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Abstract We present a hierarchical frailty model based on distributions derived
from non-negative Lévy processes. The model may be applied to data with several
levels of dependence, such as family data or other general clusters, and is an alternative
to additive frailty models. We present several parametric examples of the model, and
properties such as expected values, variance and covariance. The model is applied to a
case-cohort sample of age at onset for melanoma from the Swedish Multi-Generation
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Register, organized in nuclear families of parents and one or two children. We compare
the genetic component of the total frailty variance to the common environmental term,
and estimate the effect of birth cohort and gender.

Keywords Family data · Frailty · Survival analysis · Multivariate · Lévy

1 Introduction

Frailty models for handling multivariate family data try to mimic the correlation struc-
ture between family members as seen in real life, e.g. due to genetics. They can be
additive, for instance relating to the additive property of independent gamma dis-
tributions. The combined frailty can then be constructed as a sum of independent
gamma variables, yielding identically distributed gamma frailties for all individuals
(e.g. Petersen 1998; Korsgaard and Andersen 1998). Other models use the log-normal
distribution, for which any correlation structure may be specified in the covariance ma-
trix (e.g. Ripatti and Palmgren 2000; Yau 2001). However, due to the complexity of the
models and the estimation procedures and limited availability of large, good quality
family data sets, applications of multivariate frailty models are not very common.

We present a new frailty model based on previous work in Moger and Aalen (2005),
where a model was constructed by randomizing a scale parameter in the compound
Poisson distribution. The compound Poisson distribution modelled individual heter-
ogeneity, and the random scale parameter modelled effects common to all members
in a family. We extend the model by further randomizing a scale parameter on the
second level, to get a three-level model, or on the third level, to get a four-level model
and so on, giving a hierarchical dependence structure. The model is briefly discussed
in Aalen et al. (2008). The heterogeneity on each level is modelled by distributions
derived from non-negative Lévy processes. These have simple notation and include
all common frailty distributions. The frailty on a specific level can be modelled by a
single distribution, or as a sum of several distributions. For the latter approach, we use
the same technique as for additive frailty models (Korsgaard and Andersen 1998). The
model has several nice properties, for instance the expected value of the combined
frailty is constant, while the variance is split into a sum of the variances on each level.

The model is applied to melanoma data from the Swedish Multi-Generation Reg-
ister. Melanoma has a relatively early age of onset (from around 25 years and up)
compared to most cancers. Melanoma incidence has increased fivefold in Sweden
during the past 40 years. Both diagnosis period and birth cohort effects can explain
the increased incidence (Thörn et al. 1998). An important reason for the increase is the
change in sun exposure. However, covariates in the register data are limited to birth
cohort and gender. As unobserved heterogeneity (i.e. heterogeneity not explained by
observed covariates) is modelled by the frailty variables, it is interesting to split it into
different components and study the importance of each. For melanoma, the model
might have three components for each individual. The first component describes het-
erogeneity due to individual environmental factors, assumed to be independent for all.
The second component models the genetic effects, and can be independent between
father and mother, whereas parent–child and child–child pairs share half of their genes,
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and hence have correlation 0.5. To make the genetic inheritance as realistic as possible,
the children do not inherit the same half of their genes from their parents. On the third
level, one may have a component for common environmental effects, shared by all
individuals in a family. Sun exposure may contribute on this level, as it could to some
extent be shared within families.

We analyze a case-cohort sample of the data, and compare the fit of the new model
to a similar additive model. The melanoma data are described in Sect. 2. In Sect. 3,
the hierarchical Lévy frailty model is described for general survival data. It includes
examples on models for different types of data, likelihood construction, properties of
the expected value, variance and correlation structure within families, and methods
for quantifying the dependence in times to events. We then turn back to the mela-
noma example, and the results of the analysis are presented in Sect. 4. A discussion
is given in Sect. 5. We only consider parametric models in this paper, the extension to
semi-parametric models is a topic for further research.

2 The melanoma data

The Swedish Multi-Generation Register contains information on first-degree relatives
of all residents born in Sweden from 1932. The database encompassed around 11
million individuals in 2000. It includes unique national identification numbers for
every individual, which can be used to link data from several registers. The Migration
Register includes information on immigration and emigration years both of people
born in Sweden and immigrants. Melanoma cancer cases are recorded by the Swedish
Cancer Register since 1958, using the ICD-7 cancer codes and the histopathological
type (PAD). Death years are found in the National Death Register. Registration of
cancers and deaths improved greatly from 1961 and on, so we analyze data from
January 1st 1961 to 31th December 2001. In addition, we have information on first
immigration year and last emigration year. The outcome variable is age in years at first
melanoma diagnosis recorded in the register after January 1961, and the (possibly)
censored event time is defined as the minimum of emigration year, diagnosis year,
death year and 2001, subtracted the year of birth. Since we do not have information on
cancer before 1961, the data are left-truncated, and an adjustment has to be made in
the likelihood. The age at truncation is defined as the maximum of immigration year
and 1961, subtracted the year of birth for individuals born before 1961.

