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SUMMARY

The geometry of a petroleum reservoir is usually irregular so
that accurate modeling may require a very large number of grid
cells. This may severely limit the applicability of 3D CSEM
solvers for this application both with respect to computational
complexity and memory requirements. With finite difference
(FD) (and finite element (FE)) methods the computational do-
main is much larger than the reservoir itself, increasing the
number of grid cells further. An advantage, however, is that
the corresponding coefficient matrix is sparse. With integral
equation (IE) methods only the reservoir itself needs to be dis-
cretized. A disadvantage (particularly with a large number of
grid cells) is that the corresponding coefficient matrix is dense.
Recently, a novel approximate hybrid method has been shown
to produce excellent accuracy in modeling the CSEM response
from petroleum reservoirs (Bakr and Mannseth (2009)). This
method – termed simplified IE (SIE) modeling – fully utilizes
that the low-frequency CSEM response from a thin resistive
body is dominated by the galvanic effect. The dense-matrix
part of IE can then be replaced by sparse-matrix calculations
corresponding to solving a Poisson equation for the reservoir.
In this paper, we quantify the computational complexity of SIE
and compare its performance to IE and FD in computing the
CSEM response from petroleum reservoirs with a large num-
ber of grid cells. It is shown that the number of floating point
operations (flops) per iteration with SIE is an order of magni-
tude smaller than the number of flops per iteration with IE, and
much smaller than the number of flops per iteration with FD.
Numerical examples demonstrate that the number of iterations
required with SIE is an order of magnitude smaller than the
number of iterations with IE. It is demonstrated that SIE can
be applied to solve problems that are too large for IE.

INTRODUCTION

Marine CSEM has become an important complementary tool
for offshore petroleum exploration. A typical target has a much
(20-100 times) lower electric conductivity than its surround-
ings, and is characterized by a relatively large extension in two
spatial directions (x and y) and a much smaller extension in
the third (z) direction. The method then exploits lossy guiding
of EM energy in thin resistive bodies within more conductive
media in an attempt to detect hydrocarbon reservoirs. For an
in-line source-receiver geometry, the response from a thin re-
sistive target is much more due to galvanic effects than to in-
ductive effects (Eidesmo et al. (2002); MacGregor and Sinha
(2000)). Typically, very low source frequencies (0.05 – 1 Hz)
are applied since the petroleum reservoir can be buried more
than 1 km below the sea floor.
To detect a potential petroleum reservoir, 3D electromagnetic
(EM) modeling results based on several geoelectric models are

compared to EM data acquired in sea floor receivers. The geo-
electric model is then changed until a satisfactory match be-
tween the modeling results and the data is obtained. Such
inversion of electromagnetic data thus requires a number of
repeated solves of the 3D EM model. The computational ef-
ficiency of the solver will therefore have great impact of the
computational efficiency of the inversion process. Various types
of solvers, like finite difference (FD), finite element (FE), in-
tegral equation (IE), and hybrid methods, have been applied.
The different types of methods have different computational
advantages and disadvantages (see, e.g., Avdeev (2005)), as
will be discussed later.
The geometry of a petroleum reservoir is usually irregular.
Reasonably accurate modeling of such a geometry can require
use of a very large number of grid cells. This may severely
limit the applicability of 3D solvers both with respect to com-
putational complexity and memory requirements. Potential
use of marine CSEM for production monitoring (Lien and Mannseth
(2008); Orange et al. (2009)) will further emphasize the need
for accurate modeling of reservoir geometry.
Recently, a novel hybrid method (Bakr and Mannseth (2009))
was proposed as a solver for marine CSEM as applied to petroleum
exploration. This method, termed simplified IE (SIE) model-
ing, is based on rigorous IE modeling, but replaces the com-
putationally intensive part of rigorous IE by an approximate
method. The accuracy of the approximation was found to be
excellent for low-frequency scattering from thin resistive tar-
gets (Bakr and Mannseth (2009)). In the current paper, we
assess the computational performance of SIE when applied to
model the low-frequency CSEM response of a petroleum reser-
voir with many grid cells, and compare to those of rigorous IE
and FD.

