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Abstract The nonlinear filtering problem occurs in
many scientific areas. Sequential Monte Carlo solutions
with the correct asymptotic behavior such as particle
filters exist, but they are computationally too expensive
when working with high-dimensional systems. The en-
semble Kalman filter (EnKF) is a more robust method
that has shown promising results with a small sample
size, but the samples are not guaranteed to come from
the true posterior distribution. By approximating the
model error with a Gaussian distribution, one may rep-
resent the posterior distribution as a sum of Gaussian
kernels. The resulting Gaussian mixture filter has the
advantage of both a local Kalman type correction and
the weighting/resampling step of a particle filter. The
Gaussian mixture approximation relies on a bandwidth
parameter which often has to be kept quite large in
order to avoid a weight collapse in high dimensions.
As a result, the Kalman correction is too large to cap-
ture highly non-Gaussian posterior distributions. In this
paper, we have extended the Gaussian mixture filter
(Hoteit et al., Mon Weather Rev 136:317–334, 2008)
and also made the connection to particle filters more
transparent. In particular, we introduce a tuning para-
meter for the importance weights. In the last part of
the paper, we have performed a simulation experiment
with the Lorenz40 model where our method has been
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compared to the EnKF and a full implementation of
a particle filter. The results clearly indicate that the
new method has advantages compared to the standard
EnKF.
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1 Introduction

The ensemble Kalman filter (EnKF) and its variants
[8] are currently among the most popular approaches
to data assimilation in high-dimensional dynamical
systems [9]. The posterior distribution of the state vari-
ables is represented by a discrete ensemble of parti-
cles. The consensus has emerged that a small number
of particles, typically 100, is sufficient, hence making
application of the EnKF feasible in situations where the
forward step of the data assimilation is computationally
expensive. The main limitation of the EnKF is its ten-
dency to provide approximations to the posterior that
are too close to a Gaussian distribution.

Particle filters represent another ensemble-based ap-
proach to data assimilation, in which there is a weight
associated with each ensemble member [6]. The weights
are normalized so that they sum to one. At each as-
similation step, the ensemble is updated, in a stochastic
manner, according to Bayes’ rule. The particle filter
produces a sample from the exact posterior distribu-
tion. One limitation is that it is not applicable when the
state vector is high dimensional due to a phenomenon
known as the curse of dimensionality, i.e., as the dimen-
sion of the system increases, the largest of the sample
weights converges to one in probability [3] causing a
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filter degeneracy where the posterior distribution is
represented by a single point in the state space.

Recently, several filters with both a Kalman update
step and weighting correction have been developed
such as the EnKF–sequential importance sampling
(SIS) [17] and Gaussian mixture filters [4, 12, 14]. In
the Gaussian mixture filters, the prior distribution is
approximated by a mixture density [20] where each en-
semble member forms the center of a Gaussian density
function (a kernel). The mixture density, including the
weights, is propagated through the dynamical system
and updated according to Bayes’ rule on the arrival
of a new datum. Hence, weight degeneration is also a
problem with the mixture filter, at least in its basic form.

The EnKF can be viewed as a mixture filter, ob-
tained by using Gaussian kernels and forcing the
weights to be uniform [11]. Our main proposal is to
loosen up the latter requirement. We introduce a tuning
parameter α ∈ [0, 1] such that α = 0 gives the uniform
weights of the EnKF and α = 1 gives the weights of
the Gaussian mixture filter. The main idea is that by
taking α to be small, we reduce the weight degener-
acy problem, but taking α > 0, we improve upon the
EnKF approximation of the posterior. In particular,
we aim at better preserving non-Gaussian features of
the marginal distributions. The proposed approach is
adaptive, in the sense that an optimal α is sought at
each assimilation step resulting in an adaptive Gaussian
mixture filter.

The Gaussian mixture filter is first applied to the
Bernoulli equation [2] to demonstrate its flexibility and
similarities with particle filters and the EnKF. The
40-dimensional chaotic Lorenz40 model [16] is then
studied to show how the new parameter α allows us
to keep the linear Kalman update smaller than in the
EnKF and the Gaussian mixture filter and at the same
time avoid degeneracy of the weights. The nonlinear
filter problem and some of its approximate solutions,
including Gaussian mixture filters, are discussed in
Section 2. In Section 3, we introduce the adaptive
Gaussian mixture filter. The simulation studies are the
content of Section 4 before a summary and discussion
concludes the paper in Section 5.

2 The nonlinear filtering problem

We are interested in estimating sequentially in time the
posterior distribution of the state vector, xt, of a high-
dimensional dynamic system conditioned upon some
noisy measurements. We restrict ourselves to the case
where the state is Markovian with a linear measure-
ment operator. The latter can always be achieved by

expanding the state space. For all t ≥ 1, the system is
described by the equations

xt = Mt(xt−1) + ηt,

yt = �txt + εt, (2.1)

where Mt is the nonlinear forward operator and �t

is the linear observation operator. The measurement
error, εt, is assumed to be Gaussian white noise with
covariance matrix �t, and ηt is the model error with
density p(ηt). The initial distribution is p(x0). The op-
timal solution to the filtering problem is the posterior
density p(xt|y1:t). That is, the conditional distributions
of the state xt given y1:t, where y1:t = (y1, ..., yt), are all
the observations up to and including time t.

Given the posterior density at time t − 1, the prior
density at time t can be calculated as

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (2.2)

When a new observation yt arrives, the posterior den-
sity is updated recursively via Bayes’ rule:

p(xt|y1:t) = p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
, (2.3)

with the normalizing constant given by

p(yt|y1:t−1) =
∫

p(yt|xt)p(xt|y1:t−1)dxt.

In general, the optimal solution cannot be computed
analytically. We therefore need approximative solu-
tions such as Monte Carlo methods where one repre-
sents the prior and posterior densities with a random
sample. We denote by the set of particles/ensembles
{xi

t}N
i=1 a sample approximating the prior density

(Eq. 2.2) and by the set of particles {x̂i
t}N

i=1 a sample
approximating the posterior density (Eq. 2.3).

