1.9 (The Riemann Mapping Theorem). Let D be a simply connected domain
which is not the whole complex plane, and let a ∈ D. Then there exists a unique univalent
map f of D onto the unit disc D normalized in D by the conditions f(a) = 0, f ′(a) > 0.

The first formulation of this theorem (though essentially different from the one above)
was given by Riemann in 1851 in his inaugural dissertation [Rie51], but his proof was
incomplete. It took over fifty years of continuous efforts of many mathematicians to pro-
duce the formulation and the proof of what is now known as the Riemann mapping the-
orem. Although the works by Osgood [Osg00], Koebe[Koe15] and Carathéodory[Car12]
were particularly important, contributions of Schwarz, Poincaré, Hilbert, Courant, Bieber-
bach, Gronwall, Lindelöf, Montel, Fejér, Riesz and Ostrowski were also valuable. More on
the theorem’s history can be found in [Hil62, p. 320–321] and [SZ65, p. 230].

Note, that if we replace f(z) in the theorem’s formulation by g(z) = f(z)
f ′(a)

, the new

function satisfies the conditions g(a) = 0, g′(a) = 1 and maps D onto the disc {w : |w| <
1

f ′(a)
}. The number 1

f ′(a)
is called the conformal radius of the domain D and denoted by

rad(D).
Conformal radius is monotone with respect to the set-theoretical inclusion. This is

stated in the following corollary of Schwarz’s lemma.

Theorem 1.10 (The Subordination Principle). If f is analytic and univalent in D and if
g is a function analytic in D with g(0) = f(0) and g(D) ⊂ f(D), then |g′(0)| ≤ |f ′(0)| and
g(Dr) ⊂ f(Dr) for every r < 1, where Dr = {z : |z| < r}.

We are often interested in conditions which guarantee that the conformal map f :
D → D or f−1 : D → D can be continuously extended to the boundary. This question is
thoroughly discussed, e. g., in the books [Pom75] and [Pom92]. We will need the following
two theorems. The first one gives a necessary and sufficient condition for the continuous
extension. It uses the notion of local connectedness; we remind that a closed set A is said
to be locally connected if for any ε > 0 there exists a δ > 0 such that for any two points
z1, z2 ∈ A, |z1 − z2| < δ it is possible to find a compact connected set B ⊂ A containing
both z1 and z2, such that diamB < ε (diamB is defined as supa,b∈B |a− b|).

Theorem 1.11 (Continuity Theorem, [Pom75, p. 279]). The function f−1 : D→ D has a
continuous extension to D if and only if the boundary of D is locally connected.

The question about injectivity of this extension is answered by the Carathéodory the-
orem.

Theorem 1.12 (Carathéodory Extension Theorem [Car13]). The function f−1 : D → D
has a continuous and injective extension to D if and only if the boundary of D is a Jordan
curve.

The notion of half-plane capacity is relevant to the study of the chordal Loewner equa-
tion, and plays a role similar to the role of the conformal radius in the study of the radial
Loewner equation. Let A be a closed subset of the upper half-plane H, such that its
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complement H \ A is simply connected. Such sets are sometimes called compact H-hulls.
One can show that there exists a unique conformal map fA of H \ A onto H such that
limz→∞ (fA(z)− z) = 0, and this map has expansion

fA = z +
a

z
+ . . .

near infinity. The number a = limz→∞ (fA(z)− z) is called the half-plane capacity (from
infinity) of A. In other words,

fA(z) = z +
hcap(A)

z
+O

(
1

|z|2

)
, z →∞.

The unique map frA corresponding to the H-hull rA which is obtained by scaling A by
r > 0 has the form frA = rfA(z/r), and thus hcap(rA) = r2hcap(A). For the set A + x
obtained by translation of A, we have fA+x = fA(z − x) + x, and hcap(A+ x) = hcap(A).

1.3 Some Properties of the Class S

We denote by S the class of functions which are analytic and univalent in the unit disc D,
and which are normalized by the conditions

f(0) = 0, and f ′(0) = 1.

It follows that each f ∈ S has a Taylor expansion of the form

f(z) = z + a2z
2 + a3z

3 + . . . , z ∈ D. (1.1)

The “S” stands for the word “schlicht” of German origin which means the same as
“univalent” and was in use until 1960’s.

In view of the Riemann mapping theorem one can find, of course, numerous functions
from S, with the identity map being the simplest one. There is, however, one important
family of functions from this class, namely the Koebe function and its rotations, which at
the same time solves several extremal problems in S. It is defined as

kθ(z) =
z

(1− zeiθ)2
= z + 2eiθz2 + 3e2iθz3 + . . . , θ ∈ [0, 2π).

The Koebe function k(z) is obtained when θ = 0, k(z) = z
(1−z)2 . k(z) maps D conformally

onto C \ (−∞,−1/4].
Let F be some class of complex functions in the unit disc. The intersection

KF =
⋂
f∈F

f(D)

is called the Koebe set of F. The Koebe one-quarter theorem states that KS = {w : |w| <
1/4}.
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Theorem 1.13 (Koebe One-Quarter Theorem). The range of every function of class S
contains the disc {w : |w| < 1

4
}.

This class is not closed under, e. g., addition or multiplication, but there is still a
number of simple operations which preserve the class S. For example, if f ∈ S then the
functions f(z̄), e−iθf(eiθz) and r−1f(rz) also belongs to the class S (here θ ∈ R, 0 < r < 1).

A less trivial fact is that
√
f(z2) ∈ S. The resulting function is odd, and it should be

remarked that every odd function in S can be obtained this way.
We now state two classical inequalities for the class S.

Theorem 1.14 (Distortion Theorem). For each f ∈ S,

1− |z|
(1 + |z|)3

≤ |f ′(z)| ≤ 1 + |z|
(1− |z|)3

.

For each z ∈ D, z 6= 0, equality occurs if and only if f is a suitable rotation of the Koebe
function.

Theorem 1.15 (Growth Theorem). For each f ∈ S,

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

.

For each z ∈ D, z 6= 0, equality occurs if and only if f is a suitable rotation of the Koebe
function.

It follows immediately from the growth theorem that the family S is uniformly bounded
on compact subsets of D and thus, by Montel’s theorem (Theorem 1.6), S is a normal family.
Moreover, S is compact in the local uniform convergence topology. Indeed, by Weierstrass’
theorem (Theorem 1.2) the limit f of a convergent sequence {fn} ⊂ S is analytic and
f ′(0) = limn→∞ f

′
n(0) = 1. Thus, f is not constant and in view of Corollary 1.4 f ∈ S.

The coefficients an can be considered as complex-valued functionals an[f ] on S. In
view of the Weierstrass theorem, these functionals are continuous in the topology of local
uniform convergence. Since S is compact, |an[f ]| should attain their minima and maxima
in S, and since S is connected (see the remark after Theorem 2.7), they should take all
intermediate values. It is clear that the minimum is 0 for all n (consider the identity
function). Finding their maxima turned out to be a far more complicated problem.

The first step in this direction was made by Bieberbach [Bie16] in 1916.

Theorem 1.16 (Bieberbach). If f ∈ S, then |a2| ≤ 2, with equality if and only if f is a
rotation of the Koebe function.

This leads to the so-called Bieberbach conjecture, namely that |an| ≤ n for all f ∈ S.
In 1923 Loewner [Löw23] used his parametric method, which will be introduced in

Chapter 2, to prove the Bieberbach conjecture for |a3|. In 1955 Garabedian and Schiffer
proved that |a4| ≤ 4 by combining variational and Loewner’s method. The Bieberbach
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conjecture for |a6| was proved in 1968 by Pederson [Ped69] and, independently, by Ozawa
[Oza69]. In 1972 Pederson and Schiffer [PS72] proved the Bieberbach conjecture for |a5|.
Finally, in 1984 de Branges [dB84] presented his proof for all coefficients. The final version
of the proof was published in 1985 [dB85]. Again, de Branges’ proof made considerable
use of Loewner’s parametric method.

Recall that a set E ⊂ C is called starlike with respect to a point w0 ∈ E if the linear
segment joining w0 to every other point w ∈ E lies entirely in E. The following result
was first obtained by Grunsky [Gru34], and then reproved by using Loewner’s method by
Goluzin [Gol36a], [Gol36b].

Theorem 1.17 (Radius of starlikeness). For every radius r ≤ ρ = tanh(π/4), each func-
tion f ∈ S maps the disc |z| < r onto a domain starlike with respect to the origin. This is
false in general for every r > ρ.

At the end of this section we mention one more result obtained with Loewner’s method.

Theorem 1.18 (Rotation Theorem, Goluzin [Gol36b]). For each f ∈ S,

| arg f ′(z)| ≤

{
4 arcsin |z|, |z| ≤ 1/

√
2,

π + log |z|2
1−|z|2 , |z| > 1/

√
2.

The bound is sharp for each z ∈ D.

1.4 Carathéodory Convergence Theorem

The Carathéodory theorem [Car12] establishes the connection between convergent se-
quences of univalent functions and the geometric properties of their image domains in
the complex plane.

This theorem uses a special notion of domain convergence, so-called Carathéodory
kernel convergence , which we will define now.

Let D1, D2, . . . be a sequence of simply connected domains in the complex plane, such
that each of them contains zero. If there exists a disc |w| < ρ belonging to all of the
domains Dn, then we define the kernel of the sequence {Dn} to be the largest domain D
containing zero and having the property that each compact subset of D belongs to all but
a finite number of the domains {Dn}. On the other hand, if there is no such disc, then we
define the kernel to be D = {0} (“degenerate kernel”). The sequence {Dn} is then said to
converge to D in the Carathéodory sense if every its subsequence has the same kernel D.

The Carathéodory theorem states, roughly speaking, that the Carathéodory kernel
convergence of domains corresponds to the local uniform convergence of the associated
Riemann maps. The precise formulation is given below.

