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ABSTRACT 

Heparan sulphate (HS) proteoglycans, composed of a core protein and one or more 

negatively charged HS chains, are a major component of extracellular matrices and 

are located on the plasma membrane of all animal cells. The HS polysaccharide is 

synthesized by alternating addition of glucuronic acid (GlcA) and N-

acetylglycosamine (GlcNAc) from corresponding UDP-sugar precursors. Due to 

subsequent modifications, including epimerization of GlcA to iduronic acid and 

sulphation the resultant polysaccharide is variously sulphate-substituted at different 

positions. Polymerization of HS chains is believed to be catalyzed by the EXT family 

of proteins. In humans, the EXT family consists of five members: EXT1, EXT2, 

EXTL1, EXTL2 and EXTL3. All members of exostoses family harbour in vitro 

glycosyltransferase activities related to HS chain elongation. EXT1-EXT2 form a 

heter-oligomeric complex involved in the chain elongation step in HS biosynthesis, 

but the biological roles of EXTLs are less clearly defined. The aim of the studies 

presented in this thesis was to investigate the roles of the three EXTLs in heparan 

sulphate biosynthesis. Down regulation of EXTL2 or EXTL3 expression in a human 

cell line resulted in increased HS chain length. Also overexpression of EXTL1 or 

EXTL3 resulted in increased chain length. In contrast, overexpression of EXTL2 

resulted in shorter HS chains. The results indicate that these enzymes influence HS 

synthesis and that their expression levels control HS chain length. In addition, all 

three EXTL proteins were able to catalyze the addition of a single GlcNAc to [GlcA-

GlcNAc]n oligosaccharide acceptors, but did not show any detectable transfer of GlcA 

to GlcNAc[GlcA-GlcNAc]n oligosaccharide acceptors. 



4



5

TABLE OF CONTENTS 
SCIENTIFIC ENVIRONMENT      6

ACKNOWLEDGMENTS       7 

LIST OF PAPERS         9 

ABBREVIATIONS     10 

INTRODUCTION     11  

     PROTEOGLYCANS AND GLYCOSAMINOGLYCANS  11 

     HEPARAN SULPHATE/ HEPARIN PROTEOGLYCANS  12 

          Syndecans     13 

          Glypicans     16 

          Extracellular matrix proteoglycans     17

          Serglycin     17 

     BIOSYNTHESIS OF HEPARAN SULPHATE        17 

          Formation of linkage region and chain assembly   19 

          Heparan sulphate chain modification reactions   20 

     THE EXOSTOSIN FAMILY     24 

          EXT1 and EXT2     24 

          EXTL1     26 

          EXTL2     26 

          EXTL3     27 

    HEREDITARY MULTIPLE OSTEOCHONDROMA   29 

    HEPARAN SULPHATE FUNCTIONS     29 

METHODS     34  

PRESENT INVESTIGATIONS     35 

     AIMS     35 

     RESULTS 

          Paper I     35 

          Paper II     35 

DISCUSSION     37  

REFERENCES     42 



6

SCIENTIFIC ENVIRONMENT 

The experimental work presented in this thesis was carried out at the Department of 

Biomedicine, University of Bergen, Norway. The work was performed in the Matrix 

Biology group, under supervision of Professor Marion Kusche- Gullberg, as my main 

supervisor and Professor Donald Gullberg as my cosupervisor.

The project has been funded by grants from the University of Bergen, the Research 

Council of Norway and the Norwegian Cancer Society.

                                           



7

ACKNOWLEDGEMENTS 

The writing of this dissertation has been one of the most significant academic 

endeavors that I have ever had to accomplish.  This is a great opportunity to express 

my sincere gratitude to those who, in one way or another, have made this study a 

success. 

• God who, with His infinite wisdom, has showered me the right knowledge and 

understanding. 

• Professor Marion Kusche-Gullberg, my supervisor, for giving me the 

opportunity to study about heparan sulphate. Her innovative knowledge, 

excellent supervision, endless support, enthusiasm, and her constant emphasis 

on the value of discipline and proper attitude towards work from the 

preliminary to the concluding level inspired and enabled me to develop a 

comprehensive understanding of the field.  

• Professor Donald Gullberg, my co-supervisor, for his profound knowledge in 

Medical Science. His brilliant ideas, well-reasoned opinions and his 

willingness to share them have strongly inspired me. 

• I will also like to express my gratitude to Professor Lena Kjellén for interesting 

discussions. 

• My present and past colleagues at the matrix biology group Almir Feta, Cecilia 

Österholm-Corbascio, Sergio Corracedo, Renate Hov, Anh Tri-Do, Karin 

Wibrand, Ning Lu, Malgorzata barczyk, Ida Wiig and Monna Grønning for 

their countless help in the lab throughout my study. It was so great working 

with all of you. You have made our group work and time enjoyable in the lab. 

• All my teachers in Pakistan and in Sweden. My special thanks goes to Fawad-

ul-Hassan, who to me, is not only the best teacher but also the best person I’ve 

ever met. 

• All the Faculty and Staff of the Institute of Biomedicine at University of 

Bergen, Norway, for their various forms of support.



8

• All my friends in Bergen specially Aamir for the friendship, motivation, and all 

the happy moments we’ve shared at Fantoft and at Voss. 

• My wonderful siblings namely, Adnan, Usman, Farhan and Asfa, for your 

constant love and prayers. Special thanks to Adnan for his gifts and the nice 

company when he came to visit us from Canada. 

• Khalid Nawaz Wadhra and Irshad Begum, my beloved parents, who have 

always loved, encouraged and believed in me. There are no better parents in 

the world than you.  

• Ch. Nadir Khan, my grandfather, who has always prayed for and loved me as 

much as my parents. 

• My 3 lovely sons, Haroon, Hamdan and Shayan, who are the source of my 

innermost happiness, strength and inspiration to succeed in life. It is to them 

that I dedicate this dissertation. 

• Alia, my wonderful wife, for her unwavering love, enormous support, patience, 

understanding and sacrifice. You are a perfect wife and mother and I always 

love you. 

Tabasum Imran Wadhra 

       Bergen, Nov 2010 



9

LIST OF PAPERS 

The present thesis is based on following two papers: 

Paper I:  The role of EXTL2 in heparan sulphate chain elongation
Tabasum Imran and Marion Kusche-Gullberg
Manuscript

Paper II:                 Effect of over expression of EXTL1 and EXTL3 on heparan                 
                                 sulphate chain length
                                 Tabasum Imran, Ning Lu and Marion Kusche-Gullberg 
                                 Manuscript 



10

ABBREVIATIONS 
2OST 2-O-sulfotransferase 
3OST 3-O-sulfotransferase 
6OST 6-O-sulfotransferase 
botv brother of tout-velu  
CS Chondroitin sulphate 
DS Dermatan sulphate 
ECM Extracellular matrix 
EXT Exostosin 
EXTL Exostosin like 
FGF Fibroblast growth factor 
GAG Glycosaminoglycan 
Gal Galactose 
GlcA Glucuronic acid 
GlcNAc N-acetylglucosamine 
GPI Glycosylphosphatidylinositol 
Gly Glycine 
HS Heparan sulphate 
HSPG Heparan sulphate proteoglycan 
IdoA Iduronic acid 
MO Multiple Osteochondromas
NAc N-acetylated
NDST N-deacetylase/N-sulfotransferase 
NS N-sulphated 
OST O-sulfotransferase 
PAPS                                                                   3'-phosphoadenosine-5'-phospho 
                                                                             sulphate 
PG Proteoglycan 
Ser Serine 
siRNA small interfering RNA 
sotv sister of tout-velu 
sulf 6-O-endosulfatases 
TM Transmembrane 
ttv tout-velu 
UDP Uridine-5-diphosphate  
Xyl Xylose 



 

 

11 

INTRODUCTION 

Carbohydrates or saccharides are essential components of all living organisms. The 

study of the biosynthesis, structure and function of carbohydrate is referred as 

glycobiology (Rademacher at al., 1988, Rademacher, 1998). Carbohydrates can occur 

as single units (monosaccharides) or as larger structures composed of 2-10 

(oligosaccharides) or more (polysaccharides, glycans) sugar residues. 

