
University of Bergen
Department of Informatics

MASTER THESIS
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Abstract: Many parametrized problems were decided to be FPT or W-hard.
However, there is still thousands of problems and parameters for which we do
not know yet whether are FPT or W-hard. In this thesis, we provide a tool
for extending existing results to additional parametrized problems.

We use the comparison relation for comparing graph parameters, i.e. we
say that parameter p1 is bounded by parameter p2 if exists a function f that
for every graph G holds p1(G) ≤ f(p2(G)). This allows us to extend results
for parametrized problem π in two ways. If problem π parametrized by p1
is FPT then also π parametrized by p2 is FPT. Or wise-versa, if problem π
parametrized by p2 is W-hard then also π parametrized by p1 is W-hard.

Moreover, we show whether is a parameter bounded by another parameter
for the 17 graph parameters: path-width, tree-width, branch-width, clique-
width, rank-width, boolean-width, maximum independent set, minimum dom-
inating set, vertex cover number, maximum clique, chromatic number, max-
imum matching, maximum induced matching, cut-width, carving-width, de-
generacy and tree-depth. To avoid all 272 different comparisons, we introduce
methodology for examining graph parameters which rapidly reduce number of
comparisons. And finally, we provide comparison diagram for all 17 parame-
ters.

Keywords: comparison, width parameter, FPT, W-hard
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Chapter 1

Introduction

Since Stephen Cook and Leonid Levin in 1970s proved that the boolean sat-
isfiability problem is NP-Complete, many other problems were decided to be
either P or NP-hard. When dealing with problems in real world we might get
lucky and our problem could be polynomial time solvable. Often thus, there
is only an exponential algorithm (unless P=NP). However, in practice, even
NP-hard problem has to be solved. So we revisit our problem and if we are
lucky we may find out that our input is restricted in some way.

Example Travelling salesman is a famous problem where the salesman wants
to find a shortest tour that visits each city exactly once. Trivial depth-first
search would lead to exponential complexity O(nn). However in real world we
can assume that each city has at most k outgoing roads with k � N . This
additional restriction gives us a running time O(nk). The running time is still
exponential. However the problem can now be solved on a computer for some
small value k.

1.1 Parametrized problems

It comes very natural to classify NP-hard problems on a finer scale based on
an additional parameter k.

Formally, we define a parametrized problem as a language L ⊆ Σ∗ × N,
where Σ is a finite alphabet and N is an integer number (parameter):

Input: (x, k)

Problem: Decide if (x, k) ∈ L

Now we can analyse running time not only as a function of the input size f(|x|),
but as a function of the input size and the parameter f(|x|, k). For example,
it is easy to see the difference between these two running times: O(|x|k) and
O(2k ·|x|3). The complexity classes FPT and W-hierarchy refines parametrized
problems according to their running time functions.

9



1.2 FPT and W-hard

In previous section we introduced parametrized problems. Analogical as we
partition general problems into the classes P and NP, we can partition para-
metrized problems into FPT and W-hard. Class FPT corresponds to class P
in a sense that problems in those classes are practically solvable on computer.
In contrast with W-hard and NP-hard problems which are, due to exponential
running time, impractical.

Definition FPT is a class of all parametrized problems (x, k) that can be
decided in running time f(k) · |x|O(1). In other words, the running time can
be any (exponential) function of the parameter k but polynomial in the input
size. FPT is an abbreviation for fixed-parameter tractable.

Example Parametrized version of a Vertex Cover problem.

Input: Graph G = (V,E), positive integer k

Problem: Is there a subset X ⊆ V of cardinality k s.t.

∀v ∈ V \X ∃u ∈ X : (u, v) ∈ E

W -hard is a class of all parametrized problems believe not to be in FPT.

1.3 Comparing parameters

In this thesis we focus on 17 graph parameters. However, the introduced
methodology can be used to systematize any parameters.

While designing a new parametrized graph algorithm, there is the crucial
part of choosing a right parameter. In general, a graph parameter can be any
function that assigns a non-negative number to a graph.

To make some system in parameters, we define partial order relation � on
all parameters.

Definition (�) Let p1 and p2 be two graph parameters. Then p1 � p2 if and
only if

∃f ∀G : p1(G) ≤ f(p2(G))

We also say that p1 is bounded by (some function of) p2. It is easy to see that
the relation � is a partial order.

To simplifies the notation, we also intuitively define relations ≈, 6� and |.

Definition (≈) We write p1 ≈ p2 if and only if p1 � p2 ∧ p2 � p1.

Definition (6�) We write p1 6� p2 if and only if ¬(p1 � p2).

Definition (≺) We write p1 ≺ p2 if and only if p1 � p2 ∧ p2 6� p1.

Definition ( | ) We write p1|p2 if and only if p1 6� p2 ∧ p2 6� p1.

10



The following two theorems show why the relation � plays an important
role when examining FPT problems.

Theorem 1.1 Let p and q be graph parameters. If p � q and problem π
parametrized by p is in FPT then π parametrized by q is also in FPT i.e.

p � q ∧ (π, p) ∈ FPT =⇒ (π, q) ∈ FPT

Proof Recall definition of p � q:

∃g ∀G : p(G) ≤ g(q(G))

From definition of FPT, we know there exists an algorithm A that can decide
problem (π, p) for any graph G with fixed parameter p in time h(p) · nO(1).
Since p ≤ g(q) for any graph then we can use the algorithm A and decide
< π, q > in running time h(g(q)) · nO(1). Let f be h ◦ g and we get running
time f(q) · nO(1). Therefore problem π parametrized by q is in FPT.

Theorem 1.2 Let p and q be parameters. If p � q and problem π parametrized
by q is W -hard then π parametrized by p is also W -hard i.e.

p � q ∧ (π, q) ∈W-hard =⇒ (π, p) ∈W-hard

Proof Assume for contradiction that (π, p) ∈ FPT. Since p � q we can apply
previous theorem and get (π, q) ∈ FPT. That is contradiction.

However, proper proof requires deep knowledges from Turing machines and
complexity theory. For further reading, we refer to [20].

Comparison diagram

To visualize relation � we use comparison diagram. In a comparison diagram,
two parameters p and q are connected by an oriented edge from q to p if and
only if p � q.

p1 p2

p4p3

Figure 1.1: Comparison diagram of relations p1 ≈ p2, p3 ≺ p1, p4 ≺ p1.

Example Consider 4 parameters p1, p2, p3, p4 and following relations: p1 ≈
p2, p3 ≺ p1, p4 ≺ p1. The comparison diagram is in figure 1.1. The compar-
ison diagram is very useful not only to visualize but further more to explore
transitive relations. For example, p3 and p4 are also bounded by p2. Moreover
when ever (π, p4) ∈ FPT then (π, p1), (π, p2) ∈ FPT.

11



Relation � gives us a powerful tool to decide whether a parametrized prob-
lem is fixed-parameter tractable. In this thesis, we give a complete comparison
diagram for 17 graph parameters. Many parametrized problems are already
known to be in FPT or W-hard. The diagram can be used to extend results for
more parameters without actually examining each pair consisting of problem
and parameter.

1.4 Notation

Unless specified differently, in this work we consider by G simple (no loops and
multiple edges), undirected, connected graph with vertex set V and edge set
E. n stands for size of a graph, the number of vertices in a graph.

Even though we focus only on connected graphs it is easy extend the given
results for disconnected graphs by appropriately combining results for each
component of graph.

While we use notion of vertex for original graph, nodes refer to vertices
in decomposition tree. Furthermore, decomposition usually maps one or more
vertices or edges to bags.

Sub-cubic tree is a tree in which every vertex has degree 1 or 3.
Formally, we define paths, stars, trees, cliques and grids in the following

way. In all definitions, we assume graph G on n vertices with vertices labelled
from v1 to vn.

Definition (Path) Graph G is path if and only if E =
⋃

i∈{1,...,n−1}(vi, vi+1)

Definition (Star) Graph G is a start if ant only if E =
⋃

i∈{2,...,n}(v1, vi)

Definition (Tree) Graph G is a tree if and only if has no cycles.

Definition (Clique) Graph G is a clique if and only if ∀u ∈ V ∀v ∈ V u 6= v :
(u, v) ∈ E.

Definition (Grid) Graph G is a (square) grid if and only if n = k2 where k
is an integer and

E =
⋃

i∈{1,...,k−1}

⋃
j∈{1,...,k−1}

{(ui,j, ui+1,j), (ui,j, ui,j+1)}

where ui,j correspond to vertex v(i−1)∗k+j.

1.5 Thesis outline

The aim of the thesis is to provide complete comparison diagram of all 17
parameters listed in Table 1.1. This task involves to decide for every two
parameters p, q whether:

1. p ≈ q

12



Section Parameter Notation
2.1 Path-width pw
2.2 Tree-width tw
2.3 Branch-width bw
2.4 Clique-width cw
2.5 Rank-width rw
2.6 Boolean-width bw
2.7 Maximum independent set IS
2.8 Minimum dominating set γ
2.9 Vertex cover number VCN

2.10 Maximum clique ω
2.11 Chromatic number χ
2.12 Maximum matching MM
2.13 Maximum induced matching MiM
2.14 Cut-width cutw
2.15 Carving-width carw
2.16 Degeneracy δD
2.17 Tree-depth td

Table 1.1: List of all 17 parameters and their abbreviations. Definitions are in
corresponding sections.