COMPUTATIONAL ASPECTS OF TRADITIONAL MOD-
ELING APPROACHES

Figure 1 shows a 2D illustration of the different computational
domains used by the different modeling approaches, with the
target itself being denoted by D. It is assumed (for conve-
nience) that all methods use orthogonal Cartesian uniform grids.
Furthermore, it is assumed that the preconditioned BiCGSTAB
(van der Vorst (1992)) iterative method is applied to solve the
linear systems arising after discretization. (The relative com-
putational merits of the different methods would not change
much if another Krylov-subspace method had replaced BiCGSTAB.)
The dominating computational effort is associated with the
Krylov iteration step since this is repeated for each iteration,
while the work associated with constructing the preconditioner
is done only once. Therefore, we consider only the work in-
volved in a single preconditioned BiCGSTAB sweep in our
comparisons of number of floating point operations (flops), F .
We will, however, also compare the number of iterations re-
quired, as well as the CPU times, for a set of numerical exam-
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Figure 1: Sketch of the different computational domains.

ples (involving only IE and SIE).

Finite-difference approach
With FD, a 3-vector PDE for the electric field, E, is derived
from Maxwell’s equations and solved. The computational do-
main is much larger than the target region, D, in order to be
able to apply homogeneous boundary conditions. The outer-
most lines on Figure 1 illustrate the boundaries of the domain
for FD modeling.
Let Nx, Ny, Nz, denote the number of grid cells in the three
coordinate directions, respectively. 3D FD discretization re-
sults in a linear system of equations where the coefficient ma-
trix, AFD, has dimensions 3N ×3N, where N = Nx ×Ny ×Nz.
AFD is, however, sparse, so that the number of nonzero en-
tries is smaller than 21× 3N when applying the standard 7-
point discretization stencil. The number of flops per iteration
is FFD = 84×3N (Spitzer and Wurmstich (1999)).

Integral-equation approach
With rigorous IE (see, e.g., Hursán and Zhdanov (2002)), the
computational effort is dominated by solving an integral equa-
tion for the anomalous electric field

Ea(r′) =
∫

D
GE(r′|r)σa(r)(Eb(r)+Ea(r))dV (1)

for r′ ∈ D, see, for example, Zhdanov (2002). (For the com-
putation of GE and Eb in D, as well as the computation of Eb

and Ea in the receivers when equation 1 has been solved, we
refer to, e.g., Zhdanov (2002).) Here, GE denotes the electric
Green’s tensor, σ denotes the electric conductivity, E denotes
the electric field, while the superscripts b and a denote back-
ground and anomalous quantities, respectively. (Hence, the
conductivity , σ , equals σb + σa in D, while the conductivity
outside D equals σb.)
Let nx, ny, nz, denote the number of grid cells within D in the
three coordinate directions, respectively. 3D IE discretization
results in a linear system of equations where the coefficient
matrix, AIE , has dimensions 3n× 3n, where n = nx × ny × nz.
Note that with a similar grid resolution in D for FD and IE,
the dimension of AIE is significantly smaller than that of AFD.
AIE is, however, dense, so that the number of nonzero entries
is 3n×3n, leading to FIE = 36n2 +60n for straightforward ap-
plication of IE modeling.
As stated in the introduction, accurate modeling of the geom-

etry of a petroleum reservoir can require use of a very large
number of grid cells. As an example, a reservoir with n =
1.5×106 is considered in (Endo et al. (2008)). In such cases,
straightforward application of IE modeling becomes prohibitively
computationally intensive. (Also, the storage requirements be-
come huge, but we will not focus on that issue here.)
For a uniform grid with uniform electric conductivity, it is,
however, possible to reduce the computational complexity of
IE significantly by applying the fast Fourier transform (FFT)
in the two horizontal directions (Hursan (2001)), resulting in
FIE−FFT = (36× log2(nx)× log2(ny)× nz + 60)n. For very
large models, however, also FIE−FFT represents a huge com-
putational work load. (In Endo et al. (2008), parallel process-
ing on 32 CPU’s was applied to run IE-FFT on the reservoir
model with n = 1.5× 106, resulting in a run time of 34 min-
utes.)

