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Abstract 

To understand (1) the role of heterotrophic bacteria in the biogeochemical cycles, (2) the fate 

of the organic carbon and mineral nutrients, and (3) the flow of energy to higher trophic 

levels, we need to understand how bacterial growth is controlled in marine environments. The 

main hypotheses about the control of bacterial growth are based on the studies about bottom-

up control (limiting resources) and top-down control (predators and viruses), that is, how 

bacteria interact with their ‘neighbors’ in the microbial food web. Using micro- and 

mesocosm experiments, comparative analyses, plus an idealized model to test different 

predictions, this thesis evaluates the role of heterotrophic bacteria in the utilization of organic 

matter in different marine environments. The effects of mineral nutrients, organic carbon and 

predator control over bacterial growth are also investigated. Bacterial growth rates can be 

controlled by carbon or/and mineral nutrients depending on the biological oceanographic 

conditions (Papers I and II). Both types of bacterial growth limitation (carbon and mineral 

nutrient) can co-exist simultaneously depending on the structure of the microbial food web, 

mineral nutrient and labile organic carbon concentration. Dominance of nano-phytoplankton, 

which can be grazed by rapidly responding micro-zooplankton (e.g. idealized model in Paper 

IV), will shifts more rapidly to a carbon limited bacterial growth, thus, heterotrophic bacteria 

may use all labile organic carbon preventing its accumulation in the euphotic zone (Paper I). 

Contrary, dominance of large diatoms, which can be grazed by slowly responding copepods, 

can keep labile organic carbon produced by copepod (e.g. sloppy feeding) and bacterial 

growth can be limited by mineral nutrients (i.e. competition of nutrients with diatoms) (Paper 

II) shifting the system slowly to carbon limited bacterial growth control. Different rates of 

organic carbon utilization by bacteria can be estimated in manipulated mesocosm experiments 

by adding mineral nutrients (i.e. silicate, ammonium and nitrate) and by the effect of supply 
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ratios of glucose-C to mineral nutrients ratio. Total organic carbon accumulation rates are 

influenced by the dominant phytoplankton communities and by the availability of glucose for 

bacteria and phosphate for bacteria and phytoplankton. Low availability of mineral nutrients 

can reduce the bacterial capacity to consume degradable organic carbon (Paper III).  

Investigating the effect of carbon and mineral nutrients on the fate of organic carbon, it seems 

possible to explain the responses of the system using a ‘simplest possible’ idealized food web 

model (Paper IV). Thus, different system attributes (e.g. flexible stoichiometry and predatory 

processes), can affect the dominant nutrient pathway and speed the nutrients transfer in 

different cases (Paper IV). In a global perspective, the variation in the slope (k) and the 

intercept (β) of the relationship between bacterial productivity and biomass can change 

observing contrasting trophic ocean basins. Variation in these two parameters (k and β) 

implies an effect on bacterial growth rates across a gradient of productivity (Paper V). Using 

micro- and mesocosm experiments as well as comparative analyses, can be possible to 

improve our understanding on the role of heterotrophic bacteria by adding ad hoc assumptions 

to the basic model structure and by looking the global regulation on bacterial growth. Is also 

necessary to take in account that several aspects complicate the idealized view of the 

microbial food web, being an enormous task to keep a minimum of interactions to produce a 

simple conceptual model with prediction power. 
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 Main Definitions 

Anabolism: reaction that utilize energy e.g. in the form of adenosine triphosphate (ATP), to 

synthesize molecules. Anabolism metabolism results in increase of biomass and storage 

products.

Bacterial growth efficiency (BGE) or yield: ratio of biomass produced to substrate 

assimilated or the quantity of biomass synthesized per unit of substrate assimilated. 

Bacterial growth rate (BGR): is the increase in cell number per time units, can also involve 

synthesis of bacterial proteins (e.g. leucine incorporation) and cell division (e.g. thymidine 

incorporation) between others, per time units. 

Bottom-up control: resource limitation influences the consumer and the consumer’s predator 

(control over growth or population size), and so on, up to the food chain. Nutrients and energy 

sources can be included as main resource factors. 

Catabolism: reaction that release energy e.g. in the form of ATP, to break down large 

molecules (e.g. polysaccharides, lipids, nucleic acids and proteins) into small units (e.g. 

monosaccharides, fatty acids, nucleotides and amino acids)

Heterotrophic bacteria (also mentioned as bacteria in this thesis): applies to Archaea as well 

as those prokaryotes in the Bacteria domain. 

Limitation factor: factor that controls a process, organism growth, species population, size or 

distribution. In marine environments, the availability of food and predation pressure are 

examples of factors that could be limiting for an organism.

Microbes: all organisms smaller than about 100 μm, which can be seen only with a 

microscope. These organisms include autotrophs, heterotrophs, and mixotrophs, and refer to 

both prokaryotes and eukaryotes (e.g. bacteria, archaea and protists or single-celled 

eukaryotes) 

Microcosm experiment (or bottle experiments): a self-contained miniature and representative 

world that have analogies to a large system, which allows the study of closed systems in a 
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small sample volume (usually below 5 liters). Natural systems, nutrients and/or 

predator/viruses manipulation are usually tested.  

Mesocosm experiment (or tank experiments): experimental system that simulates real-life 

conditions as closely as possible, and allows the manipulation of environmental factors (e.g. 

nutrients, light conditions, etc) in a large sample volume (e.g. above to 100 liters). 

Osmotroph: microbes that feed on dissolved nutrients 

Phagotrophs: microbes that eat particles 

Specific affinity (αααα): Volume of water cleared for substrate per unit of biomass and per unit 

of time. 

Steady state: Growth occurs at a constant rate and all culture parameters remain constant 

(e.g. culture volume, pH, cell density, concentration of dissolved oxygen, nutrients and 

products). In addition, the experimenter can control experimental conditions. 

Top-down control: cascading effects of predators controlling their prey (control over 

biomass), which again may control their prey, and so on, down the food chain. Factors 

included are predation or viral lysis. 
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Abbreviations and Units

k: slope of the relationship between bacterial production versus biomass 

BA: Bacterial Abundance (cells mL-1) 

BB: Bacterial Biomass (μg C L-1) 

BGE: Bacterial Growth Efficiency (no units) 

BGR: Bacterial Growth Rate (d-1) also expresed as μ (i.e. specific growth rate) 

BP: Bacterial Production (μg C L-1 h-1) 

BR: Bacterial Respiration (μmol O2 L-1 d-1) 

Chla: Chlorophyll-a (μg chla L-1) 

DGGE: Denaturing Gradient Gel Electrophoresis 

DIN: Dissolved Inorganic Nutrients (μM) 

DOC: Dissolved Organic Carbon (μM C) 

HNA: High nuclei acid content bacteria 

β: intercept of the relationship between bacterial production versus biomass 

LNA: Low nuclei acid contect bacteria 

PCR: Polymerase Chain Reaction 

PFT: Plankton Funtional Type 

TOC: Total Organic Carbon (μM C) 
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1. Introduction

1.1 Importance of microbes in marine environments. 

The world oceans cover around 70% of the Earth surface and only a minor percentage has 

been studied, leaving a large unexplored area. It is responsible for about 50% of the global 

primary productivity and seems to absorb 25% of the present carbon dioxide emissions from 

fossil fuel combustion (Canadell et al. 2007). In addition, the ocean seems to be a less 

complex system in term of physical barriers compared to terrestrial systems.  

Primary production in the ocean is dominated by unicellular phytoplankton, leading to an 

ecosystem where not only organic matter degradation is driven by microbes and their 

interactions, as in terrestrial ecosystems. In terms of marine microbes, early studies (e.g. 

Krogh 1934) predicted the presence of a ‘microbial loop’ in marine environments with a late 

recognition of the key role of microbes in structuring marine food webs and biogeochemical 

cycles (Pomeroy 1974, Azam et al. 1983). Thus, from the early experiences, studying the 

whole microbial community, or sometimes using the so-called ‘black-box’ approach, rather 

than individual microorganisms has helped to answer fundamental global questions such as, 

how microbes regulate ocean biogeochemical cycles. 