2.1 The ensemble Kalman filter

The EnKF [8] is a sequential Monte Carlo method that
solves the nonlinear filtering problem with an addi-
tional Gaussian assumption. Given a sample, {x̂i

t−1}N
i=1,

from the posterior density p(xt−1|y1:t−1), the EnKF then
uses the Markov property of the system to obtain a
sample from the prior Eq. 2.2 by sampling from the
forward density p(xt|x̂i

t−1) according to Eq. 2.1

xi
t = Mt(x̂i

t−1) + ηi
t, i = 1, . . . , N. (2.4)
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By making the assumption that p(xt|y1:t−1) is Gaussian
with mean μt and covariance matrix �t, it follows
from the Gaussian observation error that p(xt|y1:t) is
Gaussian with mean μ̂t and covariance matrix �̂t given
by the standard Kalman filter update,

μ̂t = μt + �t(yt − �tμt),

�̂t = (�− �t�t)�t,

�t = �t�
T
t (�t�t�

T
t + �t)

−1. (2.5)

The EnKF takes �t to be the empirical covariance ma-
trix of {xi

t}N
i=1 and in updating particle i it puts μt = xi

t;
thus, a sample from the posterior is provided by

x̂i
t = xi

t + �t(yt − (�txi
t + εi

t)), i = 1, . . . , N.

For a general nonlinear system, this scheme is biased
in the sense that the ensemble members will not be
a sample from the true posterior distribution even in
the limit of an infinite number of ensemble members.
However, it is robust meaning that it does not suffer
from the dimensionality problem since every particle
carry the same weight.

2.2 Sequential importance sampling and particle filters

SIS and particle filters [6, 22] are also discrete approx-
imations of the optimal filter solution given by Eq. 2.3.
They aim at building up sequentially a sample from the
posterior density p(xt|y1:t).

Assume that we have, at a given time t, a sam-
ple {x̂i

0:t}N
i=1 from the joint posterior density p(x0:t|y1:t).

A sample {x̂i
t}N

i=1 from the posterior density p(xt|y1:t)
is trivially obtained by omitting x̂i

0:t−1 in the vector
(x̂i

0:t−1, x̂i
t). As in ordinary importance sampling, we

choose an importance function (a density) q(x0:t|y1:t),
not necessarily dependent on y1:t. Then we construct a
sample from p(x0:t|y1:t) by drawing N vectors {xi

0:t}N
i=1

from the importance function q(x0:t|y1:t) and attach to
each sample an associated weight, wi

t , which is the ratio
of the target density and the importance function

wi
t = p(xi

0:t|y1:t)
q(xi

0:t|y1:t)
. (2.6)

This method is valid for almost any probability density
function q(x0:t|y1:t) as long as its support contains the
support of p(x0:t|y1:t). That is, as long as p(x0:t|y1:t) > 0
implies that q(x0:t|y1:t) > 0. Otherwise, given y1:t, there
exists a region of positive probability in the posterior

that never can be reached by sampling from q and this
necessarily results in biased estimates.

Clearly, all the weights will be equal to one if we
sample directly from the posterior distribution. Since
we in general cannot sample from this, we want to find
an importance function that is similar to the posterior
to keep the weights as close to one as possible. If one
for instance is interested in estimating the mean of the
posterior distribution, the optimal choice of importance
function would be the one that minimizes the variance
of the estimator N−1 ∑N

i=1 wixi. However, in dynamic
systems, we are often limited to the forward model of
the system due to lack of knowledge of the posterior
and the fact that one needs an importance function that
can be updated sequentially.

If we choose an importance function of the form

q(x0:t|y1:t) = q(xt|xt−1, yt)q(x0:t−1|y1:t−1), (2.7)

we see that a sample {xi
0:1}N

i=1 is obtained from {xi
0:t−1}N

i=1
by sampling {xi

t}N
i=1 from q(xt|xt−1, yt) and setting xi

0:t =
(xi

t, xi
0:t−1). The weights can also be updated sequen-

tially up to a proportionality constant via Bayes’
theorem

wi
t = p(xi

0:t|y1:t)
q(xi

0:t|y1:t)

∝ p(yt|xi
t)p(xi

t|xi
t−1)p(xi

0:t−1|y1:t−1)

q(xi
t|xi

t−1, yt)q(xi
0:t−1|y1:t−1)

= p(yt|xi
t)p(xi

t|xi
t−1)

q(xi
t|xi

t−1, yt)
wi

t−1. (2.8)

From Eqs. 2.7 and 2.8, we see that we can obtain our
sample sequentially in time. This is of great importance
as one does not have to restart the algorithm when new
data arrive.

If we are only interested in the marginal posterior
density of xt, we only need to store {x̂i

t−1, w
i
t−1}N

i=1. The
EnKF can be viewed as an SIS algorithm restricting the
weights to be uniform.

The SIS algorithm described above results in a filter
degeneracy in the following sense. After a few time
steps, most of the weights become numerically zero
[10]. To avoid this filter degeneracy, an additional
resampling step is introduced in the sequential im-
portance resampling filter (SIR), which is the most
common particle filter. It differs from SIS only by
the additional resampling step. The standard SIR filter
use q(x0:t|y1:t) = p(x0:t) = p(xt|xt−1)p(x0:t−1) as the im-
portance function and the corresponding importance
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weights are updated according to Eq. 2.8 as w̄i
t =

wi
t−1 p(yt|xi

t). The weights have to be normalized as they
are known only up to a constant,

wi
t = w̄i

t∑N
j=1 w̄

j
t

. (2.9)

A measure of the degree of (non) degeneracy is the
effective ensemble size, Neff, [13] estimated by

N̂eff = 1∑N
i=1(w

i
t)

2
. (2.10)

With all particles having equal weight, N̂eff is equal to
N, while it is equal to one if all the weight is on one
particle. If N̂eff is smaller than some critical value Nc,
resampling is usually performed.