2. p ≺ q

3. q ≺ p

4. p | q

That leads to 17×16 different comparisons. However, transitivity decreases
the number of necessary comparisons. In order to systematize comparison of
parameters we introduce the following process:

Chapter 2 First, we examine each parameter on five graph classes i.e. paths,
stars, trees, cliques and grids. For each parameter and each class we show
whether the parameter is bounded by a constant or not (unbounded).
We choose those graph classes for two reasons. Parameters are easy to
examine on those classes. The classes represent different basic structures
of a graph.

Chapter 3 Consider two parameters p1 and p2. Let p1 be bounded on grids
and p2 be unbounded. This provides the useful information p2 6� p1.

Therefore we identify parameters that behave similar on the five graph
classes and place them in groups. We consider two parameters as sim-
ilar if for each of the 5 classes both parameters are either bounded nor
unbounded.

So we can generalized previous fact to the level of the groups.

13



boolw

cw

tw

bw

pw

cutw

carw

VCN

MM

IS

MiM

γ

ω

χ

rw

δD

td

Figure 1.2: 17 parameters and all 17× 16 different comparisons that we show
in this thesis.

Chapter 4 We compare all parameters within groups and get partial com-
parison diagram for each group of parameters. As it turns out later,
these partial comparison diagrams correspond to parts of the complete
comparison diagram.

Chapter 5 In the previous step, we identified partial comparison diagrams
inside the groups. However, there is still a lot of remaining comparisons
to examine in this chapter.
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Chapter 2

Parameters overview

In this chapter we introduce 17 graph parameters. We determine the size of
each parameter on five graph classes: paths, stars, trees, cliques and grids.

We are interested in whether a parameter is bounded on the graph class
by a constant or if it depends on the graph size, in other words unbounded on
the graph class.

To determine that a parameter is unbounded we need to show a lower
bound; all graphs from a particular sub class have parameter size bigger
than some function of |V |. It is usually easier to show that a parameter is
bounded. We simply provide a description of how to obtain a representation
with bounded parameter for any graph from the class.

For each parameter p and each graph class C we show one of the two options:

• Parameter p is bounded by a constant e.g. ∃k ∀G ∈ C : p(G) ≤ k. We
also claim that k is a tight bound (except some trivial cases).

• Parameter p is not bounded by constant e.g. ∀k ∃G ∈ C : p(G) > k. In
other words, for some graphs parameter p is bigger than some function
of |V (G)|. To show this, we provide sub class C ′ ⊆ C and prove ∃f ∀G ∈
C ′ : p(G) ≥ f(|V (G)|). Moreover, in most cases we show that this is a
tight lower bound.

The chapter ends with a table that summarized the behaviour of the 17
parameters on the five graph classes.

2.1 Path-width

Definition (Path-width) Path decomposition of a graph G is a pair (P,X)
where P is a path, X = {X1, X2, ..., Xq} is a family of vertex subsets and
satisfies:

• ∀(u, v) ∈ E(G) ∃p : u, v ∈ Xp

• ∀v ∈ V (G) set of vertices {p|v ∈ Xp} is a connected sub path of P .

• ⋃p∈{1,...,q}Xp = V (G)

15



Width of the path decomposition (P,X) is max(|Xp| − 1)p∈{1,...,q}. Path-width
is a minimal width among all possible path decomposition of graph G, denoted
pw(G).

Paths, Stars

b b b b b bb b b

b b b b b bb b b b b

a b c d

a b c db c

(a) Path decomposition of a path.

b b b b b

b

b

b

b

b b

b b

b

b

b

b

b

b

b

b b

bb

b

(b) Path decomposition of a star.

Figure 2.1a shows path decomposition of a path. All bags contain exactly
two vertices therefore path-width is 1.

Similar construction works for decomposition of a star shown in figure 2.1b.
Path width of any star is also 1.

Trees

Theorem 2.1 [1] Path of a complete binary tree with a height h is at least h
2
.

Therefore path-width is unbounded on a class of trees.

Cliques

Theorem 2.2 shows tree-width of a clique. Similar approach can be applied for
path-width and show that path-width of clique on n vertices is n− 1.

Grids

Theorem 5.3 shows that ∀G tw(G) ≤ pw(G). Since tree-width of a grid on n
vertices is

√
n then path-width is at least

√
n.

2.2 Tree-width

Definition (Tree-width) Tree decomposition of a graph G is a pair (T,X)
where T is a tree and X = {X1, X2, ..., Xq} is a family of vertices and satisfied:

• ∀(u, v) ∈ E(G) ∃t : u, v ∈ Xt

• ∀v ∈ V (G) set of vertices {t|v ∈ Xt} is a connected sub tree of T

• ⋃t∈{1,...,q}Xt = V (G)

16



Width of the tree decomposition (T,X) is max(|Xt| − 1)t∈{1,...,q}. The tree-
width is a minimal width among all possible tree decomposition of the graph
G, denoted tw(G).

Paths, Stars, Trees

Tree-width measure how graph “looks” like tree and it is not hard to see that
tree-width of tree is one.

b

b

bb

b
bb

b

bb

b

b

b

b

b
b

b

b b

b

b
b

b

b

b
b

b
b

Figure 2.1: Example of a tree decomposition of a tree.

Cliques

Theorem 2.2 Let G be a graph that contains a clique C. Any tree decompo-
sition (T,X) contains a bag Xi which contain all vertices of the clique C.

Proof We prove it by induction on the clique size.

k = 1, 2 Trivial.

k > 2 Let a be a vertex of the clique C. By induction we know that there
exists bag Xa that contains all vertices of clique except a (V (C)\{a}).
Since k is at least 3, we can similarly find vertices b, c and corresponding
bags Xb, Xc.

In a tree T , there exists unique path between any two bags. Let Xv

be a bag where intersect all tree paths between bags Xa, Xb, Xc. From
third condition, we know that Xv has all vertices that have Xa and Xb

in common:
Xv ⊇ Xa ∩Xb ⊇ V (C)\{a, b}

Similarly it works for pairs Xa, Xc and Xb, Xc.

Xv ⊇ Xa ∩Xc ⊇ V (C)\{a, c}

Xv ⊇ Xb ∩Xc ⊇ V (C)\{b, c}
It is easy to see that Xv contains all vertices the clique.

Corollary 2.3 Tree-width of clique on n vertices is n− 1.

Grids

Theorem 2.4 [2] Tree-width of a grid (
√
n×√n) on n vertices is

√
n.
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2.3 Branch-width

Definition (Branch-width) Branch decomposition of a graphG is a pair (T, χ).
Where:

• T is a sub-cubic tree (all nodes have degree 1 or 3).

• χ : A(T )→ V is a bijection, mapping leaves of T to into vertices of G.

Any edge (u, v) of the tree divides the tree into two components and divides
the set of edges of G into two parts X, E\X, consisting of edges mapped to the
leaves of each component. Width of the edge (u, v) is the connectivity value
of λG(X). The connectivity value λG(X) is defined as the number of vertices
of G that is incident both with an edge in X and with an edge in E\X.

The width of the decomposition (T, χ) is maximum width of its edges.
Branch-width of the graph G is the minimum over all branch-decompositions
of G, denoted bw(G).

Paths, Stars and Trees

Following theorem gives full description of graphs with small branch-width.

Theorem 2.5 (Robertson and Seymour) [21] A graph G has branch-wi-
dth of size:

• 0 if and only if every component of G has at most one edge.

• at most 1 if and only if every component of G has at most one vertex of
degree at least two.

• at most 2 if and only if G has no K4 minor.

Corollary 2.6 Branch-width of a path on at least 4 vertices is 2.

Corollary 2.7 Branch-width of a star is 1.

Corollary 2.8 Branch-width of a tree on at least two internal vertices is 2.

Cliques

Theorem 2.9 [21] Clique on n vertices with at least 3 vertices has branch-
width d2

3
n e.

Grids

Theorem 2.10 [21] Branch-width of grid
√
n×√n on n vertices is

√
n.

18



2.4 Clique-width

Definition (Clique-width) Clique-width of a graph G is the minimum number
of labels needed to construct G with the following operations:

• Creation of a new vertex with label i, denoted •i.

• Disjoint union of two labelled graphs G and H, denoted G⊕H.

• Joining by an edge every vertex labelled i to every vertex labelled j,
denoted ηi,j(G). Note that i 6= j.

• Renaming all vertices with label i to label j, denoted ρi→j(G).

Sequence of operations that use at most k labels to build a graph is called
k-expression.

Paths

b b b b
1112

b b b b
1123

b b b b
1123

b b b
112

b b b
123

b b b
123

b b
12

b b
12

b
1

ρ3→2(ρ2→1( ρ3→2(ρ2→1(η2,3( •3⊕

η2,3( •3⊕ η1,2( •2⊕ •1)))))))

Figure 2.2: 3-expression for building path P4.