Due to the vast size of the Swedish Multi-Generation Register, we analyze a case-
cohort sample of the data. This is expected to give efficient parameter estimates (Moger
et al. 2008). All multiple births in the register are excluded as they are expected to
share more of the genetics and environment than ordinary siblings, and in case of a
mother having children with several partners, we restrict to the first partner in order
to avoid half siblings. Define a nuclear family as two parents and their one (in case of
only one child in the family) or two oldest children. In addition, define a case family
as a family with at least one melanoma case, and a control family as a family with
no melanoma cases. All case families in the register are included in the sample. In
addition, we sample three control families, without replacement, for each case family.
The sampling is matched on the birth cohort of the oldest child (one-year strata from
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Table 1 Distribution of number of families according to which family members are affected and number
of children in the family

None Mother Father Both parents

No. affected, families with one child

None 24,052 3,021 2,814 17

1st child 2,045 26 23 2

No. affected, families with two children

None 70,690 8,104 8,202 56

1st child 4,002 64 68 1

2nd child 2,893 39 36 0

Both children 37 3 1 0

1932 to 2001) and on the size of the case family (one or two children). In order to avoid
some suspiciously high ages, the 1,382 individuals in the sample born before 1900
and with no record of death or emigration until 2001 are omitted from the analysis.
Individuals are also censored at 90 years of age, as very old individuals are likely to be
a highly selected group. Hence, 95 individuals (and families) shift status from cases to
controls. For the 18,459 individuals where age at event/censoring and age at truncation
are equal, we adjust the age at event/censoring by adding one half to ensure that they
give a contribution to the likelihood. In total, there are 126,196 families (471,402 indi-
viduals), 31,454 case families, and 94742 control families. Also, 32,000 families have
one child, whereas 94,196 have two children. Table 1 shows the distribution of the
families according to which family members are affected in the sample. The covariates
included in the analysis are birth cohort and gender. The matching on birth cohort in
the sampling should improve the precision of the regression coefficient for birth year
in the analysis. Further details on the likelihood and estimation are given in Sect. 4.

3 Hierarchical Lévy frailty models

In this section we describe our hierarchical frailty model, give two examples of the
general model formulation, and discuss certain properties of the model. Throughout
the section we focus on general survival time data, leaving a discussion on the mela-
noma data to Sect. 4. An alternative description of the model and discussion of some
simple examples are given in Chap. 7.4 of Aalen et al. (2008).

In the multiplicative frailty model the hazard for an individual is given as the prod-
uct of a frailty variable Y and a basic rate λ(t) common to all individuals. This paper
only considers parametric choices for the baseline hazard λ(t). Conditional on Y , the
individual hazard is given by:

h(t |Y ) = Yλ(t). (1)

The survival function is given by S(t) = L(Λ(t)), where Λ(t) = ∫ t
0 λ(s)ds is the

cumulative baseline hazard and L(s) is the Laplace transform of Y . For ease of notation
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there are no covariates in model (1). However, the model may easily be extended to
include covariates.

As described in the Introduction, we assume that the combined frailty Y for an
individual is composed of two or more frailty variables in a hierarchical way. We
denote the frailty variable on the first level by Z1, the one on the second level by Z2,
etc., and let fZi be the probability density of Zi . We use the notation Zi for random
variables, and zi for the value given all Z j ’s on higher levels (zi is then constant).
Throughout, the Zi ’s are assumed to follow distributions defined by non-negative
Lévy processes, either single distributions or sums of distributions as in Sect. 3.2.
However, the theory on Lévy processes is not important here, it is mainly introduced
due to simple notation and properties when calculating the expected value and vari-
ance of the models in Sect. 3.3. For more information on frailty models derived from
Lévy processes, see Aalen and Hjort (2002), Gjessing et al. (2003) and Chap. 11 in
Aalen et al. (2008). For any such frailty Zi , the Laplace transform can be written as

L Zi (s) = exp
[−zi+1Φi (s)

]
. (2)

Here, zi+1 corresponds to the time parameter in a Lévy process, s is the argument
of the Laplace transform, and Φi (s) is the Laplace exponent or cumulant generating
function. The constant zi+1 can also be seen as a scale transformation of a parameter in
the distribution of Zi . For instance, if Zi is gamma distributed, the Laplace transform is

L Zi (s) = θ
zi+1ρi
i

(θi + s)zi+1ρi
= exp(−zi+1ρi [ln(θi + s) − ln θi ]),

yielding the Laplace exponent Φi (s) = ρi [ln(θi + s) − ln θi ]. Hence, zi+1 is a scale
transformation of ρi , and E(Zi ) = zi+1ρi/θi and Var(Zi ) = zi+1ρi/θ

