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Abstract. 

 

Human activities are causing a biodiversity crisis in all biomes of the Earth. As the world’s 

population continues to grow, more land will be converted to agricultural land to meet the 

growing food demands, especially in the tropics where we find the most species rich 

habitats in the world. Many of these species and ecosystems provide valuable services to 

the humans living here. To best protect species richness and the people dependent on 

rural livelihoods in the tropics, two types of managed agricultural landscapes have been 

suggested: land sparing and land sharing. Land sparing promotes high yield agriculture in 

order to have as large an area as possible protected, while land sharing is farming a more 

extensive area of the landscape, but is able to retain more species and ecosystem 

services by using agricultural methods such as agroforestry. The potential for conservation 

and retaining ecosystem services in a land sharing or a land sparing type landscape in 

Uganda is addressed using data about insectivorous bats recorded with Anabat detectors 

in habitats from sugarcane, home garden and forest in and around Budongo forest, 

Uganda. Species richness, diversity, activity and species composition were determined for 

all habitats and used to give a picture of the conservation value of the different habitat 

types. As found in other studies both agricultural landscape types have a higher species 

richness and diversity than the forest habitat. But the higher activity and number of species 

related to the forest gives the home garden landscape better potential for conservation of 

microbats. Scattered trees and distance to the forest in the sugarcane landscape type 

does not add any conservation value compared to the sugarcane habitat. This study helps 

to demonstrate the value of land sharing type agriculture for conserving species richness 

and retaining ecosystem services. 
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1. Introduction 
 

All of Earth’s ecosystems are influenced by human actions. Climate change, pollution, 

invasive species, habitat change and overexploitation are the major drivers of biodiversity 

loss in all biomes (MEA, 2005). A consequence of these human activities is the extinction 

of species. The loss of biodiversity seen today is up to one thousand times higher than that 

recorded by the fossil record (MEA, 2005). Myers et al. (2000) identified 25 hotspots of 

biodiversity and suggested that these should be focused on for the conservation of 

biodiversity. Fifteen of these hotspots are found in the tropics: an area in which the future 

of biodiversity does not look bright (Bradshaw et al., 2009). Tropical forests contain more 

than 60% of all species, yet they cover only 7% of the earth’s surface (Laurance, 1999). In 

the tropics, habitat change is the most important direct driver for biodiversity loss (MEA, 

2005), and as the population continues to grow and demand for fertile land increases, the 

trends we see today are likely to increase in the future (Bawa and Dayanandan, 1997). 

Conservation in the tropics is a very complicated issue, as a large number of the people 

living in these areas and using the protected landscapes, are rural and living below the 

poverty line (Fisher and Christopher, 2007).  

More than half of the land that can potentially be used for agriculture is already covered by 

cropland or permanent pasture (FAO, 2006) and just 11% of the world’s forests are 

protected by designated conservation areas thus recently, we have seen an increased 

focus by ecologists on conservation of tropical forest biota in the landscapes that have 

already been modified by humans (Gardner et al., 2009). 

 

To protect both biodiversity and the people living in the tropics, two possible solutions are 

being discussed, land sharing and land sparing (Green et al., 2005). The idea behind land 

sparing is that we maximize yields on land that has already been cultivated, allowing more 

land to be set aside for conservation or to restoration of wildlife (Balmford et al., 2005). But 

there are several problems with this approach. Even though protected areas are crucial for 

maintaining a great deal of the earth’s biodiversity, they are also known to fail to preserve 

the entire diversity of habitats, and therefore many species will not be protected. Local 

people are also known to dislike these strictly protected areas (Bhagwat and Rutte, 2006). 

High intensity agriculture is losing a lot of ecosystem services by focusing on short term 

yields in food production (Foley et al., 2005). The land sparing conservation model would 

leave us with a fragmented landscape with forest surrounded by a high intensity 
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agricultural matrix. The matrix is defined as the part of a landscape that has been or is 

currently undergoing anthropogenic alteration (Perfecto and Vandermeer, 2002). Research 

has shown that the species living in protected areas are very much affected by the matrix 

and surrounding landscapes (Ricketts, 2001). How species are influenced by 

fragmentation varies and depends on the structure of the surrounding matrix. It can 

provide food resources, corridors between different habitats and even breeding and 

roosting area (Antongiovanni and Metzger, 2005). The use of the matrix as corridors can 

prove to be important in the migration of forest dependent species in the case of future 

climate changes.  

 

The alternative solution, land sharing (Green et al., 2005), recommends using a larger part 

of the landscape for agriculture, but promotes more wildlife-friendly farming, by retaining 

greater habitat diversity and minimizing the negative side effects of farming practices in the 

matrix. Land sharing or wildlife-friendly farming could potentially solve the problem of a 

possible inhospitable matrix. Agroforestry is one type of wildlife friendly farming that has 

been suggested as an alternative way to improve the matrix and reduce deforestation by 

the intentional use of shade trees together with agricultural crops (Ashley et al., 2006). 

Bhagwat et al. (2008) reviewed studies that compared the species richness and similarity 

of assemblages for different organisms between primary forest and different agroforestry 

systems. They found that an average of 60% of the species found in primary forests is also 

found in agroforestry systems. Although protected areas are important for conservation of 

biodiversity, the quality of the landscape matrix is thought to contribute significantly to the 

success of the biota living inside the reserves and parks. Biota in the matrix will also 

provide ecosystem services such as erosion control, crop pollination and pest limitation. 

Agroforestry could also enhance rural livelihoods by somewhat increased yields: a study 

by Soto-Pinto (2000), for example found that shade tree cover up to 40% had a positive 

effect on coffee production. To try to understand patterns of biodiversity in landscapes that 

are actively managed is seen by many as the way forward for conservation in tropical 

regions (Chazdon et al., 2009).  

 

To determine how the diversity and abundance of life forms respond to anthropogenic 

factors would be time and resource consuming. So the use of indicator species to evaluate 

how systems respond is widespread. Taxa that are abundant ecologically and 

taxonomically and are trophically diverse are seen as useful indicator species. As a result, 

they can be used to evaluate disturbance effects and ecological patterns (Noss, 1990). 
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Bats (Chiroptera) occupy a variety of trophic levels, they are species rich and abundant in 

the tropics and are shown to behave in a predictable manner to disturbance and are thus 

seen as good indicator taxa in the tropics (Medellin et al., 2000). They contain 

approximately 1001 species worldwide (Hutson et al., 2001) and are the second-largest 

order of mammals in terms of species richness (Wilson and Reeder, 2005). They are not 

only a diverse group in terms of their number of species, but also in the variety found in 

morphology, feeding and roosting behavior (Altringham, 1998). Insectivorous bat diversity 

and activity are associated with the abundance of insects (Rautenbach et al., 1996). 

Monoculture cash crops like oil palm, cocoa, rubber and coffee reduce the biodiversity of 

insects such as moths, on which microbats feed (New, 2004), so bats are expected to 

follow the same pattern. This has been seen in previous bat studies, which have shown 

less bat activity in open areas where single-species crops are dominant. For example 

Estrada et al. (1993) did not capture any bats in 4 sites on the dominant pasture habitats in 

Mexico, whereas they captured 336 bats, belonging to 22 species in forest sites. There is 

often an observed increase of insect species in intermediately disturbed habitats or on the 

edges of habitats. For example, Ricketts et al., (2001) found that moths show small 

community changes between agricultural habitats, but a significant difference between 

relative  distance from primary forest. Because of the heterogeneity of the disturbed areas, 

this might make them more attractive to insectivorous bats.  