Glycoconjugates consists of one or more sugar units covalently attached to a protein 

or a lipid.  Most cells have sugar coating on their surface and sugar chains can make 

an important portion of the glycoconjugates. Cell surfaces associated glycoconjugates 

are mostly attached to the plasma membranes through their protein or lipid moieties. 

Carbohydrates play an important role in protein modifications and in energy 

metabolism and can effect interactions between cells and their surroundings. 

Carbohydrates have complex physical and chemical characters and are often 

heterogeneous both in size and composition (Varki et al., 1999, Schuman et al., 2007). 

In contrast to DNA, RNA and proteins, carbohydrate sequences are not determined by 

reading of a template. Instead carbohydrates are synthesized based upon substrate 

specificity of different glycosyltransferases (Park et al., 2000, Guimond et al., 2001, 

Jones and Vogt, 2001).  

 

PROTEOGLYCANS AND GLYCOSAMINOGLYCANS 

Proteoglycans (PGs) are complex molecules that are composed of a protein core with 

covalently attached long unbranched polysaccharide chains that are called 

glycosaminoglycans (GAGs) (Esko and Selleck, 2002). PGs are classified on the basis 

of the polysaccharide chains or the core proteins. GAGs are linear, and negatively 

charged polysaccharides and are generally grouped into four categories: (1) 

hyaluronic acid or hyaluronan, which occurs as free GAG chains (i.e. not linked to 

core protein), (2) heparin and heparan sulphate (HS), (3) chondroitin sulphate 

(CS)/dermatan sulphate (DS) and (4) keratan sulphate (Figure 1). They are composed 
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of repeating disaccharide units with an N-acetylhexosamine (N-acetylglucosamine or 

N-acetylgalactosamine) as one of the sugar unit. The alternating sugar is glucuronic 

acid (GlcA) with the exception of keratan sulphate that instead contains galactose 

(Lindahl et al., 1998, Sugahara and Kitagawa 2000, Turnbull et al., 2001, Esko and 

Selleck, 2002). 
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Figure 1. Disaccharide repeating structure of different glycosaminoglycans. 

Possible modifications of the basic disaccharide structures are indicated by R=H or 
SO3

- and R'=COCH3, SO3
-or H. The glucuronic acid in heparin/HS and CS can be 

epimerised into iduronic acid (indicated by arrows). 

 

HEPARAN SULPHATE/ HEPARIN PROTEOGLYCANS 

Heparin and HS are two closely related GAGs that are synthesized as part of a PG 

(Kjellén and Lindahl, 1991). Heparin was discovered by Mclean in 1916 and was 

found, by mere chance, to inhibit blood coagulation (McLean, 1916). Much later, 

1968, evidence was presented that indicated that the anticoagulant activity of heparin 

was mediated by the plasma protease inhibitor antithrombin (Abildgaard, 1968) but 

actual binding of heparin to antithrombin was first shown in the 1970s by Damus and 
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Rosenberg (Damus et al., 1973). HS was originally discovered as an impurity of 

heparin preparations (Linker at al., 1958) but it has since then become evident that the 

HS chains of a HSPG are involved in many different biological processes. In contrast 

to heparin that occurs exclusively in connective-tissue type mast cells, HS is produced 

by all multicellular organisms from ancient cnidarians to modern mammals, and 

occurs at the cell surface, and in the extracellular matrix (ECM) (Lindahl 2007, 

Lindahl and Li, 2009). Due to the structural heterogeneity of the HS chains, HS 

cannot be considered as a single molecule but rather a family of related molecules and 

heparin can thus be regarded as a highly sulphated variant of HS (Li and Vlodavski 

2009, Lindahl and Li, 2009). HS chain structure is believed to be cell type but not 

core protein specific, so that all HS chains synthesized by a given cell have similar 

structures although they may be linked to different core proteins (Forsberg and 

Kjellén, 2001). Several different PG proteins carry HS chains (Figure 2, Table 1). 

Two of the HS families, the syndecans and glypicans involve HSPGs that are located 

at plasma membrane of cells (reviewed in Bernfield et al., 1999, Kirn-Safran et al., 

2009). Another group of HSPGs are the secreted forms, including perlecan, agrin, and 

collagen XVIII. Serglycin, is an intracellular PG found in haemopietic cells and in 

endothelial cells that, dependent on the cellular origin, carries heparin and/or CS 

chains (Kolset et al., 2004).   

 

Syndecans  

Syndecans are found at cell surface and constitute a family with four members in 

mammals and probably in all vertebrates as well. C. elegans and D. melanogaster has 

only one syndecan (Minniti et al., 2004, Steigemann et al., 2004), while zebrafish has 

three syndecans (syndecan-2, -3, and -4) (Chakravarti and Adams, 2006). Most cells 

and tissues express at least one member of this protein family and many express 

multiple syndecans (Couchman 2003, Yoneda and Couchman, 2003). Vertebrate 

syndecan family are type 1 glycoproteins. Each syndecan has three major domains, a 

large extracellular ectodomain, a short cytoplasmic domain, and a single highly  
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Figure 2. Schematic overview of the main heparin/heparan sulphate 
proteoglycans. 
 
Syndecans and glypicans are both cell membrane associated PGs. Syndecans are 
transmembrane proteins that bears HS chains distal from plasma membrane. Some 
syndecans also carry CS chains close to the plasma membrane. Glypicans are attached 
to cell surface membrane via a GPI anchor and HS chains are located near the plasma 
membrane. Perlecan is an example of an extracellular PG. Serglycin, stored 
intracellular in the secretory granules of connective tissue mast cells, is decorated 
with heparin chains. 
 
 
conserved transmembrane domain (reviewed in Couchman 2003, Xian et al., 2009). 

The extracellular ectodomains are variable in length and sequence between syndecan 

members and contain conserved GAG attachment sites. HS is the principal GAG 

present in all four syndecans and is usually found close to the N-terminus of syndecan 

extracellular domain. Syndecan-1 and syndecan-3 may also carry CS chains close to 

the plasma membrane. The transmembrane domain is important for syndecan dimer 

formation. Dimerization is essential for syndecan-4 dependent activation of protein 

kinase Cα and signalling (Oh et al., 1997, Woods and Couchman 1998, Couchman, 
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2003). The small cytoplasmic domain has two conserved domains, C1 and C2, which 

are hall-marks of the syndecans. Adjacent to the plasma membrane is the C1 domain 

that mediates binding to cytoskeletal proteins (e.g. ezrin) (Granes et al., 2000, Granes 

et al., 2003). The C2 domain that is more distal to the plasma membrane has binding 

sites for PDZ (postsynaptic density 95, disc large ZO-1) domain-containing proteins 

such as syntenin (Grootjans et al., 1997), synbidin (Ethell et al., 2000) and synectin 

(Gao et al., 2000). PDZ proteins have role as scaffolding proteins and in vesicle 

trafficking (Zimmermann et al., 2002, Zimmermann et al., 2005). Between C1 and C2 

is the variable region that is unique to each syndecan and is conserved across the 

species. It is believed that most of the functional difference among syndecans is 

determined by the variable regions (Oh et al., 1997). The variable region of syndecan-

4 binds to phosphatidylinositol 4,5-biphosphate 2 (PIP2) and activates protein kinase 

Cα and is involved in focal adhesion assembly (Oh et al., 1997, Lim et al., 2003). 

Syndecans are widely expressed throughout the development as well as in adulthood, 

and individual family members show cell-tissue and developmental-specific 

Proteoglycans 

Syndecans 1-4 

Core  

protein 

Tissues distribution Number of 

glycosaminoglycane 

 Glypicans 1-6 

  Perlecan 

  Serglycin 

  Agrin 

60 

     31-45 1-3 CS 

1-2 HS   

400  

  10-19 

200 

Membrane bound, epithelial  

cells, cartilage and neuron 
    1-3 HS 

     1-4 HS/CS 

10-15  

Heparin/CS 

1 HS 

1 CS 

Intracellular granules, mast  

cells 

  Betaglycan 

  Collagen XVIII 

 
       110 

       147 

1-3 HS 

 2-3 HS 

        Membrane bound, osteoblasts,    

        skin, spinal cord, glomeruli 

Secreted, basement membrane  

and cartilage 

Secreted, neuromuscular  

junction 

Membrane bound fibroblasts 

  

Secreted, basement membrane 

                                            Table 1. Examples of heparan sulphate proteoglycans 

 Varki et al., 1999. Essentials of Glycobiology, second edition 
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expression (Yoneda and Couchman, 2003). Syndecan-1 is predominantly expressed in 

mesenchymal and epithelial cells and is involved in angiogenesis, wound healing and 

leukocyte-endothelial interactions (Woods and Couchman 2001, Couchman et al., 

2001). Syndecan-2 is expressed in vasculature, particularly during embryogenesis 

(Chen et al., 2004). Reduction of syndecan-2 levels in mouse brain microvascular 

results in decreased capillary tube formation (Fears et al., 2006). In Xenopus laevis, 

syndecan-2 expression in the ectoderm is required for normal left-right axis that is 

necessary for asymmetric placement of the developing heart (Kramer and Yost, 2002). 