Marine microbes are responsible for 99% of the cycling of the world’s gases and nutrients 

(Gilbert, 2010). In addition, microbes or small picoplanktonic cells (<2 to 3 μm in diameter) 

can play a very important role in the planktonic community, especially in oligo- and 

mesotrophic regions of the ocean where they make a large contribution to production, 

biomass and energy transfer (Stockner 1988). Mentioning only two important biogeochemical 

processes of global significance, heterotrophic bacteria can hold most of the planktonic 
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biomass (del Giorgio & Gasol 1995, Gasol et al. 1997), and in terms of activity, they are often 

considered to be responsible for the net heterotrophy of many aquatic systems (del Giorgio et 

al. 1997, Cole et al. 2000). Interests of knowing the mechanisms of ecological 

regulation of bacteria (e.i. mechanisms that regulate bacterial abundance and activity) are 

clearly a major goal in microbial ecology studies. Thus, is important to improve our 

understanding to predict these variables and to understand what factors (also in temporal and 

spatial scales) have major impacts limiting bacterial abundance and activity. 

1.2 Marine microbial food webs. 

Over the past 30 years our vision of the pelagic food web structure has changed considerably. 

We now view the classical food web as a relative minor component or in some cases 

restricted in time and space (e.g. hyper-eutrophic systems, spring blooms). The microbial food 

web consistently present in all marine habitats is based on pico- and nanoplankton sized 

autotrophs and heterotrophs (also called osmotrophs), which are efficiently grazed by 

flagellates, ciliates and copepods (also called phagotrophs) (Fig. 1). The addition of the 

microbial components into the classical food web structure leads to an increase in the number 

of interactions between these components. Thus, a fundamental question seems to be how 

much of the system’s complexity need to be explicitly represented in a model when the 

model’s goal is predictive power? for example, trying to predict the magnitude of the different 

pathways of nutrients flow through the microbial food web. Some examples ‘out of the 

general rule’ that focus on ‘biological details’ include mixotrophic protists (Riemann et al. 

1995), parasites or small organisms that feed on larger organisms (Rice et al. 1998) and 

organisms that feed on particles several orders of magnitude smaller than themselves (e.g. 

appendicularians, King 1982). Contrary, similarities can be more interesting than differences 

being possible to build understanding from repeating structures and general patterns. Thus, it 
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is necessary to define minimum requirements in the conceptual model without losing 

explanatory and predictive power. 

A modified version of Fenchel’s (1988) conceptual model and a simple build-up in 

complexity from the classical food web model (mineral nutrients-phytoplankton-zooplankton) 

is the three pathways model shown in Fig. 1 with a (1) bacterial, a (2) autotrophic flagellates, 

and a (3) diatoms entry point for the mineral nutrients. Each of these osmotrophs plankton 

functional types (PFT) has its separate phagotrophs predator, forming three parallels ‘vertical’ 

food chain. The three PFT showed as phagotrophs are also connected through the ‘horizontal’ 

carnivorous food chain from heterotrophic flagellates via ciliates to copepods. This 

conceptual model tries to keep microbial food web models as simple as possible for later use 

in physical/biological systems and biogeochemical predictions (e.g. Legendre & 

Rassoulzadegan 1995). 

Figure 1. Idealized conceptual model of the microbial part of the food web emphasizing three 

main pathways for mineral nutrient (red color numbers). Grey area represents steady state 

conditions in the system. 
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1.3 Resources and losses processes for heterotrophic marine bacteria. 

In the surface ocean the primary source of energy to plankton food webs is sunlight and part 

of the photosynthetically fixed organic matter and energy can be transferred to the deep sea. 

The high-energy surface ocean tends to be nutrient poor mainly by the osmotrophs uptake of 

mineral nutrients, while the low-energy subsurface region of the ocean remains relatively 

enriched in mineral nutrients manly by the organic mater oxidation in deep waters. Thus, in 

the upper ocean organic matter production is often limited by the availability of nutrients. The 

oxidation of dissolved organic matter (DOM) is the main process that heterotrophic bacteria 

use to obtain energy. DOM is a reduced carbon source that also contains essential mineral 

nutrients that can support bacterial growth including nitrogen, phosphorous, sulfur and iron. 

The vast majority of the DOM is biochemically resistant, then it is assumed that reflects its 

poor nutritional and energetic content (Williams 2000). Bacterial abundances are usually 

greatest in the upper ocean and in coastal areas, where organic matter fluxes are higher. 

Generally, in the pelagic ecosystem the DOM production is constrained by photosynthesis, 

and a variable fraction of the photosynthetically fixed energy (10 to 20%) channels directly to 

the DOM pool via phytoplanktonic exudation or excretion (Nagata 2000). Other sources of 

organic matter, like predatory processes such as sloppy feeding and viral lysis can constitute 

further sources of dissolved organic matter (Nagata 2000, Peduzzi & Herndl 1992). 

Mineral nutrients in the euphotic zone of open ocean areas usually range from subnanomolar 

to micromolar concentrations, however processes such as wind-driven mixing and upwelling 

results in elevated concentration of mineral nutrients changing the conditions for the 

osmotrophs communities. Nitrogen (e.g. NO3
-, NH4

+) is an essential nutrient for growth and 

an important source of energy for bacteria, but also show low concentrations in the euphotic 

zone increasing with depth. In tropical and subtropical regions, NO3
- is usually found limiting 
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plankton growth, being a major limitation source for phytoplankton instead of bacteria. 

Differently, bacteria appear to have efficient NH4
+ uptake systems, being an efficient 

competitor for NH4
+ at the low concentrations found in most oceanic regions. Phosphorous is 

also an essential nutrient that is compromised in cellular energy storage, membrane structure 

and genetic exchange. Orthophosphate (PO4
3-) range from nanomolar to micromolar 

concentrations in the upper ocean and also decrease with depth like other mineral nutrients. 

Both Mediterranean and Sargasso Sea have been recognized as areas of low PO4
-3

concentration suggesting that PO4
3- availability can limit bacterial growth (Cotner et al. 1997, 

Thingstad et al. 2005a) 

Bacterial loss processes are mainly driven by grazers and virus lysis. The remarkably constant 

number of bacteria in pelagic environments (~1×106 cells mL-1) and high bacterial growth 

rates imply that bacterial mortality rates have to be in a similar range as bacterial production. 

A good correspondence between bacterial growth and grazing loss have been observed that 

for a wide range of aquatic systems (Sanders et al. 1992) with values of growth and grazing 

aggregated around the 1:1 line. A large variety of bacterial grazers are possible to find in 

marine environments, but certainly heterotrophic flagellates (mostly in the size range 2-5 µm) 

exert a major control on bacterial numbers (Fenchel 1982, Sieburth 1984). Bacterivory has 

been then an essential estimation for an understanding of the cycling of organic matter in 

marine environments. Marine viruses constitute the ocean’s second largest biomass exceeded 

only by the total bacterial biomass (Hambly and Suttle 2005). Viral infection has a significant 

influence on bacterial community dynamics, diversity and nutrient cycling. It has been 

estimated that viruses are responsible for about 10-50% of the total bacterial mortality in 

surface waters (see review by Furhman 1999). Bacterial death mediated by viruses produced 
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more DOM for bacterial consumption, and increase the cycling rates of carbon and mineral 

nutrients in marine environments (Furhman 1999). 

1.4 Competition between osmotrophs. 

The idealized food web in Figure 1 emphasizes the osmotrophs versus phagotrophs division, 

rather than the more traditional autotrophs vs heterotrophs division of the microbial food web. 

This places the bacteria as potential competitors to the phytoplankton, a view quite different 

from the classical concept of bacteria as remineralizers. Bacteria obtain most of their 

nutritional and energetic requirements through active transport of inorganic and organic 

substrates and they are also uniquely involved in both taking up and releasing mineral 

nutrients. Contrary, phytoplankton are sink for mineral nutrients whereas heterotrophic 

protists (heterotrophic flagellates and ciliates in Fig. 1) prey on bacteria and small 

phytoplankton. In addition, while phytoplankton acquires carbon (C) from inorganic 

compounds when obtaining energy from light, heterotrophic bacteria acquire C from organic 

material, especially in its dissolved form. However, the biochemically characterized fraction 

of DOM (e.g. monosaccharide, amino acids) can account for less than 15% of the total pool in 

marine waters (Benner et al. 1992) and little is known about the utilization of different 

components of the DOM pool. 