COMPUTATIONAL ASPECTS OF SIE MODELING

SIE replaces the computationally intensive calculation of Ea

in D from equation 1 by solving

∇ · (σ∇U) = ∇ · (σaEb), (2)

Ea = −∇U, (3)

for Ea in D. When Ea in D has been calculated, E is found
in the receivers with low computational effort, using standard
equations for IE modeling. We refer to (Bakr and Mannseth
(2009)) for the derivation of equations 2 and 3, as well as a dis-
cussion about their range of validity. We remark, however, that
these equations constitutes no more than a quantitative utiliza-
tion of the well-known fact (see, e.g., Eidesmo et al. (2002);
MacGregor and Sinha (2000)) that the galvanic effect domi-
nates the inductive effect in the low-frequency CSEM response
from a thin resistive target (i.e., assuming a horizontal electric
dipole source and an in-line source-receiver geometry).
The dominating computational effort of SIE lies in the calcula-
tion of U from the variable-coefficient Poisson equation, 2. We
solve for U in the region P (see, Figure 1). The quasi analyt-
ical (QA) approximation (Zhdanov et al. (2000)) of equation
1 is applied to compute boundary conditions on ∂P. The QA
approximation is fast enough to contribute only negligibly to
the computational effort. It is, however, relatively inaccurate
for realistic conductivity contrasts, so that ∂P must be kept at
some distance from ∂D in order to obtain a sufficiently accu-
rate U in D. An increasingly coarser grid may be applied when
moving away from ∂D to save computer resources without re-
nouncing on the accuracy of U in D.
Let mx, my, mz, denote the number of grid cells in P in the
three coordinate directions, respectively. 3D FD discretization
results in a linear system of equations where the coefficient
matrix, ASIE , has dimensions m×m, where m = mx ×my ×
mz. ASIE is sparse, so that the number of nonzero entries is
smaller than 7m when applying the standard 7-point discretiza-
tion stencil. The number of flops per iteration is FSIE = 76m.
Clearly, m is significantly smaller than 3N, and ,hence, FSIE is
significantly smaller than FFD. In addition, one must expect
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Table 1: Summary of the operation count per one itera-
tion for different discretization.

nx ny nz FIE−FFT FSIE
100 60 8 54.5×107 0.7296×107

100 60 16 217.6×107 1.4592×107

200 120 8 293.1×107 2.9184×107

200 120 16 1170.1×107 5.8368×107

200 240 16 2678.2×107 11.6736×107

400 240 16 6056×107 23.3472×107

that the number of iterations for SIE will be smaller than the
number of iterations for FD, since better preconditioners ex-
ist for Poisson’s equation than for Maxwell’s equations. This
means that SIE can be expected to significantly outperform
FD, computationally.
To compare SIE to IE with respect to theoretical computational
performance, let mx = nx + rx, my = ny + ry, mz = nz + rz,
so that m = (nx + rx)(ny + ry)(nz + rz), and assume that rx =
O(ry) = O(rz) = O(nz) � nx = O(ny). These assumptions
correspond well with a reservoir with large horizontal dimen-
sions and a small vertical dimension, and with our experience
with the required number of grid cells between ∂D and ∂P.
They lead to m = nxny(nz + rz) + O(r2

z ) ≈ 2n, and hence, to
FSIE ≈ 152n. A comparison of FSIE and FIE−FFT , using this
approximation, is presented in Table 1. It is seen that FIE−FFT
is about an order of magnitude larger than FSIE .

The number of required iterations and CPU times for some
simulations will be compared in the Examples-section.
We remark that some apparent advantages of SIE with respect
to IE has not been considered here. IE-FFT is applicable only
for uniform grids with uniform electric conductivity, while SIE
can be applied for non-uniform grids and non-uniform elec-
tric conductivity. (Obviously, also FD can be applied for non-
uniform grids and non-uniform electric conductivity.)