Theorem 1.19 (Carathéodory Convergence Theorem). Let {Dn} be a sequence of simply
connected domains with 0 ∈ Dn $ C, n = 1, 2, . . .. Let fn map the unit disc D conformally
onto Dn and satisfy fn(0) = 0 and f ′n(0) > 0. Let D be the kernel of {Dn}. Then fn → f
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locally uniformly in D if and only if Dn → D 6= C. In the case of convergence there are
two possibilities. If D = {0}, then f ≡ 0. If D 6= {0}, then D is a simply connected
domain, f maps D conformally onto D, and the inverse functions f−1

n → f−1 converge
locally uniformly in D.

One can also introduce the notion of Carathéodory kernel convergence of continuous-
parameter families of domains {Dt}, t ∈ [a, b], rather than discrete sequences Dn, n =
1, 2, . . .. A family {Dt}, t ∈ [a, b] of domains is said to converge to D in the Carathéodory
sense as t→ t0, if for any sequence {tn} ⊂ [a, b], tn → t0, D is the kernel of Dtn .

Using this notion we can formulate the continuous version of the Carathéodory theorem
(see, e. g., [Ale76] for details):

Theorem 1.20. Let {Dt}, t ∈ [a, b] be a family of simply connected domains with 0 ∈ Dt $
C, t ∈ [a, b]. Let f(z, t) map the unit disc D conformally onto Dt and satisfy f(0, t) = 0
and f ′(0, t) > 0. Let Dt converge to Dt0 in the Carathéodory sense as t → t0. Then
f(z, t) → f(z, t0) locally uniformly in z in D as t → t0 if and only if Dt → Dt0 6= C in
the Carathéodory sense as t→ t0. In the case of convergence there are two possibilities. If
Dt0 = {0} then f(z, t0) ≡ 0. If Dt0 6= {0}, then Dt0 is a simply connected domain, f(z, t0)
maps D conformally onto Dt0, and f−1(w, t) → f−1(w, t0) converges locally uniformly in
Dt0.

A single-slit map is a function which maps a domain conformally onto the complex
plane minus a Jordan arc extended to ∞. An important consequence of the Carathéodory
theorem which underlies the Loewner parametric method is density of single-slit maps in
the class S, which can be formulated as a theorem.

Theorem 1.21. To each function f ∈ S there corresponds a sequence of single-slit maps
{fn} ⊂ S, such that fn → f uniformly on each compact subset of D.

This fact makes it possible to reduce the problem of finding extremal values of a real
functional over the whole class S to the problem of finding its infimum or supremum over
the class of single-slit maps. In particular, this was used in the proof of the Bieberbach
conjecture.

1.5 Conformal maps of D onto H
Simple formulas from this section will be used several times in Chapter 4.

Conformal maps of the upper half-plane H onto D which send a ∈ H to 0 have the form

w = eiα
z − a
z − ā

.

The inverse map is

g(z) =
a− āze−iα

1− ze−iα
.
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The derivative is

g′(z) =
2ei(

π
2
−α) Im a

(1− ze−iα)2
.

Finally,

g′(0) = 2ei(
π
2
−α) Im a, (1.2)

|g′(0)| = 2 Im a. (1.3)

arg g′(0) =
π

2
− α. (1.4)

1.6 Lipschitz Continuity

The condition described in this section was first introduced by Lipschitz [Lip64] in 1864 as
a sufficient condition for convergence of a Fourier series of a given function. Proofs of the
properties listed here can be found, for example, in [Nat64].

A function f : [a, b] → R is said to be Lipschitz continuous of order α > 0 (or,
sometimes, Hölder continuous of order α > 0) if there exists a real positive constant c such
that

|f(s)− f(t)| ≤ c|s− t|α, for all a < s, t < b.

We denote the smallest c by ‖f‖α. Note, that this is a seminorm rather than a norm,
since ‖f‖α = 0 for any constant function.

We denote the class of functions which are Lipschitz continuous of order α by Lip(α).
Lipschitz continuity can be characterized in terms of modulus of continuity. Recall,

that the modulus of continuity or oscillation of a function f : [a, b]→ R is defined as

osc(f, δ) = sup
|x−y|≤δ

{|f(x)− f(y)|}.

It is not hard to show that f is Lipschitz continuous of order α if and only if osc(f, δ) ≤
cδα.

If a function is Lipschitz continuous of order α ≥ 1, then it follows that it is everywhere
differentiable and its derivative is zero, thus, the function is constant. That is why only
the case 0 < α ≤ 1 is usually considered.

If α < β and f is given on a finite interval, then f ∈ Lip(β) ⇒ f ∈ Lip(α). It is not
true if the interval is infinite, for example, f(x) = x, x ∈ R is in Lip(1) but not in Lip(1/2).

If f is everywhere differentiable and |f ′(x)| ≤M then f ∈ Lip(1) and ‖f‖1 ≤M.
If a function is Lipschitz continuous of some order α, then it is uniformly continuous.

Functions in Lip(1) are also absolutely continuous.
We also use the so-called local Lipschitz characteristic of order α, defined by

‖f‖αloc = inf
ε>0

sup
|t−s|<ε

|f(t)− f(s)|
|t− s|α

,
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and the local Lipschitz condition of order α, namely ‖f‖αloc ≤ M. We can replace infε>0

in the definition by limε→0+ , since the set over which we take the supremum shrinks as ε
decreases.

This local condition is weaker then the global Lipschitz condition, since if ‖f‖α ≤ C,
then

sup
|t−s|<ε

|f(t)− f(s)|
|t− s|α

≤ C.

If f is differentiable and its derivative is bounded, then ‖f‖αloc = 0 for α < 1. Indeed, by
the mean-value theorem,

inf
ε>0

sup
|t−s|<ε

|f(t)− f(s)|
|t− s|α

= inf
ε>0

sup
|t−s|<ε

|f ′(θ)||t− s|
|t− s|α

≤ inf
ε>0

sup
|t−s|<ε

M |t− s|1−α = inf
ε>0

M
√
ε = 0.

We will be particularly interested in the case when f is differentiable, but the derivative
is unbounded at one point, say at 0, i. e., limt→0 |f ′(t)| = ∞, but, at the same time

limt→0
|f(t)−f(0)|
|t|α = C <∞. By l’Hôpital’s rule, this is equivalent to limt→0

1
α
|f ′(t)|t1−α = C.

Note, that for each fixed s > 0 by the mean-value theorem

lim
ε→0

sup
|t−s|<ε

|f(t)− f(s)|
|t− s|α

= 0.

On the other hand, if s = 0,

lim
ε→0

sup
|t|<ε

|f(t)− f(0)|
|t|α

= lim
t→0

|f(t)− f(0)|
|t|α

= C.

We conclude that

inf
ε>0

sup
|t−s|<ε

|f(t)− f(s)|
|t− s|α

= lim
t→0

|f(t)− f(0)|
|t|α

= C.
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Chapter 2

The Loewner Equation of Different
Types

In this chapter we give a general overview of the Loewner theory. We start by defining
radial Loewner chains, and then we introduce the Loewner-Kufarev ODE and PDE. We
also present derivation of its special case, namely the Loewner equation for single-slit
chains. After that we introduce a related equation, known as the chordal Loewner ODE.
Finally, we give a quite informal introduction to the stochastic Loewner equation (SLE),
a topic, which has gained immense popularity recently.

In the first two sections we follow primarily the classical monograph by Pommerenke
[Pom75]. The discussion of the radial Loewner equation is mostly based on [Dur83], and
the sections on the chordal equation and SLE are based on [Law05].

2.1 Radial Loewner Chains

We begin with considering families of domains {Dτ}, 0 ≤ τ < ∞ satisfying the following
three conditions

• 0 ∈ Dσ $ Dτ (0 ≤ σ < τ <∞),

• Dτn → Dτ0 as τn → τ0 < +∞, Dτn → C as τn → +∞ (convergence of domains is
understood in the Carathéodory sense),

• D0 has conformal radius 1 with respect to 0.

We define the function F (z, τ) for each τ to be the Riemann map of the unit disc onto
Dτ (i. e., these are conformal maps normalized by the conditions F (0, τ) = 0, F ′(0, τ) > 0).
The first coefficient in the expansion of F (z, τ), a1(τ) = F ′(0, τ) is a strictly increasing
function by the subordination principle (Theorem 1.10). By the Carathéodory convergence
theorem (Theorem 1.19) and the Weierstrass theorem (Theorem 1.2) all the coefficients
an(τ) are continuous functions of τ, in particular, a1(τ). We can thus make a reparametriza-
tion et = a1(τ) and with this new parameter t we have the following Taylor expansion for
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F (z, t)
F (z, t) = etz + a2(t)z2 + . . . .

Now we can give the definition of a radial Loewner chain.

Definition 2.1. A function F (z, t) : D× [0,+∞)→ C is called a radial Loewner chain if

• for each fixed t ∈ [0,+∞), F (z, t) is analytic and univalent in D as a function of z,

• F (D, s) ⊂ F (D, t) for 0 ≤ s < t < +∞,

• for each t ≥ 0
F (z, t) = etz + a2(t)z2 + . . . , z ∈ D.

So far, it is not clear why these three conditions suffice for the domains F (D, t) to
behave as described in the beginning of the section. This is, however, an easy consequence
of the following lemma.

Lemma 2.2. Let F (z, t) be a radial Loewner chain. Then, for 0 ≤ s ≤ t <∞

|F (z, s)− F (z, t)| ≤ 8|z|
(1− |z|)4

(et − es), |z| < 1.

This means that F (z, s) → F (z, t) as s → t locally uniformly in D as functions of z,
and thus F (D, s)→ F (D, t) in the Carathéodory sense. Also, from the Koebe one-quarter
theorem it follows that F (D, t) → C as t → ∞. Indeed, e−tF (z, t) ∈ S, and thus, F (D, t)
contains the disc {w : |w| < et/4}.

Loewner chains form a compact family. In other words,

Theorem 2.3. Every sequence Fn(z, t) of radial Loewner chains contains a subsequence
which converges to a radial Loewner chain F (z, t) uniformly on compact subsets of D for
each t ≥ 0.