It is obvious that graphs with a clique-width 1 do not have edges. Graphs
with clique-width 2 do not have P4 as sub graph [8]. However any arbitrary
long path can be built with a 3-expression as follows:

ρ3→2(ρ2→1(η2,3(•3 ⊕ ...ρ3→2(ρ2→1(η2,3(•3 ⊕ η1,2(•1 ⊕ •2))))...)))

Stars

b

b

b

b

b
11

22

1

b

b

2

1 1
b

b

b

2

1 1
b

•1)))•2⊕η1,2(•1⊕η1,2(

b

b

2

1 1
b b

1

•1⊕

b

b

2

1 1
b b

1

η1,2(

b b b

Figure 2.3: 2-expression for building star.

Any star with more than two vertices can be built with the 2-expression as
follows: η1,2(•1 ⊕ ...η1,2(•1 ⊕ η1,2(•1 ⊕ •2))...)
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Trees

We show construction of a tree with 3-expression by induction on number of
vertices.

k = 1 We label one vertex tree with •2.

k > 1 Let T be a tree with k vertices and v ∈ T . Denote neighbours of v as
t1, ..., tp and T1, ..., Tp components of T\v where ∀i ∈ {1, ..., p} ti ∈ Ti.
By induction step, we know that there exists 3-expression for tree Ti.
Moreover, ti is labelled with 2 and remaining vertices in ti are labelled
with 1. It is easy to see that following 3-expression create the tree T :

ρ3→2(ρ2→1(η2,3(•3 ⊕ T1 ⊕ ...⊕ Tp)))

Finally, it is important that to relabel vertices, so they meet the induction
step.

b

b b b

3

b b b

2 2 2

T1 T2 Tp

t1 t2 tp

b
b

b bb b
11
1

1
11

v

b b bb b b

1 1 1

T1 T2 Tp

t1 t2 tp

b
b

b bb b
11
1

1
11

ρ3→2(ρ2→1(

2
v

b

b b b

3

b b b

2 2 2

T1 T2 Tp

t1 t2 tp

b
b

b bb b
11
1

1
11

v

η2,3( •3 ⊕ T1 ⊕ ...⊕ Tp)))

b

Figure 2.4: Induction step of building a tree.

Cliques

b b

b

1 1

2

b b

b

1 1

2

b b
1 1

b b
1 2

b b
1 2

b
1

•1•2⊕η1,2(ρ2→1(•2⊕η1,2(

b b

b

1 1

1

ρ2→1(

Figure 2.5: 2-expression for building clique K3.

Arbitrary large clique can be built with the following 2-expression:

ρ2→1(η1,2(•2 ⊕ ...ρ2→1(η1,2(•2 ⊕ (ρ2→1(η1,2(•2 ⊕ •1)))))...))

Grids

Theorem 2.11 [10] Clique-width of a grid
√
n × √n on n ≥ 9 vertices is√

n+ 1.
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2.5 Rank-width

Definition (Rank-width) Let cut-rank of set A ⊆ V (G) be defined as rank of
matrix M where M is a A× (V (G)\A) matrix over Z2 s.t.

Mxy =

{
1 if xy ∈ E(G)
0 otherwise

cutrkG(A) = rank(M)

The rank-decomposition of a graph G is a pair (T, L) where T is a sub-cubic
tree and L is a bijection from V (G) to leaves of the tree T .

Width of the rank-decomposition (T, L) is a maximum width of e, over
e ∈ E(T ). For each edge e ∈ E(T ), width of e is cutrank cutrkG(Ae), where
(Ae, Be) are partitions of V (G) given by T\e. Any edge in a tree T split all
leaves (V (G)) into two partitions Ae, Be.

Rank-width of the graph G is a minimum width of rank-decompositions of
G.

Paths, start, trees and cliques

Rank of any non empty matrix is non zero and therefore rank-width is 0 if
and only if a graph has no edges. Class of graphs with rank-width 1 is well
described be the following definition and theorem.

Definition (Distance-hereditary graphs) A graph is called distance-hereditary
if and only if for every connected induced sub graph H of G, the distance
between every pair of vertices of H is the same as in G.

Theorem 2.12 [15] G is a distance-hereditary if and only if the rank-width
of G is at most 1.

Corollary 2.13 It is not hard to see that trees and cliques are distance-here-
ditary graphs and hence have rank-width 1.

Grids

However there is still a class of graphs where the rank-width remains un-
bounded.

Theorem 2.14 [12] Rank-width of a grid
√
n×√n on n vertices is

√
n− 1.

2.6 Boolean-width

Definition (Boolean-width [4]) Decomposition of a graph G is a pair (T, L)
where T is a sub-cubic tree and L is a bijection from V (G) to leaves of the
tree T .
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The function cut-bool : 2V (G) → R is defined as

cut-bool(A) = log2|{S ⊆ A : ∃X ⊆ A ∧ S = A ∩
⋃
x∈X

N(x)}|

Every edge e ∈ T partition vertices V (G) into (Ae, Ae). Boolean-width of
tree decomposition (T, L) is

max
e∈E(T )

{cut-bool(Ae)}

Boolean-width of graph G is a minimal boolean-width tree decomposition
over all boolean-width tree decompositions of G, denoted boolw(G).

Paths, Stars, Trees, Cliques

Instead of examining class of trees and cliques, we rather recall that boolean-
width is bounded by rank-width [4]. Since rank-width is one, boolean-width
is at most 1.5. Boolean-width of a size 0 correspond to graph with no edge.
Finally, we end up with boolean-width 1.

Grids

Similarly to rank-width, grids are also unbounded.

Theorem 2.15 [4] Boolean-width of a grid
√
n×√n on n vertices lies between

1
6

√
n and

√
n+ 1.

2.7 Maximum Independent Set

Definition (Maximum independent set) An independent set of a graph G =
(V,E) is a set of vertices X such that no two vertices in X are adjacent
(∀u, v ∈ X : (u, v) /∈ E). The largest independent set of the graph G is
maximum independent set, denoted α(G).

Paths, Stars and Trees

Lemma 2.16 Let us look at graphs with leaves. Consider a leaf u and it’s
neighbour vertex v. Only one of u and v can be placed into an independent
set. By choosing vertex v we exclude all neighbours vertices of v. Therefore it
is always wise to include a leaf into the independent set.

Previous lemma gives us straightforward algorithm for finding maximum in-
dependent set for trees. It is easy to see that size of maximum independent
set for path on n vertices is dn

2
e and for star n− 1.
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Algorithm

1. Remove all leaves and place them into the independent set.

2. Once again delete all newly formed leaves. All newly formed leaves were
joined to some vertex already included into the independent set and
therefore cannot be included in the independent set.

3. Repeat from first step until the remaining graph is not empty.

Since star is also tree then in an extreme case maximum independent set
of a tree can be also n− 1.

Cliques

For a clique, the situation is opposite and only one vertex can be placed in the
independent set.

Grids
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Figure 2.6: The maximum independent set of a grid with odd number of
vertices.

We can follow a chessboard pattern (Figure 2.6) to obtain an independent
set of the size dn

2
e. If we delete all vertical edges then we get forest of n paths

with maximum possible independent set. Hence a whole grid have maximum
possible independent set.

2.8 Minimum Dominating Set

Definition (Minimum dominating set) For a graph G = (V,E) a dominating
set is a set of vertices X such that every vertex outside of X has at least one
neighbour vertex inside of a set X (∀v ∈ V \X ∃u ∈ X : (u, v) ∈ E). The
dominating set with the smallest number of vertices is minimum dominating
set. The size of minimum dominating set is called a domination number,
denoted γ(G).
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b b b b b bb b b b b b

b b b b b bb b b b b b

b b b b b bb b b b b b b

b

b
3k+1
3k

3k+2

Figure 2.7: Minimum dominating set of a path with 3k, 3k + 1 and 3k + 2
vertices. Bold vertices represent dominating set.

Paths, Trees

Let us examine class of paths. Maximum degree is 2. For v ∈ X there is at
most 2 vertices outside of X that are adjacent to v. In other words one vertex
can dominate at most two other vertices. Therefore minimum dominating set
of path is at least dn

3
e vertices and this is also necessary. On the figure 2.7 is

shown pattern for choosing dominating vertices. This is also an extreme case
for trees and we can assume the same bound.

Stars, Cliques

It is easy to see that middle vertex of a star dominates all vertices. And one
vertex can dominate any clique as well.

Grids

We will use the same approach as for paths. Maximum degree in a grid is 4
and therefore domination number is at least dn

5
e. Better result can be found

in [5].

2.9 Vertex Cover Number

Definition (Vertex cover number) Vertex cover of a graph G = (V,E) is a set
of vertices S ∈ V such that every edge has either one or both vertices in S.
Vertex cover number is minimum vertex cover, a minimum number of vertices
that cover all edges of a graph.