Heterotrophic bacteria appear to account for a large fraction of orthophosphate (PO4
3−) uptake 

both in the oceans and in freshwaters (Kirchman 1994). The median percentage of PO4
3−

uptake attributable to bacteria is 60% when both freshwater and marine systems are 

considered, but the percentage varies greatly among diverse ecosystems. In terms of N, there 

are two important sources for bacteria and phytoplankton growth: ammonium (NH4
+) and 

nitrate (NO3
−), respectively. Ammonium uptake by bacteria has been examined in more 
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details compared to other N sources (e.g. nitrate and urea). Similar to PO4
3−, ammonium 

uptake by bacteria varies greatly from 5−78% of total uptake (Fuhrman et al 1988, Kirchman 

1994). The overall median is about 40% which is two-fold higher than maximum expected 

percentage, assuming a BP:PP ratio of 0.2 and similar C:N ratios for bacteria and 

phytoplankton (Kirchman 2000).  

Competition between microbes for the same substrate has been linked to cell size (Thingstad 

et al. 2005b). Because of low surface area to volume ratios, heterotrophic protists are at 

disadvantage in competing with smaller microbes such as heterotrophic bacteria and many 

small phytoplankton species (e.g. cyanobacteria) for dissolved compounds.  In addition, 

utilization of NO3
- as a nutrient source is energetically demanding, requiring intracellular 

reduction to NH4
+ prior to assimilation (Vallino et al. 1996). Thus, NH4

+ usually accounts for 

relatively high N uptake compared to NO3
- uptake is small size cells like bacteria, pico- and 

nano-phytoplankton (Lipschultz 1995). In the Barents Sea, for example, 53% of the NH4
+

uptake has been attributed to organisms <0.8 μm (Kristiansen et al. 1994). 

In pelagic carbon and nitrogen models, the role of heterotrophic bacteria in the consumption 

of dissolved inorganic nutrients has been seldom considered (Fasham et al. 1990). In order to 

make reliable conceptual models it is therefore needed to answer how uptake of P and N from 

the DOM-pool is distributed between bacteria and phytoplankton (Fig. 1) 

1.5 Bacterial growth rates and efficiency. 

The study of bacterial growth is directly linked to the ability of estimate bacterial abundance 

(and converted to biomass) as well as production rates. The development of new methods for 
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assessing both variables is critical to improve our understanding of bacterial growth control in 

marine environments. 

To define bacterial growth rate it is necessary to define bacterial production (or secondary 

production) as the synthesis of bacterial biomass, primarily from organic sources (e.g. 

dissolved organic carbon) and mineral nutrients, transferring the organic matter from one pool 

to another as net effect. Thus, bacterial production (BP) can be expressed as the rate of 

synthesis of cells or bacterial biomass (BB): 

   BP = μBB       (1) 

where μ is the specific growth rate of the bacterial population expressed in units of inverse 

time (e.g. d-1 or h-1) 

   μ = 1
BB

dBB
dt

      (2) 

In most of the studies reported, BP is not derived through direct measurements of μ and BB 

using equation 1. Thus, the determination of in situ values of μ still remains ambiguous. The 

straightforward method to estimate bacterial growth rate has been to give values to the right-

hand terms in equation (2) but this approach shows problems with the net changes in BB. In 

practice, it is more common to measure bacterial production and biomass, and calculate 

bacterial growth rate (µ) from equation (1) as the ratio between bacterial production and 

biomass. Thus, measuring bacterial production and biomass remains our best approach to 

obtain large data sets and accurate measurements of bacterial growth rates that can be used to 

parameterize food web models (Ducklow 2000). 



27

In dilute environments as marine waters, bacterial communities may have an enormous 

catabolic versatility and flexibility, which is probably the key to survival and growth in 

oligotrophic environments. The adaptation of bacteria to dilute and variable conditions is of 

great advantage in the utilization of the available energy, so that in any given set of 

environmental conditions, survival and growth can be maximized (Morita 1997). The 

distribution of carbon into anabolic and catabolic processes results in bacterial growth 

efficiency (BGE). By definition BGE (or yield) is the quantity of biomass synthesized (or BP) 

per unit of substrate assimilated (A) where A is the sum of BP and bacterial respiration (BR). 

Thus BGE can be expressed as follow: 

BGE = BP
A

= BP
BP + BR( )

    (3) 

BGE is a fundamental attribute for microbial metabolism, which largely determines the 

ecological and biogeochemical role of bacteria in microbial food webs and in aquatic 

ecosystems (del Giorgio & Cole 1998). The measurements of bacterioplankton growth 

efficiency are still a challenge for marine microbial ecologist because direct measurements of 

substrate consumption can seldom be made at realistic time scales, and metabolic rates are 

often extremely slow (Søndergaard & Theil-Nielsen 1997). Early studies follow the uptake, 

incorporation and respiration of simple radiolabeled compounds, allowing measure rates of 

uptake and respiration in short incubations with high sensitivity (Crawford et al. 1974). But 

during this short incubation times, the intracellular carbon pool often do not attain 

equilibrium, with the result that BR is underestimated and BGE overestimated. In addition, 

the single-model compounds may not be representative of the range of substrates utilized by 

heterotrophic marine bacteria. This approach has largely been replaced measuring BGE using 

the in situ pool of organic matter. For example, BGE can be calculated from the rate of 

decline in substrate (DOC) and the rate of increase of bacterial biomass (POC) using days or 

weeks as incubation time. Another approach using the in situ pool of organic matter is the 
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simultaneous measurements of BR and BP in relatively short (<36 hours) incubations. Several 

difficulties can be observed using this approach; mainly considering long extra incubations to 

obtain measurable changes in O2 consumption or more rarely, as CO2 production. In addition, 

the physical separation of bacteria from other planktonic components (range of filtration from 

0.6 to 2 μm) may disrupt the structure of the bacterial assemblage and the supply of 

substrates. In that sense, there is still uncertainness in the estimation of BGE that needs to be 

considered for the interpretation of microbial metabolism and their biogeochemical role in 

aquatic ecosystems 

1.6 Global relationships in marine microbial ecology. 

The discussion of BGR control in microbial food webs is often centered on the concepts of 

‘bottom-up’ and ‘top-down’ control (e.g. Billen et al. 1990, Fig. 2). The criterion that growth 

must balance loss for any component in steady state means that bottom-up and top-down 

forces in the sense must be of exact equal importance, at least when considered over 

sufficiently long time scale. 

Suspecting the key role of heterotrophic bacteria in marine food webs (Pomeroy 1974, Azam 

et al. 1983) there has been a massive campaign to develop new methodologies and techniques 

that lead to an increase in empirical databases in marine environments. At the same time, 

questions addressing the relative importance of bottom-up and top-down processes have been 

approached by the use of conceptual and mechanistic models (Fasham et al. 1990, Anderson 

& Ducklow 2001) and comparative ecosystem analysis (Gasol & Duarte 2000). Most of 

comparative ecosystem analyses are used to define relationships between two ecosystems 

properties or processes through assessment of a statistical relationship. The resulting 
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relationship can be used to define a predictive range of variability between two ecosystem 

properties (Gasol & Duarte 2000) within the euphotic zone or in general in the surface ocean. 

Nowadays, it is possible to find a number of syntheses studies that identify the comparative 

analysis of marine bacteria. One of the most robust trends identified from comparative 

analyses across diverse aquatic ecosystems is that BA generally shows a positive relationship 

to chla (Bird & Kalff 1984, Cole et al 1988, Ducklow & Carlson 1992, Gasol & Duarte 2000). 

The power slope of the relationship between BA versus chla has been used to identify two 

general trends: (1) the upper limit of the bacterioplankton biomass is controlled by the 

availability of phytoplankton derived sources (Li et al. 2004), and (2) the bacterial biomass 

becomes more important (higher percentage compared to phytoplankton) in ecosystems where 

autotrophic biomass is low (Gasol et al. 1997).  

Figure 2. Interaction between heterotrophic bacteria and their ‘neighbors’ in the microbial 
food web (modified from Thingstad, 2000). Mineral and organic nutrients and DOC as 
examples of bottom-up factors (green compartments). Predators and viruses as examples of 
top-down factors (red compartments). 