The resampling step is a selection procedure where
the best fitted particles survive. There are several ways
of performing the resampling, the most used being
perhaps the multinomial resampling where N new par-
ticles are selected from a multinomial distribution with
parameters (N, w1

t , . . . , w
N
t ). After a resampling, the

weights are reset to N−1. Although resampling is nec-
essary, it can be shown that it leads to underestimation
of the posterior variance of the state variables [21]. Also
since it is a stochastic procedure, resampling introduces
more variance to the estimator itself. If the variance
of the SIS mean estimator μ̂SIS = ∑N

i=1 xi wi is given
by Var(

∑N
i=1 xi wi), it is easy to show that the mean

estimator in the SIR with multinomial resampling is
given by

Var(μ̂SIR) = Var(μ̂SIS)

+ N−1�

⎡
⎣ N∑

i=1

x2
i wi −

(
N∑

i=1

xi wi

)2⎤
⎦ .

For high-dimensional systems, the main problem
with the SIR filter is the curse of dimensionality: The
number of particles should grow exponentially with
the dimension of the system in order to avoid a filter
collapse [3, 21]. The resampling step in the SIR was
introduced to avoid the weights going to zero after a
few time steps. However, when the dimension of the
system becomes large, most of the weights will be zero
after one time step and a resampling will not avoid de-
generacy as it will select the few particles with nonzero
weights several times. This makes applications to high-
dimensional data assimilation practically infeasible as
the forward integration of the model is often very time-
consuming and hence puts an upper limit on N.

2.3 Improved SIR filter

Since the SIR filter originates from sequential impor-
tance sampling, we know that it is possible to improve
the efficiency of our estimator by choosing a different
importance function q [18]. Theoretically, the optimal
importance function is [7]

q(x0:t|y1:t)opt = p(xt|xt−1, yt)p(x0:t−1|y1:t−1).

This choice of q is optimal in the sense that it minimizes
the variance of the weights conditioned on xt−1 and
yt. The weights, wi

t , in the standard SIR were propor-
tional to wi

t−1 p(yt|xi
t), but with the optimal choice of

q, the weights at time t are now, according to Eq. 2.8,
proportional to wi

t−1 p(yt|xi
t−1). These weights are more

uniform since the variance of yt is larger conditioned
upon xi

t−1 than on xi
t.

If we now make the assumption that the model error
ηt is Gaussian white noise with covariance matrix �t,
it is possible to find the optimal importance function
analytically. The density p(xt|xt−1, yt) under the above
assumption is Gaussian with mean μt and covariance �t

given as

μt = Mt(xt−1) + �t(yt − �tMt(xt−1)),

�t = �t�
T
t (�t�t�

T
t + �t)

−1,

�t = (�− �t�t)�t. (2.11)

To evaluate the weights, we need the density p(yt|xt−1).
This can be found from Eq. 2.1

yt = �tMt(xt−1) + �tηt + εt.

Since �t is linear, it follows that p(yt|xt−1) is Gaussian
with mean bt and covariance t given by

bt = �tMt(xt−1),

t = �t�t�
T
t + �t.

The additional term �t�t�
T
t of the covariance ensures

that the weights are more uniform than in the standard
SIR filter.

The improved SIR filter still suffers from degeneracy
due to the fact that the model error covariance �t

is usually very small. In practice, this means that the
Kalman update in Eq. 2.11 is small and the weights
suffer from degeneracy in high dimensions as the in-
crease in �t is not sufficient to make the particles
compatible with the measurements. One way to avoid
this collapse is to force the weights to be more uniform
by artificially increasing the uncertainty �t associated
with each particle so that they become compatible with
the measurements. This can be obtained by smoothing
each sample with a Gaussian density. That is, we take
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each particle to be the center of a Gaussian density,
thereby representing the distribution of the particles
as a weighted sum of Gaussian density functions, a
Gaussian mixture.

2.4 Gaussian mixture filters

Gaussian mixture filters [1, 4, 5, 14] are based on the
fact that any density function f defined on �d can
be approximated in L1(�

d) from a sample {xi}N
i=1 by a

density of the form

f̂ (x) =
N∑

i=1

wi�(x − xi,�),

where �(x,�) denotes a zero mean multivariate
Gaussian density with covariance matrix �. N is the
number of particles and {wi

t}N
i=1 are scalar weights so

that
∑N

i=1 wi = 1 [23]. Note that each particle represents
the mean of a Gaussian kernel and that the uncertainty
associated with each particle is given by the covariance
of that Gaussian kernel.

In filter theory, with known one-step Markov transi-
tions for the state vector and known likelihood func-
tion, the only unknown quantity needed to update
the posterior distribution at time t is the prior density
pt(xt|y1:t−1) according to Eq. 2.3. The simple idea be-
hind Gaussian mixture filters is that we at each time
step, t, approximate the prior density p(xt|y1:t−1) by a
Gaussian kernel density estimator

pN(xt|y1:t−1) =
N∑

i=1

wi
t−1�(xt − xi

t,�t), (2.12)

where {xi
t}N

i=1 = {Mt(x̂i
t−1}N

i=1.
The choice of the kernel is theoretically not that im-

portant in terms of density estimation. However, since
Gaussian mixtures are closed under linear measure-
ment operator and Gaussian measurement error, that
is a Gaussian mixture prior, updated against Gaussian
linear measurements is again a Gaussian mixture (see
below). A two-component Gaussian mixture before
and after update is shown in Fig. 1. Note that the den-
sity is bimodal before the update, while it is unimodal
after.

The numerical algorithm (“Appendix B”) starts by
drawing N independent identically distributed (iid)
particles, {xi

0}N
i=1, from the initial density p(x0). Note

that there is no measurements at time zero so that the
weights wi

0 = N−1 for all i = 1 . . . N, hence {x̂i
0}N

i=1 =
{xi

0}N
i=1 . The Gaussian mixture is then initialized by

constructing N Gaussian kernels where kernel number
i have mean x̂i

0 and covariance matrix �̂0 = h2�(	̂0),
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Fig. 1 Two component Gaussian mixture filter

where �(	̂0) is the sample covariance matrix of the
ensemble {x̂i

0}N
i=1 and h is the bandwidth parameter.