This theorem leads to the following result.

Theorem 2.4. For every function f ∈ S there exists a radial Loewner chain F (z, t), such
that F (z, 0) ≡ f(z), z ∈ D.

We will also use the two-parametric family of conformal maps φ(z, s, t) := F−1(F (z, s), t)
0 ≤ s ≤ t < +∞. We will be particularly interested in f(z, t) := φ(z, 0, t). It is easy to
see that φ(z, s, t) maps the unit disc conformally onto some subset of the unit disc, i. e.,
|φ(z, s, t)| < |z|, |z| < 1.

Due to the normalization of F (z, t), we have

φ(z, s, t) = es−tz + . . . .

It is important to note that the family φ(z, s, t) possesses the semigroup property, i. e.,

1. φ(z, s, τ) = φ(φ(z, s, t), t, τ), 0 ≤ s ≤ t ≤ τ <∞,

2. φ(z, s, s) ≡ z, z ∈ D.

3. φ(z, s, t)→ z locally uniformly in D, as t→ s.
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2.2 The Radial Loewner-Kufarev ODE and PDE

The cornerstone of the Loewner theory is the fact that Loewner chains can be represented
as the solutions to certain differential equations. This was first noted by Loewner [Löw23]
in 1923 for the special case of single-slit subordination chains (see Chapter 2.3), then
generalized by Kufarev [Kuf43] in 1943 for general Loewner chains and studied further
by Pommerenke [Pom65] and others. We will formulate this characterization in several
theorems.

We will say that a function p(z) belongs to the Carathéodory class (p ∈ C) if p is
analytic in D, normalized as p(z) = 1 + p1z + p2z

2 + . . . , z ∈ D, and Re p(z) > 0 in D.

Theorem 2.5. Let F (z, t) be a Loewner chain. Then there exists a function p(z, t), mea-
surable in t for every fixed z ∈ D and such that for every fixed t ≥ 0, p(z, t) ∈ C and for
almost all t ≥ 0

Ḟ (z, t) = zF ′(z, t)p(z, t). (2.1)

We will say that p(z, t) generates the subordination chain F (z, t). The equation (2.1)
is known as the Loewner-Kufarev PDE .

Theorem 2.6. Suppose p(z, t) ∈ C for each t ≥ 0 and is measurable in t. Then for each
z ∈ D and s ≥ 0 fixed, the Cauchy problem

dw

dt
= −wp(w, t) for almost all t ∈ [s,+∞), (2.2)

w(s) = z,

has a unique absolutely continuous solution w(t) denoted by φ(z, s, t). The functions φ(z, s, t)
are univalent in z ∈ D, and the limit

F (z, s) = lim
t→∞

etφ(z, s, t), z ∈ D, s ≥ 0

exists as the local uniform limit in D. The function F (z, t) is a Loewner chain and it
satisfies the Loewner-Kufarev PDE

Ḟ (z, t) = zF ′(z, t)p(z, t)

with the same function p(z, t).

The equation (2.2) is called the Loewner-Kufarev ODE. The existence and uniqueness
of its solution can be proved by the usual Picard-Lindelöf iterations.

The converse is also true.

Theorem 2.7. Let F (z, t) be a Loewner chain, p(z, t) be the function generating it. Put
φ(z, s, t) := F−1(F (z, s), t), 0 ≤ s ≤ t < +∞. Then, for almost all t ∈ [s,∞),

∂

∂t
φ(z, s, t) = −φ(z, s, t)p(φ(z, s, t), t), z ∈ D,

and
F (z, s) = lim

t→∞
etφ(z, s, t), z ∈ D, s ≥ 0.
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One of the consequences of this theorem is path-connectedness of S. Indeed, let f ∈ S.
By Theorem 2.4, there exists a subordination chain F (z, t) such that F (z, 0) ≡ f(z).
Define φ(z, s, t) = F−1(F (z, s), t). Theorem 2.7 says that f(z) = limt→∞ e

tφ(z, 0, t). All
the functions etφ(z, 0, t) belong to S, and they actually form a curve in S, one of the
endpoints of which is f, the other is the identity function. Continuity of the curve is a
consequence of the Growth theorem (Theorem 1.15). Thus, we have just shown that every
function in S can be connected to the identity function by a continuous curve, and S is
thus connected in the local uniform convergence topology.

Finally, we mention a theorem which gives a necessary and sufficient condition for the
existence, uniqueness and univalence of the solution to the Loewner-Kufarev PDE (see
[Pom75], [PV06]).

Theorem 2.8. The solution to the Loewner-Kufarev PDE

Ḟ (z, t) = zF ′(z, t)p(z, t)

exists, is unique and univalent for all t ≥ 0, if and only if, the initial condition is given as

F (z, 0) = lim
t→∞

etf(z, t),

where f(z, t) = φ(z, 0, t) is the solution to the Loewner-Kufarev ODE

df

dt
= −fp(f(z, t), t),

f(z, 0) = z.

2.3 The Radial Loewner Equation

In this section we consider one of the simplest and most important examples of Loewner
chains, known as single-slit subordination chains. They were also historically the first
example of Loewner chains and were studied by Loewner himself [Löw23] in 1923. The
proofs and other details can be found in [Ahl73], [Dur83], [Gol69], [Hay94] or [Law05].

We define single-slit subordination chains geometrically. First, we take a Jordan arc
Γ : [0,+∞) → C that does not pass through 0 and such that Γ(t) → ∞ as t → ∞. We
can assume that C \ Γ has conformal radius 1 with respect to zero, otherwise we can just
rescale it appropriately. We denote by Γt the restriction of Γ to [t,+∞) (“partially erased
slit”) and put Dt = C \ Γt. We can also assume that Γ is parameterized in such a way
that Dt has conformal radius et, otherwise we can make a reparameterization, as it was
remarked at the beginning of Section 2.1.

The family of conformal maps F (z, t) associated with the domains {Dt} constructed as
above is called a single-slit subordination chain (Figure 2.1).

Each of the maps F (·, t) can be continuously extended to the closed disc D. We denote
by eiu(t) the point on the unit circle which is mapped to the tip of the slit by the extended
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F (z, t) = etz + a2z
2 + . . .

Figure 2.1: A single-slit subordination chain

map, i. e., F (eiu(t), t) = Γ(t). The real-valued function u(t) is called the driving term (or
the driving function, or, sometimes, forcing).

It can be shown that u(t) is a continuous function. Moreover, it turns out that the
function p(z, t) generating the corresponding single-slit subordination chain is of the form

p(z, t) =
eiu(t) + z

eiu(t) − z
.

We thus have the following two differential equations for F (z, t) and f(z, t) = F−1(F (z, 0), t).

Ḟ (z, t) = zF ′(z, t)
eiu(t) + z

eiu(t) − z
, (2.3)

ḟ(z, t) = −f(z, t)
eiu(t) + f(z, t)

eiu(t) − f(z, t)
. (2.4)

We outline here the derivation of (2.4). In order to do this, one should consider the
function φ(z, s, t) = F−1(F (z, s), t), s < t, where F (z, t) are the maps constituting the
Loewner chain, extended continuously to D. We denote Bst = F−1(Γ([s, t]), s), Jst =
F−1(Γ([s, t]), t). Jst is a closed Jordan arc in the unit circle, containing eiu(t). Bst is a
closed Jordan arc lying inside the closed unit disc and meeting the unit circle at eiu(t). Of
course, Jst = φ(Bst, s, t). The unit disc D is mapped onto D \ Jst by φ(z, s, t).

We introduce the function

Φ(z) = log
φ(z, s, t)

z
,
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where the branch of the logarithm is chosen so that Φ(0) = s− t. This function is analytic
in D and continuous in D. Note, that Re Φ(z) = 0 everywhere on the unit circle except
Bst. By the Poisson formula,

Φ(z) =
1

2π

∫ β

α

Re(Φ(eiθ))
eiθ + z

eiθ − z
dθ, (2.5)

where eiα and eiβ are the endpoints of Bst. When z = 0, we have

s− t =
1

2π

∫ β

α

Re Φ(eiθ)dθ. (2.6)

Due to the property φ(φ(z, s, t), t, τ) = φ(z, s, τ), substituting f(z, s) for z in (2.5), we
obtain

log
f(z, t)

f(z, s)
=

1

2π

∫ β

α

Re(Φ(eiθ))
eiθ + f(z, s)

eiθ − f(z, s)
dθ.

We apply then the mean-value theorem to the real and imaginary parts of the integral,
and obtain

log
f(z, t)

f(z, s)
=

1

2π

[
Re

eiσ + f(z, s)

eiσ − f(z, s)
+ i Im

eiτ + f(z, s)

eiτ − f(z, s)

] ∫ β

α

Re Φ(eiθ)dθ,

where eiσ, eiτ ∈ Bst. We divide then this equality by t− s and let t ↓ s. Since Bst contracts
to λ(s), we obtain

lim
t→s+0

1

t− s
log

f(z, t)

f(z, s)
= −λ(s) + f(z, s)

λ(t)− f(z, t)
,

and finally,
∂

∂s
g(z, s) = −λ(s) + f(z, s)

λ(t)− f(z, t)
.

The derivative in the last equation is the right-hand side derivative, but the same reasoning
works also for the left-hand side derivatives.

General results from Section 2.2 imply that every single-slit map can be represented
as limt→∞ e

tf(z, t), where f(z, t) solves (2.4) with some continuous driving term u(t). To-
gether with the fact that single-slit maps form a dense subclass of the class S, this consti-
tutes the essence of the Loewner parametric method.

We will study connections between analytic properties of driving terms and geometry
of corresponding Loewner chains in more details later, in Chapter 3.

2.4 The Chordal Loewner Equation

Early works where the half-plane version of the Loewner equation was studied include
[Pop49], [Pop54], [Sob70], [KSS68]. The interest to this version of the Loewner equation
grew considerably after the Schramm-Loewner evolution was introduced [Sch00] in 2000.
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This equation turned out to be a natural continuous model for studying loop-erased random
walks and percolation.