2
i (Gjessing et

al. 2003).
Let Z1 be the frailty variable at the first level, and let the frailty on all higher levels

be given. The variable Z1 may have independent values for all individuals, for instance
to model individual heterogeneity not captured by a parametric baseline hazard λ(t),
or it may be shared for individuals within clusters. If there are no higher level frailties
and Z1 is shared within clusters, one gets the standard shared frailty model. Condi-
tional on Z1, the individual hazard is then h(t |Z1) = Z1λ(t) from (1), and the Laplace
transform is L Z1(s) = exp (−z2Φ1(s)) from (2). One may now randomize the param-
eter z2 by a second frailty Z2 (with distribution fZ2 ) to get a two-level model. At this
level, Z2 will typically be independent for some individuals but shared for others, thus
creating dependence between individuals in a cluster. The marginal Laplace transform
L(s) of the combined frailty Y for each individual will now be

L(s) = E
(
L Z1(s)|Z2

) =
∫

exp (−z2Φ1(s)) fZ2(z2)dz2 = exp [−z3Φ2(Φ1(s))] .

One may further randomize z3 by using a third frailty Z3 to create a model with yet
another level of dependence. The marginal Laplace transform of the combined frailty
Y will then be L(s) = exp [−z4Φ3 (Φ2(Φ1(s)))], and so on for further levels. Hence,
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new levels of frailty are introduced by randomizing the Lévy time parameter, or a scale
transformation of the Laplace exponent. An interesting special case for the three-level
model applies when positive stable distributions are used for all Zi , that is, when
Φi (s) = ρi sαi . The marginal Laplace transform of Y for an individual then becomes

L(s) = exp
[−z4ρ3ρ

α3
2 ρ

α3α2
1 sα3α2α1

]
,

which again is the Laplace transform of a stable distribution. This is identical to the
Laplace transform of a multiplicative stable frailty model, as presented in Hougaard
(2000, pp. 354–362).

3.1 A frailty model for family data in different neighborhoods

Consider a model for data with two levels of dependence, consisting e.g. of indi-
viduals organized into families living in different neighborhoods. The frailty vari-
able Z1 could model individual environmental factors which are independent for all,
while Z2 models environmental/genetic factors which are shared within families, but
independent between families. The variable Z3 could describe common environmen-
tal factors shared by all individuals in the neighborhood. Let different superscripts
denote independent values of the Zi ’s. As a simple example, a neighborhood with
lifetimes (t11, t12) in family 1 and (t21, t22) in family 2 gets the joint Laplace transform
L(s11, s12, s21, s22) found as

∫∫
exp[−z(1)

2 Φ1(s11)−z(1)
2 Φ1(s12)−z(2)

2 Φ1(s21)−z(2)
2 Φ1(s22)] fZ2(z2)dz2 fZ3(z3)dz3

=
∫

exp[−z3Φ2(Φ1(s11) + Φ1(s12)) − z3Φ2(Φ1(s21) + Φ1(s22))] fZ3(z3)dz3

= exp [−z4Φ3(Φ2(Φ1(s11) + Φ1(s12)) + Φ2(Φ1(s21) + Φ1(s22)))] .

Generally, assume there are m j individuals in family j and n families in the neigh-
borhood. The survival function for the neighborhood is then

S(t11, . . . , tnmn ) = exp

⎡

⎣−z4Φ3

⎛

⎝
n∑

j=1

Φ2

( m j∑

l=1

Φ1(Λ(t jl))

)⎞

⎠

⎤

⎦ .

The survival function may be used directly in the likelihood, see Sect. 3.5.

3.2 Combined additive and hierarchical genetic model for family data

One may also construct a model combining genetic and environmental effects, for
instance for data on nuclear families consisting of parents and up to two children. This
model is applied to the melanoma data in Sect. 4. On the bottom level, we have a frailty
for individual environment, Z1, which is assumed independent for all. The Laplace
transform is L Z1(s) = exp (−z2Φ1(s)), as usual. On the middle level, we randomize
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z2 by an additive genetic component, which looks like the following for a family of a
mother (M), a father (F) and two children (C1, C2):

Z2M = M1 + M2 + M3 + M4

Z2F = F1 + F2 + F3 + F4

Z2C1 = M2 + M3 + F2 + F3

Z2C2 = M3 + M4 + F3 + F4.