 

Bats provide important ecosystem services. In the tropics predation by insectivorous bats 

is more important than birds in reducing the abundance of arthropods and thus herbivory 

on agricultural plants (Kalka et al., 2008; Williams-Guillen et al., 2008). In a region of 

south-central Texas, the value of bats as pest control for the cotton industry has been 

estimated to be $741 000 per year (Cleveland et al., 2006). 

 

Arnett (2003) recognized bat responses to habitat management as one of the most critical 

pieces of missing information that is hindering our understanding of how to better conserve 

bats. Many of the threats to chiropteran communities can be related to an increase in 

human populations (Mickleburgh et al., 2002). Worldwide, it can be seen that agriculture 

has had a large impact on many bat species, partly by land degradation and removal of 

canopy trees (Fenton et al., 1998) or the use of pesticides, to which bats are known to be 

especially sensitive (Clark, 1981). In Africa some bat species are also consumed by 

humans, and bats that roost in houses are often exterminated by fumigation (Taylor, 2000). 
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Microbats use echolocation as a sensory means of orientation. Bat detectors let us 

eavesdrop, and presents the sound that the human ear is often unable to hear, in visual or 

acoustic models (Altringham, 1998). The availability of bat detectors has had a strong 

effect on field studies of bats, making them considerably less time and resource 

consuming (Altringham, 1998). Acoustic bat studies are also seen as a good way to 

supplement the more traditional bat sampling methods, like mistnetting and harptraps. 

Acoustic and trapping methods both have biases for the bat species they are most likely to 

catch or record. Bat detectors will not sample fruitbats, bats with very low frequency 

echolocation, and species that fly above the canopy. Mistnetting is not able to capture a lot 

of the agile or high flying microbat fauna (MacSwiney et al., 2008). In a study in the United 

States, O’Farrell and Gannon (1999) found that captures sampled 63.5% and acoustic 

methods 86.9% of the combined species sampled, making acoustic sampling a viable 

option. 

 

The echolocation calls are species specific, and bat detectors can be used to identify 

different species (Fenton and Bell, 1981). Bat detectors have been used in field studies all 

over the world in determining the distribution and habitat use of species. On a general 

level, some capture data show that some bats have a clear association with specific 

habitats and habitat disturbance (Fenton et al., 1992), while other data suggest that the 

opposite is true (Rautenbach et al., 1996). In addition, studies of echolocation have also 

proven useful for detecting cryptic species, for example, studies of echolocation calls of 

the species Pipistrellus pipistrellus exhibited two call types (Jones and Vanparijs, 1993).  

 

The objective of this study is to determine the conservation value of two tropical 

agricultural landscape types. Sugarcane represents the habitat sparing strategy, with high 

intensity monoculture plantations and little structural diversity and only a few trees that are 

situated far apart. The home garden represents land sharing, a diverse habitat in terms of 

structure both with a variety of different agriculture practices and a large number of trees 

growing in and around these agricultural patches. To see if these landscape types differ in 

their effect on microbat community composition, diversity, species richness and activity, 

these landscape types are compared to each other and to forest sites, to determine their 

potential for conservation of microbats and retention of ecosystem services. By sampling 

sites that are not so intensively managed and have greater habitat diversity inside a high 

intensity agricultural landscape, I could assess how habitats on a more local scale 

influence microbats. This will help determine if patches of trees in this landscape type are 
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more actively used by microbats, as is known from other parts of the world (Lumsden and 

Bennett, 2005). The data from this landscape are also used as a control for the home 

garden landscape site, to see if differences here are only because of very small scale 

differences in structure. I also sampled microbat communities over the whole period of 

foraging activity, to determine the nightly variation in activity. 

 

This study was conducted in the North Western part of Uganda. The future of the 

biodiversity in the tropical forests of the world is very dependent on the management of 

human impact on the landscape. This is also the case in Uganda, where  26% of the 

broadleaf forest cover was lost between 1990 and 2005 (FAO, 2009). Even though 14% of 

the land area in Uganda is protected (Howard et al., 2000), its biodiversity is threatened. 

The production of charcoal, illegal timber production, agricultural land expansion and forest 

clearing for sugarcane and oil palm plantations are among many of the reasons for the 

degradation of Uganda’s forests. Uganda’s population growth (3.5%) is the second fastest 

in the world (CIA, 2010). In Uganda, 87% of the population is rural, and 71% of land use 

change in tropical Africa is directly caused by small- and large scale agriculture (FAO, 

2009). So to quantify how agricultural practices are affecting biodiversity in Uganda is 

crucial for knowing how to conserve the great biodiversity found here. Uganda also has a 

large microbat fauna, and this makes it a good system for the purpose of studying effects 

of land use on microbat communities. 77 species of microbats are found in Uganda (Kityo 

and Kerbis, 1996). This is over 20% of the country’s mammalian diversity.  
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2. Materials and methods. 
 

2.1 Study area. 

 

The acoustic bat study took place in and around the Budongo Central Forest Reserve 

(BCFR) of Bunyoro kingdom. It is located in Masindi district, north western part of Uganda 

(1° 43' 14.452” N, 31° 32' 42.241" E) near the east shore of Lake Albert (Figure 2.1). 

Budongo has an altitude of 1100 m and is adjacent to other protected areas, for example 

Murchison Falls National Park, Bugungu Game Reserve and Karuma Game reserve. In 

the south, BCFR borders sugarcane plantations and several villages inhabited by 

subsistence farmers (Mwavu and Witkowski, 2008). BCFR is located in the northern part of 

The Albertine Rift Valley, a region of high conservation value as it is the most species-rich 

area in Africa for vertebrates (Plumptre et al., 2003), and has been identified as a 

”Biodiversity Hotspot” by Conservation International (Sheil, 1997; Myers et al., 2000). The 

precipitation in the area usually ranges from 1200 to1800 mm each year. Most of the rain 

falls in two periods; September November and March May (Sheil, 1997).  

 

BCFR was gazetted between 1932 and 1939 and covers a total area of 793 km2, of which  

428 km2 is forested, making it the largest forest reserve in Uganda. It also has the largest 

number of forest tree species recorded in Uganda (Howard, 1991).  BCFR is a lowland 

type forest, consisting of three main forest types: pioneer forest, mixed forest and 

ironwood forest (Cynometra). Mixed forest is the successional stage between pioneer 

forest and ironwood forest. It has a large number of tall trees 20 to 55 m high  and it is the 

richest of the forest types (Paterson, 1991). The canopy consists of three layers. Mixed 

and ironwood forest covers most of the forested parts of the reserve (Eggeling, 1947). The 

forest has been a site of commercial exploitation for timber since 1910. During the 1950’s 

and 1960’s management operations such as logging and the use of aboricides on selected 

trees regarded as weed species, were carried out (Plumptre and Reynolds, 1994). In 

addition to these changes within the forest, human settlements and conversion of forested 

areas for agriculture has divided the forest into a main block and several riverine forest 

patches surrounded by an agricultural matrix.  