The ensemble matrix, denoted by 	, contains all the
ensemble members, where column number i represents
ensemble member i.

Note that the sample covariance is factorized in a
different way than in the standard EnKF. While the
EnKF uses the ensemble matrix 	 and its mean 	̄

to factor � as (	− 	̄)(	− 	̄)T/(N − 1), the Gaussian
mixture filter factor � is 
�
T (see “Appendix A”).

The total covariance matrix of the mixture distri-
bution is (1 + h2)�(	̂). The excess variance can eas-
ily be removed by replacing x̂i with x̂′i = ax̂i + (1 − a)

N−1 ∑
i x̂i, where a = √

1 − h2 [15] . This has not been
applied in our work.

If we were only interested in the marginal proper-
ties of the individual components of xt, the optimal
choice of the bandwidth h would be hopt ∝ N−1/5 [20].
However, the choice of the bandwidth parameter h
determines the magnitude of the Kalman update step,
described later, and it might be beneficial to choose
h > hopt in order to reduce the risk of filter divergence.
We therefore treat h as a design parameter.

When a new measurement arrives, the posterior den-
sity approximation is updated via Bayes’ theorem,

pN(xt|y1:t) ∝ pN(xt|y1:t−1)�(yt − �txt,�t). (2.13)

Since pN(xt|y1:t−1) is a weighted sum of Gaussian den-
sities, pN(xt|y1:t) is a weighted sum of products of two
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Gaussian densities where component number i is pro-
portional to

wi
t−1�

(
xt − xi

t,�t
)
�

(
yt − �txt,�t

)
. (2.14)

By adding and subtracting �txi
t in the first argument of

�
(
yt − �txt,�t

)
, Eq. 2.14 may be re-written as

wi
t−1�

(
xt − x̃i

t, �̃t

)
�

(
yt − �txi

t, �t
)
,

where

x̃i
t = xi

t + �t(yt − �txi
t),

�t = �t�
T
t �−1

t ,

�t = �t�t�
T
t + �t,

�̃t = (�− �t�t)�t, (2.15)

The updated weights w̄t = wt−1�(yt − �txi
t, �t) are nor-

malized as

wi
t = w̄i

t∑N
j=1 w̄

j
t

,

and we see that the Eq. 2.13 is a Gaussian mixture

pN(xt|y1:t) =
N∑

i=1

wi
t�(xt − x̃i

t, �̃t).

2.4.1 Resampling

It is necessary to resample if the effective sample size is
too small, which means that most of the weights are al-
located to a minor fraction of the particles. We perform
a resampling step to multiply those particles with high
weights and discard the ones with small weights. The
multinomial resampling in the SIR filter is equivalent
to sampling new particles {x̂i

t}N
i=1 with replacement from

the weighted empirical distribution defined by the par-
ticles and the weights. The extension to the Gaussian
mixture filter is to sample the new particles x̂i

t from the
kernel density estimate

x̂i
t ∼

N∑
i=1

wi
t�(xt − x̃i

t, �̃t).

After resampling, we reset the weights to 1/N and �̂t =
h2cov(x̂i

t) so that our Gaussian mixture approximation
of the posterior distribution becomes

pN(xt|y1:t) = 1
N

N∑
i=1

�(xt − x̂i
t, �̂t).

This resampling strategy is biased in the sense that the
expected covariance of the Gaussian mixture produced
is larger than the one before the resampling step, but as

we pointed out earlier, resampling generally leads to an
underestimation of the posterior variance so we do not
introduce any bias correction in our resampling scheme.

To sum up, the posterior density is approximated by

pN(xt|y1:t) =
N∑

i=1

wi
t�(xt − x̂i

t, �̂t),

where x̂i
t ∼ ∑N

i=1 wi
t�(xt − x̃i

t, �̃t), wi
t = N−1, and �̂t =

�(	̂t) if a resampling is performed and x̂i
t = x̃i

t, wi
t = wi

t ,
and �̂t = �̃t if no resampling is performed.

Since we are working with densities, the Gaussian
mixture filter differs from the SIR and EnKF in the
sense that we do not add any model noise in the forward
integration nor in the Kalman update. By adding noise
and setting h equal to zero, we would recover the
standard SIR [11]. However, if we add noise and let h
be equal to one, we are not able to capture the behavior
of the EnKF entirely since the weights in the EnKF are
equal by definition.

To estimate the posterior density precisely, we want
to keep h small. However, this may lead to a degeneracy
of the filter due to the collapse of the weights. On the
other hand, if h is too large, the Kalman update is
almost the same as in the EnKF and the weights will
contain very little information, as they will be close
to uniform. That is, the filter becomes too close to
the EnKF and may not be able to capture highly non-
Gaussian posterior distributions.

3 Adaptive Gaussian mixture filter

In order to keep h small and avoid degeneracy, we
introduce a bias-variance tradeoff parameter α. The
idea behind α is to force the weights to be more uni-
form without increasing the bandwidth parameter h. By
decreasing the value of largest weights, we give new life
into “dead” particles and avoid a filter degeneracy for
small values of h.

3.1 Reducing divergence by weight interpolation

Consider a sample from a density g and the importance
sampling estimator of Ep f = ∫

f (x)p(x) dx where p is
the target density and f is an arbitrary measurable
function.