Paths, Trees

Maximum degree of a path is 2. Therefore any vertex covers at most two edges.
Since there are n−1 edges in a graph, the vertex cover number is dn−1

2
e = bn

2
c.

Path is an extreme case of a tree, hence vertex cover number of tree is at least
bn
2
c as well.

Stars

All edges of a star are covered by the middle vertex. Hence vertex cover number
of a star is 1.
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Cliques

Lemma 2.17 Vertex cover number of clique is n− 1.

Proof It is easy to see that such a vertex cover of size n − 1 exists. Assume
for a contradiction that the vertex cover number of a clique is less than n− 1
and let vertices u, v /∈ S. Since it is a clique, the edge (u, v) ∈ E is not covered
by either u or v. This is a contradiction.

Grids

b b b bb bb

b b bb bb

b b b bb bb

b b bb bb

b b bb bb

b b b bb bb

b b bb bb
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b

Figure 2.8: Chessboard pattern for vertex cover of a grid.

Since maximum degree of a grid is 4 then any vertex can cover at most 4
edges. There is 2× (

√
n− 1)×√n = 2n− 2

√
n edges in a graph and therefore

vertex cover number of grid is at least d2n−2
√
n

4
e. However, in figure is shown

chessboard pattern for vertex cover of a grid of size bn
2
c. Note that non of

edges is covered be two vertices.

2.10 Maximum Clique

Definition (Maximum clique) For a graph G = (V,E) a clique is a sub set
of vertices X s.t. there is an edge between all pairs of vertices in X (∀u, v ∈
X : (u, v) ∈ E). Clique with largest number of vertices is maximum clique of
a graph G.

Paths, Stars, Trees, Cliques, Grids

Paths, stars and trees contains maximum clique of size 2, the edge. Maximum
clique size for graph class clique is obviously n. For a grid the situation is the
same as for trees. Grids have maximum clique of size 2 as well.

2.11 Chromatic Number

Definition (Chromatic number) For a graph G = (V,E), let ϕ : V → {1..k}
be a one-to-one mapping function that assign to each vertex a number (colour).
Minimum number of colours needed to label vertices in such a way that no two
vertices are connected by edge, is called chromatic number of graph, denoted
χ(G).
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Paths, Stars, Trees

It is easy to see that chromatic number of paths, stars and trees is 2.

Grids
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Figure 2.9: Vertex colouring of a grid using 2 colours.

Two colours are also sufficient to colour grids. To achieved it lets colour
vertices in a way similar to chessboard pattern (Figure 2.9).

Cliques

For cliques the situation is opposite. Each vertex is adjacent to all other
vertices and therefore all vertices need to have different colour. Chromatic
number of a clique is n.

2.12 Maximum Matching

Definition (Maximum matching) For a graph G let us define matching as
subset of disjoint edges (any two edges that do not share an endpoint). Largest
matching of a graph G is maximum matching. Hence each edge consist of two
different vertices, maximum matching is at most bn

2
c. Matching that matched

all vertices is called perfect matching.

Paths

For even paths, there always exists perfect matching and for general paths
exist maximum matching of size bn

2
c.

Stars, Trees

In a star graph, all edges share one vertex and therefore matching can never
be more than 1. In worst case graph of a tree looks like a path and therefore
graph class of trees have maximum matching of size bn

2
c.

26



Cliques

Cliques contains as a sub graph path on all vertices. Matching along edges on
this path leads to maximum matching of size bn

2
c as well.

Grids

b b b b b b bb bb

b b b b b b bb bb

b b b b b b bb bb

b b b b b b bb bb

b b b b b b bb bb

b b b b b b bb bb
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b

(a) Path pattern

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

(b) Spiral

Figure 2.10: Maximum matching of a grid with odd number of vertices.

Similar approach with a path can be used to show that maximum matching
of grids is of size bn

2
c. Pattern for choosing edges is in figure 2.10.

2.13 Maximum Induced Matching

Definition (Maximum induced matching) For a graph G let us define induced
matching as an edge subset M ⊆ E that satisfies two conditions:

• M is a matching of graph G.

• There is no other edge connecting any two vertices belonging to edges of
the matching M .

Largest matching of the graph G is maximum matching.

b b

b b

b b

b b
b

b

b

Figure 2.11: Induced matching forbids edges between already matched vertices.

Paths

In figure 2.12 is shown induced matching of a path. It is easy to see that the
maximum induced matching of a path has bn+1

3
c edges.
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b b b b bb b b b b b b

b b b b bb b b b b b b b

b b b b bb b b b b b b b b

3k
3k+1
3k+2

Figure 2.12: Maximum induced matching of path of lengths 3k, 3k + 1 and
3k + 2. Bold edges belong to matching.

Stars, Clique

In contrast, star and clique can only contribute by one edge to an induced
matching.

Grids

Roughly lower bound for grid on n vertices is bn
5
c, because each matched edge

forbids at least 5 vertices (corner edge).

Trees

Almost perfect matching can be achieved for a tree in figure 2.13.

b

bb

b b

b

b
b bb

Figure 2.13: Tree with maximum induced matching (bold).

2.14 Cut-width

Definition (Cut-width) Denoted all vertices of a graph G = (V,E) by num-
bers 1, ..., n. Let π be a permutation of set {1, ..., n} that place vertices in
order on the line. Any cut of the line divide vertices into two partitions A and
V \A. We define width of this cut as number of edges that goes from A to
V \A.

Width of a permutation π is then defined as maximum width over all
possible cuts. And finally, cut-width of G is defined as the minimum width
over all possible permutations π, denoted cutw(G).

Paths

It is obvious that any path has a cut-width of size one.

Stars, Trees

Lemma 2.18 For any graph G and any vertex v ∈ V (G), cutw(G) ≥ ddeg(v)
2
e.
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Proof Consider any permutation π. All edges of vertex v rather point to
previous vertices nor next vertices in order of permutation π. Hence cut right
before or after vertex v cross at least ddeg(v)

2
e edges.

b

b
b

b

b
b

b

v

Figure 2.14: cutw(G) ≥ ddeg(v)
2
e

Corollary 2.19 Cut-width of a star is dn−1
2
e, and hence there exists a tree

with a cut-width of size dn−1
2
e.

Cliques

For cliques, any permutation leads to the same vertex placement on the line.
Any cut among this line divide vertices into two partitions of size k and n− k
and have size of k(n − k). Maximum number of crossing edges is among two
equally big partitions. Hence cut-width of a clique is dn

2
ebn

2
c.

Grids

Theorem 5.6 shows that for any graph path-width is smaller than cut-width.
Since path-width of a grid on n vertices is at least

√
n then cut-width is of

grid is at least
√
n as well.

2.15 Carving-width

Definition (Curving-width) Consider a decomposition (T, χ) of a graph G
where T is a sub-cubic tree with |V (G)| leaves and χ : A(T ) → V (G) is
bijection mapping the leaves of a tree into vertices of G. Every edge of tree
T , e ∈ E(T ), partition vertices of a graph into two partitions Ve and V \Ve.
Define a width of the edge of the tree as number of edges of a graph G that
have exactly one endpoint in Ve and another endpoint in V \Ve e.g.

widthe = |{e = (u, v) ∈ V (G) : u ∈ Ve ∧ v ∈ V \Ve}|

Furthermore let the width of the decomposition be the maximal width over
all edges of tree T . And finally, carving-width of the graphs is minimal width
over all decompositions, denoted carw(G).
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b b b b

b b

e

4

Figure 2.15: Example of width decomposition and width along edge e.

Stars, Trees

Before examining graph classes let us discuss the relation between maximum
degree and carving-width.

Lemma 2.20 Carving-width of a graph G is at least ∆(G) where ∆(G) is the
maximum degree of a graph G.

Proof Consider any decomposition (T, χ). Let v be a vertex with maximum
degree and e an edge connecting directly to vertex v in T , i.e., e partition
vertices into {v} and V \{v}.
Corollary 2.21 Carving-width of a star is n− 1.

Corollary 2.22 Since star is also a tree, carving-width of tree is also n − 1.
Tree have n− 1 edges and therefore it is maximum possible carving-width.

Cliques

Carving-with of a clique is at least n− 1 since that is a maximum degree of a
clique.

Paths

Path can be easily decomposed as shown in figure 2.16. Bold line represents
the path itself and dashed line shows the maximal width along one of the
edges of tree. The figure shows that exists carving decomposition of path with
carving-width 2. Lemma 2.20 imply that this is tight estimation.

b

b

b

b

2

Figure 2.16: Carving decomposition of a path (bold), carving-width is 2.

Grids

Theorem 5.5 shows that for every graph G is tw(G) ≤ 3 · carw(G)− 1. Since
a tree-width of a grid on n vertices is

√
n due to [2] then carving-width is at

least 3
√
n− 1 and therefore unbounded.
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2.16 Degeneracy

Definition (Degeneracy) Let G be a graph and consider the following algo-
rithm:

• Find vertex v with smallest degree.

• Delete vertex v and connected edges.

• Repeat until graph is not empty.