Comparative studies have also been used to assess the relationship between rates of BP and 

PP (both volumetric and areal relationships). It has been assumed that this relationship reflects 

the degree of coupling of bacterial growth and PP. Over large time and space scales, the 

variation of PP appear mirrored in BP, thus BP is assume to be equivalent to 10-30% of PP 

(Cole et al 1988, Ducklow 1999).  
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In comparative studies of data from a large number of systems, bottom-up resource 

availability for bacterioplankton is commonly identified as the main factor controlling 

bacterial numbers (e.g. Gasol & Duarte 2000). It is well known, however, that protozoan’s 

have the potential for reducing bacterial abundance and even to occasionally create Lotka-

Volterra-like oscillations between bacteria and predator abundance (Fenchel 1982, Azam et 

al. 1983, Tanaka et al. 1997). In addition, several analysis of mechanistic models predict that 

BP is controlled by the rate of nutrient supply (i.e. bottom-up control) while final abundance 

and BGR can be determinate by predation pressure, by substrate supply or by both control 

modes (Pace & Cole 1994, Thingstad & Lignell 1997). Thus, more nutrient availability would 

mean more biomass and production, and more predators could mean less biomass or activity. 

So far, there are no clear conclusions about which mode of control (bottom-up or top-down) is 

more important in determining bacterial abundance, production and growth. 

By the comparison of bacterial growth and loss rates it seems possible to answer the question 

of weather bottom-up or top-down controls predominate in different oceanic regions. If there 

is a tendency for values of growth to be ‘uncoupled’ from those of losses, would be possible 

to discover either the dominance of bottom-up processes (loss would be below of those of 

growth) or the dominance of top-down processes (if losses tend to be higher than growth).  

A general conclusion from previous studies is that limiting resources presumably regulate 

heterotrophic bacteria in most of the eutrophic environments, and organic carbon can be the 

main limiting factor. There are relatively less studies and maybe more contradictive results 

on: the effect of mineral nutrients, the competition of osmotrophs for both sources of energy 

and the effect of predator over heterotrophic bacteria. In that sense, this thesis will fill part of 

the gap by looking the effects of mineral nutrients and carbon sources on bacterial growth in 

different experiments as well as the effect loss processes by using comparative analyses. 
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2. OBJETIVES

The general objetive of this thesis was to improve the understanding on the control of 

bacterial growth rates in marine ecosystems using 3 diffenrent approaches: microcosm 

experiments, mesocosm experiments and comparitive analysis. In particular this thesis also 

focuses on the following 3 especific objetives: 

Objetive 1.  How marine heterotrophic bacteria are limited by mineral nutrients and carbon 

sources in coastal and oceanic areas (Papers I, II and III) 

Objetive 2. How the competition between phytoplankton and heterotrophic bacteria for 

mineral nutrients regulate bacterial growth in manipulated experiments and predicted from the 

idealized plankton food web (Paper III and IV) 

Objetive 3. Which are the main mechanisms (sources or predators) regulating bacterial 

growth at global scale from oligotrophic to eutrophic ocean areas (Paper IV and V) 
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3. SUMMARY OF RESULTS

This thesis is organized using three methodological approaches by increasing the ‘size of the 

tool’, from microcosm experiments, through mesocosm experiment, and up to comparative 

analysis to attain the general objective. In addition, an idealized conceptual model is used to 

predict the different nutrient pathways in the microbial food web. The results obtained here 

begin with the utilization of labile organic carbon and mineral nutrients for bacteria and 

phytoplankton, including bacteria-phytoplankton interactions as competition, to finally reach 

global relationships in the control of bacterial growth in different ocean basins. Using this 

‘gradient’ from small scale to large scale approaches, this thesis seeks to extrapolate and 

improve our understanding on the role of heterotrophic bacteria in biogeochemical cycles.  

Papers I and II evaluates the bacterial growth response in ecosystems with different trophic 

status (i.e. chla concentration, dominant phytoplankton community) and bio-oceanographic 

conditions. Labile organic carbon (as main limiting factor) and mineral nutrients (co-limiting 

factor) can control bacterial growth during pre-phytoplankton bloom conditions (Paper I). 

The potential ‘fresh’ DOM from copepods activity can also play a major role controlling 

bacterial growth and carbon fluxes through the microbial food web in a coastal embayment 

and in a oceanic site (Paper II). 

Paper III investigates the availability of glucose for bacteria, and of phosphate for 

phytoplankton and bacteria using two mesocosm experiments in Arctic coastal waters. Initial 

concentrations of ammonium, nitrate, phosphate, total organic carbon (TOC), chlorophyll a, 

bacterial abundance and turnover times of glucose and phosphate were similar between the 

two experiments. Despite the similar initial conditions TOC accumulation rates were different 

between both experiments. In the 2007 experiments, TOC accumulation rate reduced despite 
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increase of glucose addition when organic-C to mineral nutrients supply ratio was below the 

Redfield ratio, while TOC accumulation rate increased with increase of glucose addition when 

the supply ratio was above the Redfield ratio. In the 2008 experiment, TOC accumulation rate 

increased with the increase of the glucose addition despite the nitrogen source added 

(ammonium vs. nitrate). The low availability of mineral nutrients reduced the bacterial 

capability to consume degradable organic carbon in the Arctic coastal waters. 

Paper IV describes through a idealized conceptual food web model how limiting nutrients are 

transferred from the dissolved form through the microbial food web to mesozooplankton. A 

review of five nutrients addition experiments, and comparing with other published studies, 

shows that the main system response in all cases seems possible to explain within the 

framework of the simple model. However, there are different systems attributes, such as 

flexibility stoichiometry and predatory losses, that can affect the pathway and speed of 

nutrients transfer in each experiment. 

Paper V analyzes a new empirical dataset for bacterial production, biomass and growth rate 

in different ocean basins and the effect of the trophic status (i.e. chla concentration) on the 

relationship between bacterial production and biomass. The slope and intercept of the 

relationship is strongly affected by chla concentration and predator’s abundance showing an 

increase for both parameters from oligotrophic to eutrophic ecosystems. A similar increase 

was possible to estimated exploring a density-dependent logistic growth model, where a 

negative relationship between BGR and bacterial abundance suggested that bacteria are 

resource limited in eutrophic systems. At global scale, from oligotrophic to eutrophic systems 

bacterial growth seems to be predator limited (top-down control) and resource-limited 

(bottom-up control) respectively. 
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4. DISCUSSION

4.1 Simplicity versus complexity in microbial food webs. 

The analysis of the microbial food webs is not only restricted to a qualitative level. As an 

example the use of box models is the great importance to obtain a quantitative level including 

predictive power. In that sense, the construction of a model that incorporate all the important 

types of plankton may seem the obvious step further. The debate concerning the feasibility of 

multiple plankton functional types (PFTs) lead to the discussion of what is needed and what is 

possible to include (Anderson 2005, Flynn 2005, Le Quéré et al. 2005, Thingstad et al. 2010, 

Paper IV). Paper IV tries to explore this problem evaluating if is possible to start with 

simple conceptual models with feasible analysis and experimental verification, and add new 

details such as compartments, processes and/or pathways in steps (detailed analysis in 

Thingstad et al. 2010). As an example, is possible to observe the simplified version of the 

linear pelagic food chain (nutrients-phytoplankton-zooplankton-fish), and then exchange the 

phytoplankton link with a microbe link, creating a more complex microbial food web (Fig. 1). 

The three-pathway model shown in Fig. 1 with a (1) “bacterial”, a (2) “autotrophic 

flagellates”, and a (3) “diatom” entry point for the mineral nutrients seems a modest step up in 

complexity from the linear pelagic food chain. Each of these osmotroph PFTs has its separate 

phagotroph predator, forming three parallel “vertical” food chains (Fig. 1). The phagotrophs 

are connected through the “horizontal” carnivorous food chain from “heterotrophic 

flagellates” via “ciliates” to “copepods”.  