Êp f = N−1
N∑

i=1

w̄i

N−1
∑

i w̄i
f (xi), (3.1)

where w̄i = g(xi)/p(xi). Although slightly biased, this
estimator converges almost surely for almost any den-
sity g. However, if the ratio p/g is unbounded, the



Comput Geosci

weights will vary widely, giving too much importance
on a few values x j. The result is that the estimator
(Eq. 3.1) may change dramatically from one iteration
to another, i.e., the estimator is unstable due to large
variance. This scenario is typical if the tails of g is lighter
than the tails of p. It has also been shown that this
behavior occurs when the dimension of the variable X is
large [3]. For the Gaussian mixture filter, this behavior
occurs when h is small. Thus, large range of the (un-
normalized) weights results in large variance of the
estimator in Eq. 3.1. The first problem can be avoided
by replacing g with a mixture

ρg(x) + (1 − ρ)l(x),

where l(x) is chosen for its heavy tails [18]. Here, we
propose a different approach to handle the problem
in high dimensions. To avoid too large range of the
weights, we replace assign new weights to each variable
by interpolating the original weight with the a uniform
weight

wi
α = αwi + (1 − α)N−1. (3.2)

This procedure will reduce the range of the (normal-
ized) weights, hence reduce the variability of the esti-
mator in Eq. 3.1. However, this procedure introduces
bias in the estimator which asymptotically is equal to

αEp f + (1 − α)Eg f − Ep f = (α − 1)(Ep f − Eg f ).

(3.3)

As α decreases, the filter solution moves further
away from the correct posterior distribution, but it still
captures some of the non-Gaussian behavior left out by
the EnKF.

With this new parameter, we notice that we are able
to recover the SIR filter by adding model noise in the
forward integration and choosing α = 1 and h = 0. The
particles can also behave exactly as the ones from the
standard EnKF by adding model noise in the forward
step, observation noise in the Kalman update step, and
choosing α = 0 and h = 1.

For two different reasons, we seek to find an α that
varies in time. The first reason is for computational
purposes, we do not want to run the model several
times with different values for α. The second reason is
for filtering purposes in stationary models. As time in-
creases, the Kalman update and resampling at previous
time steps have pulled the particles into areas of higher
likelihood decreasing the variability in the weights. This
could make it possible to increase α without causing
degeneracy of the particles.

3.2 Selecting the tuning parameter

The tuning parameter α is a tool that guarantees a
lower bound for the weights which again implies that
the variance of a posterior prediction given by Eq. 3.1
is under control. However, the payoff for the variance
reduction is more bias. By carefully choosing α, the goal
is to minimize the total effect of variance and bias.

As a measure of the degree of divergence in Eq. 3.1,
we use

N−1 ∑
i w

2
i(

N−1
∑

i wi
)2 = N

∑
w2

i = N

N̂eff

, (3.4)

and the α equivalent term is N
∑

i(w
i
α)2. The constant

term Ep f − Eg f in Eq. 3.3 could be estimated by∑
i

(
f (xi)(w

i − N−1)
)
, but this involves evaluation of

the weights and is therefore very unreliable. Instead,
we seek to minimize the square of the standardized
bias, bias2/ max bias2 = (1 − α)2. Our suggestion for α

is therefor the value that minimizes the function

J(α) = N
∑

i

(wi
α)2 + (α − 1)2. (3.5)

The first term represents the variance while the second
term reflects the bias. The second one could be thought
of as a penalty term.

Finding the minimum of Eq. 3.5 gives the solution

αmin = N−1 N̂eff. (3.6)

The choice of α is adaptive in the sense that it
changes at each assimilation time according to how
well our samples match the observations. However,
it is not consistent. We see that limN→∞ N̂eff N−1 =
1Ep(w). So that limN→∞ α ≤ 1. A consistent choice of
α would therefore be Kα, where K = Ep(w). However,
we cannot find an analytical expression for K in general
and since we require a large sample to estimate it, we
suggest using K = 1 as we want to be conservative when
the sample size is small.

The parameter α was introduced in order to avoid
degeneracy of the weights. Degeneracy occurs when the
effective ensemble size becomes so small that only a
few particles represent the posterior distribution. With
our choice of α, we see that the new estimated effective
ensemble size is

N̂α
eff = 1∑N

i=1

(
wi

α

)2 = 1∑N
i=1

(
αwi + (1 − α) N−1

)2

= N3

N̂eff(N − N̂eff) + N2
,
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which takes its minimum value of 0.8N at N̂eff = 0.5N.
That is, the effective ensemble size stays above
80% with our choice of α and a filter degeneracy is
impossible.

In the next section, we present some examples show-
ing how the Gaussian mixture filters can estimate the
correct posterior distribution for small systems and also
why α is advantageous for complex systems of higher
dimensions.

4 Simulation studies

In the first example, we want to show the effect of the
bandwidth parameter h in the Gaussian mixture filter in
terms of the estimated posterior distributions. From the
theory, we expect the Gaussian mixture filter to pro-
duce posterior distributions close to the one produced
by the EnKF for large values of h. For small values of
h, the results should be similar to the estimate obtained
by the SIR filter. The model we choose is the univariate
nonlinear Bernoulli differential equation used by Apte
et al. [2].

4.1 Bernoulli model

The Bernoulli equation is given by

dx
dt

− x = −x3, x(0) = x0,

with analytical solution

x(t) = M(x0) = x0 × (
x2

0 + (
1 − x2

0

)
e−2t)− 1

2 . (4.1)

In our example, the initial distribution of x0 is Gaussian
with mean −0.1 and standard deviation 0.2. The entire
system is given by

x(kδ) = M (x((k − 1)δ))

yk = x(kδ) + εk,

where εk is a zero mean Gaussian noise with a standard
deviation of 0.8, k = 1, . . . , 10, and δ is the frequency
of observations chosen as 0.3 in the following. Due to
the functional relationship in Eq. 4.1, we are able to
compute the true posterior density at each time step
k [2]. The true value of x0 is chosen as 0.0001, which
lies in the tail of the initial distribution. We calculate
the posterior density at the final time step (k = 10) and
compare the result with the density estimates from the
SIR filter, EnKF, and the Gaussian mixture filters.

All filters are carried out with N = 1,000 ensem-
ble members/particles which is small compared to the
50.000 in [2]. Resampling is performed when the num-

ber of effective members is less than half the ensemble
size. For the Gaussian mixture filters, h is chosen as
0.1, 0.2, 0.6 and 1.