Define degeneracy of a graph G (denoted δD(G)) as maximum degree over all
deleted vertices. Sometimes we are talking k-degenerate graphs, i.e. graphs
with degeneracy of size k.

Alternatively degeneracy can be define as maximum minimum degree of all
sub graphs i.e.

δD(G) = max
G′
{ min
v∈V (G′)

dG′(v) |G′ is a sub graph of G}

Pats, Stars, Trees

The previous algorithm when applied on trees would give a degeneracy of size
one. The same applies for stars and paths as well.

Cliques

Since the minimum degree of a clique is already n − 1 also degeneracy is the
same.

Grids

And finally, it is easy to see that degeneracy of a grid is 2.

2.17 Tree-depth

Definition (Tree-depth) Tree-depth decomposition of a graph G = (V,E) is
a rooted tree T with the same vertex set V . In additional, for every edge
(u, v) ∈ E, u is an ancestor of v or v is an ancestor of u in the tree T . We
define depth of T as maximum number of vertices from the root to any leaf.
And finally, tree-depth of the graph G is minimum depth among all tree-depth
decompositions.

Paths, Trees

Consider the following construction of tree-depth decomposition for a path.
For simplicity assume that the path has 2k− 1 vertices. Mark the middle
vertex as root and denote remaining paths as p1 and p2. Once again for both
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remaining paths choose middle vertices r1 and r2 and connect them to the
previous middle vertex. Construction step is shown in figure 2.17.

It is not hard to see that by applying recursion give us tree-depth decom-
position of a path with height dlog2(n+ 1)e. Rather then proving previous
construction for general case we refer to following theorem that gives us more
general lower bound and upper bound.

b b b b b b b

b

b b

b bb b

r

r1 r2

p1 p2

Figure 2.17: Construction of a tree-depth decomposition tree of a path.

Theorem 2.23 [13] Let l be the length of the longest path in a graph G. Then
the tree-depth of G is bounded as follows:

dlog2 (l + 2)e ≤ td(G) ≤
(
l + 3

2

)
− 1

Note that path of length l consist of l−1 vertices.

Corollary 2.24 Tree-depth of a grid is at least dlog2 (n+ 1)e.

Stars

In contrast, tree-depth of a star is 2 since tree-decomposition is the same as
the star itself.

Cliques

It is easy to see that the only tree-depth decomposition of a clique is a path
and therefore the tree-depth of the clique is n.

2.18 Summary

We end this chapter with a summary table. There is no parameter that is
bounded on all graph classes. As expected most parameters are bounded on
graphs with simpler structure such as path and star. On the other hand only
three parameters are bounded on grid.

There are tree possible values for a parameter p and a class C in the Table
2.1:

constant k Any graph from class C has the parameter of size c i.e. ∀G ∈ C :
p(G) = k.
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Path Star Tree Clique Grid

Path-width 1 1 ≥ log2n
2

n− 1 ≥ √n
Tree-width 1 1 1 n− 1

√
n

Branch-width 2 1 2 d2
3
ne √

n
Clique-width 2 2 3 2

√
n+ 1

Rank-width 1 1 1 1
√
n− 1

Boolean-width 1 1 1 1 ≥ 1
6

√
n

Max. indep. set dn
2
e n− 1 n− 1 1 dn

2
e

Min. dom. set dn
3
e 1 dn

3
e 1 ≥ dn

5
e

Vertex cover # bn
2
c 1 bn

2
c n− 1 bn

2
c

Max. clique 2 2 2 n 2
Chromatic # 2 2 2 n 2
Max. matching bn

2
c 1 bn

2
c bn

2
c bn

2
c

Max. ind. mat. bn+1
3
c 1 n−1

2
1 ≥ bn

5
c

Cut-width 1 dn−1
2
e dn−1

2
e dn

2
ebn

2
c ≥ √n

Carving-width 2 n− 1 n− 1 ≥ n− 1 n+ 1
Degeneracy 1 1 1 n− 1 2
Tree-depth dlog2 (n+ 1)e 2 dlog2 (n+ 1)e n ≥ dlog2 (n+ 1)e

Table 2.1: Parameter size for five different graph classes.

≥ f(n) There is no such constant k i.e. ∀k ∃G ∈ C : p(G) > k. We showed
that there exists a graph G s.t. p(G) ≥ f(n) where n is the number of
vertices of a graph G.

f(n) The same as previous case. In additional, we showed that ∃G ∈ C :
p(G) = f(n) so f(n) is a tight upper bound.

Note that bounded and unbounded values may differ for trivial graphs e.g. one
vertex graph.
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Chapter 3

Parameter groups

In this short chapter, we place similar parameters into groups. We consider two
parameters p1, p2 similar if for every of the five graph classes the parameters are
either both bounded or unbounded. Note that it does not mean that p1 ≈ p2.
Parameter groups are shown in Table 3.1.

Even if it is not important, we ordered groups in the table by increasing
complexity of structure of graph classes. We consider paths and stars as graphs
with very simple structure. On the other side, cliques and specially grids we
consider as graphs with more complex structure. However, first two groups
are unbounded on both simple or more complex classes.

Group Path Star Tree Clique Grid
1. Maximum independent set U U U B U

2.
Minimum dominating Set,
Maximum induced matching

U B U B U

3. Cut-width, Carving-width B U U U U

4.
Vertex cover number,
Tree-depth, Maximum matching

U B U U U

5. Path-width B B U U U
6. Tree-width, Branch-width B B B U U

7.
Clique-width,
Rank-width, Boolean-width

B B B B U

8.
Maximum clique,
Chromatic number, Degeneracy

B B B U B

Table 3.1: Parameters are grouped when ever they behave the same on all
five graph classes. “B” means that all parameters are Bounded by a constant
for a specific class. On the other hand, “U” stands for Unbounded i.e. the
parameter size depends on the graph size n.

Whenever parameter p1 is bounded on a class of graphs C and parameter
p2 is unbounded then p2 6� p1.
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From Table 3.1, we extract information about inbound relations and obtain
following list. Parameters in brackets belongs to the same group.

IS 6� (cutw, carw), (VCN, td, MM), pw, (tw, bw), (ω, χ, δD)

(γ, MiM) 6� IS, (cutw, carw), (VCN, td, MM), pw, (tw, bw), (ω, χ, δD)

(cutw, carw) 6� IS, (γ, MiM), (VCN, td, MM)

(VCN, td, MM) 6� IS, (cutw, carw)

pw 6� IS, (γ, MiM), (cutw, carw), (VCN, td, MM)

(tw,bw) 6� IS, (γ, MiM), (cut, carw), (VCN, td, MM), pw

(cw, rw, bw) 6� IS, (γ, MiM), (cut, carw), (VCN, td, MM), pw, (tw, bw), (ω,
χ, δD)

(ω, χ, δD) 6� IS, (γ, MiM), (cut, carw), (VCN, td, MM), pw, (tw, bw), (cw,
rw, bw)

To make it more clear, we draw Figure 3.1.

cut-width
carving-width

VCN, tree-depth
maximum matchingIS

pw

tw, bw

cw, rw,
boolw

γ, MiM

χ, ω,
δD

Figure 3.1: Partial order of parameter groups. Dashed line represent possible
relation which have to be explore in more details. Consider a dashed arrow
from group G1 to group G2. For every parameter p1 from G1 and for every
parameter p2 from G2 we have to further examine whether p2 ≺ p1 or p1|p2.
No line from a group G1 to G2 means that for any parameter p1 from G1 is
not bounded by any parameter p2 from group G2 i.e. p1|p2.
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Chapter 4

Comparing similar parameters

In the previous chapter, we identified groups with similar parameters. Since
parameters in a group behave similar on the five main graph classes, we are
expecting that parameters might be mutually bounded.

In each of the following sections we examine one group of parameters except
those groups with only one parameter. For every pair of parameters in the
group, we show one of the four possible relations (≺,�,≈, |). Moreover, each
section ends with a partial comparison diagram.

4.1 Relations between minimum dominating

set and maximum induced matching

Theorem 4.1 (MiM 6� γ) Maximum induced matching is not bounded by
minimum dominating set.

Proof Consider the graph shown in figure 4.1. It is obvious that the middle
vertex dominates all vertices. On the other hand, the bold edges represent a
maximum induced matching of size n−1

2
.

b

Figure 4.1: Minimum dominating set is bounded, but maximum induced
matching can be arbitrary large.

Theorem 4.2 (γ 6� MiM) Minimum dominating set is not bounded by max-
imum induced matching.

Proof In this proof, consider the graph in figure 4.2. It consists of a clique
on n

2
vertices and additional n

2
leaves. Each leaf corresponds to a vertex of the

complete graph.
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b b

b b

b b

b
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b

b

bb

b

b

u v

Figure 4.2: Maximum induced matching is bounded, but minimum dominating
set can be arbitrary large.

Only one vertex from the clique can be included in an induced a matching
and therefore maximum induced matching has size one.