As mentioned above, a further step in complexity could be the addition of processes and/or 

pathways in a model perturbed by nutrient additions (e.g. Paper III and IV). Consider an 

experiment characterized by mineral nutrient limited phytoplankton growth rate, when 

limiting nutrients are added, this will alleviate growth rate limitation, lasting for a period 
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depending on the ratio between existing osmotroph biomass and the dose supplied. As the 

nutrients are assimilated and converted into new osmotrophs, the system somewhat 

paradoxically shifts to increased growth rate limitation since the biomass of osmotroph 

competitors has increased, but not the rate of recycling. In this state, bacteria will therefore 

experience high competition pressure for mineral nutrients, driving the system towards 

mineral nutrient limited bacterial growth. If mineral nutrient stressed phytoplankton excretes 

organic-C available to bacteria, this will drive the system further towards bacterial mineral 

nutrient limitation. With high osmotroph biomass, a trophic succession to the phagotrophs 

would be expected. The effect of this transfer up the “vertical” food chains to the phagotrophs 

in Fig.1, would be reduced competition as well as increased recycling, and therefore a reduced 

mineral nutrient stress for the remaining osmotrophs and an increased potential for bacterial 

consumption of labile dissolved organic carbon (L-DOC). The timing of these shifts in 

nutrient limitation conditions thus depends on the characteristic time scales for the numerical 

response in the different phagotrophs. Since is possible to expect a faster numerical response 

in ciliates than in copepods, this model predicts a phytoplankton bloom in a system dominated 

by diatoms (Pathway 3) to last longer and reach higher levels than a flagellate-dominated 

bloom (Pathway 2). From the previous arguments, the consequence is also that the model 

predicts a prolonged period with mineral nutrient limited bacterial growth if diatoms are 

present.  

Other common complexity step that can be included are: ranges of phytoplankton size classes,  

genetic diversity in the prokaryotes (Venter et al. 2004) and protist (López-García et al. 2001) 

communities and combined strategies of heterotrophy, autotrophy and mixotrophy between 

others. But to focus on how the balance between pathways of nutrients changes with 

biogeochemical factors such as: total content of a common limiting element, whether bacterial 

growth is limited by organic carbon or by mineral nutrients, and organism properties as 
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nutrient uptake affinities in osmotrophs, clearance rates in phagotrophs and yield coefficient 

would probably lead to a better prediction of experiment outcome (Paper IV). 

Based on the previous conceptual model (Fig. 1), different tools can be apply to clarify the 

interaction between marine microorganisms (osmotrophs and phagotrophs) starting from 

experimental (natural or near-natural) approaches (Paper I, II, III) through the idealization of 

conceptual models (Paper IV) and toward the construction of datasets and comparative 

analysis (Paper V). Thus, different time-space scales and questions can be approached using 

one or another tool. Microcosms experiments (e.g. chemostat laboratory) or ‘bottle 

experiments’, can explain interaction between prey and predators or individual utilization of 

substrates in the scale of hours to days. Mesocosm experiments, leads the possibility to 

approach community interactions in larger time scales as weeks. And in longer temporal and 

space scale, comparative analysis leads to answer global patterns, defining relationships 

between two ecosystems properties or processes (Table 1). 

Table 1. Experimental and comparative analysis approaches. Temporal scales and possible 
microbes’ interaction studies. 

The application of these three different approaches can test different microbial processes and 

interactions. Close interactions and the effect of carbon and mineral nutrients can be tested 

using ‘bottle experiments’, while the effect over the microbial community can be observed 

Approach Temporal scales Space scale Aim of the studies examples 

Microcosm 
experiments Hours, days Usually below 5-10 

liters 

Prey-predator interactions 
Uptake of substrates 
Respiration of substrates 

Mesocosm 
experiments Days, weeks Usually above 100 

liters 

Community interactions 
Effect of environmental factor over 
community structure and function 

Comparative 
analysis 

Short-, long time-
series. Inter-annual 
or decadal changes 

From specific sites to 
large regions (e.g. 
ocean basins) 

Relationships between ecosystem 
properties or processes 
Global patterns 
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under a mesocosm experiments. A macro-ecological approach by the use of comparative 

analysis will search for statistical patterns between different relationships that can explain, for 

example, the control of bacterial growth rates at global scale and in specific ocean basins. 

4.2 Applying an idealized conceptual model in different manipulated 

experiments. 

The seasonal variability and oceanographic conditions are fundamental features that trigger 

phytoplankton blooms and therefore different stage of limitation for bacterial growth. In 

marine environments is possible to find different scenarios depending on the structure of the 

phytoplankton community, mineral nutrients and labile organic carbon concentrations. A 

possible scenario in oceanic and coastal environments would be a situation of mineral nutrient 

replete conditions with low dissolved organic matter concentration (Paper I). In an open 

ocean area with a dominant nano-phytoplanktonic community, mineral nutrient are available 

for bacteria and phytoplankton utilization leading to bacterial growth limitation by carbon. 

Under this condition, heterotrophic bacteria may use all labile organic carbon preventing its 

accumulation in the water column (Paper I). Other environments such as coastal areas and 

embayments are usually dominated by diatoms and large phytoplanktonic cells. The change in 

the dominant phytoplankton community and its interaction with their predators (copepods, 

Fig. 1) could increase the organic matter concentration and its liability by processes such as 

sloppy feeding, excretion and leaching from faeces (Nagata 2000). A different scenario with 

growth limited by mineral nutrients could be suggested under the conditions described above 

(Paper II). 

A more complex situation is possible to observe by adding mineral nutrients (Si, ammonium 

and nitrate) in manipulated mesocosm experiments at different supply ratios of glucose-C to 
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mineral nutrients. Different phytoplankton communities will dominate depending on the 

nutrient added and different responses in the accumulation of TOC will be observe with the 

availability of glucose for bacteria and phosphate for phytoplankton and bacteria (Paper III). 

It has been observed that silicate additions lead to a dominant diatom community, but 

differences in the type of diatom bloom can be attributed to the nitrogen source added. Nitrate 

can induce chain forming diatoms (Havskum et al. 2003), while ammonium can induce small 

solitary diatom (Thingstad et al. 2008, Paper III). The resulting phytoplankton community in 

silicate deplete system leads to a flagellate bloom expecting a faster response in ciliates 

(pathway 2, Fig. 1) that in copepods abundance preying over diatoms (pathway 3, Fig. 3). The 

dominance of small diatoms (e.g. cells < 10µm, Paper III) allow the grazing of the same 

predator as those grazing on autotrophic flagellates (Fig. 1) reducing the differences in the 

dynamics of the diatom and flagellate pathways. 

The ability to predict these differences in the transfer of nutrient through the food web 

requires an explanation for the mechanisms leading to small versus large diatoms. Stolte and 

Riegman (1995) assume that diatoms can store nitrate but not ammonium in the vacuole. 

Since the vacuole:citoplasm ratio increases with cell size, large diatoms will have a 

competitive advantage in an environment pulsed with nitrate, but not with ammonium. 

Contrary to this prediction, our test between ammonium and nitrate additions (see 2008 

experiments in Paper III) induced only a phytoplankton community dominated by flagellates 

(1-10 µm). This indicates that nutrients entered the food web through the autotrophic 

flagellate pathway, with no net growth of bacteria nor diatom, despite the presence of excess 

Si and independent of the presence or absence of glucose. One possible explanation could be 

outlined from the predation pressure in the horizontal grazing food chain in Fig. 1. Biomass of 
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bacteria and diatoms could be controlled by dominant communities of heterotrophic 

flagellates and copepods respectively (Paper IV). 

4.3 Processes involved in the determination of bacterial growth rate and 

efficiency. 

Rates of change of bacterial populations in marine environments are usually underestimated 

of the actual growth rate because the effect of simultaneous removal of prey cells by grazers 

(Ducklow & Hill 1985, Ducklow 2000, Paper I, Paper II) and bacterial lysis by viruses 

(Weinbauer & Peduzzi 1995, Furhman 2000). Both processes can reduce or balance bacterial 

growth rates giving the appearance that the bacteria are not growing, similar for 

phytoplankton grazed by microzooplankton (Landry & Hassett 1982). If unambiguously 

estimation of bacterial growth rate can be obtained, and relate them to other variables as chla 

and temperature, then the derive growth rate can be used to estimate bacterial production from 

equation (1). In manipulated experiments, grazing and viral lysis can be minimized or 

eliminated completely by dilution with filtered water (usually below 0.8 and 0.2 μm pore size, 

respectively. Paper I). In these experiments, bacterial abundance increases over time, which 

can provides an estimate of bacterial production and specific growth rates (Paper I). The 

observation of changes in cell numbers or biomass over time is the most direct but perhaps 

not the easiest way to measure bacterial growth. 