There are several differences between the half-plane (chordal) and the disc (radial)
versions of the Loewner equation. The most essential one is that in the chordal case
normalization is given at the domain’s boundary point, instead of internal one in the
radial version. Strictly speaking, the chordal Loewner equation is not a special case of
the Loewner-Kufarev equation. A generalization of the Loewner-Kufarev equation which
includes both the radial and the chordal cases was constructed [BCDM08, BCDM09] in
2008.

In this section we follow Lawler’s book [Law05], where the reader can find the details
omitted.

Let Γ : [0,+∞)→ C be a simple curve with Γ(0) ∈ R and Γ(0,∞) ⊂ H. For each t ≥ 0
put Dt = H \ Γ[0, t]. That is, the domains Dt shrink as t increases, not expand, as it was
in the radial case.

As it was mentioned in Section 1.2, there exists a unique conformal map gt of Dt onto
H such that

gt(z) = z +
b(t)

z
+O

(
1

|z|2

)
, z →∞.

Here b(t) is the half-plane capacity hcap(Γ[0, t]). We will assume that Γ is parametrized in
such a way that b(t) ∈ C1.

The map gt can be continuously extended to the tip of the slit Γ(t), and the function
λ(t) = limz→Γ(t),z∈H\Γ[0,t] gt(z) is called, by analogy with the radial case, the driving term.
Again, it can be proved that the driving term is a continuous function. The main result is
that gt(z) solves the Cauchy problem

ġt(z) =
ḃ(t)

gt(z)− λ(t)
, g0(z) = z. (2.7)

If z /∈ Γ, (2.7) holds for all t ≥ 0. If z = Γ(t0), this holds for t < t0.

It is usual to parameterize Γ in such a way that b(t) = 2t (“hydrodynamic normaliza-
tion”), and in this case (2.7) becomes

ġt(z) =
2

gt(z)− λ(t)
, g0(z) = z. (2.8)

Now, let us proceed in the opposite direction. Let λ(t) be some continuous driving
term. We solve the initial-value problem (2.8) for each z ∈ H and denote by τz the
supremum of all t, such that the solution is well defined up to t, gt(z) ∈ H. Then, we
denote Dt = {z : τz > t}. It can be proved that gt maps Dt conformally onto H.

Note, that Dt does not have to be of the form H\Γ[0, t], where Γ is some curve growing
from the real line. In any case, {Dt} is a shrinking family of domains. This is similar to
what we have seen in the radial case.
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2.5 An Example: Calculating the Driving Term for

the Given Slit in H
Let us give an example showing how the driving term corresponding to the given slit can
be found in the chordal case.

Take the slit Γ to be the ray going from the origin at the angle πθ to the positive
direction of the real line (Figure 2.2). The function gt(z) maps Dt = H\Γ[0, t] conformally
onto H. Parameterization of Γ will be chosen later, in such a way that the normalization
condition

gt(z) = z +
2t

z
+O

(
1

|z|2

)
, z →∞

is satisfied.

0
Re z

Im z
H

Γ(t)

πθ

0
Rew

Imw

a(t) b(t)λ(t)

H

gt(z)

Figure 2.2: An illustration for the example

We denote by χt(w) the inverse map g−1
t (w). By matching coefficients in the identity

gt(χt(w)) = w we find the following normalization for χt(w)

χt(w) = w − 2t

w
+O

(
1

|w|2

)
, w →∞. (2.9)

If we differentiate the identity χt(gt(z)) ≡ z with respect to t we can get the following
expression for the driving term

λ(t) = w + 2
χ′t(w)

χ̇t(w)
. (2.10)

In order to find the map χt(w) we use the Schwarz-Christoffel formula which gives us
the map

χa,b(w) = (w − a)1−θ(w − b)θ, a < b

of H onto Dt for some t. Here a, b ∈ R are the inverse images of the starting point of the
slit. The inverse image of slit’s tip is

χ−1
a,b(Γ(t)) = b− θ(b− a).
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The tip of the slit is Γ(t) = (b − a)(1 − θ)1−θθθeπiθ. We choose a = a(t) and b = b(t) so
that (2.9) is satisfied. That is,

a(t) = −2

√
tθ

1− θ
, b(t) = 2

√
t(1− θ)

θ
,

χt(w) =

(
w + 2

√
tθ

1− θ

)1−θ(
w − 2

√
t(1− θ)

θ

)θ

.

The correct parameterization of the slit is thus Γ(t) = 2
√
t
(

1−θ
θ

) 1
2
−θ
eπiθ. The driving

term can be found as λ(t) = gt(Γ(t)) = χ−1
t (Γ(t)). That is, λ(t) = 2

√
t 1−2θ√

θ(1−θ)
. We get the

same result using the formula (2.10).

2.6 Schramm-Loewner Evolution

Schramm-Loewner evolution (SLE) is the main motivation behind the revived interest in
the Loewner equation in the 21st century. Even though we do not study SLE in details
in this thesis, we still include a brief section providing basic facts about the stochastic
version of the Loewner equation. More information on this topic, including prerequisites
from stochastic calculus, the reader can find in Lawler’s book [Law05], which is an excellent
introduction to SLE.

There is a number of two-dimensional discrete random models widely used in statistical
physics: Ising’s model, percolation, loop-erased random walk, to name a few. For quite
a long time physicists were unsuccessfully looking for continuum (scaling) limits of those
models, but this problem seemed to be quite hard.

In 2000 Schramm [Sch00] introduced a stochastic version of the Loewner equation.
Namely, he took

√
kBt as a driving term (Bt here denotes the standard Brownian motion)

and considered the equation

ġt(z) =
2

gt(z)−
√
kBt

, g0(z) = z, z ∈ H. (2.11)

Zt +
√
kBt − z =

∫ t

0

2

Zt
dt,

or in the Itô form

dZt =
2

Zt
dt−

√
kdBt, Z0 = z.

This stochastic differential equation is known as the Bessel equation .
Solving (2.11) one gets a random collection of conformal maps gt(z) : Dt → H denoted

as SLEk. It can be shown that Dt are the unbounded components of H \ Γ[0, t] with
probability one, where Γ is some curve, not necessarily Jordan.
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Properties of Γ depend on k qualitatively. If 0 < k ≤ 4, Γ is simple and Γ(0,+∞) ⊂ H.
If 4 < k < 8, Γ has self-intersections but not self-crossings and it does not fill up the plane.
If k ≥ 8, it fills H. In 2008 Beffara [Bef08] showed that the Hausdorff dimension of Γ for
k ≤ 8 is given by dim(Γ[0, t]) = 1 + k

8
. For k ≥ 8 the Hausdorff dimension is 2, since Γ is

space-filling.
Schramm proved that if some discrete process has a conformally invariant scaling limit,

the limit must be SLEk for some k. It was found later that for the loop-erased random
walk k = 2, for percolation k = 6, for uniform spanning trees k = 8, for interfaces for the
Gaussian free field and for the harmonic explorer k = 4. It is conjectured that the interfaces
for the Ising model converge to SLE3, and that the scaling limit of the self-avoiding walk is
SLE8/3. It was also shown [LSW01a] that the frontier of the Brownian motion is a version
of SLE8/3, and this proved Mandelbrot’s conjecture about its Hausdorff dimension.

A recent overview of the current state of the SLE theory and a description of physical
models motivating its development can be found in [Law09].



Chapter 3

The Driving Term of the Loewner
Equation

Recall that in Section 2.3 we defined the driving term u(t) as the argument of the inverse
image under F (z, t) of the tip of the slit Γt, i. e., F (eiu(t), t) = Γ(t). As we have seen,
this information is sufficient for recovering the whole subordination chain F (z, t), and, as a
consequence, the geometry of the slit Γ by means of the Loewner equation. The real-valued
function u(t) thus encodes the geometric properties of the slit Γ in a way which is still not
understood completely.

Every single-slit subordination chain is generated by some continuous driving term u(t),
but is the converse also true? Given a continuous driving term u(t), does the Loewner equa-
tion always generate a single-slit subordination chain? General results from Section 2.2
guarantee that F (D, t) is a Loewner chain. However, in 1947 Kufarev found a counterex-
ample showing that it does not have to be a single-slit subordination chain, and up to
now there is no known necessary and sufficient condition for u(t) to generate a single-slit
subordination chain.

In this chapter we summarize the results known up to now about the relations be-
tween analytic properties of the driving term and geometric properties of the corresponding
Loewner chain.

3.1 Smoothness Properties and Simple Transforma-

tions

3.1.1 Analyticity and Smoothness

The driving term preserves in a certain sense analyticity of the slit Γ. It is known that
if the slit Γ is analytic, then the driving term u(t) is real analytic. Different versions of
this fact were proved by Komatu [Kom41], Schiffer [Sch45], Brickman, Leung and Wilken
[BLW83].
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In 2001 Earle and Epstein [EE01] gave a new proof of this fact and also showed that if
Γ is Cn then u(t) is at least Cn−1.

These results are also valid for the chordal case.

3.1.2 Rotations around the origin (Radial)

Let u(t) be the driving term corresponding to the slit Γ(t). Let us find the driving term
ũ(t) corresponding to the slit Γ̃(t) = eiθΓ(t). The corresponding Loewner chain is given
by F̃ (z, t) = eiθF (e−iθz, t), the inverse maps are F̃−1(w, t) = eiθF−1(e−iθw, t). The corre-
sponding driving term is thus given by

eiũ(t) = F̃−1(Γ̃(t), t) = eiθF−1(e−iθeiθΓ(t), t) = eiθeiu(t).

That is, ũ(t) = u(t) + θ.

3.1.3 Reflection (Radial)

Let Γ̃ = Γ̄ be the reflection of Γ. The corresponding Loewner chain is F̃ (z, t) = F (z̄, t),
the inverse maps are F̃−1(w, t) = F−1(w̄, t). The driving term is defined by

eiũ(t) = F̃−1(Γ̃(t), t) = F−1
(

¯̃Γt, t
)

= F−1 (Γt, t) = eiu(t).