All random effects Mi , Fi are assumed i.i.d., with Laplace transform L(s) =
exp (−z3Φ2(s)). Hence, the parents have independent genetic frailties, but the chil-
dren share half of the genetic frailty with their parents and each other. Moreover, they
do not share the same half of the genes. This is the same method as used for standard
additive frailty models (Korsgaard and Andersen 1998). Let m and f be the argument
of the Laplace transform for the parents, and c1, c2 the arguments for the children. By
using function iteration on the Laplace exponent, we get the joint Laplace transform
L(m, f, c1, c2) for the family:

E(exp
[−Z2MΦ1(m)−Z2FΦ1( f )−Z2C1Φ1(c1)−Z2C2Φ1(c2)

] |Mi , Fi , i=1, . . . , 4)

= E(exp{−M1Φ1(m) − F1Φ1( f ) − M2 [Φ1(m) + Φ1(c1)]

−F2 [Φ1( f ) + Φ1(c1)] − M4 [Φ1(m) + Φ1(c2)]

−F4 [Φ1( f ) + Φ1(c2)] − M3 [Φ1(m) + Φ1(c1) + Φ1(c2)]

−F3 [Φ1( f ) + Φ1(c1) + Φ1(c2)]}|Mi , Fi , i = 1, . . . , 4)

= exp{−z3[Φ2 (Φ1(m)) + Φ2 (Φ1( f )) + Φ2 (Φ1(m) + Φ1(c1))

+Φ2(Φ1( f ) + Φ1(c1)) + Φ2(Φ1(m) + Φ1(c2))

+Φ2(Φ1( f ) + Φ1(c2)) + Φ2(Φ1(m) + Φ1(c1) + Φ1(c2))

+Φ2(Φ1( f ) + Φ1(c1) + Φ1(c2))]}.

One may further expand the model by introducing a common environmental term. This
is done by randomizing z3 by Z3, which is shared by all. Hence, Z3 has the Laplace
transform L Z3(s) = exp (−z4Φ3(s)). The joint Laplace transform then becomes

exp{−z4Φ3[Φ2(Φ1(m)) + Φ2(Φ1( f )) + Φ2(Φ1(m) + Φ1(c1))

+Φ2(Φ1( f ) + Φ1(c1)) + Φ2(Φ1(m) + Φ1(c2))

+Φ2(Φ1( f ) + Φ1(c2)) + Φ2(Φ1(m) + Φ1(c1) + Φ1(c2))

+Φ2(Φ1( f ) + Φ1(c1) + Φ1(c2))]}, (3)

and one gets the joint survival function by substituting the Laplace arguments with
the Λ(ti )’s. Expanding these models to an arbitrary number of children is straight-
forward, by adding more components to the additive genetic frailty Z2. However, the
expressions quickly become complicated. For only one child in every family, you need
two additive components in Z2, for two children you need four components, for three
children you need eight components, and so on. If the data consist of a mixture of
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families with one and two children, the model is still identifiable when using four
additive terms in the genetic component.

3.3 Expected values, covariance and correlation

Simple results are valid for the expectation and variance of the hierarchical Lévy
frailty model, provided that they exist for the model in question (e.g. the stable dis-
tribution has no finite expected value or variance). If the baseline hazard λ(t) in (1)
includes a scale parameter, one often sets the expectation of the frailty distribution
equal to one, to assure identifiability. Generally for distributions derived from non-
negative Lévy processes, Φi (0) = 0. Assume that the expectation of the Zi ’s equals
one, that is, Φ ′

i (0) = 1 for all i . For the genetic model in Sect. 3.2, this implies that
E(Mi )=E(Fi )=1/4 for all i . The time parameter at the highest level, zk , is set equal
to one. By using the rules of double expectation, double variance and induction, one
may show that

EY = 1, VarY = VarZ1 + VarZ2 + VarZ3 (4)

for three-level models, and similarly for higher level models. Hence, the variance of
a hierarchical Lévy frailty variable is decomposed into a sum coming from different
sources, without affecting the expectation. This is very useful in a frailty context, where
the expectation often should be kept constant and just the variance be decomposed.
These formulas are valid also when Z2 is additive, as the expectation and variance on
that level is the sum of the expectations and variances of each component (since they
are i.i.d.). Even though the variance of Y can be written as a sum of the variances of the
Zi ’s, no simple general algebraic relation can be found between Y and (Z1, Z2, Z3).
If Φ ′

i (0) �= 1, VarY is a function both of the expectation and the variance on each
level, making the formula more complicated. When Φi (s) has two parameters, setting
Φ ′

i (0) = 1 implies that only one parameter is left on that level (i.e. ρi = θi for gamma
distributed Zi or ρi = θi/4 for all Mi , Fi in the genetic model).

For the genetic model in Sect. 3.2, a measure of the importance of the genetic com-
ponent relative to the total variance of the components generating dependence in the
model can be formulated as

h2 = VarZ2

VarZ2 + VarZ3
. (5)

This is similar to the squared coefficient of heritability, but does not include the vari-
ance of the components creating individual variance (Z1 and the baseline hazard λ(t)).
Including the variability in the survival times due to λ(t) seems very difficult, as the
correlation structure is put on the latent frailty variables, not on the outcomes. This
problem is present in all frailty models, as well as other models for latent variable mod-
elling such as generalized linear mixed models (see e.g. Pawitan et al. 2004; Gjessing
and Lie 2008). Including only the variance of Z1 is also not satisfactory, as this value
would greatly depend on the choice of λ(t).
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The covariance is derived in a similar manner as the variance, by using that

Cov(Y1, Y2) = E(Cov(Z1, Z1|Z2)) + Cov(E(Z1|Z2), E(Z1|Z2)).