Since the number of ensemble members are large
and the problem is simple, this example is only in-
cluded as a motivation to demonstrate the potential of
Gaussian mixture filters.

4.1.1 Results

Figure 2 shows the different density estimates of
the filter solutions against the true posterior density
(black). As expected, for small values of h, the Gaussian
mixture filter is able to reproduce the skewness of
the true posterior density. Similarly to the EnKF, it
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produces posterior densities that are too close to a
Gaussian density for large values of h.

4.2 Lorenz40 model

To study the effect of simultaneously varying h and
α in a high-dimensional nonlinear system, we choose
the Lorenz40 model [16] which is used as a reference
example in Sakov and Oke [19].

Our Lorenz40 model consists of 40 coupled ordinary
differential equations with cyclic boundary conditions
and additive Gaussian noise:

dx(i)

dt
= (x(i+1) − x(i−1))x(i−1) − x(i) + 8,

i = 1, . . . , 40; (4.2)

x0 = x40, x−1 = x39, x41 = x1. (4.3)

The complete system is described by

x(kδ) = M (x((k − 1)δ)) + ηk

yk = x(kδ) + εk, k = 1, 2, . . .

where M is the standard fourth order Runge Kutta
solution of Eq. 4.2, δ = 0.05, ηi is a zero mean Gaussian
vector with standard deviation 0.01, and εi is a vector of
40 iid zero mean Gaussian variables with a standard de-
viation of one. The initial state and the initial ensemble

members are randomly drawn from a Gaussian prior
with mean and covariance obtained from the sample
mean and covariance of 104 states from a continuous
integration selected at k = 1,000, 1,001, . . . , 11 × 103.

For this experiment, we use the standard number of
100 particles, a typical size in many EnKF applications.
Even if the dimension of the system is smaller than
the ensemble size, which is typically not the case in
geophysical systems, we argue that it is large enough to
demonstrate that Gaussian mixture filters is capable of
dealing with problems where a standard particle filter
collapse.

To reduce the sampling effects, we have run all ex-
periments ten times each. The solutions are presented
as the average over the ten runs.

Experiments are performed for different fixed values
of the bandwidth h and the α parameter. In addition,
the adaptive method is implemented where the α pa-
rameter is driven by the data at each assimilation step
according to Eq. 3.6.

We also applied the improved SIR filter (see
Section 2.2) with 5 × 105 particles. The posterior distri-
bution obtained from this run is considered as the true
posterior.

4.2.1 Results

As a first measure of the filter performance, we study
the average root mean squared error (RMSE) of the

Table 1 RMSE from the
Gaussian mixture filters

The data in bold correspond
to the ten lowest mean
values, and the data in italics
correspond to the ten largest
standard deviations for all
the filters

α\h 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0 3.837 0.739 0.300 0.294 0.310 0.333 0.359
(0.056) (0.310) (0.011) (0.001) (0.001) (0.001) (0.001)

0.1 3.866 0.480 0.290 0.293 0.312 0.336 0.362
(0.060) (0.360) (0.001) (0.001) (0.001) (0.001) (0.001)

0.2 4.279 3.149 0.299 0.295 0.313 0.339 0.365
(0.040) (0.985) (0.011) (0.001) (0.001) (0.001) (0.001)

0.3 4.535 4.111 0.441 0.300 0.317 0.341 0.367
(0.014) (0.053) (0.179) (0.008) (0.001) (0.001) (0.001)

0.4 4.661 4.386 3.267 0.324 0.318 0.343 0.369
(0.023) (0.024) (0.898) (0.026) (0.001) (0.002) (0.001)

0.5 4.765 4.551 4.150 0.451 0.318 0.343 0.371
(0.032) (0.032) (0.041) (0.157) (0.003) (0.001) (0.001)

0.6 4.765 4.668 4.344 2.019 0.318 0.345 0.370
(0.040) (0.030) (0.023) (0.956) (0.007) (0.001) (0.001)

0.7 4.893 4.725 4.516 3.658 0.323 0.347 0.372
(0.041) (0.055) (0.032) (0.883) (0.043) (0.004) (0.001)

0.8 4.938 4.801 4.694 4.286 1.375 0.360 0.373
(0.041) (0.023) (0.024) (0.032) (0.922) (0.016) (0.001)

0.9 4.977 4.866 4.693 4.429 3.187 0.382 0.375
(0.025) (0.028) (0.023) (0.040) (0.914) (0.019) (0.002)

1.0 5.006 4.907 4.780 4.568 3.589 0.475 0.386
(0.034) (0.031) (0.021) (0.032) (1.348) (0.142) (0.006)
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Table 2 RMSE from the adaptive Gaussian mixture filters and the EnKF

h 0.4 0.5 0.6 0.7 0.8 0.9 1 EnKF

RMSE 3.667 0.378 0.289 0.294 0.313 0.336 0.362 0.644
(0.116) (0.092) (0.004) (0.001) (0.001) (0.001) (0.001) (0.001)

The data in bold correspond to the ten lowest mean values

40 state estimates obtained from the different filters.
The RMSE is calculated as the average over the 10,000
time steps of the root mean squared distance between
the true states and the mean filter estimates of the 40
variables.

RMSE = 1
T

T∑
k=1

||x̂t − xt||2,

x̂t =
N∑

i=1

wi
tx

i
t. (4.4)

Since we have observations for all the states at each
time step, the RMSE from the measurements is theo-
retically equal to 1. That is if we substitute x̂t with yt

in Eq. 4.4 the expectation is equal to one. This gives us
a convergence criterion: If the RMSE is greater than
one, we have not gained any additional information
about the states from the filter. The mean and standard
deviations (in parentheses) of the RMSE are presented
in Tables 1 and 2, where the ten lowest mean values are
marked in green and the ten largest standard deviations
are marked in red.