In contrast, from pair u, v at least one vertex have to be chosen into a
dominating set. Therefore at least n

2
vertices have to be chosen. It is easy

to see that n
2

is also sufficient. In figure 4.2 bold vertices represent minimum
dominating set, but all leaves would dominate the graph as well.

Minimum dominating
set

Maximum induced
matching

Figure 4.3: Relations between minimum dominating set, maximum induced
matching. They are mutually unbounded, γ | MiM.

4.2 Relations between cut-width and carving-

width

Cut-width and carving-width are very similar. Both count number of crossing
edges. Main difference is how they partition vertices. Following theorem show
that cut-width is bounded by carving-width. However, opposite relation is
unbounded.

Theorem 4.3 (carw � cutw) Carving-width is bounded by cut-width.

Proof In this proof, we show that for any graph with bounded cut-width there
exists carving decomposition with carving-width no more than twice as big.
Let G be a graph with cut-width of size k and π corresponds to permutation
of vertices. We fix order of vertices and build a sub cubic tree above it as it is
shown in figure 4.4b. For any vertex πi there are three types of carving cuts
i.e. A′, B′ and C ′. Let us examine them.

Cut A′ splits vertices into two partitions {π1, ..., πi−1} and {πi, ..., πn}. This
partitioning corresponds to cut A in cut decomposition in figure 4.4a. There-
fore cuts A and A′ have the same size. Similar approach applies for carving
cut B′ and corresponding cut B.
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Cut C ′ splits vertices into two partitions {πi} and V \{πi}. However, size
of C ′ is no more than A′ + B′ = A + B = 2k. Since cut-width of G is k then
carving-width is no more than 2k.

b b b b b

πiπ1 πn

b bb b bb

πi−1 πi+1

A B

(a) Cut decomposition

b b b b b

πiπ1 πn

b bb b bb

πi−1 πi+1

A′ B′

C′

b b

π2 πn−1

(b) Carving decomposition

Figure 4.4: Cut A′ correspond to A, B′ to B and size of cut C ′ correspond to
sum of A and B.

Theorem 4.4 (cutw 6� carw) Cut-width is not bounded by carving-width.

Proof We do not prove this directly. Bodlaender proved in [3] that for all
graphs pw(G) ≤ cutw(G). We prove in Theorem 5.4 that path-width is not
bounded by carving-width and therefore also cut-width is not bounded by
carving-width.

cutw

carw

2k

Figure 4.5: Relations between cut-width and carving-width.

4.3 Relations between vertex cover number,

tree-depth and maximum matching

Theorem 4.5 (MM � VCN) Maximum matching is bounded by vertex cover
number.

Proof Let S be a vertex cover of size k. Since all edges contain at least one
vertex from S (∀(u, v) ∈ E : u ∈ S ∨ v ∈ S), there is at most k disjoint edges
and therefore maximum matching is never more than k. Furthermore this is a
tight bound, we can easily check vertex cover number and maximum matching
of complete bipartite graph Kn,n.

Theorem 4.6 (VCN �MM) Vertex cover number is bounded by maximum
matching.
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Proof Let G = (V,E) be a graph and M ⊆ E is maximum matching of size
k. For convenience, let us define V (M) as set of all vertices that are matched,
i.e.

V (M) = {u|∃v ∈ V (u, v) ∈M}
It is not hard to see that all edges of G either intersect in set M or intersect
with some of edge in M , i.e. ∀(u, v) ∈ E : u ∈ V (M) ∨ v ∈ V (M). Otherwise,
we can add such an edge to M to get matching of bigger size and that is
contradiction with chosen maximum matching.

We use this fact to build a vertex cover by choosing all vertices from V (M)
to vertex cover S. Therefore the vertex cover number of G is at most 2k.

Theorem 4.7 (td � VCN) Tree-depth is bounded by vertex cover number.

Proof First, we show construction of tree with depth k + 1 and then we
examine all edges that satisfied definition of tree-depth.

Let S be a vertex cover of size k of graph G. Consider the following
construction of tree T from vertices V (G). Construct path from vertices S in
arbitrary order and denote endpoints as r and t. Append all remaining vertices
V \S as direct ancestors of vertex t. If we consider r as root of tree then we
get the tree T as shown in figure 4.6.

b

b

b

b

b

r

t

b

b

b b bb b b

∈ S

/∈ S

Figure 4.6: On original vertices of the a graph G, we construct the tree T that
satisfy definition of tree-depth. Set S represent vertex cover.

We examine edges V (G) and show that the tree T satisfies the definition
of tree-depth. For any edge e = (u, v) of G, consider 3 cases:

1. Both endpoints are in S, i.e. u, v ∈ S. Since all vertices from S lie on
path from r to t then either u is an ancestor of v or v is an ancestor of
u in tree T .

2. Exactly one endpoint is in S, i.e. u ∈ S and v /∈ V \S. Vertex v is a leaf
in T and therefore v is an ancestor of u.

3. None of the endpoints is in S, i.e. u, v /∈ S. Since vertices in S cover
all edges of graph G this case can never happen. In other words, there
cannot be edge edge in the original graph G between two leaves of the
tree T .

We have shown that for any graph with bounded vertex cover number k, we
can construct tree-depth tree T of depth no more that k + 1 and therefore
tree-depth of G is at most k + 1 as well.
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b

b

b

b

bb

b

b b b

VCN=MM=n−1
2

tree-depth=3

Figure 4.7: Construction of a graph with arbitrary large vertex cover number
or maximum matching and fixed tree-depth.

Theorem 4.8 (VCN 6� td) Vertex cover number is not bounded by tree-depth.

Proof Consider the graph in figure 4.7. By adding double leaves we get a
graph with arbitrary large vertex cover number, but tree-depth remains fixed
at size 3.

Corollary 4.9 (MM 6� td) Maximum matching is not bounded by tree-depth.

Theorem 4.10 (td �MM) Tree-depth is bounded by maximum matching.

Proof Let G be a graph with maximum matching of size k. Using theorem
4.6 we get that the graph G has a vertex cover of size at most 2k. And for a
graph with bounded vertex cover number theorem 4.7 gives upper bound for
tree-depth. In total, tree-depth of G is at most 2k + 1.

td

2k

k

2k + 1k + 1

VCN MM

Figure 4.8: Relations between vertex cover number, maximum matching and
tree-depth.

4.4 Relations between tree-width and branch-

width

We show that for any graph G with branch-width equal to k there exists a tree
decomposition with tree-width at most b3

2
kc − 1. Any branch decomposition

Tb already satisfies these two tree decomposition conditions:

• ∀(u, v) ∈ E(G) ∃t : u, v ∈ Xt

• ∪t∈TXt = V (G)

For every two leaves in the branch decomposition Tb that contains vertex x
exist a unique path in the tree T . Adding vertex x to every node on the path
(that not already include it) we get a tree decomposition Tt of a graph G that
also satisfies the third condition. It remains to determine maximal size of bag.
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Theorem 4.11 [21] Any bag u of tree decomposition Tt have size no more
than b3

2
kc.

Proof If bag u have a degree 1 then u is a leaf and size of the bag is 2.
Otherwise u have a degree 3 and let denote W 1

u ,W
2
u ,W

3
u ⊆ V (G) the guts of

separation for three incident edges of u. It is easily seen that a vertex of G
occurring in one of W 1

u ,W
2
u ,W

3
u has to appear also in another one of those,

therefore the cardinality of Bu = W 1
u ∪W 2

u ∪W 3
u is at most b3

2
kc.

Corollary 4.12 (tw � bw) [21] Tree-width is bounded by branch-width.

Theorem 4.13 (bw � tw) [21] Branch-width is bounded by tree-width,
i.e. ∀G bw(G) ≤ tw(G) + 1.

tw bw

3
2
k − 1

k + 1

Figure 4.9: Relations between tree-width and branch-width. Arrow from
branch-width to tree-width means that when ever branch-width is bounded
by constant k then also tree-width is bounded by constant. Function above
this arrow means that the tree-width is no more than 3

2
of the branch-width.

Similarly it works for opposite direction or any other comparison diagram in
this thesis.

4.5 Relations between clique-width, rank-width

and boolean-width

The following theorems give a full overview of relations. All three parameters
are mutually bounded. However, there is a difference between them. Boolean-
width is bounded by some polynomial function and comes as “smallest” among
them. On the other hand, clique-width is bounded exponentially.

Theorem 4.14 (boolw � rw) [4] Boolean-width is bounded by rank-width,
i.e. ∀G boolw(G) ≤ 1

4
rw(G)2 + 5

4
rw(G) + log rw(G).

Theorem 4.15 (rw � boolw) [4] Rank-width is bounded by boolean-width,
i.e. ∀G rw(G) ≤ 2boolw(G).

Theorem 4.16 (boolw � cw) [4] Boolean-width is bounded by clique-width,
i.e. ∀G boolw(G) ≤ cw(G).

Theorem 4.17 (cw � boolw) [4] Clique-width is bounded by boolean-width,
i.e. ∀G cw(G) ≤ 2boolw(G)+1.

Theorem 4.18 (rw � cw) [18] Rank-width is bounded by clique-width, i.e.
∀G rw(G) ≤ cw(G).