For a three-level model, this gives the following covariance between two individuals
j and k:

Cov(Y j , Yk) = Cov(Z1 j , Z1k) + Cov(Z2 j , Z2k) + Cov(Z3 j , Z3k).

The covariances in the sum are always either zero if the individuals are independent
in a frailty component or equal to the variance of a shared frailty component. If the
frailty on a level is additive, the covariance on that level can also be decomposed into
a sum of variances of shared frailty terms. As an example, consider the genetic model
in Sect. 3.2. Let the frailty on level i have variance σ 2

i (the variance of all Mi and Fi

on the additive second level is then σ 2
2 /4), and let σ 2 = σ 2

1 +σ 2
2 +σ 2

3 be the variance
of the combined frailty for the family members. We get the following covariances
between the frailties of the family members:

Cov(YM , YF ) = VarZ3 = σ 2
3

Cov(YM , YC1) = VarM2 + VarM3 + VarZ3 = 1

2
σ 2

2 + σ 2
3

Cov(YM , YC2) = VarM3 + VarM4 + VarZ3 = 1

2
σ 2

2 + σ 2
3

Cov(YF , YC1) = VarF2 + VarF3 + VarZ3 = 1

2
σ 2

2 + σ 2
3

Cov(YF , YC2) = VarF3 + VarF4 + VarZ3 = 1

2
σ 2

2 + σ 2
3

Cov(YC1 , YC2) = VarM3 + VarF3 + VarZ3 = 1

2
σ 2

2 + σ 2
3 .

Thus the covariance between the children is equal to the covariance between a par-
ent and a child. The covariance between the parents is smaller than the others. The
correlations between the frailties of the family members will then be:

Corr(YM , YF ) = σ 2
3

σ 2 , Corr
(
Y j , Yk

) =
1
2σ 2

2 + σ 2
3

σ 2 ( j, k) �= (M, F).

3.4 Dependence measures for times to events

Instead of considering the frailty correlation, one may wish to study the dependence
in the outcomes: The times to events. One may then calculate the frailty relative risk
(FRR), introduced in Moger and Aalen (2005). It is defined as the probability of expe-
riencing the event within a specific age t1 given that a relative or another member of
the cluster has experienced the event within age t2, compared to the probability of
getting the event within age t1 if another member of the cluster has survived up to
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age t2 without the event. By using Bayes’ theorem and that any pair of individuals are
independent given all Zi , i > 1, and then integrating out the frailties, one gets

FRR = P(Individual gets event within age t1|Relative gets event within age t2)

P(Individual gets event within age t1|Relative not event up to age t2)

= (1 − S(t1) − S(t2) + S(t1, t2))S(t2)

(1 − S(t2))(S(t2) − S(t1, t2))
. (6)

Hence, one needs the univariate and bivariate survival functions for different pairs
within a cluster. These are found by setting the appropriate t’s in (7) equal to zero. For
instance, for the genetic model in Sect. 3.2, the bivariate survival function for mother
and father is found by setting the survival times of the children equal to zero. Results
may be presented for given choices of t1 and t2.

A frequently used measure for the dependence in times to events for frailty models,
is Kendall’s τ . No general analytic expression for the models presented here can be
found, but Kendall’s τ can be calculated using numerical integration of the bivariate
survial functions and densities for different pairs within clusters (Hougaard 2000, Eq.
4.4).

3.5 Likelihood construction

It is difficult to give a general expression for the likelihood, since the formula for the
likelihood contribution of each cluster depends on which individuals in the cluster
experience the event. Let Λ(t) = ∫ t

0 λ(s)ds be the cumulative baseline hazard, and
let L X denote the joint Laplace transform of the cluster, e.g. as given by (3) for the
genetic model. Then

S(t j1, . . . , t jk) = L X (Λ(t j1), . . . , Λ(t jk)) (7)

is the joint survival function of cluster j , j = 1, . . . , n. Let δ jl be an indicator on
whether individual l, l = 1, . . . , k, in cluster j has been censored (δ jl = 0) or not
(δ jl = 1), and let δ j . be the number of cases in cluster j . The log-likelihood for n
clusters can then be written as

log L =
n∑

j=1

log

[
∂δ j .

(∂t j1)
δ j1 · · · (∂t jk)

δ jk
(−1)δ j .S(t j1, . . . , t jk)

]

=
n∑

j=1

log f j (t j1, . . . , t jk, δ j1, . . . , δ jk).