 

 

 



 Materials and methods  

7 
 

 

 

 

 

 

 

 

2.2 Methods. 

 

2.2.1 Land use study. 

 

Eleven study sites were sampled for two nights, using two detectors each night. One 

AnaBatTM II linked to a CF storage device and an AnaBatTM SD I detector (Titley Scientific,  

Australia) were used to record the bat activity passively. The detectors were placed on a 

tripod approximately 1.5 m above the ground at an angle of 45°, positioned to capture as 

much of, and as many call sequences as possible (Weller and Zabel, 2002). The sensitivity 

of the recorder was adjusted to get as many calls as possible and minimize background 

noise. The detectors were placed at least 100 m apart, to ensure that the same individual 

was not continually sampled at both detectors. Ideally the two detectors should have been 

Figure 2.1 Map of the south side of Budongo forest with location in Uganda shown 
on the inset map (from maplibrary.com). The forest border from 1998 is drawn in 
red. The different sites of the acoustic microbat study are marked and named. For 
GPS of locations see Appendix. The area to the south of the forest is a landscape 
dominated by large sugarcane plantations, while the area to the north is used for 
smaller home gardens. The map was extracted and drawn using RgoogleMaps 
(Markus Loecher and Sense Networks, 2009) 
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placed in two separate sites per night. Due to logistic constraints both detectors were used 

to sample the same site the same night.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 The six different habitat types used for sites in the acoustic microbat study 

in North Western Uganda. The pictures show the forest (top left), home garden close 

to forest (top right) and sugarcane close to forest (middle right), home garden in 

sugarcane (middle left), home garden landscape (lower left) and sugar cane (lower 

right). 
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The sites were selected to establish a land-use gradient based on the variation in the 

intensity of agricultural use and the occurrence of large trees. Sites encompassed six 

habitat types (figure 2.2), placed in three different landscape types, sugar cane, home 

garden and forest. The two different agricultural landscapes are found south and northwest 

of the forest. In the south sugarcane plantations are dominating, while these are not found 

northwest of the forest. In the sugarcane landscape type, two habitat types were sampled, 

at two landscape positions: sugarcane, home garden in sugarcane landscape, sugarcane 

close to the forest, and home garden in sugarcane landscape close to the forest. Only one 

home garden landscape type site was sampled, because of logistic constraints. This gives 

the study eleven sites shown in figure 2.1. Areas close to water sources were excluded, as 

areas associated with water are known to be important foraging habitat for some bat 

species (Furlonger et al., 1987; Monadjem and Reside, 2008). Sugarcane and sugarcane 

close to forest sites were based in large fields of mature sugar cane between two and 

three meters in height. Home garden, home garden in sugarcane and home garden close 

to forest sites were sites used for subsistence farming. This landscape is dominated by 

fields of cassava (Manihot esculenta), maize (Zea mays) and different species of bean. 

Mango (Mangifera indica), jack fruit (Artocarpus heterophyllus), eucalyptus, banana, 

avocado (Persea americana), moringa and acacia are also grown. Both forest sites are 

situated in parts of the forest classified as mixed forest (Eggeling, 1947): the dominant 

genera are Chrysophyllum, Cynometra, Khaya and Trichilia (Paterson, 1991). The 

sugarcane plantations are a dense habitat, so small roads inside the fields were used as 

sample sites (figure 2.2). Roads were also used in the forest to allow a comparison of the 

activity and species assemblages between the sites. Geographical coordinates were 

recorded for each site (Garmin eTrex Handheld GPS). 

 

Data were collected between the 10th October and 26th November 2009. Detectors were 

turned on at 18:45, about 15 minutes before civil twilight, and continued until 22:00. This 

way I hoped to catch the species that come out to feed right before sunset and early in the 

night, and get sufficient data at each site to properly sample the communities. Sampling 

was avoided on nights when the moon was full. Five nights with a gibbous moon (Time 

and Date, 2010) were divided equally between the five habitat types to avoid bias. The 

effect of the moon should therefore be equal in all habitat types, but bats in the forest can 

change their vertical habitat (Hecker and Brigham, 1999), so the moon cycles effect on 

activity could be smallest in the forest. To avoid behavior biased results, no sampling was 

done on nights with heavy rainfall or high winds. The low number of sites in this study is a 
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result of such limitations, which were used to get as many unbiased results as possible. 

Temperature and relative humidity were recorded every ten minutes during each field night 

with a Hobo Pro v2, Temperature/Relative Humidity data logger (Onset Computer 

Corporation, USA). The logger was placed with one of the detectors, 50 cm above ground. 

Wind speed was estimated using the Beaufort Wind Force Scale (Singleton, 2008). The 

local tree canopy was calculated from the number of large trees and their approximated 

canopy size. This was estimated inside of a 100x100 m area centered on one of the bat 

detectors. 

 

2.2.2 Whole night study. 

 

The all night acoustic bat study took place at the Budongo Conservation Field Station 

(BCFS) (1° 43' 23.376" N, 31° 32' 44.765" E) inside the Budongo Forest Reserve (BFR), 

between the 19th September and the 28th November 2009. Two AnabatTM detectors were 

used on the 6th October and the 28th November. The two detectors were placed 

approximately 100 m apart, one facing south east (A), the other west (B). On three other 

nights (19th, 20th and 21st September) only the AnabatTM SD I detector was used. The 

detectors were recording passively from a window facing out into an open area at a 45° 

angle, making sure that there was nothing that obstructed the detectors. This kept the 

equipment under shelter in case of rainfall. Recording started 15 minutes before dark at 

18:45, and ended 07:30. The detectors were not moved during the nights. To avoid the 

recordings being biased by rainfall during the night, I placed a small container outside, and 

if it held water in the morning, the data were discarded. Batteries were fully charged or 

new before the whole night study.  
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2.2.3 Species identification. 

 

Species identification of the calls was done with the help of Dr. Robert Kityo at Department 

Of Zoology, Makerere University, using his earlier recordings (Kityo, 2008). Identification 

calls with less than three distinct pulses were discarded (Johnson et al., 2002). The 

identification was done using AnalookWTM  (Corben, 2006). Each call has a distinct 

duration measured in milliseconds from beginning to the end of a pulse, a shape and a 

frequency range (figure 2.3). Some of the calls that were recorded could not be identified 

to species with the information currently available. These calls are nonetheless distinct, 

and were categorized and assigned a letter from A to I. It can be assumed that these calls 

are either distinct species or that they are an unknown variation in the call traits of a 

species already known.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The echolocation call of Neoromicia nanus, with three call parameters marked. The x-axis is time in 

seconds, and the y-axis frequency in kilohertz. In this call the characteristic frequency (Fc) is 74 kHz, the maximum 

frequency of the call (Fmax) is 83 kHz and the minimum frequency of the call (Fmin) is 72 kHz. Fc is the frequency 

on the right, flat portion of the call, and the most important parameter for distinguishing species. Fc is often close to 

Fmin, but some calls have a down swipe at the end. 
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2.3 Statistics. 

 

All statistical analysis were done using the statistical program R 2.11.0 (R Development 

Core Team, 2010). 

 

2.3.1 Data manipulation. 

 

The bat call data for the land-use study was pooled from individual detectors and nights, 

into sites. The temperature and relative humidity varied little during the night, so an 

average for each night was calculated, and used to calculate the average for each site. If it 

had been raining on the same day as sampling, the site was given a value of one, or two, if 

it had rained on both sampling days. Wind was summed for the two sample nights into one 

value for the site.  

 

2.3.2 Call parameters. 

 

Breiman’s random forest algorithm (Breiman, 2001) was used  to test if there was potential 

for automatic species identification. The algorithm makes many classification trees on a 

bootstrap sample of the data. Then each classification tree votes on the test samples. The 

classification with the most votes is chosen as the best. Random forest also gives values 

for importance of the individual parameters. Maximum, minimum and characteristic 

frequency, duration, time between calls and characteristic slope were used as parameters. 