Thus, ũ(t) = −u(t). As a consequence, the slits [1/4,+∞) and (−∞,−1/4] are generated
by u(t) ≡ 0 and u(t) ≡ π, correspondingly.

3.1.4 Truncation (Radial)

Let us truncate Γ, that is, consider the slit Γ[T,∞), T > 0. In order to preserve normal-
ization, we scale it by e−T . Thus, we consider the slit Γ̃(t) = e−TΓ(t + T ). The Loewner
chain is given then by F̃ (z, t) = e−TF (z, t + T ), and the inverse maps by F̃−1(w, t) =
F−1(eTw, t+ T ). Then,

eiũ(t) = F−1(eT Γ̃t, t+ T ) = F−1(Γ(t+ T ), t+ T ) = eiu(t+T ).

That is, ũ(t) = u(t+ T ).
It follows that the slits of the form Γ(t) = 1

4
eiθet are generated by constant driving

terms. It also follows that if the driving term is periodic, i.e. u(t) = u(t+ T ), t > 0, then
the slit is self-similar, in the sense that Γ(t+ T ) = eTΓ(t), t > 0.

3.1.5 Scaling (Chordal)

Let Γ(t) be a growing slit in H. We consider another slit Γ̃(t), which is obtained from Γ(t)
by scaling by r. Since hcap(rK) = r2hcap(K), where K is a compact hull, we need to make
a time reparameterization, that is, Γ̃(t) = rΓ

(
t
r2

)
. If gt(z) are the maps corresponding to
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Γ(t), then the maps corresponding to Γ̃(t) are given by g̃t = rg t
r2

(
z
r

)
, and the corresponding

driving term is

λ̃(t) = g̃t(Γ̃(t)) = rg t
r2

(
Γ̃(t)

r

)
= rg t

r2

(
Γ

(
t

r2

))
= rλ

(
t

r2

)
.

3.1.6 Truncation (Chordal)

As it is remarked in [LMR09], if λ(t) is the driving term corresponding to Γ(t), then the

slit Γ(t) = gT (Γ(t)) is generated by ˜λ(t) = λ(T + t).
It follows that the growing vertical slits in the chordal case are generated by constant

driving terms.

3.1.7 Reflection (Chordal)

Let RI denote reflection with respect to the imaginary axis,and Γ̃(t) = RI(Γ(t)). Then
g̃t(z) = RI(g(RI(z))), so λ̃(t) = RI(g(Γt)) = RI(λ(t)) = −λ(t).

3.1.8 Translation (Chordal)

Let Γ̃(t) = Γ(t) + x, x ∈ R. Then g̃t = gt(z − x) + x and

λ̃(t) = g̃t(Γ̃(t)) = gt(Γ(t) + x− x) + x = λ(t) + x.

3.2 Kufarev’s Sufficient Condition and Example

The first known nontrivial sufficient condition for a driving term to generate a single-list
subordination chain was given by Kufarev [Kuf46] in 1946.

Theorem 3.1. Let u(t) have bounded derivative on a segment [a, b], and let φ(z, s, t) denote
the solution to the problem

dw

dt
= −we

iu(t) + w

eiu(t) − w
,

w(s) = z.

Then, for all s, t such that a ≤ s ≤ t ≤ b, the domain φ(D, s, t) is of the form D \ γs,t,
where γs,t is a C1-smooth Jordan arc.

Kufarev remarks that similar results can be proved for the chordal case.
Later, in 1947 Kufarev [Kuf47] gave the first known example of a non-slit solution to

the Loewner equation. He integrated the Loewner ODE

dw

dt
= −we

iu(t) + w

eiu(t) − w
, w(0) = z, (3.1)
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with the driving term, given by eiu(t) = κ3, where κ = e−t + i
√

1− e−2t, that is u(t) =

3 arctan
√
e2t − 1. Note, that u(t) = 3

√
2
√
t −

√
2

2
t
√
t + O(t

5
2 ) and that u′(t) = 3√

e2t−1
is

unbounded at t = 0. As t varies in [0,+∞), u(t) increases from 0 to 3π
2
.

The solution to (3.1)

w = f(z, t) =
κ

κ2 + 1

(
z + κ2 −

√
(1− z)(κ4 − z)

)
=

1

2
et

(
z + e

2
3
iu(t) −

√
(1− z)

(
e

4
3
iu(t) − z

))
,

maps the unit disc D onto D minus part of the disc bounded by the circular arc orthogonal
to the unit circle and joining the points eiu(t) and e

1
3
iu(t) = f(eiu(0), t) (Figure 3.1).

0

e
1
3 iu(t)

eiu(t)

Figure 3.1: An image of the unit disc in Kufarev’s example

The function F (z, 0) = limt→∞ e
tf(z, t) = z

1−z maps the unit disc conformally onto the

half-plane
{
w : Rew > −1

2

}
. As it was remarked in [PV08], we can reconstruct the whole

subordination chain by extending the map

F (f−1(w, t), 0) =
etw − e−2iα(t)w2

(1− e−iα(t)w)2
, α = arccos(e−t) ∈ [0, π/2)

by reflection into the whole disc D. The extended map F (z, t) maps D onto the complex
plane minus the slit along the ray {w : w = −1

2
+ iy, y ∈ (−∞, 1

2
cot 2α(t)]} (Figure 3.2).

3.3 Pommerenke’s Geometric Characterization

Recall, that the spherical metric in the extended complex plane C̄ is defined by the formula

d](z, w) =
|z − w|√

(1 + |z|2)(1 + |w|2)
, z, w ∈ C,

d](z,∞) =
1√

1 + |z|2
, z ∈ C,

d](∞,∞) = 0.
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0
Rew

Imw

1
2 cot 2α(t)

− 1
2

Figure 3.2: The subordination chain of domains in Kufarev’s example

The spherical diameter of a set E is defined as diam]E = sup{d](z, w) : z, w ∈ E}
Let D ⊂ C be a domain in the complex plane. An open Jordan arc C ⊂ D is said to

be a crosscut of D, if C̄ = C ∪ {a, b} with a, b ∈ ∂D (a and b may coincide).
Two points in a domain D ⊂ C̄ are said to be separated in D by the closed set A if

they lie in different components of D \ A.
In 1966 Pommerenke [Pom66] gave the following necessary and sufficient condition for

radial Loewner chains to satisfy the radial Loewner PDE.

Theorem 3.2. Let F (z, t) be a radial Loewner chain, and {Dt = F (D, t)}t≥0 be the as-
sociated family of domains in the complex plane. F (z, t) satisfies for all t ≥ 0 the radial
Loewner PDE

Ḟ (z, t) = zF ′(z, t)
eiu(t) + z

eiu(t) − z
,

with a continuous driving term u(t), if and only if, for every ε > 0 there exists a δ > 0,
such that whenever 0 ≤ t − s ≤ δ, some cross-cut C of Dt with diam]C < ε separates 0
from Dt \Ds in Dt.

We are more interested in the following simple corollary of this theorem, which, as we
will see soon, gives us an easy way of constructing examples of Kufarev type.

Corollary 3.3. Let F (z, t) be a Loewner chain. Suppose that Dt = F (D, t) is the compo-
nent containing 0 of the C̄ \Γt, where Γ : [0,∞)→ C̄ is an arc, and Γt = Γ([t,+∞)) is its
restriction to [t,+∞). Then, for all t ≥ 0 F (z, t) satisfies the radial Loewner PDE with a
continuous driving term.
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Note, that the arc in the corollary above does not have to be Jordan (see Figure 3.3).
The subordination chain in Kufarev’s example also satisfies the corollary’s conditions, and
the corresponding arc is in fact a closed curve (both its endpoints are infinite).

0

Figure 3.3: An example of a subordination chain for the Corollary 3.3

An analogous geometrical characterization for chordal Loewner chains can be found in
[LSW01b].

Theorem 3.4 ([LSW01b, Theorem 2.6]). Let Kt, t ≥ 0 be a family of growing hulls in H,
such that hcap(Kt) = 2t, and let Dt = H\Kt. Then the following conditions are equivalent:

1. Dt is generated by the chordal Loewner equation

ġt(z) =
2

gt(z)− λ(t)
, g0(z) = z,

where λ(t) is a continuous driving term.

2. For every ε > 0 there exists a δ > 0, such that whenever 0 ≤ t− s ≤ δ, some bounded
connected set C separates Ds \Dt = Kt \Ks from infinity in Ds.

3.4 A Sufficient Condition by Marshall and Rohde

For a long time, the only one known nontrivial sufficient condition guaranteeing that the
Loewner equation generates a single-slit subordination chain, was Kufarev’s. Next step
towards the solution of the problem that we stated in the beginning of the chapter was
done in 2005 by Marshall and Rohde [MR05].

Before we formulate their result, we first give some necessary definitions. We will say
that a curve is a quasiarc if it is the image of [0,∞) under a quasiconformal homeomorphism
(for the definitions and fundamental facts of the theory of quasiconformal mappings, see,
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e.g., [LV73]) of the complex plane. For example, piecewise smooth curves without zero-
angle cusps are quasislits.

We reformulate slightly the result of Marshall and Rohde for our notation.

Theorem 3.5 ([MR05, Theorem 1.1]). If Γ(t) is a quasiarc, then eiu(t) ∈ Lip(1
2
). Con-

versely, there is a constant C > 0, such that if eiu(t) ∈ Lip(1
2
) with ‖eiu(t)‖ 1

2
< C, then

C \ F (D, t) is a quasiarc for all t.

It is possible to replace the global Lipschitz condition ‖eiu(t)‖ 1
2
< C by a weaker local

Lipschitz condition ‖eiu(t)‖ 1
2 loc

< C. Note, that the local Lip(1/2)-norms of eiu(t) and u(t)

coincide.
The exact value of the constant for the chordal case (C = 4) was found by Lind [Lin05]

the same year. Prokhorov and Vasil’ev [PV09] showed that the constants should coincide
in the chordal and radial cases. They also found that in the chordal case, circular slits,
tangent to the real axis are generated by Lip(1/3)-continuous driving terms.