Hence, the contribution for a cluster where none have an event is equal to the joint sur-
vival function for that cluster. If one or more members has an event, one differentiates
the joint survival function with respect to the t jl ’s of these members to find the joint
density f j for the cluster. For the model in Sect. 3.1, it may be possible to find a gen-
eral expression for the δ j th derivative of the survival function, at least for the gamma
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and stable distributions. For the genetic model in Sect. 3.2, one may use a software
package like Mathematica to differentiate the survival function for all combinations
of events in families observed in the data and paste the output into a function for the
likelihood function in e.g. R. This is straightforward. Adjustment for left-truncation
is handled by dividing the density f j for a cluster with the joint probability that they
have survived up to age at truncation r jl , S(r j1, . . . , r jk). For cohort data, the standard
errors of the parameters are found by the inverse of the observed information matrix.

4 Analysis of the melanoma data

We apply the genetic model in Sect. 3.2 to the melanoma data. Likelihood maximi-
zation is done in R. To adjust for truncation, we use the joint probability that they
have no melanoma before 1961, which will be elaborated upon in the Discussion. The
baseline hazard λ(t) in (1) is assumed to be of the Weibull form ακtκ−1. The frailty
on each level is gamma distributed. Using PVF distributions for the components give
similar results. This yields three parameters for the frailty (individual environment
θ1, genetics θ2 and common environment θ3) with Φi (s) = θi [ln(θi + s) − ln θi ] for
i = 1, 2, 3. A high value of θi yields low variance and correlation on that level. In addi-
tion, we have two regression coefficients for the covariates birth cohort and gender.
The covariates are included as a Cox regression term, giving λ(t) = exp(βX)ακtκ−1.
When using the model in Sect. 3.2 to analyze the data, age at melanoma diagnosis is
the time variable of interest while death from other causes is treated as censoring.

Since we are analyzing a case-cohort sample, we use the methods from Sect. 3 in
Moger et al. (2008); stratified sampling without replacement. Sampling weights pi

enter the likelihood in Sect. 3.5, yielding a pseudo-likelihood, where pi denotes the
sampling probability for a nuclear family in stratum i . The stratum for case families has
i = 0. The control families have i = 1, . . . , 140, as there are 70 birth year strata×2
family size strata. The log pseudo-likelihood function with (possibly) censored event
times (the t jl ’s), indicators of censoring (the δ jl ’s) and truncation times (the r jl ’s) in
bold vector form is then

log Lpseudo =
140∑

i=0

1

pi

∑

j∈Di

log g j (t j , δ j , r j ; θ),

where Di is the set of families sampled from stratum i and θ denotes all parameters in
the model. The likelihood contribution for each family, g j , is adjusted for truncation,
g j (t j , δ j , r j ; θ) = f j (t j , δ j ; θ)/S j (r j ; θ). As all case families in the Multi-Gen-
eration Register are included in the sample, p0 = 1. With mi families sampled out
of the ni families in each stratum, the control families get inverse weights 1/pi =
ni/mi . The standard errors are estimated by a sandwich-type estimator A(θ)−1 +
A(θ)−1Bst(θ)A(θ)−1. Here, A(θ) is estimated by

Â(̂θ) =
140∑

i=0

1

pi

∑

j∈Di

I j (̂θ),
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where I j (θ) = −∂2/∂θ∂θ ′ log g j (t j , δ j , r j ; θ), the observed information matrix for
family j . Bst(θ) is estimated by

B̂st (̂θ) =
140∑

i=0

1 − pi

p2
i

∑

j∈Di

(s j (̂θ) − si (̂θ))(s j (̂θ) − si (̂θ))′,

where s j (θ) = ∂/∂θ log g j (t j , δ j , r j ; θ), the score function for family j , and si (̂θ) =
m−1

i

∑
j∈Di

s j (̂θ), the estimated average value of the score function in stratum i .
First, we fit the model without covariates. For comparison, we also fit an additive

gamma model with Weibull baseline and the following frailty structure:

Z M = I1 + M1 + M2 + M3 + M4 + E

Z F = I2 + F1 + F2 + F3 + F4 + E

ZC1 = I3 + M2 + M3 + F2 + F3 + E

ZC2 = I4 + M3 + M4 + F3 + F4 + E .

Here, Ii denotes individual environmental frailty, Mi and Fi denote genetic frailty as
before, and E is common environmental frailty, all gamma distributed with param-
eters θ1 for Ii , θ2 for Mi and Fi , and θ3 for E . The marginal fit from the estimated
multivariate models is compared to a Nelson–Aalen plot in Fig. 1. The hierarchical
model has a better fit, especially around 60 years and after 80 years. The multivariate
fit is also better for the hierarchical model, indicated by the log pseudo-likelihood
values of −307050.7 for the additive gamma model, and −306835.1 for the hierar-
chical gamma model (even though the usual likelihood ratio test is not applicable for
pseudo-likelihoods).