Syndecan-3 is mainly found in neural tissue and cartilage (Alexander et al., 2000). 

Syndecan-3 knock mice are resistant to diet-induced obesity (Strader et al., 2004) and 

show neural migration defects in brain (Hienola et al., 2006). Syndecan-4 is widely 

expressed through all stages of embryonic development but has restricted expression 

in adult (Woods and Couchman 1994, Woods and Couchman 2001, Zhang et al., 

2003). Syndecan-4 deficient mice show delayed wound healing and impaired 

angiogenesis (Echtermeyer et al., 2001). 

                      Syndecans can be shed from the cell surface by the action of proteases 

(Endo et al., 2003). Shedding of syndecan-1 ectodomain has been shown to regulate 

cell movements suggesting that the shed ectodomain may convey motility signals 

distinct from the cell surface bound form. Upon release of the ectodomain, the 

intracellular domain can signal independently or may be degraded. In wound healing, 

increased levels of syndecan-1 and syndecan-4 are shed into wound fluids (Tumova et 

al., 2000, Endo et al., 2003).  

 

 

Glypicans  

HSPGs also attach to the cell surface by a family of glycosylphosphatidylinositol 

(GPI) anchored core proteins called glypicans (reviewed in Bernfield et al., 1999, 

Kramer and Yost 2003, Filmus et al., 2008). Their protein core consists of a N-

terminal signal peptide, a cystein rich globular ectodomain, and a hydrophobic 

cytoplasmic domain that is involved in the formation of the GPI anchor. The 
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cytoplasmic domain contains three to four attachment sites for HS close to the cell 

surface. Six glypicans have been characterized in human and mouse (glypican 1-6), 

two in Nematostella vectensis, five in zebrafish and two in D. melanogaster (De Cat 

and David 2001, Filmus et al., 2008). During embryonic development glypican-1 is 

expressed in skeletal muscles, osteoblasts, skin, and the glomeruli (Litwack et al., 

1998). In the adult, glypican-1 is expressed in most tissues (David et al., 1990, 

Litwack et al., 1998). Glypican-2 occurs specifically in developing brain, especially 

located to the spinal cord and dorsal root ganglia and appears not to be present in 

adults (Ivins et al., 1997). Glypican-3, -4, -5, and -6 is found in most tissues during 

embryonic development while their expression is more restricted in adult animals. 

Glypican-3 is so far the only cell surface HSPG core protein that has been linked to a 

human disease. The X-linked human overgrowth syndrome, Simpson-Golabi-Behmel 

disorder, is caused by mutation in glypican-3 gene (Pilia et al., 1996). This disease is 

characterized by tissue and organ overgrowth, macroglossia, congenital defects and 

an increase risk for developing various tumours. The glypican-3 deficient mice 

resemble several of the clinical findings of the human patients such as development 

overgrowth, dysplastic kidneys and abnormal lung development (Pellegrini et al., 

1998, Filmus, 2001). 

                    Glypicans can be proteolytically cleaved near the centre of the core 

protein by a furin-like convertase (De Cat et al., 2003, Fransson et al., 2004). The GPI 

anchor can be cleaved by phospholipases or by proteases, which causes shedding of 

glypican ectodomain from the cell surface (David et al., 1990, Lugemwa and Esko 

1991, Traister et al., 2008). In D. melanogaster the shed glypicans play a role in 

morphogen gradient formation (Fujise et al., 2003, Han et al., 2004).  

 

 

Extracellular matrix heparan sulphate proteoglycans 

The major secreted HSPG species are perlecan (Knox and Whitelock, 2006), collagen 

XVIII and agrin present in the ECM (Iozzo, 2005). Perlecan core protein contains 

four potential GAG attachment sites for HS and CS, whereas agrin has three GAG 
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attachment sites for HS (Bezakova and Ruegg 2003, Knox and Whitelock, 2006). 

Agrin is primary considered a neural PG and recognised as a key player in formation, 

maintenance and regeneration of neuromuscular junction (Prydz and Dalen 2000, 

Bezakova and Ruegg, 2003). Collagen XVIII expressed in the basement membrane of 

mouse and human tissues carries HS chains (�� �� �����	� �
� ��., 1997, Iozzo, 2005). 

Endostatin, the C-terminal of collagen XVIII, contains anti-angiogenic properties and 

treatment with endostatin can reduce tumour growth by interfering with tumour 

angiogenesis (��������	��
���., 1997, Abdollahi et al., 2004). 

 

Serglycin 

Serglycin is found in haemopietic cells and in endothelial cells. In the secretory 

granules of connective tissue mast cells, serglycin is substituted with the highly 

negatively charged heparin (Kolset et al., 2004). Serglycin knock out mice develop 

normally, but the mast cells have fewer secretory granules and reduced amounts of 

histamine (Abrink et al., 2004, Niemann et al., 2007), indicating that serglycin is 

involved in generation of storage granules in mast cells.  

 

BIOSYNTHESIS OF HEPARAN SULPHATE  

HS biosynthesis is carried out by a complex enzymatic machinery involving many 

different enzymes. Most GAGs attached to a protein share a common multistep 

biosynthetic process (reviewed in Lindahl et al., 1998, Esko and Lindahl 2001, Esko 

and Selleck, 2002). This process involves a series of glycosyltransferases in the Golgi 

compartment transferring nucleotide sugars to oligo- or polysaccharides or proteins 

and sulfotransferases utilizing 3'-phosphoadenosine-5'-phosphosulphate (PAPS) as 

sulphate donor. PAPS similar to nucleotide sugars is synthesized in the cytoplasm and 

imported into endoplasmic reticulum by specific transporter proteins (Hirschberg et 

al., 1998, Dick et al., 2008). HS chains synthesis is initiated by the formation of a 
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tetrasaccharide linker attached to a selected serine residue in the core protein. After 

that, chain elongation proceeds by sequential addition of GlcA and N-acetyl 

glucosamine (GlcNAc) residues. During chain elongation, HS chains undergo 

extensive modifications including sulphation and epimerization, resulting in variety of 

structurally diverse HS chains (Lindahl et al., 1998, Bernfield et al., 1999, Esko and 

Selleck, 2002) (Figure 3). The regulation of this process, as required to generate 

specific HS structures, is poorly understood, but apparently involves arrays of enzyme 

isoforms that differ with regard to substrate specificities and kinetic properties. 

 

Formation of linkage region and heparan sulphate chain assembly    

Linkage region formation is initiated by the transfer of xylose from uridine-5-

diphoshate (UDP)-xylose to a specific serine residue in the core protein (Zhang and 

Esko 1995, Sugahara and Kitagawa, 2002). This reaction is followed by addition of 

two galactose residues and the so-called GAG-protein tetrasaccharide linkage is 

completed by addition of GlcA (Sugahara and Kitagawa 2000, Bishop et al., 2007). 

These reactions are catalysed by specific glycosyltransferases. The tetrasaccharide 

linkage is common for PGs carrying glucosaminoglycans (heparin and HS) and 

galactosaminoglycans (CS and DS) (Esko and Selleck, 2002). Addition of the 

subsequent sugar unit to the tetrasaccharide linker determines the type of GAG chain 

that will be synthesized (Esko and Zhang 1996, Pyrdz and Dallen, 2000). If a GlcNAc 

is added HS or heparin is synthesised but if instead, N-acetylgalactosamine is added, 

it leads to the synthesis of CS/DS. The exact mechanism that determines whether HS 

or CS/DS will be synthesized is not known but it is generally believed that it depends 

on enzyme recognition of the PG polypeptide (Esko and Zhang 1996, Chen and 

Lander, 2001). Acidic as well as hydrophobic repetitive ser-gly sequence on the core 

protein facilitates GlcNAc attachment and the formation of HS/heparin (Lugemwa 

and Esko 1991, Zhang and Esko, 1994) while biosynthesis of CS/DS occurs when 

numbers of acidic amino acid residues, surrounding the ser-gly sequences are reduced 

(Esko and Zhang, 1996). However, none of the described sequences explains the 
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mechanism that determines whether a protein is turned into a heparin/HSPG or into 

another type of PG as the same core protein may carry either HS or CS in various 

tissues. 