It has been establish that bacteria can respond to fluctuating nutrient availability by regulating 

the number of active transporters used to acquire substrate. Both organic and inorganic 

substrates concentrations can present very low concentrations (nanomolar to micromolar 

ranges) in marine environments, suggesting that bacteria growing in low nutrient seawater 

would favor allocation of cellular energy to acquiring resources at the expenses of growth 

(Church 2008). In contrast, bacteria growing under higher concentration of substrates might 
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maximize growth while decreasing affinity (α) for specific substrates, and bacteria growing 

under limiting nutrients might increase its affinity for substrates while growth might not be 

limited by the substrate availability (Paper III).   

The ability of directly measure two fates of a given substrate uptake (e.g. glucose, amino 

acids, etc) into biomass and respiration offer the possibility of estimating BGE, but only from 

the incorporation of single added substrates (e.g. Crawford et al. 1974). This approach can be 

very sensitive and also allowed to estimated BGE in the most unproductive aquatic systems. 

But, the single model compounds may not be representative of the total range of substrates 

used by bacteria in marine environments. In addition, using short incubation times the 

intracellular carbon pools often do not attain equilibrium, with the result that respiration is 

greatly underestimated and BGE grossly overestimated. Thus, the combination of the short 

incubations and simple substrates produced BGE data with high values, ranging from 0.3 to 

0.8. The use of single labeled compounds has been replaced by measuring BGE utilizing the 

in situ pool of organic matter (see review in del Giorgio & Cole 1998, Paper I). Thus, 

measurements of bacterial production (mainly using thymidine or leucine incorporation) 

coupled with sensitive methods to estimate bacterial oxygen consumption or DOC utilization, 

allowed BGE to be estimated without depending on the use of single substrates, and also 

allowed bigger set of data from in situ estimations. Still measurements of BGE can seldom be 

made at real time scale, and in marine systems the metabolic rates are often extremely low.  

A compilation of more than 200 direct measurements of BGE from a variety of natural marine 

ecosystems showed a large range in BGE, ranging from <0.01 to >0.6, but most values are 

clustered in the 0.05 to 0.3 range (del Giorgio & Cole 1998). The average values for open-

ocean areas (0.15 ± 0.12 SD) are lower than the average value for coastal areas (0.27 ± 0.18 

SD). Similar range of BGE was estimated in the Norwegian Sea with in situ average values of 
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0.2 (Paper I). These differences in BGE among different marine areas are mainly driven by 

changes in bacterial production and less variable bacterial respiration among different marine 

areas. 

As a general trend, there is a broad positive relationship between BGE and BGR, mainly 

because BGR tends to increase on average along gradients of primary production (Cole et al 

1988, White et al. 1991). But over small scales the relationship between BGE and BGR does 

not always hold (del Giorgio & Cole 1998). Thus, at this scale there is not general relationship 

between BGE and BGR in natural bacterial communities, where the data suggest that BGE 

may covary with BGR (Paper I). 

It has often been assumed that BP is a good index of organic matter supply to heterotrophic 

bacteria (Cole et al. 1988), thus, the hypothesis that bacteria maximize utilization rather than 

efficiency (BGE suppose to decline towards more oligotrophic areas, where presumably the 

supply of carbon and energy is slower) can be important to interpreted the current massive 

measurements of BP in the oceans. Maximizing the rate of utilization would imply that total 

bacterial carbon consumption (BP + BR) reflects the total amount of organic matter available 

for bacteria. Although the sum of BP and BR is positively correlated with primary production, 

it has a much smaller range than BP alone, suggesting that the total amount of organic matter 

available for bacteria is less variable than previous recognized. Because of the differences in 

BGE along gradients of productivity, the fate of the C utilized by bacteria varies greatly. For 

example, the average total carbon flux through bacterioplankton (BP + BR) can differed by 

three fold between open ocean systems and productive coastal areas (del Giorgio & Cole 

1998). Thus, the response of the bacterial assemblages to the different concentration and 

quality of carbon sources, produced mainly by phytoplankton or zooplankton, can differ 

between coastal and oceanic areas (Paper II). Potential C losses by copepods feeding 
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activities might be not important in fueling BGR in productive coastal areas (Paper II), but 

the release of available C from phytoplankton would control growth and production (Nagata 

2000). The phytoplankton community composition might also regulate bacterial growth 

observing C-limited bacterial growth in areas with small cell composition (Paper I) and 

bacterial growth control by other sources (e.g. mineral nutrients, predators) in coastal areas 

where large phytoplankton is dominant (Paper II). 

An extra problem affecting the estimations of bacterial growth and efficiency is the presence 

of non-growing cells, producing heterogeneity of population growth rates. If thymidine 

isotope were used by definition would address the dividing cells. If only part of the total cell 

population were actively incorporating isotope, the incorporation rates would increase faster 

than the total cell count (Ducklow 2000). The use of flow cytometry allow us to detected 

directly bacteria subpopulations (DNA content).  In oceanic environments, low nucleic acid 

(LNA) bacteria are dominant when substrate supply rate are slow (Gasol et al. 1995), while 

the contrary can be observed for high nucleic acid (HNA) bacteria when substrates (mineral 

nutrients and labile carbon) are available, showing high variable results (Paper I). 

4.4 Factors affecting the bacterial consumption of carbon & mineral nutrients. 

There is limited knowledge about the processes that control the cycling of DOM and on the 

different types of DOM compounds in seawater. Thus, the complexity of natural substrates 

combined with the dilute concentrations makes evaluating the turnover, utilization of 

individual substrates and subsequence bacterial growth difficult. To approach this problem, it 

have been necessary to assume first the open ocean as a nutrient-limited environment, where 

bacterial growth can depends mainly on two processes: (1) the rate that cells transport and 

assimilate growth-limiting nutrients, and (2) the rate that cells metabolize intracellular 

substrates. Thus, under steady state conditions, it is assumed that nutrient-limited bacterial 
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growth depends on the transport rate of the growth limiting nutrients. It is also possible to 

assume that the dominant groups of pelagic bacteria posses multiple high-affinity transport 

systems that enable them to simultaneously transport several types of nutrient substrates. 

Thus, heterotrophic bacteria are able to utilize very low concentrations of inorganic and 

organic solutes in nutrient deplete oceanic areas. The specific affinity, defined as the volume 

of water cleared for substrates per unit of biomass and per unit of time (analogous to the 

clearance rate of phagotrophic organisms), can be a good index to measure competitive ability 

between osmotrophs. At the same time is a useful parameter to evaluate the substrate pool 

available for microorganisms (Thingstad & Rassoulzadegan 1999). 

The relationship between specific affinity (α) and the Michaelis-Menten parameters 

maximum specific uptake (Vmax) and half saturation constant (Km) is illustrated in Fig. 3. 

Specific uptake rate (V) is V/B, where B is the biomass; hence Vmax is Vmax/B. 

The specific affinity (α) can be described through the equation: 

α = Vmax

Km B
       (3) 

The specific uptake rate (Vmax) and specific affinity (α) describes how efficient microbes take 

up substrates at high and low substrate concentrations, respectively (index to measure 

competitive ability). Paper III shows an example of how affinity can change in a mesocosm 

experiment when mineral nutrients are depleted in a gradient of glucose and silicate. Thus, 

low values of α reflect lower substrate affinity (i.e. maximal growth is achieved at elevate 

substrate concentration), while high values of α indicate an increase in substrate affinity 

(maximal growth occurs at low nutrient concentration). 



45

Figure 3. Relationship between Michaelis-Menten parameters and affinity. Maximum specific 

affinity (α) corresponds to the constant part of the slope of the Michaelis-Menten curve (blue 

line) where the substrate concentration (S) approaches zero (grey area). The affinity constant 

defines the maximum uptake capacity for the organisms. 