The results without covariates are shown in the upper part of Table 2. The vari-
ance σ̂ 2

2 of the genetic component is 1/̂θ2 = 1.99 and the common environmental
variance σ̂ 2

3 is 0.66. Hence, from (5), h2 is around 75.1%. The lower part of Table 2
shows results with the covariates gender (0 = female, 1 = male) and birth cohort (con-
tinuous, per 10 years) included. The relative risk of birth year per 10 years is 1.49
(95% CI 1.48–1.51), hence a 10 year increase in birth year is associated with a 49%
increase in risk of melanoma. The corresponding relative risk for gender is 0.97 (95%
CI 0.94–0.99), meaning that males have a 3% lower risk of melanoma than females.
The estimate of the gamma parameter in the genetic component is 0.32, indicating
that some families have much higher values of the genetic frailty than others. The
variance is 3.10, and the corresponding variance for common environment is 0.23.
By calculating h2, genetics now account for 93.1% of the total frailty variance of the
components generating dependence in the model. Fitting a model where the individual
component Z1 is removed yields an equally good fit based on log pseudo-likelihood
values (−304279.5, three-level model, vs. −304279.7, two-level model), indicating
that the individual variation is captured by the Weibull baseline once covariates are
included.

To illustrate the dependence in time to melanoma, one may calculate the frailty rel-
ative risk of getting melanoma as a function of age given that a relative is affected by
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Fig. 1 Marginal fit of an additive gamma model and the hierarchical gamma model compared to Nel-
son–Aalen. Both models have Weibull baseline hazards and frailty components for genetics, common and
individual environment, giving five parameters in total

Table 2 Parameter estimates from the hierarchical gamma model, analysis of the melanoma data

Parameter: α κ θ1 θ2 θ3 β gender β birth year

Hierarchical gamma model without covariates

Estimate 1.49 × 10−9 3.75 1.08 × 10−2 0.50 1.52 − −
SE 2.1 × 10−10 0.04 4.80 × 10−4 0.13 0.44 − −

Hierarchical gamma model with covariates

Estimate 4.83 × 10−11 4.55 7.02 × 102 0.32 4.34 −0.03 0.400

SE 5.51 × 10−12 0.03 3.13 × 104 0.04 2.67 0.01 0.005

Females are the reference group for gender, and birth year is per 10 years
SE standard error

melanoma within 90 years (the upper limit for age), compared to the relative not being
affected within that age. This is done by setting t2 = 90 in (6), inserting the parameter
estimates and some covariate values, as the frailty relative risk depends slightly on
the covariates (we inserted the mean value of birth cohort, and appropriate genders).
We computed the frailty relative risk for different values of t1 but the estimates dif-
fered with only one tenth both for partners, siblings and parent–child pairs. If your
partner gets melanoma, you have 1.23 times higher risk of getting it due to the shared
environment for partners. If your parent, child or sibling gets melanoma, you have
2.70–2.80 times higher risk, due to shared environment and genetics. The dependence
of the covariates results in slightly different estimates for e.g. mother–daughter and
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brother–sister pairs. Similarly, with covariate values inserted, Kendall’s τ is 0.10 for
partners and 0.31–0.32 for sibling or parent–child pairs.

5 Discussion

This paper presents a new hierarchical frailty model for multivariate survival data.
The model is especially well suited for analyzing data with hierarchical dependence
structures, such as the neighborhood example in Sect. 3.1, as these structures natu-
rally arise when adding levels to the model. However, by using additive levels one may
also construct models with genetic components. The data example shows that a better
marginal and multivariate fit can be achieved by using a hierarchical model compared
to a corresponding additive one, indicating that the combined frailty distribution in
the hierarchical model is more flexible. Including additional frailty terms for adult or
childhood environment only, thus making the correlation between parent–child pairs
and sibling pairs different, is easily achieved in an additive model. However, it seems
difficult in the hierarchical frailty model. Once an additive level has been included,
one may only put a frailty shared by all in the cluster on the level above. Both in
the hierarchical and additive models, the correlations between family members are
functions of the frailty variances. A log-normal model is more flexible in this regard,
as covariance parameters may be estimated separately. However, for the log-normal
model estimation is complicated by the fact that there is no analytical expression
for the likelihood, making techniques like e.g. numerical integration necessary in the
estimation. For large data sets such as ours, this might be a computational problem.