                     Addition of the first GlcNAc is believed to be catalyzed by EXTL 

(Exostosin Like) enzymes which are member of the exostosin (EXT) enzyme family 

(Kim et al., 2001, Zak et al., 2002, Sugahara and Kitagawa 2002, Busse et al., 2007). 

Following the addition of the GlcNAc, polymerisation of HS by alternating additions 

of GlcA and GlcNAc to the non-reducing end of the chain is carried out by a complex 

of two other proteins of the EXT-family, EXT1 and EXT2 (Senay et al., 2000, 

McCormick et al., 2000). (The EXT-family is described more in detail below). 

 

Heparan sulphate chain modification reactions  

As the chain polymerizes, it undergoes a series of modification reactions that include 

N-deacetylation followed by N-sulphation of glucosamine residues, epimerization of 

GlcA to iduronic acid (IdoA) and finally O-sulphation at various positions (Kjellén 

and Lindahl 1991, Esko and Lindahl, 2001). The extent of these reactions varies, 

giving rise to enormous structural heterogeneity of HS chains. The first modification, 

N-deacetylation followed by N-sulphation of glucosamine units, has a key regulatory 

role in determining the overall structure and charge density of HS, as N-sulphation of 

glucosamine units is required for all subsequent modifications. The first modification 

is catalysed by one or more of the four N-deacetylase/N-sulfotransferase (NDST) 

isoenzymes (NDST1-4). These enzymes have dual action; removal of N-acetyl groups 

from GlcNAc residues generating GlcNH3
+ followed by the sulphation of generated 

free amino groups (Lindahl et al., 1998, Grobe and Esko, 2002). The central role of 

the NDST enzymes in polymer modifications is due to that substrate recognition 

requirements of subsequent modification enzymes. Further modifications of HS 

chains, such as GlcA C5-epimerisation and O-sulphation reactions, are concentrated 

around the regions of N-sulphated (NS) GlcN residues (Lindahl et al., 1998,  
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Figure 3. Schematic overview of heparan sulphate biosynthesis. 
 
HS biosynthesis is initiated by addition of xylose to serine residue in core protein. 
This is followed by the sequentional addition of two galactose residues and a GlcA 
residue, thus forming the tetrasaccharide linker. The transfer of a single GlcNAc unit 
to the tetrasaccharide linker is catalyzed by GlcNAc transferase-I, possibly 
represented by EXTL3. The role EXTL1 and EXTL2 in HS biosynthesis is not clearly 
defined. Enzyme complex of EXT1 and EXT2 elongates the chain by alternate 
addition of GlcA and GlcNAc residues. Further enzymatic modifications in HS chains 
include N-deacetylation and N-sulphation of GlcNAc residues, epimerization of GlcA 
to IdoA and various O-sulphations. Outside the cells, HS chains are further modified 
by SULF1 and SULF2 that remove 6-O-sulphate groups from selected glucosamine 
units (not shown). 
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Gallagher et al., 2001, Esko and Selleck, 2002). Inactivation of NDST-1 in mice 

cause severe brain, facial and eye defects (Grobe et al., 2005), together with skeletal  

abnormalities (Pallerla et al., 2007). The mutant mice die due to respiratory failure 

(Ringvall et al., 2000, Forsberg and �����n, 2001). Mice lacking NDST-2, are fertile 

with a normal life span and normal HS structure but have defect in connective tissue 

mast cell morphology and lack sulphated heparin (Forsberg et al., 1999, Ledin et al., 

2004). Epimerisation of GlcA into IdoA is catalysed by the enzyme glucuronyl C5-

epimerase (Jacobsson et al., 1984, Li et al., 1997). Inactivation of epimerase results in 

synthesis of HS containing GlcA but no IdoA. Epimerase mutant mice show renal 

agenesis, skeletal malformations and immature lungs and the mutants die from 

respiratory failure (Li et al., 2003). The 2-O-sulfotransferase (2OST) transfers 

sulphate to both IdoA and GlcA residues, with a strong preference for sulphate 

transfer to IdoA (Rong et al., 2000, Rong et al., 2001). 2OST deficient mice show 

renal agenesis and die in the neonatal period. These mice also have eye and skeletal 

abnormalities (Bullock et al., 1998, Forsberg and �����n, 2001). The HS chains from 

2OST deficient cells have large NS domains containing IdoA with no 2-O sulphation 

but with increased 6-O sulphation. Except for the presence of IdoA, these chains 

structurally resemble the HS from the C5-epimerase deficient mice, suggesting that 2-

O-sulphation of IdoA is necessary for proper kidney development (Kamimura et al., 

2001, Merry et al., 2001). 6-O-sulphation and 3-O-sulphation of glucosamine units 

are performed by the respective O-sulfotransferases (OSTs) (Liu et al., 1999, Smeds 

et al., 2003). Three HS 6-O-sulfotransferas (6OST1-3) are known (Habuchi et al., 

2003). Disruption of the single 6OST in D. Melanogaster is embryonic lethal 

(Kamimura et al., 2001). Mice lacking 6OST-1 have defects in control of axon 

movements indicating that 6OST-1 has an important role in mammalian axons 

development (Pratt et al., 2006). 6OST-2 knock out embryos show abnormal muscle 

phenotype (Bink et al., 2003). HS 3-O-sulphation of glucosamine units is the last 

modification reaction carried out by 3OSTs (Liu et al., 1999). 3OSTs have seven 

isoforms in mammals (3OST1, 2, 3A, 3B, 4, 5 and 6) (Shworak et al., 1999, Xia et al., 

2002). Heparin is used clinically as an anticoagulant and this activity is mediated by 
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the binding of a unique pentasaccharide sequence in heparin to the protease inhibitor 

antithrombin. 3-O-sulphation is essential for the interaction of heparin and HS with 

antithrombin, however mice lacking 3-OST-1 do not show a procoagulant phenotype 

despite reduction in level of antithrombin binding HS (HajMohammadi et al., 2003). 

                    Once the synthesis of HSPG is completed it is transported from the Golgi 

apparatus to ECM or to the cell surface (Bishop et al., 2007). At the cell surface, the 

HS chains are further modified by HS 6-O-endosulfatases (SULFs: SULF1 and 

SULF2). SULFs are associated with the plasma membrane and modify HS chain by 

removing 6-O-sulphate groups from glucosamine units (Ai et al., 2003, Ai et al., 

2006).  Removal of 6-O-sulphates has a major effect on HS-binding ligands and cell 

signalling pathways (Dhoot et al., 2001, Ai et al., 2003). For example, fibroblast 

growth factor (FGF) signalling requires HS-6-O-sulphate groups to form a functional 

HS/FGF/FGF-receptor signalling complex (Schlessinger et al., 2000). SULF1 or 

SULF2 mutant mice appear normal but double mutant mice show delayed myogenic 

differentiation and regeneration (Langsdorf et al., 2007). Each cell in our body 

synthesises HS chains of different structure and of different length. The molecular 

diversity of HS is due to the incomplete action of HS enzymes involved in the HS 

modification reactions and remodelling of HS sulphation pattern at the cell surface by 

SULFs (Dhoot et al., 2001, Ai et al., 2003).  