The utilization of energy towards biosynthesis may control competition and also population 

succession amongst the bacterioplankton and phytoplankton. Thus, it is possible to 

hypothesize the kinetic response of two osmotroph populations to variable concentration of a 

single limiting resource (Fig. 4). In first case (a), the two population have identical maximal 

growth rates but population A has a greater affinity (αA > αB and KmA < KmB) for the 

substrate than population B, and at low substrate concentration, population A would out 

compete B for the limiting resource. In the second case (b), populations A and B have similar 

substrates affinities (αΑ = αΒ), but different Km and μmax values (KmA < KmB, μmaxB > 

μmaxA). Under this conditions, population B would increase as resources become more 

available. And in third case (c), both populations differ in μmax and substrate affinity. Thus, 

at low resource availability, population A will dominate, with population B out-competing A 

along a gradient in increasing resource availability. Thus, the principle of competitive 

exclusion (Hardin 1960) would predict that in equilibrium, two species competing for the 
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same resource could not stably coexist, meaning a different idea from the one expressed in the 

paradox of the plankton (Hutchinson 1961) 

Figure 4. Hypothetical kinetic response of two bacterial populations (A and B) competing for 

limiting resources (Modified from Lalli & Parsons 1993) 

From the analysis above, it can be possible to explain interaction such as competition between 

bacteria and phytoplankton when resources availability is limited, testing if organic C 

dynamics are controlled by competition between osmotrophs (bacteria – phytoplankton) for 

mineral nutrients and also by phytoplankton community composition (Paper III). Thus, an 

important question to approach would be, what portion or inorganic phosphorus and nitrogen 

uptake is due by heterotrophic bacteria and how this uptake is control the C utilization by 

heterotrophic bacteria. 

4.4.1 Phosphate uptake. 

A large and variable fraction of phosphate uptake can be due by heterotrophic bacteria 

(Kirchman 1994). These estimations are usually considered from the amount of radiolabeled 

PO4
3− taken up by the small size fractions (i.e. <0.8 µm or <1.0 µm) or sometimes called 

‘bacteria’ size fraction (picoplankton) (Fig. 5). A main source of error is the uptake over 

estimation mainly because in this size fraction, part of the uptake may be due by 

phytoplankton such as cyanobacteria (e.i. Synechoccocus sp., Phlorococcus sp.). Only few 
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studies corrected for phytoplankton uptake, reporting a PO4
3− uptake fraction of 24−46% 

attributable to heterotrophic bacteria (Table 2). Kirchman (1994, 2000) approach these 

percentages calculating the maximum relative phosphate uptake from the ratio of bacterial 

production to primary production (BP:PP), ratio that is usually expressed in carbon units, 

corrected for C:P ratios of bacteria versus phytoplankton. Including the great variability in 

time and space, it make difficult to choose an average value for BP:PP and a single bacterial 

C:P ratio. Thus, assuming a BP:PP ratio of 0.2 and an average value of 53 for bacterial C:P 

and 106 for phytoplankton C:P, the maximum expected uptake of PO4
3− would be about 40% 

of total uptake (Kirchman 2000). The calculated maximum uptake of phosphate is about equal 

to or less than the measured relative uptake of phosphate by heterotrophic bacteria, implying 

that bacteria obtain much of their P from phosphate and not from organic P. Even the 

importance of these measurements, only few studies have compared phosphate uptake and 

biomass production directly (e.g. Fuhrman & Azam 1982, Paper III). Thus, measuring both, 

phosphate utilization (e.g. phosphate turnover) and in situ phosphate concentration is possible 

to suggest the limiting stage of the microbial community (Paper III). 

Figure 5. Example of isotopes used in the determination of mineral nutrient and organic 

carbon uptake by heterotrophic bacteria and phytoplankton. L-DOC: labile dissolved organic 

carbon; L-DON: labile dissolved organic nitrogen, DIN: dissolved inorganic nitrogen; DIP: 

dissolved inorganic phosphate; Si: silicate. Similar experiment set-up was used in Paper III. 
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4.4.2 Ammonium and nitrate uptake. 

Like phosphate, ammonium uptake by heterotrophic bacteria varies greatly (Table 2). The 

overall median estimated by Kirchman (1994) is about 40% which can be two-fold higher 

than the maximum expected percentage, assuming the BP:PP ratio of 0.2 and C:N ratio of 6 

and 4.2 for phytoplankton and bacteria, respectively (Kirchman 1994). Like phosphate uptake, 

estimations of DIN (i.e. ammonium, nitrate and nitrite) uptake may be compromised by 

phytoplankton uptake in the picoplankton size fraction. Frequently, the stable isotope 15N 

have been used to estimate DIN uptake, but the use of 33PO4 is also of frequent use to estimate 

phosphate turnover and affinity (Paper III). 

Natural assemblages of heterotrophic bacteria have not been thought to take much nitrate 

because of the energetic cost. Use of nitrate requires five NADHs compared to one for 

ammonium (Vallino et al 1996). Even when few studies exist to represent the global ocean, it 

seems that bacteria use more ammonium than nitrate, overall, bacteria account for 42 and 

16% of ammonia and nitrate uptake, respectively (Table 2). However, these values are based 

in very different studies of highly diverse marine systems 

Thus, in general, it is worthwhile to focusing on ammonium uptake, mainly because this 

compound is one of the main N sources supporting bacterial growth in marine environments 

together with amino acids and nitrate. There is a not clear consensus about the preferences of 

bacteria for ammonia or amino acids (e.g. Kirchman et al. 1989, Russel & Cook 1995, Vallino 

et al. 1996), and an obvious incomplete picture of which compounds are controlling bacterial 

growth rates mainly because of the difficulties to examine uptake of all possible DOM 

components. As a general trend, comparisons of average ammonium uptake with bacterial 

production indicates that a large fraction of bacterial growth can be supported by ammonium 
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Table 2. Summary of studies measuring ammonium (NH4
+), nitrate (NO3

-) and phosphate 

(PO4
3-) uptake by heterotrophic bacteria in marine waters. Values expressed as percentage of 

the total uptake by bacteria. 
Area NH4

+ NO3
− PO4

−3 Comments Reference 

North Atlantic 
22-39 

8 
4-14 
27 

24-46 

Spring bloom 
Coast to open ocean transect 
Corrected for phytoplankton 

Kirchman et al. 1994 
Harrison & Wood, 1988 
Nalewajko & Lee 1983 

South Pacific 
Peruvian coast 

50-75   
5 

14CO2 into proteins 
Pre-incubation, size fractionation 

Laws et al. 1985 
Harrison 1983 

Subarctic Pacific 31 32  Starvation P, 4 months average Kirchman & Wheeler, 1998 
Fresh and 
marine waters 

  60  Kirchman 1994 

4.4.3 Organic carbon uptake. 

Concentration of DOC in marine environments typically range between 60 and 90 μM and 

decline to about 40 μM in the deep sea (Hansell 2002). This DOC can be broadly defined 

based on their turnover times as refractory, semi-labile and labile. The less abundant pool of 

DOC includes the labile DOC, with utilization times ranging from minutes to days and very 

low concentrations. Most of the studies on limitation of bacterial growth by DOC have 

focused on specific compounds experiments such as utilization of glucose (Havskum et al. 

2003) and some few in the utilization of pyruvate (Al-Sarawi et al 2008). In comparative 

studies of bacterial growth and DOM degradation (e.g. Carlson et al. 1998) was found that 

89% of the total organic matter produced during the summer growing season was retain as 

particulate carbon, and the small DOM fraction was rapidly consumed by bacteria. In 

productive areas still remains unclear why the DOC produced under this ecosystem supposed 

to be more biologically reactive than the DOC produced in oligotrophic areas with low 

nutrient concentrations. A possible explanation is that the type of substrates available to 

support bacterial growth have a great nutrition value (or lower C:N:P ratios) in high-nutrients 

marine environments than those substrates available in low-nutrient environments (Church 

2008). In addition, there is experimental evidence that the supply of mineral nutrients can 
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facilitate the use of semi-labile DOC (Zweifel et al. 1993, Thingstad et al 1997, 2008, Paper 

II). 

There are several examples where glucose and sometimes dissolved free amino acids (DFAA) 

supply a major fraction of the carbon required to support BP and growth. Rich et al. (1997) 

found that despite high concentrations of both glucose and DFAA in the Arctic Ocean, 

glucose alone met upwards 100% of the BP. Similar response was found in Paper II were 

glucose alone increase > 5 folds BP and a combination of glucose and mineral nutrients 

enhance BGR in the Norwegian Sea. In the Equatorial Pacific, glucose alone could support 15 

– 47% of the production and a large fraction of the respiratory demands (Rich et al. 1997). 

And in coastal and oceanic areas off northern Chile (Paper I) labile DOC released from 

copepods activity always enhances BGR and bacterial carbon demand. 