Theorem 4.19 (cw � rw) [18] Clique-width is bounded by rank-width, i.e.
∀G cw(G) ≤ 2rw(G)+1 − 1.
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boolwrw cw

2k+1

2k

k

k

2k+1−1

1
4
k2 + 5

4
k + log k

Figure 4.10: Relations between clique-width, rank-width and boolean-width.

4.6 Relations between maximum clique, chro-

matic number and degeneracy

Theorem 4.20 (χ � δD) Chromatic number is bounded by degeneracy.

Proof Let G = (V,E) be a graph with degeneracy k and vn, vn−1, ..., v1 ∈ V
a sequence of vertices as they were processed by the degeneracy algorithm in
definition 2.16. We show colouring of vertices with k + 1 colours by induction
on sequence of vertices v1, v2, ..., vn.

• One vertex graph can be easily coloured by any colour.

• Let G′ be coloured sub graph of G with i−1 vertices and vi a vertex that
is going to be added and coloured. It is important to see that vi have
at most k neighbours in the graph G′. So among k + 1 colours there is
always one colour that can be used to colour vertex vi.

Therefore chromatic number of G is at most k + 1.

b

b

b

b

b

b

b

≤ k

vi

G’

Figure 4.11: Induction step of colouring of a graph with a degeneracy k.

Theorem 4.21 (ω � χ) Maximum clique is bounded by chromatic number.

Proof It is obvious that to colour Kk we need k colours. Therefore any graph
with fixed chromatic number k cannot contain clique of size more than k.

Theorem 4.22 (δD 6� ω) Degeneracy is not bounded by chromatic number.

Proof We are looking for a graph class in which for the fixed chromatic num-
ber there exists arbitrary large degeneracy. Let us examine class of bipartite
graphs Kn,n. Chromatic number of Kn,n is 2, one colour for each partition. In
contrast, degeneracy of Kn,n is n, since minimal degree across all vertices is n.
Note that number of vertices in the graph is 2n.
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Theorem 4.23 (Mycielski’s theorem [6]) For every k ≥ 1 there exists a tri-
angle free graph with chromatic number k.

Corollary 4.24 (χ 6� ω) Chromatic number is not bounded by maximum cli-
que.

k + 1

k

ω

χ

δD

Figure 4.12: Relations between degeneracy (δD), chromatic number (χ) and
maximum clique (ω).

4.7 Summary

In this chapter, we investigated relations inside of groups. Figure 4.13 updates
Figure 3.1 from previous chapter for partial comparison diagrams.

As we can see, tree-width and branch-width are mutually bounded. This
saves us some work. Whenever parameter p is bounded by tree-width then p is
bounded also by branch-width. Similarly it works for clique-width, rank-width
and boolean-width.

On the other hand, minimum dominating set and maximum independent
set split into two mutually unbounded parameters. Therefore both parameters
have to be investigate separately.
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boolwrw cw

2k+1

2k

k

k

2k+1−1

1
4
k2 + 5

4
k + log k

tw bw

3
2
k − 1

k + 1

pw

cutw

carw

2k

td

2k

k

2k + 1k + 1

VCN MMIS

MiMγ

k + 1

k

ω

χ

δD

Figure 4.13: This figure extend figure 3.1 for partial comparison diagrams from
chapter 4. Note that group with dominating set (γ) and minimum induced
matching (MiM) pull apart into two separate parameters. Meaning of dashed
arrow remain the same as in figure 3.1. Suppose a dashed arrow from group 1
to group 2. Any parameter p1 from group 1 can be a bound for any parameter
p2 from group 2 (p1 � p2) or unbounded (p1 6� p2). We will further investigate
dashed relations in the following chapter.
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Chapter 5

Relations between groups

The previous chapter, we finished with Figure 4.13 with many dashed arrows
that have to be examine. In this chapter we resolve all of them and bring a
complete comparison diagram.

We build complete comparison diagram bottom-up. We start with rank-
width, clique-width, boolean-width, degeneracy, chromatic number and maxi-
mum clique. In the following sections, we gradually remaining parameters and
create the complete comparison diagram.

Adding tree-width and branch-width

Next, we add tree-width and branch-width. Theorem 5.1 shows that clique-
width is bounded by tree-width. Therefore rank-width, clique-width and
boolean-width are bounded by tree-width and branch-width. Similarly, The-
orem 5.2 shows that degeneracy, chromatic number and maximum clique are
bounded by tree-width and branch-width.

Theorem 5.1 (cw � tw) [7] Clique-width is bounded by tree-width,
i.e. ∀G cw(G) ≤ 3× 2tw(G)−1.

Theorem 5.2 (δD � tw) Degeneracy is bounded by tree-width.

Proof Let G be a graph with tree-width k. There exists a chordal graph
G′ such that G is sub graph of G′. Moreover, G′ has a perfect elimination
ordering. Since tree-width is k then maximal clique of G is at most k + 1
(Theorem 2.2). Therefore any vertex in elimination ordering has at most k
neighbours. And finally, degeneracy of G is at most k.

Adding path-width

Theorem 5.3 shows that tree-width is bounded by path-width and therefore
rank-width, clique-width, boolean-width, degeneracy, chromatic number and
maximum clique are also bounded by path-width.

Theorem 5.3 (tw � pw) Tree-width is bounded by path-width.

Proof Let (X,P ) be a path decomposition of graph G. However, any path is
also a tree, and therefore (X,P ) is also tree decomposition of G.
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boolwrw cw

tw bw

pw

cutw

carw
td

VCN MMIS

MiMγ

ω

χ

δD

� 5.1 � 5.2

� 5.5

� 5.6

6� 5.46� 5.12
6� 5.13

� 5.11

� 5.3

� 5.7

� 5.15

� 5.14

6� 5.10

� 5.8

Figure 5.1: Comparison diagram that resolves all dashed arrows from Figure
4.13. Number next to the line refers to the theorem where it is the relation
discuss. Bold arrow from a parameter p1 to a parameter p2 marked with �
means that p2 � p1. Thin crossed arrow from p1 to p2 (p1−−6 −p2) marked with
6� means that p2 6� p1.
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Adding carving-width and cut-width

In next step, we add cut-width and carving-width. While path-width is not
bounded (Theorem 5.4), tree-width is already bounded by carving-width (The-
orem 5.5). To complete the picture, Theorem 5.6 shows that path-width is
bounded by cut-width.

Theorem 5.4 (pw 6� carw) Path-width is not bounded by carving-width.

Proof Let us examine class of a complete binary trees. Path-width is un-
bounded on complete binary trees [1] and we show that carving-width of a
complete binary trees is bounded.

Let T be a complete binary tree with a height h and a root r. We alter the
tree T in tree steps and obtain carving decomposition (T, χ):

1. We replace every leaf v with a node nv and mapped nv to v, χ(nv)→ v.

2. Let v be an internal vertex except root and ev be a first edge on the path
from v to r in T . We replace v with a node n1

v. Then divide edge ev
width a new node n2

v. And finally, add new node n3
v with with mapped

vertex v and connect the node v3n to the node v2n.

3. In the last step, we replace the root r with node n′r. And for the root r,
we create a new node nr and connect it to n′r.

It is not hard to see that maximum width of the decomposition is along the
edge (v3n, v

2
n) and has the size 3. Figure 5.2 shows an example of a carving

decomposition of a binary tree on 7 vertices.

b

b b b b

b

b b

b b b b

b

b

b b

b

b b

Figure 5.2: Carving-width of a complete binary tree on 7 vertices. The original
binary tree is bold, carving decomposition is drawn with thin lines and arrows
show mapping nodes to vertices.

Theorem 5.5 (tw � carw) Tree-width is bounded by carving-width.

Proof Let (T, χ) be a carving-decomposition of a graph G with carving-width
k. If |V (G)| = 2 then we place both vertices into one bag and obtain tree-width
of size 1.

Assume that G has at least 3 vertices. We create a tree-decomposition
(T,X) following way. We use the tree T from carving-decomposition and for
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each leaf with mapped vertex v, we create a bag Xv that contains only v. Any
internal node n splits leaves of T and also vertices of original graph into three
disjoint sets Bn

1 , B
n
2 , B

n
3 . Each node n, we replace with bag Xn s.t.

Xn ={(u, v) ∈ E : u ∈ Bn
1 ∧ v /∈ Bn

1 } ∪
{(u, v) ∈ E : u ∈ Bn

2 ∧ v /∈ Bn
2 } ∪

{(u, v) ∈ E : u ∈ Bn
3 ∧ v /∈ Bn

3 }

It is not hard to see that (T,X) is a tree decomposition. Since for any edge in
carving decomposition there is at most k crossing edges then any bag Xn has
cardinality at most 3k. Finally, tree-width of G is 3k − 1.

Theorem 5.6 (pw � cutw) [3] Path-width is bounded by cut-width,
i.e. ∀G pw(G) ≤ cutw(G).

Adding maximum independent set, minimum dominat-
ing set and maximum induced matching.