                    The mature HS chain is heterogeneous in nature and is composed of three 

different domain structures, these are unmodified non-sulphated N-acetylated (NA) 

regions with GlcA residues, contiguous NS regions that are 2-O- and 6-O-sulphated 

and contain both GlcA and IdoA units, and mixed sequences of alternating NS and 

NA disaccharide units. The mixed sequences, like the NS domains, contain GlcA, 

IdoA and 6-O-sulphated residues, but lack 2-O-sulphate groups (Turnbull and 

Gallagher 1991, Maccarana et al., 1996, Murphy et al., 2004).  
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THE EXOSTOSIN FAMILY 

There are five members of the exostosin (EXT) family in humans (Table 2); EXT1, 

EXT2, EXTL1, EXTL2 an EXTL3. All members of the EXT family are type II 

transmembrane proteins with a short amino terminal cytoplasmic tail, a 

transmembrane domain, stem region and a large catalytic domain (McCormick et al., 

1998, McCormick et al., 2000, Pedersen et al., 2003) (Figure 4). All EXTs contain at 

least one aspartic acid-any amino acid-aspartic acid (DXD) motif critical for binding 

UDP-sugars that is shared by most glycosyltransferases (Pedersen et al., 2003). The 

EXT amino acid sequences are most similar in their C-terminal regions (Nadanaka 

and Kitagawa, 2008). 

EXT1 and EXT2

In vitro studies have shown that EXT1 have both GlcNAc-transferase and GlcA-

transferase activity and is able to polymerize HS on oligosaccharide substrates, 

whereas EXT2 only adds a single GlcA without further elongation (Busse and 

Kusche-Gullberg 2003, Kim et al., 2003). The physiological active chain elongation 

unit is generally believed to be a hetero-complex of EXT1/EXT2. Such hetero-

complex has increased transferase activities compared to the activities observed for 

EXT1 or EXT2 alone (McCormick et al. 2000, Senay et al. 2000). EXT1 and EXT2 

mutants fail to undergo gastrulation and are embryonic lethal (Lin et al., 2000, Lin et 

al., 2004, Stickens et al., 2005). siRNA silencing of EXT1 or EXT2 results in 

synthesis of shorter HS chains (Busse et al., 2007). EXT genes are well conserved 

between human, D. melanogaster and C. elegans and are essential in the biosynthesis 

of HS (Clines et al., 1997, Bellaiche et al., 1998). ttv (tout-velu) is the ortholog of 

EXT1 and sotv (sister of tout-velu) is the ortholog of EXT2 in D. melanogaster

(Bellaiche et al., 1998). Mutations in sotv and ttv lead to defective HS biosynthesis, 

impaired hadgehog, wingless, Decapentaplegic signalling and morphogen distribution  
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Figure 4. Typical topology of type II transmembrane glycosyltransferases. 
 
Golgi glycosyltransferases and sulfotransferases generally have a single hydrophobic 
transmembrane (TM) domain flanked by a short amino-terminal domain and a large 
catalytic C-terminal region. This topology places the catalytic domain of a 
glycosyltransferase within the lumen of the Golgi apparatus. 
 
 
(Bellaiche et al, 1998, Takei et al., 2004) (Table 2). rib-1 and rib-2 are homologous to 

mammalian EXT1 and EXTL3 respectively in C. elegans (Clines et al., 1997). rib-1 is 

required for HS biosynthesis and during embryonic morphogenesis in C. elegans. rib-

1 knockout mutants show reduction in HS biosynthesis and embryonic lethality 

(Kitagawa et al., 2007). Coexpression of rib-1 and rib-2 results in increased 

glycosyltransferase and polymerase activities (Kitagawa et al., 2007). 
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                                                                         (Table modified from Hul et al., 1998) 

EXTL1 

EXTL1 is more closely related to EXT1 than the other EXT members (Freeman and 

Gurdon, 2002). EXTL1 is found in all investigated mammals but not in lower 

vertebrates. Human EXTL1 is expressed in limited areas such as skeletal muscles, 

brain and heart (Wise et al., 1997). In adult mouse, EXTL1 is strongly expressed in    

liver, skeletal muscles, brain and heart (Stickens et al., 2000). The more restricted 

expression of EXTL1 may suggest a more specialized function. It has been shown by 

in vitro studies that EXTL1 adds GlcNAc to the non-reducing end of growing HS 

chain (GlcNAc transferase-II activity) (Kim et al. 2001, Kim et al. 2002, Kim et al., 

2003). No mutants of EXTL1 are described yet. Precise role of EXTL1 in the 

regulation of HS chain is not known. 

 

EXTL2 

Similar to EXTL1, EXTL2 is found in all investigated mammals but not in lower 

vertebrates. EXTL2 is the shortest member of the EXT family consisting of 330 

Kitagawa et al., 1999 

Protein 
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Molecular  
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amino acid  
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pattern 
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Chr.8 q24.11  

 

676  
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ubiquitous 

   Chr.11 p11.2 

    Chr.1 p36.11 

Chr.1 p21.2 
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ubiquitous 
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Reference 

Wise et al., 1997 

 Hul et al., 1998 

Wu et al., 1994 

    Wuys et al., 1995 

Cook et al., 1993  

                                Table 2. Properties of five human EXTs 
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amino acids (Pedersen et al., 2003). EXTL2 is located at chromosome 1p21 which is 

the region involved in many chromosomal rearrangements in many tumours (Wuyts et 

al., 1997).  EXTL2 is ubiquitously expressed in all human tissues. Phylogenetic 

analyses of EXT gene family based on amino acid sequences alignments show that 

EXTL2 is the most divergent, indicating that it was the first gene to evolve separately 

from the other EXT family members from a common ancestor (Hul et al., 1998). 

EXTL2 has shown to have GlcNAc-TI activity in vitro i.e. adds the first GlcNAc unit 

to the GlcA in the polysaccharide protein-linkage region (GlcA-Gal-Gal-Xyl-O-Ser) 

(Kim et al., 2001, Sugahara and Kitagawa, 2002). EXTL2 also transfers N-

acetylgalactosamine to the linkage region in vitro (Kitagawa et al., 1999, Pedersen et 

al., 2003). Mouse EXTL2 is the only member of EXT gene family to be crystallized 

as ternary complex with UDP and the acceptor substrate (Pedersen et al., 2003). The 

structure shows three highly conserved residues in EXTL2 which are located at the 

active binding site of EXTL2 and play important roles in glycosyltransferase activity 

of catalytic globular domain by correctly positioning the substrate for the binding. 

This domain catalyzes both UDP-GalNAc and UDP-GlcNAc transferase activities 

and mutations in this region reduce the EXTL2 catalytic activity. The two subdomains 

of the catalytic domains, described as UDP-sugar- binding domain and acceptor 

binding domain are connected with loop and contain the conserved DXD motif. DXD 

motif provides the main binding element for catalytic metal Mn+2 ions and UDP-sugar 

donor and helps in keeping them into correct place and orientation and coordinates for 

catalytic activity by inducing conformational changes in the active binding site. 

(Pedersen et al., 2003, Negishi et al., 2003). However, the primary function of EXTL2 

in vivo is not clear yet. 

 

EXTL3    

In contrast to the other two EXTLs, EXTL3 is expressed in all investigated species 

from sea anemones to humans. EXTL3 is ubiquitously expressed in human tissues in 

both embryonic and adult lives (Wise et al., 1997, Saito et al., 1998, Litwack et al., 
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1998). EXTL3 has a role in brain development and corticogensis in mouse embryo, 

and in adult mice in the apical dendrite of pyramidal neurons (Litwack et al., 1998, 

Osman et al., 2004). In vitro analyses indicate that EXTL3 has both GlcNAc 

transferase-I and GlcNAc transferase-II activities and thus may be involved in the 

initiation and/or elongation of HS chain (Kim et al., 2001, Kim et al. 2002, Kim et al. 

2003, Takahashi et al., 2009). Human EXTL3, rib-2 and botv (brother of tout-velu, 

EXTL3 ortholog in D. Melanogaster) share high amino acid sequence homology 

especially in C-terminal parts. rib-2 has, similar to the human counterpart, both 

GlcNAc transferase-I and transferase-II activities. rib-2 mutants show developmental 

delay and egg laying defects due to defective HS biosynthesis (Kitagawa et al ., 2001, 

Morio et al., 2003, Nadanaka and Kitagawa, 2008). HS levels are reduced in botv 

mutants and this results in severely impaired signalling (Tumova et al., 2000, Kim et 

al., 2001, Bornemann et al., 2004, Takei et al., 2004).  