 

2.3.3 Activity, diversity and species richness. 

 

Estimations of the species richness in the microbat communities were done by drawing 

species accumulation curves (Colwell and Coddington, 1994). The non-parametric Chao1 

estimation method was also used. It is known to give good estimates of the potential 

richness in species poor communities (Colwell and Coddington, 1994). Rarefied species 

richness was estimated to see how many species would be expected at the lowest activity 

detected for any of the sites (n=81) (Hurlbert, 1971). The Simpson-index D diversity was 

calculated for each site. Because the detectors are not able to tell the difference between 

individuals, an index of bat activity is used instead of abundance. To test if there is a 

significant relationship between the activity and the different habitat types a Kruskal-Wallis 
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test was used. Non-parametric tests were used because my data violates the assumptions 

of parametric tests. A generalised linear model regression analysis was done to test the 

significance of the different parameters against distance to forest and local tree cover 

percentage.  

 

2.3.4 Community structure.   

 

Detrended Correspondence Analysis (DCA) (Hill and Gauch, 1980) was used to determine 

if the species composition had a linear or unimodal response to the underlying 

environmental gradient. The length of the first axis (3.5SD) indicates a unimodal 

relationship. Correspondence Analysis (CA) (Legendre and Legendre, 1998) was then 

used to better visualize the species composition as DCA rescales the axis. CA can be 

sensitive to rare species, so Species g was removed from the analysis because only one 

call of this species was recorded. A Constrained Correspondence Analysis (CCA) 

(Legendre and Legendre, 1998)  was used with the environmental variables (distance from 

forest, rain during the day, wind strength, tree cover, temperature, relative humidity and 

lunar illumination). Forward selection was used to find the environmental variables that 

were most important in describing the variance in species composition. The Jaccard index 

is used in the study by Bhagwat et al. (2008) and will be used to supplement the CCA 

(Legendre and Legendre, 1998) and for comparisons with the previous studies. The 

Jaccard index does not use abundance, but presence-absence data (Chao et al., 2005). 

And gives results from 0 to, 1 where 0 is identical composition. 
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3. Results. 
 

3.1 Call parameters. 

 

The echolocation calls of the 17 microbat species recorded in this study can be seen 

below in figure 3.1. These example calls can be used to identify microbat species form the 

same area, and habitats. 
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 Figure 3.1 The sonograms of the microbat calls recorded in and around Budongo forest reserve in 

Western Uganda. The calls are distinct in their shape and different frequency measures. 
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In 71% of the cases the random forest classification of the call parameters (table 3.1), 

placed calls in the same taxa as the qualitative species identification. Because the call 

characteristics of some of species have large variations (see figure 3.1) a confusion matrix 

was made for the known species (table 3.2). Here only 7 % of the calls were misclassified.  

 

In both cases the characteristic frequency is the most important parameter for identifying 

species. The minimum frequency is more important than the maximum frequency. This 

might be because the weaker maximum frequency can vary according to the distance to 

the microbat. The slope is seen as less important than frequencies. The time between 

calls is the least important parameter. The mean frequency and duration were not used 

because AnalookWTM gave wrong readings for these parameters. Pipistrellus khulii (96%), 

Neoromicia nanus (100%), and Species d (81%) are the species with the largest 

percentage of correct classification. 
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True species Mc Mi Cm Nc Pk Nn Nt Sp a Sp b Sp c Sp g Sp f Sp d 

Predicted 

species 

              

Mc  7 0 9 0 0 0 0 0 0 0 0 2 8 

Mi  0 3 0 0 0 0 0 1 4 0 0 3 4 

Cm  7 0 29 0 0 0 0 1 0 0 0 3 1 

Nc  0 0 0 0 0 2 0 0 0 0 0 0 0 

Pk  0 0 1 0 162 0 3 0 0 3 0 0 0 

Nn  0 0 0 0 0 27 0 0 0 0 0 0 0 

Nt  0 0 0 0 3 0 27 0 0 0 0 0 0 

Sp a  0 0 1 0 1 0 0 1 0 0 0 0 0 

Sp b  0 0 0 0 0 0 0 0 22 0 0 5 8 

Sp c  0 0 0 0 27 0 0 0 0 9 0 0 0 

Sp g  0 0 1 0 1 0 0 0 0 0 0 0 0 

Sp f  4 0 3 0 0 0 0 0 3 0 0 14 29 

Sp d  3 0 2 0 0 0 0 0 4 0 0 17 109 

 

 

 

 

 

 

 Pk Nn Nt Mc Cm 

Pk 165 0 4 0 0 

Nn 0 26 0 0 0 

Nt 3 0 27 0 0 

Mc 0 0 0 18 7 

Cm 0 0 0 7 30 

 

 

 

 

 

 

 

 

Table 3.1 Confusion matrix showing the classification of bat calls based on call properties from many classification trees. 

The calls of each true species are classified as a predicted species based on parameters. The parameters which were 

used are: max, min and characteristic frequency, duration, time between calls and characteristic slope. 

 

Pipistrellus kuhlii (Pk),Neoromicia capensis (Nc), Neoromicia nanus (Nn), Noeromicia tenuipinnis (Nt), Mops condylurus 

(Mc), Chaerephon major (Cm), Miniopteris inflatus (Mi). 

 

Table 3.2 Confusion matrix based on call properties from the known 

microbat species. For further explanation see Table 3.1 

 

Pipistrellus kuhlii (Pk), Neoromicia nanus (Nn), Neoromicia 

tenuipinnis (Nt), Mops condylurus (Mc), Chaerephon major (Cm). 
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3.2 Land use study. 

 

From a total of 132 hours of bat detecting, 2980 bat calls representing 16 species were 

recorded. The seven species that I was able to positively identify belong to two families, 

Mollosidae (Free-tailed bats) and Vespertilonidae (Plain-faced bats). Thirty three percent 

of all the recorded calls belonged to Neoromicia khulii, while 12% were Chaerophon major, 

9% Mops condylurus and 8% Species b.  

 

3.2.1 Environmental data. 

 

Amongst the 12 sites, the longest distance from the forest (table3.3) was from site S2, 

which was 4368 m from the forest. Sugarcane and home garden in sugarcane sites are all 

approximately 2 km from the forest edge. Local percentage of tree cover ranges from 98% 

(F1) to 0% (S1). There is a clear gradient in the percentage of cover going from the 

sugarcane sites to the forest. On the different nights of sampling, the temperature varies 

from 18oC in HS2 (17.Oct) to 21oC in SF1 (21.Nov) (table 3.4). The variation in humidity is 

small, only one night SF1 (21.Nov) is under 90%, and the majority around 96%. The 

illumination of the moon varies from 0.5% (HS2) to 75% (HS2). The illumination is evenly 

dispersed among the sites. The greatest effect from the moon would be expected in HS2 

(28.10) when the moon is close to full and sets at 22:12. During sampling there was very 

little wind, a light breeze (16.Oct HS1) is the highest wind speed recorded. 