We prove that minimum dominating set and maximum induced matching are
bounded by independent set (Theorems 5.7 and 5.8). Remains a question
whether rank-width, clique-width and boolean-width are bounded or not. In
theorem 5.10, we show that rank-width is not bounded by independent set.
As direct consequence, minimum dominating set and maximum independent
set are not bounded by rank-width, clique-width and boolean-width, i.e.

IS, γ,MiM | rw, cw, bw

Theorem 5.7 (MiM � IS) Maximum induced matching is bounded by max-
imum independent set.

Proof Let M be a maximum induced matching of size k. For every edge
(u, v) from M , place u into S. Directly from definition of maximum indepen-
dent matching, we can see that S is an independent set of size k. Therefore
size of maximum induced matching is always smaller than size of maximum
independent set.

Theorem 5.8 (γ � IS) Minimum dominating set is bounded by maximum
independent set.

Proof Let S be a maximum independent set of graph G = (V,E). We can
easily check that all vertices from V \S have a neighbour vertex in S i.e. ∀u ∈
V \S ∃v ∈ S : (u, v) ∈ E. Suppose there is vertex u that have no neighbour
in S. Them {u} ∪ S is independent set and that is contradiction with chosen
maximum independent set. Thus, S is a dominating set.
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Lemma 5.9 [16] Let G be a graph. Then |rw(G) − rw(G)| ≤ 1, where G
is a complement graph of G i.e. G = (V (G), E ′), E ′ = {(u, v) : u, v ∈
V (G) ∧ (u, v) /∈ E(G)}.

Theorem 5.10 (rw 6� IS) Rank-width is not bounded by maximum indepen-
dent set.

Proof Consider a n × n grid H. Let H be a complement graph of H. Let
v be vertex from maximum independent set of H. Then there are at most 4
vertices that are not neighbours of v. However, it is not hard to see that only
one can be picked to independent set. Therefore size of maximum independent
set of H is 2.

On the other hand, rank-width of H is unbounded. Rank-width of the grid
H is n− 1 [12]. And by applying previous lemma, rank-width of H is at least
n− 2.

Adding tree-depth, vertex cover number and maximum
induced matching

Theorem 5.11 give us all following relations:

pw, tw, bw, rw, cw, bw, δD, χ, ω ≺ td,VCN,MM

Finally, it remains to examine relations to minimum dominating set and max-
imum induced matching. Both are not bounded by tree-depth (Theorems
5.12 and 5.13), but they are bounded by vertex cover number and maximum
matching (Theorems 5.14 and 5.15).

Theorem 5.11 (pw � td) Path-width is bounded by tree-depth.

Proof Let T be a tree-depth decomposition tree with depth k. Consider
depth-first search algorithm for visiting vertices of T . Each time algorithm
visit leaf form a bag of vertices from root to actual leaf. We keep order of bags
and place them on the path P (Figure 5.3). We have to ensure that mentioned
construction gives path decomposition.

• Every path from root to leaf is in some bag hence every edge is inside
some bag as well.

• Consider any vertex v from T and denote Tv sub tree rooted at vertex v.
Vertex v occurs only in bags Bv that correspond to leaves in sub tree Tv.
Depth-first search make sure that all leaves in sub tree Tv are proceed
before any other leaf from tree T . Therefore bags Bv induce sub path of
P .

• Since all edges belong to some bag, also each vertex belongs to at least
one bag.
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b
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T

P

Figure 5.3: Construction of path-width decomposition from tree-depth decom-
position.

Since T has depth k then any bag has at most k vertices. Therefore path-width
of G is at most k − 1.

Theorem 5.12 (MiM 6� td) Maximum induced matching is not bounded by
tree-depth.

Proof Consider the graph in Figure 5.4. It has unbounded maximum induced
matching while tree-depth is 3.

b

b

b

b

bb

b

b b b

DS=MiM=n−1
2

tree-depth=3

Figure 5.4: Graph with arbitrary large dominating set or maximum induced
matching and fixed tree-depth.

Theorem 5.13 (γ 6� td) Minimum dominating set is not bounded by tree-
depth.

Proof Once again, consider the graph in Figure 5.4. It has unbounded mini-
mum dominating set while tree-depth is 3.

Theorem 5.14 (MiM �MM) Maximum induced matching is bounded by
maximum matching.

Proof Inequality MiM(G) ≤ MM(G) comes directly from the definitions of
maximum matching and it’s restricted version maximum induced matching.

Theorem 5.15 (γ � VCN) Minimum dominating set is bounded by vertex
cover number.

Proof It is easy to see that any vertex cover dominates all vertices. And
therefore any vertex cover is also a dominating set.
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5.1 Improving exponential relations

By his point, all relations between all 17 parameters are known. However,
when designing an algorithm based on relations from comparison diagram,
starts to be important, whether is bounding function linear or exponential.

In this section we recall two theorems that improve exponential bounding
function between tree-width and boolean-width; tree-width and rank-width.

Theorem 5.16 (boolw � tw) [19] Boolean-width is bounded by tree-width,
i.e. ∀G boolw(G) ≤ tw(G) + 1.

Theorem 5.17 (rw � tw) [17] Rank-width is bounded by tree-width,
i.e. ∀G rw(G) ≤ tw(G) + 1.

boolwrw cw

tw

2k+1−1 k + 1k + 1

2k+1k

2k+1−1 k

2k

1
4
k2 + 5

4
k + log k

Figure 5.5: Transitive relation between tree-width and boolean-width was an
exponential, boolw � 2tw+1 − 1. We improve it by showing linear bound
bw � tw + 1. This also leads to improving bounds for all parameters above
tree-width e.g. path-width, tree-depth, carving-width. We achieve similar
improvements with rank-width.

53



54



Chapter 6

Conclusion

The previous chapter covers all remaining relations and completed comparison
diagram (Figure 6.1). The longest chain of parameters starts at vertex cover
number or maximum matching and ends at maximum clique. All together
consists of 7 parameters. Another interesting chain goes from cut-width to
group rank-width, clique-width and boolean-width. There is a possible detour
through carving-width instead of path-width. Tree-width and branch-width
play a role of bottleneck in the comparison diagram.

In additional to the thesis, we also created a web site at internet address
http://robert.sasak.sk/gpp which summaries all results and presents com-
parison diagram in interactive way.

6.1 Correctness

Comparison diagram is the main result of the thesis. It is therefore important
to ensure about it’s correctness. During all four steps we always kept the list of
relations that have to be examined and sequentially decreased it. This ensures
correctness of the comparison diagram.

6.2 Discussion

The aim of the thesis was to provide the comparison diagram for 17 parameters
without actually examining all pairs of parameters. We succeeded, our method
rapidly reduced number of comparisons. Especially, unbound relations were
obtained very easy. However, this required lot of preprocessing work in form
of examining parameters on different graph classes.

Selection of graph classes partitioned parameters into reasonably big classes.
That made examining parameters inside groups as expected.

6.3 Practical impact

Recall Theorems 1.1 and 1.2:

p � q ∧ (π, p) ∈ FPT =⇒ (π, q) ∈ FPT
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Figure 6.1: Complete comparison diagram of the 17 graph parameters. Provide
a powerful tool for extending FPT or W-hard results. For example, if problem
π parametrized by boolean-width is FPT then problem π is also FPT when
parametrized by rank-width, clique-width, tree-width, path-width, carving-
width, cut-width, tree-depth, maximum matching and vertex cover number (all
“above” parameters). In opposite direction, if π parametrized by cut-width is
W-hard then π is W-hard when parametrized by carving-width, path-width,
tree-width and so on.
Arrow from the parameter p2 to p1 marked f(k) means p1 � p2, i.e. ∀G :
p1(G) ≤ f(p2(G)). List of all parameters with their abbreviations is in Table
1.1.
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p � q ∧ (π, q) ∈W-hard =⇒ (π, p) ∈W-hard

These theorems give us a tool to easily extend results for parametrized prob-
lems.

Example Problems Edge Dominating Set, Hamiltonian Cycle and
Graph Coloring are W-hard parametrized by clique-width [9]. From our
comparison diagram, it is easy to see those problems remains W-hard when
parametrized also by rank-width or boolean-width.

Example Chordal Sandwich problem was not known to be FPT for any
parameter. Paper [11] shows that it is FPT parametrized by VCN. From
comparison diagram, we can see that Chordal Sandwich parametrized by
maximum matching is FPT as well.

Example Independent Set problem is W[1]-hard parametrized by max-
imum independent set [14]. Therefore Independent Set is W-hard when
parametrized by dominating set or maximum induced matching.

And many other results follow from � relation.

6.4 Further improvements

When designing an algorithm, multiplicative constants does matter. Therefore
it is important whether ∀G p1 ≤ p2 or ∀G p1 ≤ 3 ·p2. Especially when running
time is exponential in a parameter.

All relations were shown among all 17 parameters and therefore compar-
ison diagram is complete. However, there are thousands known parameters.
Basically, any graph property can be turn into parameter. By extending com-
parison diagram for more parameters, more results can be obtain.
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