EXAMPLES

We compare computational results obtained with SIE to results
obtained with rigorous IE-FFT (Hursán and Zhdanov (2002)).
Results (extracted from a more extensive numerical compari-
son) are shown for a test model consisting of a homogeneous
half space with electric conductivity σb = 0.5 S/m, under a
1350 m thick sea water column with electric conductivity 3.33 S/m.
The reservoir has a complex geometry and contains three lay-
ers: a gas-filled layer with electric conductivity σD = 0.001 S/m,
an oil-filled layer with electric conductivity σD = 0.01 S/m,
and a water-filled layer with electric conductivity σD = 2 S/m,
a vertical section and plan view of the geoelectrical model is
shown in Figure 2. The dimensions and location of D are se-
lected as x ∈ [19,29] km, y ∈ [2,8] km, and z ∈ [2.55,2.56] km.
The source is a 270 m long, 1000 A, x-directed horizontal
electric dipole and located at the point with horizontal coordi-
nates x = 24 km and y = 5 km. The elevation of the source is
50 m above the sea bottom and it is operate at a frequency of
0.25 Hz.

z

x

Gas-filled layer

Oil-filled layer

Water-filled layer

x

y

Figure 2: Top: side view of the reservoir in x and z di-
rections, bottom: plan view of the reservoir in x and y
directions.

Table 2: Number of iterations, I and CPU times in sec-
onds for IE-FFT and SIE.

IE-FFT SIE
nx ny nz n I CPU I CPU

100 60 8 48×103 150 196 7 12
100 60 16 96×103 160 688 22 35
200 120 8 192×103 173 1144 9 50
200 120 16 384×103 ∗∗ ∗∗ 45 200

∗∗ Out of memory in MATLAB.

In our numerical study, the modeling domain D corresponds
to the location of the reservoir, and this domain is discretized
in nx, ny, and nz, cells, corresponds to rigorous IE-FFT. With
SIE we used the same number of cells within the domain D
as for IE-FFT and applied coarse grids outside the body. We
considered different values of nx, ny, and nz, as shown in Table
2.

To demonstrate the accuracy, Figure 3 shows corresponding
results for |Ea

x | (top plot) and |Ea
z | (bottom plot) in an array

of electric receivers located at the sea floor, along the line be-
tween (x,y) = (14,5) km and (x,y) = (34,5) km. In both plots,
the solid line corresponds to rigorous IE, the dash-dot line cor-
responds to SIE. Figure 3 confirms that SIE is a very good
approximation to IE for low frequencies and resistive targets.

Now, we go back to the computational efficient. The results
can be seen in Table 2. The first, second and third columns
are the number of cells nx, ny, and nz in x, y, and z directions,
respectively for the different discretization. The fourth column
consists of the total numbers of cells, n. The fifth and sixth
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Figure 3: Top: |Ea
x |, bottom: |Ea

z | using IE (solid line)
and SIE (dash-dot line).

columns contain the required iteration number, I and the CPU
times in seconds by IE. The last two columns are the required
iteration number, I and the CPU times in seconds by SIE. One
can see that both the iteration number and CPU times for SIE
are about an order of magnitude smaller than IE. We can see
also that SIE can be applied to solve problems that are too large
for IE.

DISCUSSION AND CONCLUSIONS

The geometry of a petroleum reservoir is usually irregular so
that accurate modeling may require a very large number of grid
cells. This may severely limit the applicability of 3D CSEM
solvers for this application both with respect to computational
complexity and memory requirements. Recently, a novel ap-
proximate hybrid method, SIE, has been shown to produce
excellent accuracy in modeling the low-frequency CSEM re-
sponse from petroleum reservoirs.
In this paper, the excellent accuracy of SIE for this application
has been confirmed. Our main focus was, however, to quantify
the computational complexity of SIE and compare its compu-
tational performance to those of the IE and FD methods when
there is a large number of grid cells in the model reservoir.
It was found that both theoretical and practical computational
performance of SIE is orders of magnitude better than that of
IE. Furthermore, the theoretical computational performance of
SIE was found to be much better than that of FD.
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