 

 

 

 S1 S2 SF1 SF2 HS1 HS2 HF1 HF2 H1 F1 F2 

Distance from forest (m) 1814 4368 5 24 4156 1943 16 10 730 0 0 

Tree cover (%) 0 4 48 43 24 11 55 53 18 98 95 

 

 

 

 

 

 

 

 

Table 3.3 Distance from forest and tree cover percentage in the 11 sites used to sample microbat activity 

in and around Budongo forest, Uganda 

 

Sugarcane (S), Sugarcane close to forest (SF), home garden in sugarcane landscape type (HS), home 
garden close to forest in sugarcane landscape type (HF), home garden landscape type (H) and forest (F). 
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Site Date Moonrise Moonset Lunar 
phase 
(%) 

Wind 
(Beau-
fort 
scale) 

Temp 
(C°) 

Humidity 
(%) 

Rain 

S1 
11.10 - - 52.7 0 - - No 

22.11 11:02 23:23 29.0 0 18.49 97.46 No 

S2 
19.10 07:15 19:38 1.9 0 19.11 96.21 Yes 

25.11 13:09 00:47 57.5 0 18.67 96.93 Yes 

SF1 
15.10 - - 10.8 0 18.97 96.13 No 

21.11 10:16 22:38 20.6 0 21.55 86.15 No 

SF2 
24.10 11:36 23:58 36.9 0 19.25 96.23 Yes 

23.11 - - 38.1 0 19.01 93.98 No 

HS1 
16.10 - - 4.7 2 - - Yes 

24.11 12:28 00:06 47.7 0 18.97 96.03 Yes 

HS2 
28.10 14:34 22:12 74.7 1 19.92 94.30 No 

17.11 06:49 19:14 0.5 0 18.15 97.27 Yes 

H1 
26.10 13:09 00:45 56.2 0 18.43 96.37 Yes 

20.11 09:27 21:50 13.2 1 19.53 93.97 Yes 

HF1 
14.10 - - 19.3 0 20.83 93.91 No 

16.11 - - 0.4 0 19.56 96.69 Yes 

HF2 
27.10 13:52 01:29 65.7 1 20.26 93.63 Yes 

19.11 08:36 21:00 7.2 0 19.59 96.27 No 

F1 
13.10 - - 29.5 0 - - No 

18.11 07:43 20:07 2.9 0 20.19 91.17 No 

F2 
21.10 09:00 21:25 11.8 0 19.31 95.85 No 

26.11 13:50 01:28 67.3 0 19.75 96.04 No 

 

 

Table 3.4 Environmental variables for each acoustic microbat sampling night at the land use sites, in and 

around Budongo. The moonrise and moonset is not shown on nights when the moon is not up during the time 

of the acoustic sampling. 

 

Sugarcane (S), Sugarcane close to forest (SF), home garden in sugarcane landscape type (HS), home 

garden close to forest in sugarcane landscape type (HF), home garden landscape type (H) and forest (F). 
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3.2.2 Activity. 

 

The microbat activity varies from 148±65.8 bat passes per site in sugarcane, to 560±216.4 

in the forest sites (figure 3.2). We can see a pattern where forest and home garden 

landscape type sites have relatively high microbat activity. A weaker trend can be seen in 

the sugarcane and home garden sites in sugarcane landscape type, where sites located 

close to the forest tend to have higher activity than sites that are located further away. 

These difference in activity is not significant over habitats (Kruskal-Wallis chi-

squared=8.4091, df=5, p–value=0.1351). 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Microbat activity recorded using Anabat detectors in the different 
habitats in and around Budongo forest,Uganda. The black lines are the mean 
activity and the gray boxes the range. Home garden landscape type (H) only 
has one site, while the variation in home garden in sugarcane landscape type 
(HS) and sugarcane close to forest is so small it does not show on the figure. 
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Regression of the microbat activity against tree cover and distance gradient were not 

significant (P=0.569 and P=0.099, respectively).  Figure 3.3 shows the regression lines. 

Microbat activity along a distance gradient shows that there is a little bit more activity the 

closer to the forest the sites are situated. This pattern is reflected by the local tree cover 

percentage. This is because the 4 sites with 40% cover or more are the sites that are 

situated on the forest edge. Home garden landscape type is an outlier in both of these 

plots, it has higher activity than the sites situated closer to the forest and more than the 

sites with more tree cover percentage. 

 

 

 

 

 

3.2.3 Species richness and diversity. 

 

Species richness and diversity varies between the sites, but also between the two nights 

sampled at each site. A high Simpson diversity index value (table 3.5) indicates high 

diversity. Home garden in a sugarcane landscape type close to forest sites (Simpson index 

0.84±0.00) are the most diverse habitat and forest sites (Simpson index 0.54±0.17) the 

least diverse. No other pattern is seen either in differences in habitat or distance from 

forest. There is no significant correlation between the diversity and habitat types (Kruskal-

Wallis chi-squared=6.9545, d=5, p-value=0.2240). 

 
 

 

 

Figure 3.3 Regression analysis of the microbat activity around Budongo forest in Uganda. Activity was sampled 

over a distance from forest and tree cover percentage gradient. 
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  Activity Observed 

richness 
Rarefied 
(n=81) 

Chao1 
estimated 

Simpson 
Diversity 

  Mean s.d Mean s.d Mean s.d Mean s.d Mean s.d 

Sugarcane 148.5 65.8 10 1.4 8.5 0.2 10.9 0.5 0.75 0.04 

Sugarcane close to 

forest 
211.5 3.5 10.5 3.5 8.6 3.2 12.3 5.3 0.64 0.23 

Home garden in 

sugarcane landscape 
159.5 3.5 11 1.4 9.3 0.1 16 8.5 0.75 0.2 

Home garden close to 

forest 
221 60.8 11 0 9.7 0.2 11.5 0.7 0.84 0.0 

Home garden 379 NA 10 NA 7.5 NA 11 NA 0.69 NA 

Forest 560 216.4 7.5 0.7 5.6 0.6 7.5 0.7 0.54 0.17 

 

 

Rarefied and Chao1 estimated species richness per site were calculated to supplement 

the observed species richness data (table 3.5). Rarefied species richness per site is 

highest in home garden in sugarcane (9.3±0.1) and home garden close to forest (9.7±0.2). 

Lowest rarefied richness is found in the forest sites (5.6±0.6). The forest sites also have 

the lowest Chao1 estimated species richness per site, while the home garden in 

sugarcane site (16±8.5) has the highest. The habitats with the highest richness indices all 

have high standard deviations, because one site is much higher than the other. In 

conclusion the lowest richness is found in the forest sites, while the species observed, 

rarefied and Chao1 richness in the other sites show no clear pattern.  

 

Many of the sites have reached or are close to reaching an asymptote in the rarefaction 

curve (Figure 3.4), indicating that the sampling is sufficient as few species are expected to 

be added with further sampling. Both of the sugarcane and one of the sugarcane close to 

forest sites (SF1) have especially steep curves. More species would be expected to be 

found here if the sampling intensity was higher. The curve for the home garden site and 

forest site (F2) is leveling out, but additional species are expected at these sites as well. 

The same can also be said, to a lesser degree, about the home garden close to forest and 

sugarcane close to forest sites.  

Table 3.5 Mean and standard deviation of microbat activity, observed richness, rarefied richness and 

Chao1 estimated richness in the different land use habitats. 
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The Chao1 extrapolated species richness in table 3.6 gives an estimation of the number of 

species at each site. The Chao1 extrapolated species richness adds fewer species to the 

communities than the rarefaction curve, as seen especially in F2, H1, HF1, HS1 and S1. 

Both indices show that the sampling in most of the sites came close to getting a complete 

sample of the communities. However HS2 seems to be under sampled, probably as a 

result of the large number of species that has been detected once or only a few times, 

while others like Species i and C. major are very dominant.   