Kager, Nienhuis and Kadanoff [KNK04] gave multiple examples of solutions to the
chordal Loewner equation, corresponding to driving terms with various Lip(1/2)-norms.
On one hand, they found examples of slit solutions with arbitrarily large norms of the
driving term, on the other hand, they found examples of slit solutions where the norm of
the driving term approaches 4 arbitrarily close from above.
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Chapter 4

Examples of Non-Slit Solutions

This chapter contains the main results of this thesis. We construct several examples of
Kufarev type and then study analytic properties of the corresponding driving terms. The
local Lipschitz characteristic of the driving terms is of particular interest for us, in view of
the sufficient condition by Marshall and Rohde described in the previous chapter.

4.1 The Method

For a long time Kufarev’s example represented the only known case where the radial
Loewner equation generated a non-slit solution. Attempts to modify the driving term
slightly in order to obtain new non-slit solutions failed, and it was not clear why that
driving term behaved so strange.

In order to construct new non-slit solutions we use the technique described in [PV08].
It uses the simple observation that if the subordination chain F (z, t) is constructed as in
the Corollary 3.3, and if the arc Γ is not Jordan, then starting from some t0 the domains
f(D, t) will not be slit discs .

We will use the following scheme. Let F0(z) = z+a2z
2 + . . . map the unit disc D confor-

mally onto the domain D0. Let Γ be an open Jordan arc, more precisely, a homeomorphic
image of (0,+∞), and let Γ(t) → ∞ as t → ∞. Let the closure Γ̄ meet itself once (by
construction, it cannot meet itself more than once), possibly at infinity. Let Γ be param-
eterized in such a way that rad(C \ Γt) = et, t ∈ (0,∞). Let ∂D0 ⊂ Γ̄. We construct the
subordination chain F (z, t) corresponding to the domains Dt = C \ Γt. On the one hand,
it satisfies the Loewner equation by Corollary 3.3. On the other hand, after a non-zero
area is added to D0 after the initial moment, so D \ f(D, t) = F−1(F (D, t) \F (D, 0), t) has
non-zero area, and f(D, t) is thus not a slit disc for any t > 0.

One of the examples illustrating this scheme is Kufarev’s. Several other examples are
described in this chapter.
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4.2 The First Example

The description of the domains and the corresponding mapping functions in this example
are taken from [PV08].

4.2.1 The Subordination Chain

The initial domain D0 in this example is simply the unit disc D, and F0 is just the identity
function. The arc Γ consists of the circular arc {eiθ : 0 < θ ≤ 2π} and the ray [1,+∞).
After the initial moment t = 0 we start erasing the circular arc in the positive direction
(Figure 4.1). Since rad(C \ [1,+∞)) = 4, the circular arc is completely erased by the time
t = ln 4. It follows from the concatenation property that the driving term u(t) ≡ 0, t ≥ ln 4,
and therefore the only problem is to find the values of u(t) for t ∈ (0, ln 4).

10
Re z

Im z

0
Re w

Im w

Figure 4.1: The subordination chain in the first example

First, we need to find the form of the conformal maps F (z, t) : D → Dt, 0 < t < ln 4.
We map the unit disc onto the upper half-plane by the function

ζ(z, t) =
ζ0(t)− ζ0(t)ze−iα(t)

1− ze−iα(t)

(zero is mapped to ζ(0, t) = ζ0(t)). The function

w(ζ, t) =
1

2

(
1− 3ζ2 + 3(1 + λ(t))ζ − λ(t)

2(3 + λ(t))
ζ−3/2

)
, λ ∈ (−3, 0)

which can be found in [vKS59], maps the upper half plane onto C minus the negative real
axis (−∞, 0] and the vertical ray{

w : w =
1

2
+ iy, y ∈

(
−∞, 1 + 3λ(t)

2(3 + λ(t))
(−λ(t))−1/2

]}
.
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Finally, the function

g(w) = 1− 1

w
maps the above domain onto C minus [1,+∞) and the circular arc{

z : z = eiθ, θ ∈
[
2 arctan

3 + λ

1 + 3λ

√
−λ, 2π

]}
,

that is, onto Dt for some t. We define F (z, t) = g(w(ζ(z, t), t)). In order to make F (z, t)
a Loewner chain we should choose the parameters α(t), ζ0(t), λ(t) in such a way that
F (0, t) = 0, F ′(0, t) = et.

Note, that g−1(0) = 1, and w−1(1) solves the equation(
3ζ2 + 3(1 + λ)ζ − λ

)
ζ−3/2 = −2(3 + λ).

In order to satisfy the condition F (0, t) = 0, we must thus have ζ0(t) = w−1(1), i. e.,
ζ0(t) must be the unique solution with the positive imaginary part to the equation above.

The condition F ′(0, t) = et can be split into two: |F ′(0, t)| = et and argF ′(0, t) = 0.
By the chain rule,

F ′(z, t)z=0 = g′(w)w=w(ζ0)=1 · w′(ζ)ζ=ζ(0,t)=ζ0 · ζ ′(z, t)z=0,

|F ′(z, t)|z=0 = |g′(w)|w=w(ζ0)=1 · |w′(ζ)|ζ=ζ(0,t)=ζ0 · |ζ ′(z, t)|z=0,

argF ′(z, t)z=0 = arg g′(w)w=1 + argw′(ζ)ζ=ζ0 + arg ζ ′(z, t)z=0,

We have seen in Section 1.5 that |ζ ′(z, t)|z=0 = 2 Im ζ0, arg ζ ′(z, t)z=0 = π
2
− α. Since

g′(w) = 1
w2 , |g′(1)| = 1 and arg g′(1) = 0. The ζ-derivative of w(ζ, t) is

w′(ζ, t) = − 3

8(3 + λ)
ζ−

5
2

(
ζ2 − (1 + λ)ζ + λ

)
= − 3

8(3 + λ)
ζ−

5
2 (ζ − 1)(ζ − λ),

so

|w′(ζ0, t)| =
3

8(3 + λ)
|ζ0|−

5
2 |ζ0 − 1||ζ0 − λ|,

argw′(ζ0, t) = π − 5

2
arg ζ0 + arg(ζ0 − 1) + arg(ζ0 − λ).

Hence, if the parameters α(t), ζ0(t), λ(t) are defined from the equations(
3ζ2

0 + 3(1 + λ)ζ0 − λ
)
ζ
−3/2
0 = −2(3 + λ), (4.1)

3

4(3 + λ)
|ζ0|−

5
2 |ζ0 − 1||ζ0 − λ| Im ζ0 = et, (4.2)

− π

2
− α− 5

2
arg ζ0 + arg(ζ0 − 1) + arg(ζ0 − λ) = 0, (4.3)

then F (z, t) is the Loewner chain corresponding to the domains on the Figure 4.1.
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4.2.2 The Driving Term

Recall that the driving term is argument of the inverse image of the tip of the slit, i.e.,

u(t) = argF−1(Γ(t), t). In this example, Γ(t) = exp
(
i2 arctan 3+λ(t)

1+3λ(t)

√
−λ(t)

)
for 0 < t <

ln 4. Its inverse image under g(w) is

g−1(Γ(t)) =
1 + 3λ(t)

2(3 + λ(t))
(−λ(t))−

1
2 .

Further,

w−1

(
1 + 3λ(t)

2(3 + λ(t))
(−λ(t))−

1
2 , t

)
= λ(t),

and

ζ−1(λ(t), t) = eiα(t)λ(t)− ζ0(t)

λ(t)− ζ0(t)
.

Thus,

F−1(Γ(t), t) = eiα(t)λ(t)− ζ0(t)

λ(t)− ζ0(t)
,

and

u(t) = α(t) + 2 arg(ζ0(t)− λ(t)),

or, in view of (4.3),

u(t) = −π
2
− 5

2
arg ζ0 + arg(ζ0 − 1) + 3 arg(ζ0 − λ). (4.4)

4.2.3 Determining the Parameters and Calculating ‖u‖ 1
2 loc

We can express ζ0 from (4.1). The equation has two solutions,[
ζ0 = 2

9
λ2 + 1

3
λ− i2

9
λ
√
−λ2 − 3λ,

ζ0 = 2
9
λ2 + 1

3
λ+ i2

9
λ
√
−λ2 − 3λ,

and, since λ ∈ (−3, 0), λ2 +3λ < 0, only the first solution has positive imaginary part, and
thus

ζ0 =
2

9
λ2 +

1

3
λ− i2

9
λ
√
−λ2 − 3λ. (4.5)

It follows that

Im ζ0 =
2

9
(−λ)

√
−λ
√
λ+ 3, (4.6)

|ζ0| = −
λ

3
, (4.7)
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|ζ0 − 1| = 1√
3

√
1− λ

√
λ+ 3, (4.8)

and

|ζ0 − λ| =
2

3
(−λ)

√
1− λ. (4.9)

Substituting these identities into (4.2), we can see that

|F ′(z, t)| = 1− λ = et,

and, thus
λ(t) = 1− et. (4.10)

This allows us to find explicit expressions for ζ0(t) (by (4.5)):

ζ0(t) =
1

9
(et − 1)(2et − 5 + 2i

√
et − 1

√
4− et),

for α(t) (by (4.3)):

α(t) = −π
2
− 5

2
arg(2et − 5 + 2i

√
et − 1

√
4− et)

+ arg(2e2t − 7et − 4 + 2i(et − 1)3/2
√

4− et) + arg(et + 2 + i
√
et − 1

√
4− et),

and for u(t) (by (4.4)):

u(t) = −π
2
− 5

2
arg(2et − 5 + 2i

√
et − 1

√
4− et)

+ arg(2e2t − 7et − 4 + 2i(et − 1)3/2
√

4− et) + 3 arg(et + 2 + i
√
et − 1

√
4− et).