Thus, observing the effect of organic carbon and mineral nutrients on the microbial food web 

dynamic; when mineral nutrients are sufficiently high, diatoms usually are dominant to take 

up nutrients compared to smaller phytoplankton and bacteria (Havskum et al. 2003, Tanaka et 

al. 2008). If the addition of labile DOC is smaller than Redfield ratio, the dominant-diatom 

community can out compete heterotrophic bacteria and consume more phosphate, established 

high biomass, showing higher organic C production and slower response of nutrient transfer 

compared to a faster response in a flagellate-dominant community (Thingstad et al. 2008, 

Paper III, Paper IV). With increased addition of labile DOC, or higher carbon:nutrient 

Redfield ratio, the above differences can became small. 

A critical factor controlling the dynamic of organic C is the dominant phytoplankton 

community observed depending on the availability of nutrients such as ammonium, nitrate 
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and silicate deplete or replete conditions (Thingstad et al. 2008, Paper II, Paper III), and the 

availability of labile organic carbon (Paper I, Paper II). 

4.5 Comparative analyses and its application in marine microbial processes. 

In marine microbial ecology, different doubts in comparative analysis are related with 

conversion factors and the use of different methodologies. This approach lead the assumption 

of confident determinations of bacterial growth and losses, and leave a large discussion on the 

different conversion factors involved in BB and BP estimations, plus the restriction and 

methodological problems connected to grazing rates estimation on bacteria. 

Several studies do not include empirical conversion factors, assuming theoretical values from 

previous data in similar environments. Thus, underestimation and overestimation of BP and 

BB is a common error factor in microbial ecology studies. Another example is the common 

use of thymidine (TdR) or leucine (Leu) isotopes to estimate bacterial production and the use 

of mixed measurements in comparative analysis. Both approaches are different in definition. 

Thymidine based measurements (Fuhrman and Azam 1982) estimate the productivity rate of 

actively growing bacterial cells, as a proxy of DNA synthesis, and leucine measurements 

(Simon and Azam, 1989) estimates the incorporation of leucine into bacterial protein as a 

proxy for formation of new bacterial biomass production, which measure separate though 

related physiological processes. Thymidine and leucine incorporation rates do co-vary over a 

variety of time and space scale (Kirchman 1992, Paper V). Variations in Leu:TdR ratios can 

be substantial and can change with growth rates and the physiological state of bacterial 

assemblages. This ratio has a long variability in the North Atlantic with values from 2.6 – 

116.3 in the upper 200 meters (Ducklow 2000). In addition, Leu:TdR ratio can varies from 

oligotrophic to eutrophic regions (Paper V). Several studies address relative changes in 
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Leu:TdR ratios, but no one to date has been able to explain quantitatively the significance of 

the values of the ratio for a given sample or for a given regional ratio. 

One way to visualize the regulation of bacterial by bottom-up and top-down control is to 

consider how biomass and growth rates change along a resource gradient at low and high 

levels of predation (Fig. 6). And further, a simple approach that allows us to test a large set of 

data for different ocean basins is the relationship of bacterial biomass and production and the 

analysis of the variation in the slope and the intercept of this relationship. 

Figure 6. Hypothetical response of bacterial biomass and productivity across a gradient of 

increasing resources assuming that biomass and productivity are coupled. From Pace & Cole 

1994) 

These studies can provide strong evidence for the importance of resources to bacteria but not 

to directly address the problem of bottom-up and top-down control. Billen et al. (1990) argued 

that the relationship between BP and BB could be used to evaluate bottom-up and top-down 

control. As it was discussed above, since bacterial resources are difficult to measure, BP can 

serves as a surrogate measure of resource. Thus, variability in BP reflects variability in 
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resource inputs. From Figure 6 and from the regression of BB as a function of BP, should 

have a steep slope if biomass is determined by resources, and alternatively, there should be a 

shallow slope (or no relationship) if other factors such predation or viral lysis (Fig. 2) are 

more important. Such analysis does not consider two factors. First, there is no distinguish 

between predators and virus effect (Paper V), and second, in the situation where predation on 

bacteria is a major mechanism of resource recycling, the increase in mortality might lead to 

resource regeneration by consumers, resulting in BB uncoupled from increases in BP. 

These relationships between bacterial productivity and biomass imply that large-scale 

differences in resource supply are a crucial determinant of bacterial biomass. However, these 

relationships are not as strong when small scales are considered.  Thus, weak relationships 

imply that bottom-up control may be less significant at local scales and may vary seasonally 

within sites (Ducklow 1992). 

A different perspective is provided when data on bacterial abundance and heterotrophic 

flagellates are summarized (e.g. Sanders et al 1992, Paper V). In several cases, like eutrophic 

environments, flagellate grazing can be insufficient to regulate bacteria and alternatively in 

oligotrophic environments substrate supply controls bacterial abundance, but grazing by 

heterotrophic flagellates reduces bacteria below carrying capacity in more eutrophic systems 

(Sanders et al. 1992) and decrease the slope of the bacterial production and biomass 

relationship (Paper V). 
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5. Conclusions

The use of different approaches to answer the question of how bacterial growth is controlled 

in marine environments, can improve our understanding on different time and special scales 

of resolution, being possible to solve this common question from specific interaction and 

bacterial uptake of single compounds to global microbial trends. In that sense some specific 

conclusion can be drawn as follow:  

1 — The structure of the dominant phytoplankton community can control (1) the labile 

organic carbon sources for heterotrophic bacteria and (2) the competition between osmotrophs 

for mineral nutrients. 

2 — Labile organic carbon sources from different origens, for example, phytoplankton 

exudates in coastal areas or copepod activity in oligotrophic oceanic areas, affect the 

availability of substrate for bacterial growth. 

3 — Carbon and mineral nutrient limitation can control bacterial growth depending on the 

structure of the phytoplankton community. Small phytoplantonic cells may keep mineral 

nutrients available for bacteria and may not produce labile carbon substrates from exudates. 

Opposite, large chain diatoms may outcompete bacteria for mineral nutrients but may produce 

labile organic carbon from exudates and zooplanton grazing. 

4 — Changes in the supply ratios of labile organic carbon, silicate and nitrogen (ammonium 

and nitrate) additions, as well as phytoplankton community composition would modify the 

main pathway of nutrient transfer in the food web. 
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5— Idealized models are able to explain just qualitatively the responses of the microbial food 

web such as the control of bacterial growth and the main pathways of nutrients. 

Understanding the properties of these ‘first order’ models seems required to establish a 

fundament upon more elaborated models can be built.

6 — Is possible to resolve until certain level the impact of two modes of control of bacteria in 

plankton (substrate availability and predator activity), using empirical data. Comparative 

analysis studies generally confirm the important of resource regulation (bottom-up control) of 

bacteria at least at large scales, meaning that at higher bacterial biomass is possible to 

estimate lower bacterial growth rate. 
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6. Future Perspectives 

The need to connect metabolic rates in an individual experiment could solve the gaps in the 

understanding of microbial activity and interactions. For example, it seems obvious the 

development of instantaneous and coupled measurements of bacterial respiration and 

production to further observe the effiency of bacterial growth in marine environments. The 

observation of bacterial growth rates and efficiency can allow us to understand the factors 

controlling bacterial activity and carbon sequestration in the ocean. Questions on precision 

and accuracy are important in the measurements of bacterial growth and mortality, for that 

reason these studies must be interpreted cautiosly and perhaps rephrase the questions trying to 

resolve if bacterial losses overcome bacterial growth in contrasting marine environments. 

The ambition to predict the pathway taken by nutrients in a given experiment is not fulfilled 

with a 1st-order model alone. More elaborate idealized models can be built, potentially 

minimizing some of the extra variables associated with more complex ecosystem models. 

Mechanisms such as flexible stoichiometry, predator control and the interaction between both 

needed to be evaluated to explain the observed variability in nutrient pathways and can be 

suggested for inclusion in 2dn-order food web model. 

Even when ‘easy to measure’ variables (e.g. bacterial abundance, chla, BGR, etc) are always 

need it to underatand the biology of the plankton, it has not been reached the real effect of 

predation and mortality impact. Protozoans might not control bacterial abundance but can 

possible control bacterial community structure and activity (i.e. active bacteria such as HNA 

bacteria), thus, more attention will be need it on the non-stable bacterial abundance that has 

changes in the percentages of active bacteria, changes in phylogenetic composition and 

changes in size structure. A comprehensive analysis of parameters such as bacterial growth 
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rate in different marine regions and the elaboration of different hypothesis across a gradient of 

productivity are still in discussion to improve the understanding on the role of bacteria in 

biogeochemical cycles at global scale. 
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