 

 

   

 S1 S2 SF1 SF2 HS1 HS2 HF1 HF2 H1 F1 F2 

Observed 11 9 13 8 10 12 11 11 10 7 8 

Chao1 11.3 10.5 16 8.5 10 22 11 12 11 7 8 

Se Chao1 1.3 7.2 NA 3.7 1.3 NA 1.3 NA NA NA NA 

 

 

Figure 3.4 Rarefaction curve of the microbat data, the number of new species added 

as the sampled microbat activity increases. 

 

Table 3.6 Observed and extrapolated number of microbat species in the eleven 
sites sampled in the land use study in Budongo. 

Sugarcane (S), Sugarcane close to forest (SF), home garden in sugarcane 

landscape type (HS), home garden close to forest in sugarcane landscape type 

(HF), home garden landscape type (H) and forest (F). 
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3.2.4 Species composition. 

 

Table 3.7 shows the activity of the species recorded over the different sites. Species b and 

Species c are only found in the forest sites, with quite high activity. Species f seems to be 

very active in HS2. This site has 95 % of all the recorded calls of this species. Both 

species of mollosid bats are found in all habitats outside of the forest, but only 3 calls were 

recorded inside the forest. P.khulii seems to be dependent on forest or edges. It is the 

most active of all species in the forest with 55% of all recorded calls. Species d is 

dominant in the home garden (51% of all calls), and 65% of all the Species d from the 

home garden landscape site. Miniopterus inflatus seems to prefer habitats outside of the 

forest but which are associated with trees or hedges. Neoromicia nanus is the only species 

that is more active in the sugarcane (51%) than in any of the other sites. 

 

 

 

 S1 S2 SF1 SF2 HS1 HS2 HF1 HF2 H1 F1 F2 

Family Molossidae            

Mops condylurus 33 15 20 10 19 23 34 50 39 4 0 

Chaerephon major 43 20 50 6 47 37 71 21 42 0 0 

Family Vespertilionidae            

Miniopterus inflatus 1 0 15 2 2 0 30 12 27 7 3 

Neoromicia capensis 2 1 8 0 1 1 2 4 3 0 8 

Neoromicia nanus 62 46 6 1 29 3 5 14 47 0 1 

Neoromicia tenuipinnis 3 11 11 9 9 1 8 12 1 10 45 

Pipistrellus kuhlii 38 4 72 140 19 5 31 19 21 312 295 

Unknown species            

Species a 0 1 1 0 6 3 1 9 3 0 15 

Species b 0 0 0 0 0 0 0 0 0 236 3 

Species c 0 0 0 0 0 0 0 0 0 131 22 

Species d 7 1 17 0 13 1 30 35 190 0 0 

Species e 1 0 1 0 0 1 0 1 1 7 0 

Species f 0 0 4 0 0 79 0 0 0 0 0 

Species g 2 2 7 1 5 7 8 1 0 0 0 

Species h 0 0 0 0 0 1 0 0 0 0 0 

Species i 2 0 1 30 0 0 44 0 0 0 0 

 

 

 

 

 

Table 3.7 Activity of the different microbat species recorded using Anabat detectors in and around Budongo 

forest, Uganda. Species activity is divided into the habitat they were recorded in.  

 

Sugarcane (S), Sugarcane close to forest (SF), home garden in sugarcane landscape type (HS), home garden 

close to forest in sugarcane landscape type (HF), home garden landscape type (H) and forest (F). 
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 Jaccard similarity index 

 S SF HS HF H 

SF 0.3±0.12     

HS 0.21±0.1 0.32±0.17    

HF 0.17±0.01 0.25±0.12 0.16±0.1   

H 0.26±0.02 0.37±0.19 0.34±0.05 0.17±0.11  

F 0.65±0.08 0.64±0.03 0.64±0.1 0.6±0.08 0.54±0.06 

 

 

 

 

The Jaccard similarity index for presence-absence data (table 3.8) show that all habitats 

are quite similar to forest, ranging from 0.65±0.08 in sugarcane to 0.54±0.06 in home 

garden landscape.  And home garden landscape habitats are most similar to forest 

habitats (0.54±0.06). Cover is the only variable to significantly explain the variation in the 

micro bat composition (CCA with forward selection, P=0.005). Percentage of canopy cover 

explains 31% of the total variance in the microbat species composition. Since only one 

variable is significant the species and site scores (figure 3.5) indicate how they are 

situated along this variable, which is local tree cover percentage. Sugarcane landscape 

type and home garden landscape type sites are quite similar. And home garden close to 

forest and home garden in sugarcane landscape sites are also situated close to these two. 

HS2 and H1 are outliers on the second axis. Distance is not significant in explaining any of 

the variance (P= 0.31). Wind (P=0.07667) was close to being significant. 

Table 3.8 The mean values and standard deviation of pair wise Jaccard indices, using 
presence-absents microbat data.  

Sugarcane (S), Sugarcane close to forest (SF), home garden in sugarcane landscape type 

(HS), home garden close to forest in sugarcane landscape type (HF), home garden landscape 

type (H) and forest (F). 
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3.3 Whole night sampling. 

 

Microbat activity varied considerably both within and between nights (figure 3.6). Total 

activity varied from 465 bat passes (6th October) to 1018 bat passes (28th November). The 

distribution of the activity also varied through the nights, from relatively constant activity to 

patterns with one or more distinct peaks. In the nights when the moon’s illumination is 

close to 0%, the microbat activity seems to follow a pattern of more activity early in the 

night, and a second period of activity early in the morning before the sun comes up (figure 

3.6). On the 21st September the moon had more illumination (9.4%) and set at 20:59, and 

Figure 3.5 CCA of the variation in microbat species composition in the different sites, with canopy 

cover as a constrained variable. Species are marked in red and sites in black. Sugarcane (S), 

Sugarcane close to forest (SF), home garden in sugarcane landscape type (HS), home garden close to 

forest in sugarcane landscape type (HF), home garden landscape type (H) and forest (F). 
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only a period of early morning activity was recorded. On the 6th October the moon was 

almost full and out from 20:27 and throughout the night. A period of activity in the hours 

before moonrise can be seen. In the last two histograms the moon sets at 02:54, and there 

is almost no activity before 02:00, and no distinct period of activity in the hours after 

sunset. The microbat activity follows the moons illumination. And on nights when the moon 

is close to being full, the bat activity changes to either the hours before moonrise or after 

the moon has set.  
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Figure 3.6 Bat activity sampled over a whole night on six nights with different moonsets, moonrises and 

illumination. The moonrise is symbolized by the white circle and the moonset by the black. If the moon rises or sets 

before or after the time interval of the sampling, the symbol is placed on the end of the time axis. The moon is 

visible between the white and the black circles. 
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Figure 3.7 shows when the different species are active throughout the night of 19th 

September. The different species clearly show different patterns in their nightly activity.  

Pipistrellus khulii dominates the activity before 22:00. Species g also seems to be more 

dominant early in the night and N. tenuipinnis also disappears after 22:00. After 23:00 a 

new species, Species d takes over as the dominant species. C. major and M. inflatus are 

both quite constant until 01:00, when their activity drops. M. condylurus is out during the 

first hour of the night and also the two hours after midnight. The moon set early in the night 

so it should have little effect on variation in species composition. 

 

 

Figure 3.7 The activity of different microbat species sampled over the duration of a 

whole night, Budongo field station. The moon is 0.7% illuminated.  
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4. Discussion. 
 