The function u(t) is differentiable everywhere on the segment [0, ln 4] except for its

endpoints. As t→ 0 we have u(t) = 8
√

3
3

√
t+O(t). As t→ ln 4, u(t) = 2π− 4

√
3

3

√
ln 4− t+

O(ln 4− t). Thus we get, finally, that

‖u‖ 1
2 loc

=
8
√

3

3
≈ 4.62.

4.3 The Second Example

4.3.1 The Initial Moment

In this example, the arc Γ consists of two rays which are symmetric with respect to the
negative real axis, have angle πθ between them (θ ∈ (0, 2)) and start at the point−c(θ) ∈ R.
Γ is parameterized in such a way that limt→0 Γ(t) = limt→∞ Γ(t) = ∞, Im Γ(t) > 0 for
small t, and rad(C \ Γt) = et. The closure Γ meets itself at infinity, where it forms an angle
of πθ (Figure 4.2).
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πθ
0

Rew

Imw

−c(θ)

Figure 4.2: The subordination chain in the second example

The initial domain D0 is the component of C\Γ containing 0, and all the other domains
are of the form Dt = C \ Γt. The conformal map F0 : D → D0 can be represented as the
composition of the map g(z) of D onto H

g(z) =
w − wze−iα

1− ze−iα
, w ∈ H,

and the map f(z) of H onto D0 given by

f(z) = −ei
πθ
2 z2−θ − c(θ).

In order to satisfy the condition F0(0) = 0, the value of the parameter w in g(z) must be

w = f−1(0) = ic(θ)
1

2−θ .
The condition F ′0(0) = 1 (i. e., rad(D0) = 1) allows us to determine the value of c(θ).

Since
F ′0(0) = f ′(ic(θ)

1
2−θ ) · g′(0) = 2(2− θ)c(θ)e−iα,

we conclude that α = 0 and

c(θ) =
1

2(2− θ)
.

4.3.2 The Time t0 of Reaching the Corner

After the tip of the slit reaches the point −c(θ), the structure of the maps in the subor-
dination chain F (z, t) changes significantly. In order to calculate the time t0 when this
happens, we should find the conformal radius of the corresponding domain Dt0 .

The upper half-plane can be mapped onto this domain by the function

f(z) = z2ei(π+πθ
2 ) − 1

2(2− θ)
.

The inverse image of zero is z0 = e
i π2 (1− θ2)√

2(2−θ)
, the derivative is f ′(z) = 2ei(π+πθ

2 ), f ′(z0) =

−2e
i(π2 +πθ

4 )√
2(2−θ)

.
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The unit disc can be mapped onto the upper half-plane by a Möbius transformation
sending 0 to z0:

g(z) =
z0 − z̄0ze

−iα

1− ze−iα
,

g′(0) = 2ei(
π
2
−α) Im z0 = 2ei(

π
2
−α) cos πθ

4√
2(2− θ)

.

The derivative of the composite map is thus

f ′(z0)g′(0) =
2 cos πθ

4

2− θ
ei(

πθ
4
−α).

It should be real-valued, hence α = πθ
4

. Now we can write g(z) explicitly:

g(z) = − ie−i
πθ
4√

2(2− θ)
z − ei(π−

πθ
4 )

z − eiπθ4
.

The conformal radius is thus
2 cos πθ

4

2−θ and the point −c(θ) is reached at the time

t0 = ln
2 cos πθ

4

2− θ
.

We can also see that

u(t0) = α + 2 arg z0 = π − πθ

4
.

4.3.3 Mapping Functions F (z, t) for 0 < t < t0

The function
(w − a)1− θ

2w
θ
2 , a > 0

maps the upper half-plane H onto H with a slit set at the angle πθ
2

to the negative real

line. In order to get the evolution domain Dt for some 0 < t < t0 = ln
cos πθ

4

1− θ
2

, we square

this function, then rotate the obtained domain by π + πθ
2

and, finally, shift it to the left.
That is, the upper half-plane can be mapped onto the evolution domain Dt by

f(w, t) = −ei
πθ
2 (w − a(t))2−θwθ − c(θ).

The derivative of the function f(w) is

f ′(w) = −ei
πθ
2

(
(2− θ)(w − a)2−θwθ

(w − a)
+
θ(w − a)2−θwθ

w

)
= −ei

πθ
2

(w − a)2−θwθ

(w − a)w
(2w − aθ) .
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Denote by w0 = w0(t) the inverse image of zero under f(w, t), i. e., the solution of the
equation

− ei
πθ
2 (w0 − a(t))2−θwθ0 = c(θ), (4.11)

lying in the upper half-plane.
In order to satisfy the requirement F (0, t) = 0, the function F (z, t) must be of the form

F (z, t) = f(g(z, t), t), where g(z, t) is the function which maps the unit disc onto the upper
half-plane and sends 0 to w0:

g(z, t) =
w0(t)− w0(t)ze−iα

1− ze−iα
,

g′(0, t) = 2ei(
π
2
−α) Imw0.

The condition F ′(0, t) = et gives an additional equation for determining α(t), w0(t) and
a(t):

− ei
πθ
2

(w0 − a)2−θwθ0
(w0 − a)w0

(2w0 − aθ) 2ei(
π
2
−α) Imw0 = et. (4.12)

The critical points of f(w) are 0, aθ
2

and a. The point aθ
2

is, in fact, the inverse image
of the slit’s tip in the upper half-plane, and it follows that

eiu(t) = eiα
w0(t)− a(t)θ

2

w0(t)− a(t)θ
2

= eiα
(2w0(t)− a(t)θ)2

|2w0(t)− a(t)θ|2
. (4.13)

4.3.4 Mapping Functions F (z, t) for t > t0

The upper half-plane H can be mapped onto Dt, t > t0 by the function

f(z, t) = (z2 + τ)eπi(1+ θ
2) − c(θ), τ = τ(t) > 0,

f ′(z, t) = 2eπi(1+ θ
2)z.

The inverse image of the tip of the slit, i. e., f−1(Γt, t) is zero. The inverse image of

zero under f(z, t) is w0(t) = f−1(0, t) =

√
c(θ)e−πi(1+ θ

2) − τ . By the law of cosines we find
that

|w0|2 = |c(θ)e−πi(1+ θ
2) − τ | = τ 2 + c(θ)2 + 2c(θ)τ cos

πθ

2
.

By the law of sines,

argw2
0 = arg

(
c(θ)e−πi(1+ θ

2) − τ
)

= arcsin
c(θ) sin θ

2

τ 2 + c(θ)2 + 2c(θ)τ cos πθ
2

.

The imaginary part of w0 is

Imw0 =

√
τ 2 + c(θ)2 + 2c(θ)τ cos

πθ

2
sin

1

2
arcsin

c(θ) sin θ
2

τ 2 + c(θ)2 + 2c(θ)τ cos πθ
2

.
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The derivative of f(z, t) at w0 is

f ′(w0, t) = 2eπi(1+ θ
2)
√
c(θ)e−πi(1+ θ

2) − τ .

Its absolute value and argument are

|f ′(w0, t)| = 2

√
τ 2 + c(θ)2 + 2c(θ)τ cos

πθ

2
,

arg f ′(w0, t) = π

(
1 +

θ

2

)
+

1

2
arcsin

c(θ) sin θ
2

τ 2 + c(θ)2 + 2c(θ)τ cos πθ
2

.

The suitable map of the unit disc D onto the upper half-plane H is of the form

g(z, t) =
w0(t)− w0(t)ze−iα

1− ze−iα
, α = α(t) > 0,

g′(0, t) = 2ei(
π
2
−α)
√
τ 2 + c(θ)2 + 2c(θ)τ cos

πθ

2
sin

1

2
arcsin

c(θ) sin θ
2

τ 2 + c(θ)2 + 2c(θ)τ cos πθ
2

.

The functions F (z, t), t > t0 can be represented as the composition F (z, t) = f(g(z, t), t).
The condition |F ′(0, t)| = et gives us an equation for determining τ(t)

4

(
τ 2 + c(θ)2 + 2c(θ)τ cos

πθ

2

)
sin

1

2
arcsin

c(θ) sin θ
2

τ 2 + c(θ)2 + 2c(θ)τ cos πθ
2

= et.

Thus, τ(t) is a differentiable function of t. The condition argF ′(0, t) = 0 makes it possible
to determine α(t) :

α(t) =
3π

2
+
θ

2
+

1

2
arcsin

c(θ) sin θ
2

τ(t)2 + c(θ)2 + 2c(θ)τ(t) cos πθ
2

.

The driving term u(t) is defined by

eiu(t) = eiα
w0 − 0

w0 − 0
,

i. e., u(t) = α(t) + 2 argw0, or,

u(t) =
3π

2
+
θ

2
+

3

2
arcsin

c(θ) sin θ
2

τ 2 + c(θ)2 + 2c(θ)τ cos πθ
2

.

This is a differentiable function of τ, and, consequently, a differentiable function of t. That
means, that the interval (t0,∞) does not contribute to the norm ‖u‖ 1

2 loc
.

Another way to see this is to use the truncation property. Since the slit Γ([t0,+∞)) is
C∞-smooth, the corresponding driving term is also C∞-smooth.
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4.3.5 Determining the Parameters for 0 < t < t0 and Calculating
‖u‖ 1

2 loc

We can express a from (4.11):

a = w0 − c(θ)
1

2−θ e
πi
2 w
− θ

2−θ
0 . (4.14)

This number must be real positive, i. e.

Imw0 = Im

(
c(θ)

1
2−θ e

πi
2 w
− θ

2−θ
0

)
.

If we denote φ = argw0, we can rewrite this equation in the form

|w0| sinφ = c(θ)
1

2−θ |w0|−
θ

2−θ sin

(
π

2
− θφ

2− θ

)
,

|w0|
2

2−θ = c(θ)
1

2−θ
cos θφ

2−θ

sinφ
, (4.15)

|w0| =
1√

2(2− θ)

(
cos θφ

2−θ

sinφ

)1− θ
2

.