We have analyzed the melanoma data as left-truncated and right-censored failure
time data with the age of melanoma diagnosis as the failure time of interest, treating
death without melanoma as censoring. This way of analyzing the data is not without
problems. The first problem is that we adjust for truncation using the joint probability
of no melanoma in each family before 1961 (cf. Sect. 2), whereas the correct adjust-
ment is to use the joint probability of survival up to 1961. Another problem is that we
cannot know if there have been previous occurrences of melanoma for individuals alive
in 1961, hence we implicitly assume in the truncation adjustment that any melanoma
case for an individual is independent of possible previous occurrences, and this is the
best we can do. For solving the first problem, it would have been more appropriate to
use a competing risks model with occurrence of melanoma as the event of interest and
death without melanoma as a competing cause. Formula (1) would then correspond to
the conditional cause-specific hazard for the occurrence of melanoma (conditional on
a frailty that is modeled in a hierarchical way as described in Sect. 3.2). In principle one
could also assume a frailty model for death without melanoma, where a component
of the frailty is common for the two causes; see Aalen et al. (2008, Sect. 6.6) for an
example of such a model. To follow this approach is, however, outside the scope of the
present paper. However, if the frailties for death without melanoma are independent
of the frailties for occurrence of melanoma, and different sets of parameters are used
to model the two competing causes, then the likelihood based on a competing risks
model will factor into two components, one for each competing cause. Furthermore,
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the component corresponding to occurrence of melanoma will be of the form described
above, justifying the analysis we have presented.

Regarding the goodness-of-fit, several approaches can be considered. When com-
paring different models for cohort data, one may use the likelihood ratio test. One can
remove a level to see how much it affects the likelihood value. It is also interesting to
see how the multivariate model fits the marginal data by comparing fitted curves to
Kaplan–Meier or Nelson–Aalen plots as in Fig. 1. The parameters of the model may
also be estimated from marginal data. Ideally, one would like the total frailty variance
to be similar in both cases, but as long as the marginal fit of the multivariate model is
acceptable in the plots, this should not be an issue. Also, it is questionable whether the
parameters are well identified when fitting the model to marginal data. We assumed
that the dependence was the same for parent–child pairs as for sibling pairs. This may
be checked by fitting the model to bivariate data, and comparing the total genetic and
shared environmental variance to the results in Sect. 4 (as the components generating
dependence cannot be properly identified from bivariate data, only total variance is
relevant). This gives a variance of 3.45 for sibling pairs and 1.77 for mother–child
pairs without covariates. The estimate from Sect. 4 of 2.65 is in-between. With covar-
iates, we get 2.58 for sibling pairs and 2.40 for mother–child pairs, indicating that the
correlation is similar after adjusting for birth cohort and gender. The estimate from
Sect. 4 is 3.33, and hence a bit higher. Again, if the results are different, the multivar-
iate fit of the model might still be acceptable. This could in principle be checked e.g.
by comparing the estimated bivariate survival functions from the model to bivariate
Kaplan–Meier plots of survival times of pairs of relatives, although this approach may
not be very practical.

Family data gives the opportunity to study the heritability of some specific trait,
here frailty (susceptibility) to melanoma. The trait is influenced by genetic as well
as by environmental factors, assumed to be independent and that is why we assume
an additive structure for the variances (4). The variance of the trait (total frailty var-
iance) describes variability of genetic as well as environmental factors not included
into the model without covariates. If covariates are included, we expect that the total
frailty variance decreases, because these covariates explain some of the variability.
The question is whether the included covariates are pure environmental - then only the
environmental part of the frailty variance should decline - or if the covariates included
have themselves some genetic background (e.g. BMI, Hypertension, etc.). Then we
will also see a reduction in the genetic frailty variance. The inclusion of genetic marker
information should only reduce the genetic variance, but not the environmental vari-
ance.

Confidence intervals for h2 and the frailty relative risk are complex functions of
the parameters in the model and not presented. Normally, one could have found confi-
dence intervals by using the bootstrap method, but this is complicated by the fact that
we are analyzing a case-cohort sample of families and that the data set is very large.
Fitting the model takes around 4 h in R on a computer with 2 GHz processor and 2 GB
RAM. Several studies show familial aggregation of melanoma. A meta-analysis (Ford
et al. 1995) showed a relative risk of 2.24 for melanoma in individuals with affected
first-degree relatives, somewhat lower than our estimate of 2.70–2.80. A previous
study (Hemminki et al. 2003) on data from the Swedish Multi-Generation Register,
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yielded a relative risk of 2.40 for parent–child pairs and 2.98 for sib–sib pairs, and our
estimate is in-between these.

An extension to a nonparametric baseline hazard will make it necessary to use
other estimation methods than the ones used for the fully parametric models presented
here. This is a challenge, since the likelihood function for the model becomes quite
complex, particularly for data on families containing several levels of dependence
and many events in each family. However, complex likelihoods are also the case for
other multivariate frailty models, such as additive models (Korsgaard and Andersen
1998) and multivariate log-normal models (Yau 2001). Also, in the absence of covar-
iates, a non-parametric hazard would not allow for determining the distribution of the
individual frailty component.
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