4.1 Land use study 

 

The 16 species sampled in this study compares well to other studies done on bats in 

Africa. In Western African rainforests 20-22 species are typically reported (Monadjem and 

Fahr, 2007). Published ANABAT recordings of African bats are limited. But some work has 

been done in recent years on different species and locations, for example the identification 

of echolocation calls of a number of rhinolophids and hipposiderids in Swaziland 

(Monadjem et al., 2007), and also a number of species in Western Uganda (Monadjem et 

al., Unpublished). The bat calls in this study compares well with the few that have 

previously reported. N. nanus has a Fc around 74 kHz, as reported by Taylor (2000) but is 

a lower frequency than the 79 kHz found at other sites in Western Uganda (Monadjem et 

al., Unpublished). To be able to do more effective studies of the habitat preferences in 

Africa using bat detectors, it is quite clear that more work has to be done to construct a 

comprehensive echolocation call library. 

 

In this study the home garden sites, a landscape with a large number of trees and a 

heterogeneous habitat, represents a landscape that would become increasingly common 

under a land sharing scenario. In contrast, the sugarcane sites - homogenous, high 

intensity monoculture plantations - represent a landscape that would become increasingly 

common under a land sparing scenario. The microbat data shows that both habitats are 

very similar in species richness and they are higher than in the forest habitat sites. This 

parallels the bat studies used in Bhagwat et al. (2008). Where Faria et al., (2006) and 

Harvey and Villalobos (2007) reported a higher percentage of species richness (139%) in 

the agroforestry systems than in the forest. Species richness was calculated as 

percentage of the species found in agroforestry to species found in forest. Using the same 

formulae the richness for sugarcane landscape type around Budongo is 120% while it is 

100% for home garden landscape type. In terms of species richness a more 

heterogeneous landscape does not conserve microbats better than a plantain 

monoculture. So a future land sharing system will not be able to conserve more species 

rich assemblages of insectivorous bats than a land sparing system. 

The largest difference between the three main habitats (sugarcane landscape type, 

homegarden landscape type and forest.) in this study is the activity. Forest and home 
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garden landscape type habitats have higher activity than sugarcane landscape type 

habitat. Both bat studies used in Bhagwat et al. (2008) are mistnetting studies, so they use 

abundance instead of activity, and their results differ in respect to abundance in forest 

compared to agriculture habitats. Faria et al. (2006) captured 4 times more bats in their 

Cabruca (agroforestry habitat) sites than in the forest, while Harvey and Villalobos (2007) 

found that abundance did not vary significantly between habitats. The same pattern can 

also be seen in an acoustic study in the rainforest of Madagascar where the activity was 

highest in human-modified areas outside of the forest (Randrianandrianina et al., 2006).   

This can indicate that my forest sites might be biased because of their location on roads 

going through the forest. Bats are known to use roads, trails and parts of the rainforest 

understory with little clutter (Law and Chidel, 2002), so a “tunneling” effect might explain 

the high activity of microbats in the forest sites of my study. Also the differences between 

mistnetting and acoustic surveying can reflect variation in the way fruitbats and microbats 

use an agroforestry landscape.  

 

Bats are very mobile, and are able to use a diverse range of habitats. So for an agricultural 

landscape to be effective in conserving the biodiversity that is threatened by human 

activities it should be able to retain the species that are dependent on a forested 

landscape. The composition of the home garden landscape type sites and sugarcane 

landscape type sites are similar, but are different from the communities found in the forest. 

The mean similarity for bat communities between forest and agroforestry sites in the 

review by Bhagwat et al. (2008) is 61%, while in this study the similarity of sugarcane and 

forest is 65% and home garden and forest is 54%. So the potential for conserving 

microbats is a little better in land sparing landscapes than land sharing landscapes 

according to this index.  

 

The microbat species that use forest edges are dependent on a forested habitat. 

Miniopteris inflatus and Species d are more active on the forest edge habitats than in the 

same habitat further from the forest. They also have high activity in the home garden 

landscape site. Species d is the third most recorded species and 65% of this activity is in 

the home garden landscape site. A more diverse agricultural landscape with a greater 

number of trees is more suited for M. inflatus and Species d in this study. Many species of 

microbats are known to forage along edges (Grindal and Brigham, 1999) and the land 

sharing landscape in this study better supports these forest edge species. 
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The microbats around Budongo do not use the home garden sites inside the sugarcane 

landscape more actively than the surrounding sugarcane plantations. There are no 

significant differences in the activity, species richness and diversity of the sugarcane and 

the home garden in sugarcane sites. This is in contrast to what has been reported by other 

studies. Lumsden and Bennett (2005) found significantly higher microbat activity in treed 

patches than the open paddocks devoid of trees inside active farming areas in Australia. 

These trees are valuable roosting habitats for bats in different parts of the world (Lumsden 

et al., 2002). Both the sugarcane and the home gardens in sugarcane sites have low 

levels of microbat activity. These home gardens are not more used by bats than the 

surrounding sugarcane, but they might improve the overall sugarcane landscape as 

microbat habitat. 

 

Forest bat communities are often categorized into different classes according to their 

different foraging behavior, morphology and echolocation calls (Aldridge and Rautenbach, 

1987; Crome and Richards, 1988). The low species richness in the forest can be explained 

as a sampling bias. The forest is a much more complex habitat than home gardens or 

monoculture cash crops. Bats are known to forage at specific heights, with different 

species showing a constant order of use in the vertical stratification (Bernard, 2001). A 

strong allocation of food resources is found in tropical bat communities (McNab, 1971). As 

the sampling in the forest sites was done on roads, it will be the species that are more 

adapted to open habitats that are sampled, and many of the different foraging classes 

found in the forest will not have been sampled. For example some species are found 

above the canopy and the detectors would not be able to sample these individuals, and 

similarly for species that are clutter foragers, that would be found deeper into the forest. 

When using mistnets in the same forest sites as this study, Kityo (2008) caught 13 species 

of microbats, of these only two were recorded in this acoustic study. Of the six known 

species recorded in my study only two were caught in Kityo’s study, and it should be noted 

that four species sampled in my study are unknown. Most notably, 43% of all his captures 

were Rhinolophus alcyone, a forest clutter species that was not recorded in the forest sites 

of this study, although two individuals were recorded inside the strict nature reserve on the 

7th October. The reason for this variation might be that Kityo (2008) sampled farther into 

the forest, or down by the Sonso river, where the communities would be expected to be 

different. Or the two sample methods are so different that to get a complete picture of the 

bat communities of a forest both acoustic and capture techniques have to be used. 
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4.2 Whole night sampling. 

 

In two of the whole nights sampled without influence from the moon we can see a period of 

about two hours with great activity after sundown and a drop in activity can be seen after 

about 22:00. Likewise a second time of activity is seen just before sunrise on some of the 

nights. Many studies have documented two peaks of insect activity during the night 

(Rautenbach et al., 1988; Rydell et al., 1996; Meyer et al., 2004). The time microbats 

become active appears to be a trade-off between the availability of prey and predation risk 

(Jones and Rydell, 1994). In the tropics, lunar phobia is thought to be widespread, 

especially in fruitbats (Fleming and Heithaus, 1986). It has also been suggested for 

insectivorous species in Africa (Fenton et al., 1977; Meyer et al., 2004), in contrast to 

temperate regions where there are no examples of lunar phobia in microbats (Hayes, 

1997; Karlsson et al., 2002). The lunar phobic activity of tropical bat species is thought to 

be a consequence of pressure from aerial predators that are not found in higher latitudes 

(Fenton et al., 1977; Rydell et al., 1996). If this is the case, then a landscape that has 

greater tree cover and more structural diversity could have greater conservation value than 

an open landscape. But we must remember that a forest sparing landscape also consists 

of an intact block of forest, which at least will provide cover for the forest species.  