As a measure of how well the filters reproduce the
higher-order properties (skewness and kurtosis) of the
marginal posterior distributions at k = 104, we calculate
the Kullback–Leibler (KL) divergence from the filter
approximations to the “true” marginal distributions
obtained by the SIR filter with 5 × 105 particles

In order to obtain a single index for each filter, we
take the average KL divergence over the 40 variables
and ten runs. For any of the 40 state variables, the KL
divergence from one of the ten runs is calculated as

DKL = Eg log(g/p)

where g is the posterior density obtained from any of
the filters and p is taken as the true posterior obtained
from the SIR filter.

The values were calculated numerically for all values
of α and h except h = 0.4 since all the filters diverged
for this value of h.

The results of the mean KL distance for the Gaussian
mixture filters are presented in Tables 3 and 4 with stan-
dard deviations in parentheses below. The ten lowest
mean values are marked in green and the ten largest
standard deviations are marked in red.

Table 3 Kullback–Leibler
divergence for the Gaussian
mixture filters

The data in bold correspond
to the ten lowest mean
values, and the data in italics
correspond to the ten largest
standard deviations for all
the filters

α\h 0.5 0.6 0.7 0.8 0.9 1

0.0 1.187 0.947 0.979 1.368 1.848 2.550
(0.180) (0.222) (0.126) (0.106) (0.134) (0.264)

0.1 0.948 0.776 0.901 1.319 1.821 2.542
(0.258) (0.115) (0.112) (0.115) (0.181) (0.190)

0.2 12.71 0.632 0.889 1.221 1.683 2.364
(8.309) (0.092) (0.125) (0.084) (0.105) (0.147)

0.3 17.48 0.679 0.806 1.097 1.530 2.210
(1.885) (0.094) (0.110) (0.097) (0.160) (0.204)

0.4 17.76 11.93 0.654 0.954 1.483 2.196
(2.494) (10.16) (0.107) (0.146) (0.067) (0.158)

0.5 15.73 17.61 0.656 0.908 1.416 2.012
(2.244) (2.752) (0.082) (0.151) (0.107) (0.135)

0.6 11.48 15.95 2.644 0.803 1.277 1.706
(2.261) (3.523) (6.573) (0.136) (0.193) (0.170)

0.7 10.08 13.66 15.36 0.773 1.081 1.790
(2.273) (1.448) (8.145) (0.147) (0.193) (0.192)

0.8 9.680 11.65 16.74 0.659 0.968 1.576
(2.765) (2.244) (3.123) (0.117) (0.101) (0.141)

0.9 7.294 11.94 15.75 7.163 0.876 1.412
(3.394) (3.476) (2.244) (8.905) (0.143) (0.164)

1.0 7.863 10.31 14.20 14.23 0.824 1.395
(2.582) (0.104) (2.514) (7.652) (0.149) (0.255)
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Table 4 Kullback–Leibler divergence for the adaptive Gaussian mixture filters and the EnKF

h 0.5 0.6 0.7 0.8 0.9 1 EnKF

KL 0.781 0.703 0.991 1.277 1.817 2.514 6.699
(0.195) (0.104) (0.164) (0.090) (0.148) (0.216) (0.438)

The data in bold correspond to the ten lowest mean values

The lowest RMSE was achieved with h = 0.6 with
the adaptive α. However, the smallest KL distance,
i.e., the posterior density closest to the “true” density,
was obtained for h = 0.6 and α = 0.2 with a value of
0.6322. With the adaptive α, the smallest KL distance
was 0.7028 for h = 0.6. The Gaussian mixture filter, i.e.,
α = 1 achieved its minimum KL distance at 0.8238 for
h = 0.9.

Tables 1 and 3 confirm what we discussed in Section
3, as α increases the precision of the filter increases until
α becomes too large and the filter collapses due to the
dimensionality of the problem. From Table 1, we see
that for the smallest values of α where the mean value
is greater than one, the standard deviation is high. The
reason is that the filter is unstable, i.e., some of the runs
converge and some diverge.

The adaptive α was constructed in such a way that
a collapse is impossible, and this is reflected in the
standard deviations in Table 4.

While the adaptive Gaussian mixture filter seems to
slightly improve upon the Gaussian mixture filter, both
these methods are superior to the standard EnKF which
produced a Kullback–Leibler distance of 6.6986.

From the results, we see that with the new parameter
α, both fixed and adaptive, we are able to produce good
results with a smaller h than the Gaussian mixture filter
(α = 1), where we had to keep h as large as 0.9 in order
to avoid divergence.

5 Summary

In this paper, we have tried to combine on a sliding
scale the EnKF and particle filters. We have shown
in numerical examples that the optimal filter, in the
RMSE and KL sense, lies somewhere in between.

We added a new parameter to the Gaussian mixture
filter and saw that if we add model noise in the forward
run, we are able to completely recover the behavior
of the particles in the SIR filter (α = 1, h = 0) and by
adding measurement noise in the update step, the filter
is reduced to the ordinary EnKF (α = 0, h = 1). The
proposed filter can therefore be viewed as a synthesis of
the particle filter and the EnKF. By making the tuning

parameter, α, adaptive, the relative influence of both
the methods at each time point is determined by the
data.

The main limitation of the EnKF is its inability to es-
timate non-Gaussian posterior distributions. In Section
2.2 and 2.3, we discussed alternative filters to solve this
problem in terms of sequential Monte Carlo methods.
Although these methods are consistent, their estimates
rely on importance weights. Unless the sample size
grows exponentially with the dimension of the system,
the largest importance weight converges to one in prob-
ability causing the filter to collapse [3].

To solve the curse of dimensionality problem, a
Gaussian mixture approximation of the state distribu-
tion was made in Section 2.4 [12]. The covariance of
the distribution, determining the size of the Kalman up-
date, depends on a bandwidth parameter h. By increas-
ing h, thereby making the assumption of a large model
error, the Kalman update increased and the importance
weights become more equal; hence, the filter behavior
is closer to the EnKF.