                    EXTL3 has been suggested to be the receptor for pancreatic �-cell 

regenerating (Reg) protein in humans and in rats (Kobayashi et al., 2000, Okamoto 

and Takasawa, 2002). �-cell specific EXTL3 knock out mice are embryonic lethal  

and die around embryonic day 9 and lack HS-derived disaccharide confirming the loss 

of EXTL3 in �-cell results in marked defective HS biosynthesis. Thus, EXTL3 

appears to be essential for HS biosynthesis in these �-cell specific EXTL3 knock out 

mice and the other EXT members can not compensate for this loss of EXTL3 

(Takahashi et al., 2009). Previous results from our lab indicate that the cells 

transfected with siRNA against EXTL3 have longer HS chains as compared to control 

chains and it was speculated that siRNA treatment of EXTL3 results in the synthesis 

of fewer linkage region containing the first GlcNAc for elongation of HS chain and 

thus there is more extensive polymerisation of the HS chains that are synthesized 

(Busse et al., 2007). In a recent paper by Okada and colleagues it was shown that 

knockout of EXTL3 in EXT1 defective cells had little effect on the biosynthesis of 

HS (Okada et al., 2010). In the paper it was speculated that EXTL3 may have a role in 

regulating the number and length of HS chains and not be necessary for HS chain 

elongation (Okada et al., 2010). 
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HEREDITARY MULTIPLE OSTEOCHONDROMA 

Hereditary Multiple Osteochondromas (MO) or Hereditary Multiple Exostoses is an 

autosomal dominant human disorder linked to mutations in EXT1 and EXT2 (Wuyts 

and Hul, 2000). MO affects 1:50 000 of the population and usually develops before 

the age of 10 (Schmale et al., 1994). MO is characterized by cartilage capped bony 

outgrowths at the end of long bones (Solomon 1963, Ahn et al., 1995, Wuyts et al., 

1996). Common complications are short stature and skeletal deformities (Solomon et 

al., 1963, Hennekam 1991, Stieber and Dormans, 2005). There are 1-2% risks of 

malignant transformation of MO into chondrosarcoma (Solomon et al., 1963, Schmale 

et al., 1994). Endochondral bone growth is a strictly regulated process, taking place in 

the growth plate in which proliferating chondrocytes pass different stages of 

proliferation and differentiation until they constitute a scaffold for invading 

osteoblasts. Histologically the chondrocytes are discernable in columnar structures 

with the direction of differentiation towards the diaphysis. Chondrocyte morphology 

of an exostose resembles growth plate columnar histology, but is highly disorganised 

and HS production is severely reduced (Hecht et al., 2002). In the growth plate, HS is 

involved in regulation of chondrocyte differentiation and proliferation through Indian 

Hedgehog/parathyroid hormone like hormone and FGF signalling (Vortkamp et al., 

1996, Cormier et al., 2002). One theory on the aetiology of MO is that mutations in 

EXT1 or EXT2 result in decreased HS formation which reduces Indian 

Hedgehog/parathyroid hormone like hormone and FGF signalling. This results in 

abnormal chondrocyte proliferation leading to exostoses (Kroneberg 2003, Koziel et 

al., 2004). Mutations in EXTLs have so far not been linked to MO (Kitagawa et al., 

1999).  

HEPARAN SULPHATE FUNCTIONS  

HS chains bind to a large number of ligands such as growth factors and their 

receptors, morphogens, plasma proteins and basement membrane components 
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(Rapraeger et al., 1991, Huntington 2003, Bishop et al., 2007). The binding of HS to 

proteins has important physiological functions by influencing many cellular processes 

such as embryonic development, morphogen distribution, intracellular signalling, 

angiogenesis and cell adhesion (Figure 5) (Huntington 2003, Kramer and Yost 2003, 

 

 

 Selleck 2006, Bishop et al., 2007, Kirkpatrick and Selleck, 2007). HSPGs biological 

functions usually involve one or more HS chains. The linear and sulphate substituted 

HS chains contribute to selective protein binding through highly specific saccharide 

sequence motifs in the HS chains (Spillman and Lindahl 1994, Turnbull et al., 2001). 

HS can modulate protein function in many different ways. The mechanisms by which 

HS modulates the signalling activity of several growth factors include growth factor 

receptor dimerizations, receptor ligand complex stabilisation, reducing the 

dimensionality and cellular transport of ligands. In dimensional sliding contact, HS 

chain reduce the dimensionality of the molecule and allow more frequent encounter 

with the high affinity signalling receptor molecules which are present in less 

quantities and can trigger a biological response by forming complexes with the 

 

Protein 
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ttv 

botv 

GlcNAcT-I GlcNAcT-II Phenotype GlcAT-1 

 

 - - - Developmental defects in embryo  
 -  +  + Defect in Hh, Dpp signalling 

    
mEXT1  -  +  + Disruption of gastrulation 
hEXT1  -  +  + Exostoses 

hEXTL3     +  +  - ? 

hEXTL2     +  -  -    ? 
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mEXT2  -       +        +     Disruption of gastrulation 
 -  +  + Defect in Hh and Dpp signalling 
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References 

 Kitagawa et al., 2007 

                        Han et al., 2004 
        Kitagawa et al., 2001 

   - = no activity         NT = not tested    m=mouse    h=human   Hh= Hedgehog   Dpp=Decapetaplegic                             

  Han and Takei et al., 2004 

Lin et al., 2000 

 Stickens et al., 2005 
 McCormick et al., 2000 

McCormick et al., 2000 

 Kitagawa et al., 1999 

hEXTL1  -  +  - ? Kim et al., 2001 

 Kim et al., 2001 

Bellaiche et., 1998 

 Takahashi et al., 2009 

 Kitagawa et al., 1999 

Table 3. Glycosyltransferase activities of EXTs 

    rib-1 and rib-2= EXT1 and EXTL3 ortholog in C. 

            ? 

 botv=brother of tout-velu, EXTL3 ortholog in D. melanogaster  

 sotv= sister of tout-velu, EXT2 ortholog in D. melanogaster         

                       (Table modified from Nadanaka and Kitagawa, 2008)    
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molecules (Baeg et al., 2001). In transcellular mechanism, molecules reach remotely 

placed cells by moving through neighbouring cells using HS (Nybakken and 

Perrimon, 2002). One of the most studied HS ligand is FGF-2. FGF is a family of 

secreted proteins produced by variety of cells and is important during organogenesis 

and in adult life (Ornitz and Itoh, 2001). Binding of FGFs to their tyrosine kinase 

signalling receptors (FGFRs) requires HS (Rapraeger et al., 1991, Nurcombe et al., 

1993, Schlessinger et al., 2000). The FGF-FGF-receptor complex stabilizes and 

protects FGF molecules against inactivation and results in prolonged transmembrane 

signalling and biological response (Nurcombe et al., 1993). 

                    The plasma proteinase inhibitor antithrombin inhibits serine proteases 

involved in blood coagulation (Bjork and Lindahl 1982, Dahlback, 2000). In presence 

of heparin, the rate of inactivation is greatly increased (Rosenberg et al., 1977, 

Rostand and Esko, 1997). This is due to that heparin binding induces a 

conformational change in antithrombin. High affinity for antithrombin is mediated by 

a specific pentasaccharide sequence in heparin (Lindahl et al., 1980, Lindahl et al., 

1984). 

                     Lipoprotein lipase mediated binding of lipoprotein to HS serves an 

important biological function. HS binding at cell surface and in the ECM brings 

lipoprotein close to cell surface to facilitate its metabolic processes that occur at the 

cell surface (Eisenberg et al., 1992). Liver HS can act as a triglyceride rich 

lipoproteins clearance receptor. Syndecan-1 facilitates lipoprotein uptake and 

degradation in liver hepatocytes (Fuki et al., 1997, Mahley and Ji 1999, Bishop et al., 

2008, Stanford et al., 2009). Syndecan-1 is the primary hepatocyte HSPG receptor in 

mice which mediates the clearance of both intestinal and hepatic derived triglyceride 

rich lipoproteins in vivo. Syndecan-1 knock out mice show delayed triglyceride 

clearance from dietary fat and accumulate triglyceride rich lipoproteins (Stanford et 

al., 2009).  

                    HS chains can act as coreceptor for herpes simplex virus and Neisseria 

gonorrhoeae (Rostand and Esko 1997, Dehioa et al., 1998). Removal of HS at cell                    
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                                                                    (Figure modified from Bishop et al., 2007) 
Figure 5. Heparan sulphate proteoglycans function. 
 