Thus, we have obtained an expression for the absolute value of w0 in terms of its argument.
The following estimate is important for choosing the branch of the argument. From

(4.11) we have

(2− θ) arg(w0 − a) + θ argw0 = π − πθ

2
.

Since a > 0,

2 argw0 ≤ π − πθ

2
,

argw0 ≤
π

2
− πθ

4
.

Moreover, if t→ t0, then a→ 0 and φ = argw0 → π
2
− πθ

4
.

We can rewrite (4.12) as

c(θ)

w0(w0 − a)
(2w0 − aθ) 2ei(

π
2
−α) Imw0 = et.

Using (4.14) we can get

w0 − a = c(θ)
1

2−θ e
πi
2 w
− θ

2−θ
0 ,

and

2w0 − aθ = (2− θ)w0 + θc(θ)
1

2−θ e
πi
2 w
− θ

2−θ
0 = (2− θ)w−

θ
2−θ

0

(
w

2
2−θ
0 +

θ

2− θ
c(θ)

1
2−θ e

πi
2

)
.
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So, we can rewrite the condition 4.12 as(
w

2
2−θ
0 +

θ

2− θ
c(θ)

1
2−θ e

πi
2

)
c(θ)−

1
2−θ

Imw0

w0

e−iα = et. (4.16)

We can rewrite the expression in parentheses in terms of φ = argw0.

w
2

2−θ
0 +

θ

2− θ
c(θ)

1
2−θ e

πi
2 =

(
|w0|

2
2−θ

(
cos

2φ

2− θ
+ i sin

2φ

2− θ

)
+ i

θ

2− θ
c(θ)

1
2−θ

)
=

(
c(θ)

1
2−θ

cos θφ
2−θ

sinφ

(
cos

2φ

2− θ
+ i sin

2φ

2− θ

)
+ i

θ

2− θ
c(θ)

1
2−θ

)

=
c(θ)

1
2−θ

sinφ

(
cos

θφ

2− θ
cos

2φ

2− θ
+ i

(
cos

θφ

2− θ
sin

2φ

2− θ
+

θ

2− θ
sinφ

))
.

The absolute value of this expression is∣∣∣∣w 2
2−θ
0 +

θ

2− θ
c(θ)

1
2−θ e

πi
2

∣∣∣∣
=
c(θ)

1
2−θ

sinφ

√
cos2

θφ

2− θ
cos2

2φ

2− θ
+

(
cos

θφ

2− θ
sin

2φ

2− θ
+

θ

2− θ
sinφ

)2

=
c(θ)

1
2−θ

sinφ

√
cos2

θφ

2− θ
+

(
θ

2− θ

)2

sin2 φ+
2θ

2− θ
sinφ cos

θφ

2− θ
sin

2φ

2− θ
.

Hence, if we take absolute values in 4.16, we get√
cos2

θφ

2− θ
+

(
θ

2− θ

)2

sin2 φ+
2θ

2− θ
sinφ cos

θφ

2− θ
sin

2φ

2− θ
= et,

or

t =
1

2
ln

(
cos2 θφ

2− θ
+

(
θ

2− θ

)2

sin2 φ+
2θ

2− θ
sinφ cos

θφ

2− θ
sin

2φ

2− θ

)
.

We can write first terms in the Taylor expansion of the expression on the right-hand side
when φ→ 0 and φ→ π

2
− πθ

4
.

t =
2θ

(2− θ)2
φ2 − 2θ

3

θ2 + 5θ + 4

(2− θ)4
φ4 +O(φ6), φ→ 0.

t = ln
2 cos πθ

4

2− θ
− θ

2− θ

(
φ− π

2
+
πθ

4

)2

+O

((
φ− π

2
+
πθ

4

)3
)
, φ→ π

2
− πθ

4
.

That means

φ =
2− θ√

2θ

√
t+O(t), t→ 0, (4.17)
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φ =
π

2
− πθ

4
−
√

2− θ
θ

√
t0 − t+O(t0 − t), t→ t0.

We can express eiα from (4.16)

eiα =

(
w

2
2−θ
0 +

θ

2− θ
c(θ)

1
2−θ e

πi
2

)
c(θ)−

1
2−θ

Imw0

w0

e−t.

Using (4.13) we can express eiu(t)

eiu(t) = eiα
(2w0 − aθ)2

|2w̄0 − aθ|2
= eiα

(2− θ)2w
− 2θ

2−θ
0

(
w

2
2−θ
0 + θ

2−θc(θ)
1

2−θ e
πi
2

)2

(2− θ)2|w0|−
2θ

2−θ

∣∣∣∣w 2
2−θ
0 + θ

2−θc(θ)
1

2−θ e
πi
2

∣∣∣∣2

=

w
− 2θ

2−θ
0

(
w

2
2−θ
0 + i θ

2−θc(θ)
1

2−θ

)3

|w0|−
2θ

2−θ

∣∣∣∣w 2
2−θ
0 + i θ

2−θc(θ)
1

2−θ

∣∣∣∣2 c(θ)
− 1

2−θ
Imw0

w0

e−t

= w
− 2+θ

2−θ
0

(
w

2
2−θ
0 + i

θ

2− θ
c(θ)

1
2−θ

)3
c(θ)−

1
2−θ Imw0e

−t∣∣∣∣w 2
2−θ
0 + i θ

2−θc(θ)
1

2−θ

∣∣∣∣2 .
Thus,

u(t) = −2 + θ

2− θ
argw0 + 3 arg

(
w

2
2−θ
0 + i

θ

2− θ
c(θ)

1
2−θ

)
.

This can be rewritten in terms of φ:

u(t) = −2 + θ

2− θ
φ+ 3 arg

(
cos

θφ

2− θ
cos

2φ

2− θ
+ i

(
cos

θφ

2− θ
sin

2φ

2− θ
+

θ

2− θ
sinφ

))
= −2 + θ

2− θ
φ+ 3 arctan

cos θφ
2−θ sin 2φ

2−θ + θ
2−θ sinφ

cos θφ
2−θ cos 2φ

2−θ
.

The first terms in the Taylor expansion are

u(t) = 2
2 + θ

2− θ
φ− 4θ

2 + θ

(2− θ)3
φ3 +O(φ5), φ→ 0,

u(t) = u(t0) + 4
1− θ
2− θ

(
φ− π

2
+
πθ

4

)
+O

(
φ− π

2
+
πθ

4

)2

, φ→ π

2
− πθ

4
.

Using the expression (4.17) for φ we finally get

u(t) = (2 + θ)

√
2

θ

√
t+O(t), t→ 0,



4.3 The Second Example 49

u(t) = u(t0)− 4
1− θ

√
2− θ

√
θ

√
t0 − t+O(t0 − t), t→ t0.

u(t) is differentiable on (0, t0) and (t0,∞). The norm of the driving term is thus given
by

‖u(t)‖ 1
2 loc

= max

(
(2 + θ)

√
2

θ
, 4
|1− θ|
√

2− θ
√
θ

)
.

The function (2 + θ)
√

2
θ

decreases from +∞ to 0 as θ varies between 0 and 2. The

function 4 |1−θ|√
2−θ
√
θ

first decreases from +∞ to 0 as θ increases from 1 to 2, and then increases

to +∞ as θ → 2.

(2 + θ)

√
2

θ
= 4

|1− θ|
√

2− θ
√
θ

for θ = θ0 = 3
√

5− 5.

For 0 < θ < θ0,

(2 + θ)

√
2

θ
> 4

|1− θ|
√

2− θ
√
θ
.

For θ > θ0,

(2 + θ)

√
2

θ
< 4

|1− θ|
√

2− θ
√
θ
.

Thus,

‖u(t)‖ 1
2 loc

=

 (2 + θ)
√

2
θ
, 0 < θ < θ0,

4 |1−θ|√
2−θ
√
θ
, θ > θ0.

The minimal value is obtained when θ = θ0. In this case, ‖u‖ 1
2 loc

= 3
√

2
√

5−1√
3
√

5−5
≈ 4.0125,

which is very close to Lind’s bound.

4.3.6 Non-Slit Disks

The geometry of the images of the unit disc under the function f(z, t) changes significantly
as t increases.
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πθ
0

Rew

Imw

−c(θ)
0

e
i
“

1
3u(t)+ 2

√
2

3
θ−1√

θ

√
t+O(t)

”eiu(t)

πθ
2

F−1(w, t)

Figure 4.3: f(D, t) for 0 < t < t0.

πθ
0
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Imw
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4 )
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Figure 4.4: f(D, t0).
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0

Rew

Imw

− 1
2(2−θ)

0

eiu(t)
πθ

πθ
2

F−1(w, t)

Figure 4.5: f(D, t) for t > t0.
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[Kuf47] , A remark on integrals of Löwner’s equation, Doklady Akad. Nauk
SSSR (N.S.) 57 (1947), 655–656 (Russian). MR MR0023907 (9,421d)

[Law05] G. F. Lawler, Conformally invariant processes in the plane, Mathematical Sur-
veys and Monographs, vol. 114, American Mathematical Society, Providence,
RI, 2005. MR MR2129588 (2006i:60003)

[Law09] , Conformal invariance and 2D statistical physics, Bull. Amer. Math.
Soc. (N.S.) 46 (2009), no. 1, 35–54. MR MR2457071 (2010a:60283)

[Lin05] J. R. Lind, A sharp condition for the Loewner equation to generate slits,
Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 1, 143–158. MR MR2140303
(2006b:30013)

[Lip64] R. O. S. Lipschitz, De explicatione per series trigonometricas instituenda func-
tionum unius variabilis arbitrariarum, et praecipue earum, quae per variabilis
spatium finitum valorum maximorum et minimorum numerum habent infini-
tum, disquisitio., J. Reine Angew. Math. 63 (1864), 296–308.

[LMR09] J. Lind, D. E. Marshall, and S. Rohde, Collisions and spirals of Loewner traces,
arXiv:0901.1157v1 [math.CV].
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