We saw in the Bernoulli example that the posterior
densities from the Gaussian mixture filter became too
symmetric for large values of h. We therefore intro-
duced a new parameter α to the Gaussian mixture filter.
The idea behind α was to use smaller values for h and
at the same time avoid filter divergence due to collapse
of the weights. This was verified with the Lorenz40
model, where the filter showed good performance for
h as small as 0.5. In comparison, with α = 1, the filter
converged only for h = 0.9 and 1.

Instead of trying to find an optimal fixed α, we
decided to let α adapt to the data at each assimilation
time via the estimated effective sample size, hence the
name adaptive Gaussian mixture filter.

The advantage of the adaptive α is the computational
time saved by running the filter only once, not having to
test for different values of α. The second advantage is
the fact that the adaptive α changes in time making it
possible to increase the precision of the filter as more
observations become available.

In addition, an adaptive tuning parameter also adjust
to an increased number of observations which may ease
the problem and thereby allow more influence from the
particle filter part.
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We showed that a filter degeneracy due to collapse
of the weights was avoided as the estimated effective
ensemble size was always above 80% with the adaptive
α. Thus, we have reduced variance of the filter by
introducing bias.

However, to make this filter as efficient as the EnKF,
we need to find a good way of choosing the design pa-
rameter h. Also, in order to conclude that this method
improves the EnKF for high-dimensional filtering, we
need to apply it to models where the dimension of the
problem is much larger than the ensemble size. In the
Lorenz40 example, we have a linear relation between
the measurements and all the states as we observe all
the states. The linear Kalman update will in this case
give a good, although not correct, approximation of the
state of the system. For nonlinear models where we do
not observe all the states, the effect of a small linear
update could be even more significant. Since Gaussian
mixture filters include a resampling step, the results will
be affected by how often resampling is performed. In
our work, we resampled when the estimated effective
ensemble size was below a threshold Nc which was
fixed. It is also possible to resampling at fixed time
instances. All the above will be investigated in future
work.
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Appendix A: A low rank decomposition
of the covariance matrices

For high-dimensional systems, we need a low-rank de-
composition of �t at each time t as calculations in-
volving the associated full size matrix is impossible.
Following [12], we decompose �0 as 
0�0


T
0 in such a

way that �0 is a full rank square matrix with


0 = 	0�

�0 = (�T−1�)−1,

where 	0 is the vector of particles 	0 = [x1
0 . . . , xN

0 ], is
a diagonal matrix with the weights, and � is a N×N − 1
matrix of the form

� =
[
�N−1

0

]
− 1

N
1N1T

N−1,

where 1N is an N dimensional vector of ones. The �

matrix has zero columns sum and rank N − 1.
The prediction step consists of running each particle

forward in time. The covariance matrix �t is updated so
that the new Gaussian mixture approximation naturally
follows from the dynamics of the system. As in the
EnKF, the forward integration of the model is used to
represent �t to avoid linearization of the model,

�t = Mt(	̂t−1)��t−1�
TMT

t (	̂t−1) + �t

= [Mt(x̂1
t−1) . . .Mt(x̂N

t−1)]��t−1�
T

× [Mt(x̂1
t−1) . . .Mt(xN

t−1)]T + �t

= 	t��t−1�
T	T

t + �t = 
t�t−1

T
t + �t.

In order to keep the 
�
T decomposition, we also need
a low rank approximation of �t. This can be done by an
ensemble representation.

The expression for the posterior covariance given by
Eq. 2.15 can be decomposed into 
̃t�t
̃

T
t [12], where


̃t = 	̃t� (A.1)

�−1
t = �T

t �̄
−1
t �t, (A.2)

�̄t = [�t−1 + (�t
t)
T�−1

t �t
t]−1, (A.3)

�t = �N−1 + �̄t(�t
t)
T�−1

t [yt − �tx1
t , . . . , yt − �txN

t ]�.

(A.4)

Appendix B: Algorithm for the adaptive Gaussian
mixture filter

Initialization t = 0

Select h and Nc.

� =
[
�N−1

0

]
− 1

N 1N1T
N−1.

Define 	0 by x̂i
0, i = 1 . . . N.


̂0 = 	̂0�.
wi

0 = N−1, i = 1 . . . N
w0 = (wi

0)
N
i=1.

0 = diag(w01T).
�0 = (

�T−1
o �

)−1.
�̂0 = h2
̂0�0
̂

T
0 .
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Evolution t ≥ 1

	t = M(	̂t−1).

t = 	t�.
�t = 
t�t−1


T
t .

�t = �t�t�
T
t + �t.

�t = �t�
T
t �−1.

	̃t = 	t + �t
(
yt1 − �t	t

)
.


̃t = 	̃t�.
�̄t = [�t−1 + (�t
t)

T�−1
t �t
t]−1.

�t = �N−1 + �̄t(�t
t)
T�−1

t [yt1 − �t	t]�.

�t = (
�T

t �̄
−1
t �t

)−1
.

�̃t = 
̃t�t
̃
T
t .

w̄i
t = wi

t−1�(yt − �txi
t, ��), i = 1 . . . N.

wi
t = w̄i

t∑N
j=1 w̄

j
t
, i = 1 . . . N.

N̂eff = 1∑N
i=1(w

i
t)

2 .

α = N̂eff N−1.
wi

t = αwi
t + (1 − α)N−1.

if N̂eff < Nc then
I = (1 . . . N).
wt = (wi

t)
N
i=1

J = randsample
(
I, wt, replace = TRUE

)
.

ξ i
t ∼ N (0, 1), i = 1 . . . N.

x̂i
t = x̃ j(i)

t + �̃
1/2
t ξ i

t , i = 1 . . . N
�t = �0.

̂t = 	̂t�.
�̂t = h2
̂t�t
̂

T
t .

else
	̂t = 	̃t.
�̂t = �̃t.
end if

t = t + 1.
The randsample function samples a new set of indices
from the set 1 . . . N with replacement such that P( j =
i) = wi. This corresponds to sampling integers from a
multinomial distribution.
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