(1, 2) HS presents growth factors to their receptor on the same cell or adjacent cell to 
form signalling complex. (3, 4) HS may transport chemokines across the cell and 
presents at the cell surface. (5) Proteolytic shed and (6) heparanase cleavage of HS 
chains can release HS bound ligands. (7) HS facilitates cell-adhesion and (8) forms 
bridges to the cytoskeleton. (9)  Serglycin carrying heparin chains is required for 
storage of protease and histamine in secretory granules of mast cells.  
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surface reduces the invasion of the pathogens (Sawitzky et al., 1996, Summerford et 

al., 1998).        

                    Cancer is associated with changes in cell morphology and loss of 

differentiation and uncontrolled proliferation of cells followed by tissue invasion and 

metastasis (Cho and Fearon, 1995). Many of these processes involve HS. Syndecan-1 

is one important determinant of cellular differentiation and has an important role in 

maintaining normal cell morphology (Mali et al., 1994, Kato et al., 1995, Sanderson 

and Borset, 2002). Transformation of epithelial cells is associated with loss of 

syndecan-1 expression in many poorly differentiated carcinomas of head, neck, lung 

and cervix (Inki et al., 1994, Inki et al., 1996). Syndecan-1 shedding from the 

myeloma cells can induce apoptosis of the myeloma cells in vitro and thus decrease 

the invasiveness of the tumour (Dhodapkar et al., 1998). Glypican-1 expression is

upregulated in pancreatic tumours (Kleef et al., 1998). Glypican-3 shows a very 

distinct expression pattern in tumourigenesis and can act as negative regulator of cell 

proliferations by inducing apoptosis and thus inhibit cell proliferation in certain type 

of tumour cells (Blackhall et al., 2001, Capurro et al., 2005). Glypican-3 is not 

normally expressed in liver and colon but is upregulated in hepatocellular carcinoma 

and in colorectal cancer (Filmus 2008, Midorikawa et al., 2003, Ligato et al., 2008). It 

is worth to note that if the origin of the tumour is from a tissue that expresses 

glypican-3 only during the embryonic period, glypican-3 expression reappear during 

malignant transformation. If the origin of cancer is from glypican-3 positive tissue in 

adult, its expression is reduced in the tumour, which makes the tumour more invasive 

in nature (Filmus, 2008). 
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METHODS 

Glycosyltransferase assay 

 

Figure 6. The GlcA-TII and GlcNAc-TII reactions. 

The GlcA-TII assay measures the transfer of 14C GlcA unit from the corresponding 
UDP-sugar to the oligosaccharide acceptor (upper reactions) with a nonreducing end 
GlcNAc. The GlcNAc-TII assay instead measures the transfer of 14C GlcNAc unit 
from the corresponding UDP-sugar to oligosaccharide acceptor (lower reactions) with 
a non-reducing end GlcA.  
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PRESENT INVESTIGATIONS 

AIM OF THE STUDY 

The overall aim of this thesis was to study the role of EXTL1, EXTL2 and EXTL3 in 

HS biosynthesis. The thesis work has been divided into two subprojects; one dealing 

with EXTL2 (Paper I) and the other with EXTL1 and EXTL3 (Paper II). 

RESULTS 

Paper I  

The role of EXTL2 in heparan sulphate chain elongation 

In order to investigate if EXTL2 may have a function in mammalian HS biosynthesis, 

the effect of reduced or increased levels of human EXTL2 on HS chain elongation 

was analysed. Human embryonic kidney (HEK) 293 cells were transiently transfected 

with siRNA targeting EXTL2 in order to suppress EXTL2 expression or cells were 

transfected with a plasmid containing the full-length EXTL2 to increase its expression 

level. Downregulation of EXTL2 by siRNA resulted in an increased HS chain length, 

whereas cells overexpressing EXTL2 produced shorter HS chains as compared to 

untreated control cells. In addition, EXTL2 was able to catalyze the addition of a 

single GlcNAc to [GlcA-GlcNAc]n oligosaccharide acceptors (GlcNAc-TII activity), 

but did not show any detectable transfer of GlcA to GlcNAc[GlcA-GlcNAc]n

oligosaccharide acceptors (GlcA-TII activity). 

Paper II 

Effect of overexpression of EXTL1 on heparan sulphate chain length 

In this paper, HEK 293 cells were stably transfected with EXTL1 and EXTL3 and the 

effect of overexpression on HS chain elongation was studied. Overexpression of 

either EXTL1 or EXTL3 resulted increased chain length and an altered disaccharide 

composition. Cells overexpressing EXTL1 or EXTL3 produced HS chains with 
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decrease in IdoA2S-GlcNS and increase in GlcA-GlcNS6S disaccharide unit. To 

study the effect of down regulation of EXTL3 on HS chain elongation, HEK 293 cells 

were transiently transfected with siRNA targeting EXTL3. Similar to cells 

overexpressing EXTL3, cells silenced with siEXTL3 also synthesized longer HS 

chains. In addition, EXTL1 and EXTL3, showed identical in vitro enzyme activities 

with each other and with EXTL2 (paper I). They catalyzed the addition of a single 

GlcNAc to [GlcA-GlcNAc]n oligosaccharide acceptors (GlcNAc-TII activity), but 

showed no detectable transfer of GlcA to GlcNAc[GlcA-GlcNAc]n oligosaccharide 

acceptors (GlcA-TII activity). 

Figure 7. Effects of up or down regulation of EXTL1, EXTL2 or EXTL3 on 

heparan sulphate chain elongation. 

(A) Reduction in EXTL3 results in synthesis of longer HS chains. (B) Gene silencing 

of EXTL2 and overexpression of EXTL1 and EXTL3 produces HS chain that are 

longer than wild type cells. (C) EXTL2 overexpression results in shorter HS chains. 
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DISCUSSION 

The mechanism that regulates the molecular diversity of HS is not fully understood 

and in particular we lack knowledge about the regulation and topography of the 

biosynthetic machinery involved in HS biosynthesis. HS has a unique molecular 

design and is a selective binding partner of several different proteins and is involved 

in many biological processes including embryonic development, differentiation, 

morphogen distribution and cell signalling. HS biosynthesis, which occurs in the 

Golgi apparatus, is a complex process involving many enzymes and enzyme isoforms. 

This process generates a non-sulphated polysaccharide chain that is modified by a 

sequential and coordinated series of enzyme reactions to form the mature HS chain. 

To understand HS-related biological functions that are dependent on the structural 

variability of HS we need to understand the function and regulation of enzymes 

involved in HS biosynthesis. HSPGs are an important feature of the cell surface and 

ECM. Both HS fine structure and chain length play important roles in determining the 

binding site for HS-dependent signalling factors and thus influence HS interaction 

with a variety of molecules (Lindahl et al., 1998, Österholm et al., 2009). The length 

of HS chains varies. Most chains contains between 50-200 disaccharide units (25-100 

kDa), and due to that HS chains form extended helical coil structures, this size range 

corresponds to 40-160 nm in length (Turnbull et al., 2001). The mechanism 

controlling HS chain elongation and chain termination is poorly understood. EXT1-

EXT2 is a heter-oligomeric complex that is necessary for HS chain elongation 

(McCormick et al., 2000, Senay et al., 2000, Busse and Kusche-Gullberg, 2003). The 

three EXTLs (EXTL1, EXTL2, EXTL3) share aminoacid sequence homology with 

EXT1 and EXT2 (Kitagawa et al., 1999, Kim et al., 2001) indicating that EXTLs 

could be involved in HS chain biosynthesis but, except for EXTL3, their involvement 

in HS biosynthesis is unclear. To clarify the respective function of EXTL1, EXTL2 

and EXTL3 in HS biosynthesis, the effect of reduced or increased levels of human 

EXTL1, EXTL2 and EXTL3 proteins in HEK 293 cells on HS chain elongation and 

HS fine structure was analyzed.  
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                    Previous results from our lab have shown that gene silencing of EXTL3 

produces longer HS chains (Busse et al., 2007). Our recent results are in consistent 

with the previous findings. In the paper by Busse et al. (Busse et al., 2007) it was 

speculated that EXTL3 was responsible for adding the first GlcNAc to the linkage 

region. With reduced amounts of EXTL3, fewer chains would be initiated but as the 

number of EXT1/EXT2 complex was not affected, this resulted in more extensive 

polymerisation (Busse et al., 2007). Mice deficient in EXTL3 die neonatally and lack 