 

Different species have developed individual foraging times, with the result that interspecific 

competition is minimized. Additionally, some species can be using the area around the site 

as roosting sites but forage in other habitats, consequently higher activity is recorded when 

the bats fly from their roost after sundown and when they come back to their roosts before 

sunrise. When looking at how the moon affects bat activity, activity is lower on nights with 

higher luminosity, and on one night microbat activity was delayed until after the moon had 

set at 03:00. 

 

Variation in foraging times will make some species overrepresented with the sampling 

methods used in this study. Unless one is able to sample during the whole duration of 

microbat activity, it is as good to sample the first three hours after dark as any other time 

during the night. The whole nights sampled show a high amount of variability, the source 

of this variation is unknown, although temporal variation is known to affect microbat activity 

(Hayes, 1997). So to get a proper estimation of the richness, diversity, composition and 

activity of a site many sampling nights must be used, unless this variation can be 

accounted for. 
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4.3 Call parameters. 

 

When identifying microbat species by their echolocation calls, one must be aware that 

there can be intra species variation (Obrist, 1995). The traits of bat calls are known to vary 

between different places (Barclay et al., 1999), with flight situation (Berger-Tal et al., 2008) 

and with habitat structure (Kalko and Schnitzler, 1993). Much of this variation is small, and 

using calls from different location makes accurate identifications possible (Murray et al., 

2001).  

 

For my study, I had a library of sixteen microbat echolocation calls collected by Robert 

Kityo from different forests in Uganda, but Budongo was not included in his study. I was 

only able to positively identify seven microbat species and nine distinct bats calls had to be 

categorised and given a letter from A to I. The random forest correctly identified species in 

at least 70% of the calls or above 90% with unknown species excluded. This is the same 

as previous qualitative studies in other parts of the world (Berger-Tal et al., 2008; Kofoky et 

al., 2009), and automatic identification of the microbat fauna in and around Budongo forest 

would be possible. 
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5. Conclusions.  
 

The species richness data suggest that, outside of the forest a land sparing landscape is 

able to retain the same amount of microbat species as a land sharing landscape, but the 

activity suggests that the latter habitat is more used by the microbats. The main ecosystem 

service provided by microbats is consumption of insects that provide a threat to crops 

(Cleveland et al., 2006) or humans. A habitat that supports larger microbat activity will limit 

more crop pests and might also help limit malaria carrying mosquitos, if these are 

consumed by microbats in the area. So a land sharing type heterogeneous landscape is 

able to better maintain and improve ecosystem services than a land sparing landscape. 

The microbats in this study exhibit lunar phobia. If this is a consequence of predator 

pressure, more open habitats could make bats more vulnerable to predation, and a land 

sharing landscape with a greater number of trees will provide bats with more cover, thus 

could have larger conservation value than an open plantation monoculture landscape. The 

species richness and diversity found in agricultural landscapes seems to indicate that 

microbats are less affected by habitat conversion then other fauna, but a land sharing 

landscape outside of the forest shows greater conservation value for microbats than a land 

sparing landscape around Budongo forest.  
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Appendix I 
 

The tables give the activity of each microbat species for each of the nights of sampling. The activity per night and per bat species is 

also totaled. The table has been divided up in two parts: the first part is the first 11 sampling nights, while the second part is the last 

11. 

 

 11.10 13.10 14.10 15.10 16.10 19.10 21.10 24.10 26.10 27.10 28.10 Total 

Family Molossidae            
Mops condylurus 10 0 23 7 9 15 0 2 26 16 9 117 
Chaerephon major 13 0 29 26 28 17 1 1 17 5 0 137 
Family Vespertilionidae           0 
Miniopterus inflatus 1 2 19 7 2 0 1 1 31 5 0 69 
Neoromicia capensis 0 0 1 0 0 0 7 0 1 3 1 13 
Neoromicia nanus 15 0 2 0 18 14 1 0 29 13 1 93 
Neoromicia tenuipinnis 1 1 1 5 7 6 49 5 0 11 0 86 
Pipistrellus kuhlii 7 89 17 28 6 2 138 71 9 9 0 376 
Unknown species            0 
Species a 0 0 1 1 4 1 12 0 3 7 1 30 
Species b 0 136 0 0 0 0 1 0 0 0 0 137 
Species c 0 37 0 0 0 0 22 0 0 0 0 59 
Species d 4 0 16 16 12 1 0 0 11 7 0 67 
Species e 1 2 0 1 0 0 0 0 1 0 0 5 
Species f 0 0 0 0 1 0 0 0 0 0 0 1 
Species g 0 0 6 4 2 2 0 1 0 0 5 20 
Species h 0 0 0 0 0 0 0 0 0 0 1 1 
Species i 2 0 44 0 0 0 0 9 0 0 0 55 
Total 54 267 159 95 89 58 232 90 128 76 18 1266 
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Appendix I continued. 
 
 
 
 

 16.11 17.11 18.11 19.11 20.11 21.11 22.11 23.11 24.11 25.11 26.11 Total 

Family Molossidae             
Mops condylurus 11 14 4 34 13 13 23 8 10 0 0 130 
Chaerephon major 42 16 0 18 11 24 30 3 14 3 0 161 
Family Vespertilionidae           0 
Miniopterus inflatus 11 0 5 7 10 8 0 1 0 0 2 44 
Neoromicia capensis 1 0 0 1 2 8 2 0 1 1 1 17 
Neoromicia nanus 3 2 0 1 18 6 47 1 11 32 1 122 
Neoromicia tenuipinnis 7 1 15 1 1 6 2 4 2 5 0 44 
Pipistrellus kuhlii 14 5 223 10 12 44 31 69 13 2 157 580 
Unknown species            0 
Species a 0 2 0 2 0 0 0 0 5 0 13 22 
Species b 0 0 100 0 0 0 0 0 0 0 0 100 
Species c 0 0 94 0 0 0 0 0 0 0 0 94 
Species d 14 1 0 28 179 1 3 0 1 0 0 227 
Species e 0 1 5 1 0 0 0 0 0 0 0 7 
Species f 0 6 6 0 0 0 0 0 0 0 0 12 
Species g 2 2 0 1 0 3 2 0 3 0 0 13 
Species h 0 0 0 0 0 0 0 0 0 0 0 0 
Species i 0 0 0 0 0 1 0 21 0 0 0 22 
Total 105 50 452 104 246 114 140 107 60 43 174 1595 

 



 

iii 

 

Appendix II 
The geographical coordinates of the eleven sites used for the acoustic bat 

study in the agricultural areas around Budongo, and inside the forest. 

 

 

 

 

 

 UTM zone 36 
Site Easting Northing 

Homegarden 326529 191523 
Sugarcane I 338129 182835 
Sugarcane II 341447 181631 
Homegarden in sugarcane I 340291 181808 
Homegarden in sugarcane II 338600 183965 
Forest I 337588 189209 
Forest II 331041 189025 
Sugarcane close to forest I 332917 187763 
Sugarcane close to forest II 339299 187128 
Homegarden close to forest I 337935 187950 
Homegarden close to forest II 336495 185614 