HS further supporting the idea that EXTL3 is an initiator of HS synthesis (Takahashi 

et al., 2009). C. elegans mutants lacking rib-2 (C. elegans ortholog of EXTL3) has 

reduced production of HS (Morio et al., 2003). Mutation in box (the zebrafish 

ortholog of EXTL3) also shows a dramatic decrease in HS biosynthesis and the 

mutant phenotype can be rescued by injection of wild type box mRNA (Lee et al., 

2004). Our recent results, that overexpression of EXTL3 also resulted in longer chains 

(paper II) complicates the picture and indicates that EXTL3, in addition to initiate the 

chains, also influences chain elongation. It has been speculated that EXTL3 could be 

a terminator of chain elongation (Kim et al., 2001) but if this was the case, 

overexpressing EXTL3 should have resulted in shorter chains. Interestingly, removal 

of HS chains by heparitinase treatment upregulated Extl3 mRNA levels in mouse 

pancreatic β-cells, indicating a feed back mechanism where EXTL3 is regulating HS 

biosynthesis (Takahashi et al., 2009).  

                    EXTL2 has been shown to have only GlcNAc-TI activity and not 

GlcNAc-TII activity (Kitagawa et al., 2001) but here we show that it has GlcNAc-TII 

activity as well. This is very interesting and could indicate that EXTL3 and EXTL2 

have similar roles in HS synthesis. However, although siRNA of EXTL2 (Paper I), 

similar to corresponding treatment of EXTL3 (Paper II), resulted in synthesis of 

longer chains, overexpression of EXTL2, in contrast to similar treatment of EXTL3, 

resulted in synthesis of shorter chains, indicating that they may have different 

functions. Furthermore, in agreement with out results, transgenic mice overexpressing 

EXTL2 have reduced amount of HS (Nadanaka and Kitagawa, 2008). Okada et al. 

(Okada et al., 2010) speculated that in cells lacking EXT1, HS chains were initiated 
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by EXTL2 and polymerisation carried out by EXT2 (Okada et al., 2010). Synthesis of 

longer HS chain after siRNA could indicate that EXTL2 is a chain terminator or an 

inhibitor of HS elongation. This could also explain the finding that EXTL2 

overexpression results in shorter HS chains. siRNA of EXTL2 also resulted in 

increased HS/CS ratio but did not seem to influence the HS disaccharide composition. 

The changes in HS/CS ratio was observed both for 35S- and 3H-labelled material 

(Paper II and unpublished data, respectively) and could possibly indicate that there is 

a limited amount of UDP-GlcA in the Golgi lumen. With increased synthesis of HS 

the UDP-GlcA pool may be insufficient for both HS and CS synthesis. One important 

point to have in mind is that our values relate to cell surface/ECM associated PGs and 

may not reflect the total GAG production.  

                    Cells overexpressing EXTL1 produced longer chains with altered 

disaccharide structure. Increased levels of EXTL1 may have resulted in increase 

incorporation of GlcNAc residue on the growing HS chain and thus resulting in 

longer HS chains. As chain elongation in HS involves the action of EXT1 and EXT2 

to catalyze the transfer of GlcA and GlcNAc from their respective UDP-derivatives to 

the non-reducing end of growing polymer (Busse and Kusche-Gullberg, 2003) it may 

be speculated that EXTL1 can form a complex with EXT1 or EXT2 to perform this 

action. In this case, GlcA will be incorporated by EXT1 and/or EXT2. So a possibility 

of several different types of multimeric complex involved in HS chain elongation may 

exist. It has been questioned if EXTL1, because of its restricted tissue specific 

expression, is involved in HS chain elongation. Our results show, for the first time, 

that EXTL1 exhibited a significant GlcNAc-TII activity. In addition, increased chain 

length and an altered disaccharide composition after overexpression indicate that 

EXTL1 is involved in HS chain elongation. Because HEK 293 cells do not express 

EXTL1, we could not study the effect of gene silencing of EXTL1 on HS chain 

length. At the moment we do not know of any human cell line that expresses EXTL1. 

However, the mouse C2C12 myoblast cell line has been shown to dramatically 

upregulate Extl1 expression during C2C12 differentiation into myotubes (Janot et al., 
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2009). It would be highly interesting to study the effect on HS synthesis after down-

regulation of EXTL1 in differentiated C2C12 cells. 

                       Most if not all of the biosynthetic enzymes involved in HS biosynthesis 

have been cloned. However, we still know little about the organization of the 

biosynthetic apparatus or the localization of the enzymes in the Golgi membrane.  In 

addition, very little is known about how the biosynthetic enzymes interact with each 

other and with other proteins. The hypothetic “GAGosome” is a model to explain how 

the enzymes in the HS biosynthetic machinery cooperate and influence each other. 

The GAGosome is defined as a complex of different HS enzymes/or enzyme 

isoforms. In the GAGosome model, the relative amounts of each enzyme/enzyme 

isoform present in the GAGosome will have an impact on the HS structure. 

Complexes between different HS enzymes have been described, such as the 

EXT1/EXT2 complex (Kobayashi et al., 2000, McCormick et al., 2000, Senay et al., 

2000) and between the 2OST and the C5-epimerase (Pinhal et al., 2001, Smeds et al., 

2010). In a recent study, the authors speculate that the combined N-deacetylase/N-

sulfotransferase-1 (NDST1) and EXT1 compete for binding to EXT2, which acts as a 

transport protein for both enzymes from the endoplasmic reticulum to the Golgi 

(Presto et al., 2008). Our results in paper I and II, indicate that the at least EXTL1 and 

EXTL3 may assist EXT1 and/or EXT2 in the polymerization process in vivo, since 

overexpression of these proteins resulted in longer chains. However, if the EXTLs 

collaborate or form complexes with other proteins involved in HS biosynthesis is still 

an open question. 

                    Development of hereditary multiple osteochondromas is caused by 

mutations in either EXT1 or EXT2 and the resulting reduction, but not total loss, of 

HS in the chondrocytes of exostoses, suggests that exostoses formation is a result of 

reduced HS (Stickens et al., 2005). Contradictory reports are present on the cellular 

origin of the osteochondroma and, although tumour suppressor properties were early 

ascribed to EXT1 and EXT2, it remains unclear if EXT1 and EXT2 fit the classical 

two-hit model for tumour suppressor genes, which implies that osteochondroma 

results from a somatic mutation in the remaining wild-type copy of the gene 
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(Knudson, 1971). In a recent publication, mice with a clonal homozygous inactivation 

of Ext1 in chondrocytes developed frequent osteochondromas supporting the two-hit 

model for osteochondroma development (Jones et al., 2009). There is no evidence that 

defects in the EXTL genes or any other genes involved in HS biosynthesis result in 

exostoses formation suggesting that only the inactivation of EXT1 or EXT2 in a small 

fraction of chondrocytes result in the formation of osteochondromas. It is still an open 

question how exostoses formation due to defective EXT proteins relates to HS 

biosynthesis. 

                     In conclusion, our study revealed that HS chain length may be controlled 

by all three EXTLs and that changes in the EXTLs levels influence HS chain length. 

Still there are many questions that need to be addressed in future. Is it possible that, 

not only EXT1 and EXT2 elongate HS chains or does it exist several elongation 

complexes composed of different combinations of EXT/EXTLs? Is EXTL2 an 

inhibitor of chain elongation or does it have another function? What determines the 

length of an HS chain? Generation of mice that are deficient in one or more of the 

EXTLs can be helpful further to understand the role of EXTLs in HS biosynthesis. 

However, so far very little information has been generated regarding the individual 

roles of the EXTs in HS biosynthesis from mice deficient in EXT1, EXT2 or EXTL3. 

They die at an early embryonic stage and lack HS (Lin et al., 2000, Stickens et al., 

2005, Takahashi et al., 2009). The individual contribution of each EXTL could be 

investigated. For example it would be interesting to see whether EXTLs collaborate 

with one another or with EXT1 and/or EXT2. Alternatively, EXTLs can also form 

biological complex like EXT1 and EXT2 to polymerise HS chains. 
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