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Abstract 

The potential to visualize and analyse geological outcrops in a 3D environment has 
made terrestrial laser scanning (TLS) a standard method in geological field studies. 
Lidar models can be integrated with high resolution photographs to generate photo-
realistic 3D models, also referred to as virtual outcrop models (VOMs) in geological 
applications. However, the extraction of mineralogy and geochemical variations from 
VOMs is limited to the visible light of the photographs and to the single spectral band 
provided by the laser sensor. Imaging spectrometry applied from airborne and 
spaceborne platforms is an established method for the regional mapping of 
mineralogy and lithology, utilising the interaction of solar radiation with the Earth’s 
surface. Many minerals and rocks can be mapped and analysed in a non-contact 
manner by utilizing their diagnostic absorption properties within the visible and 
particularly within the infrared spectral range. 

The aim of this research is to apply imaging spectrometry with a ground-based 
instrument to enable mineralogical and lithological analysis of near-vertical outcrop 
sections. The terms ground-based and close-range are used to indicate a near-
horizontal setup, as opposed to the nadir view found in airborne and spaceborne 
applications. A workflow has been developed to integrate hyperspectral 
classifications with 3D lidar models, to compliment VOMs with reliable information 
about the mineralogy and geochemical variations in the outcrop. The workflow 
includes data acquisition, spectral and photogrammetric processing of the 
hyperspectral images, data integration and classifying VOMs utilising hyperspectral 
image products. A newly developed hyperspectral imager designed as a compact and 
lightweight instrument, and therefore practical for field applications, has been used. 
The HySpex SWIR-320m sensor operates within the short wave infrared light 
(SWIR) with a spectral range between 1.3-2.5 μm. 

The spectral data were processed with methods primarily developed for airborne and 
spaceborne applications. All images showed a significant amount of image artefacts, 
mainly related to the irregular illumination-viewing geometry and bad pixels. While 
image nonuniformities such as bad pixels are a common problem in pushbroom 
scanning, other artefacts such as intensity gradients in along-track direction are 
exacerbated by the close-range scanning and panoramic image geometry. Applying 
different nonuniformity corrections, image artefacts were minimized but could not be 
completely removed. For materials with 50% reflectance a signal to noise ratio better 
than 70:1 was achieved. Atmospheric corrections were performed utilising an 
Empirical Line correction, based on two reference spectra measured from calibrated 
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Spectralon panels which were placed in the image scene. Due to a restricted view of 
the upper hemisphere in close-range scanning, the obtained reflectance values need to 
be considered as conic-directional reflectance. To separate and remove image noise 
Maximum Noise Fraction transform was applied. Spectral classification and mapping 
was performed using different approaches including band ratios, Spectral Angle 
Mapping, Spectral Feature Fitting and Mixture Tuned Match Filtering. Based on a 
cylindrical camera model, VOMs could be integrated and textured with hyperspectral 
image products with an accuracy of one image pixel. 

Two case studies from different geological settings were carried out, to demonstrate 
how close-range hyperspectral imaging can help improve the analysis of vertical 
outcrops. In the Pozalagua quarry (Spain), hydrothermal dolomitized limestone of 
Cretaceous platform-slope carbonates have been spectrally mapped. Despite very 
similar chemical and spectral properties, different dolomite and limestone types, as 
well as calcite could be distinguished and mapped in the outcrop. Spectral differences 
of two main dolomite types could be related to different manganese and iron contents, 
as confirmed by chemical analysis. Although detailed spectral analysis was disturbed 
by surface weathering products, dolomite and limestone were also mapped on 
weathered surfaces. A limestone unit initially missed by conventional field 
observations, due to similar visual appearance compared to the surrounding 
carbonates, was clearly identified and mapped by spectral means. The second field 
area was Garley canyon (Utah, USA), where a shallow marine, shoreface succession 
was studied. Carbonate and clay abundances were determined to map and quantify 
carbonate concretions, and to map siltstone and sandstone in the outcrop. Carbonate 
concretions have implications for reducing porosity and permeability in shallow 
marine sandstones. 

Results show that close-range imaging spectrometry can provide reliable qualitative 
and quantitative information about the mineral-chemical composition of exposed 
surfaces. Further research is required to improve the nonuniformity, atmospheric and 
topographic correction of the spectral images and to adjust the processing to the 
close-range scanning and image geometry. However, the method can be adapted to 
other applications in which the collection and analysis of chemical surface 
composition and geometric information is required, such as in mining, building 
damage assessment or in forestry for canopy analysis. With an increased availability 
of lightweight hyperspectral imagers it is expected that close-range imaging 
spectrometry will become a sub-discipline in remote sensing, and a standard method 
in field-based geoscience studies. 
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Preface 
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Outcrop Geology (VOG) project at CIPR, with additional support from the 

“Paleokarst in Reservoirs” project. 

The VOG project was established to develop and utilise novel quantitative, digital 

data collection techniques for geological outcrop studies, applicable to analogue 

studies of hydrocarbon reservoirs and aquifers. Terrestrial laser scanning (TLS), also 

known as lidar, has become a standard technique to capture the geometry of 

geological outcrops efficiently and with a high accuracy. However, the identification 

and the mapping of mineralogy from the lidar data are limited. This research develops 

a workflow to apply close-range hyperspectral imaging. The hyperspectral imagery is 

integrated with terrestrial lidar models to ultimately improve the mapping and 

quantitative analysis of the mineralogy in geological outcrop studies. A recently 

developed hyperspectral imager is used which is practicable for field applications. 

This cross-discipline research includes spectral analysis, image processing and 

geological outcrop mapping and interpretation as well as 3D modelling and 

photogrammetric processing. 
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David W. and Swennen, Rudy  
Accepted by Sedimentology (Note: main revisions are incorporated, but final 
text editing was not completed prior to submission of this thesis) 

Structure of the thesis 

This thesis is structured as a “cumulative work” in which the bulk of the research has 

been authored as scientific articles for peer-reviewed international journals. The 

introductory section outlines the motivation of the research and provides an 

introduction into the physical concepts of imaging spectrometry and lidar scanning. 

This part also includes the presentation of the instrumentation. Subsequently, the four 

scientific articles are presented as separate and complementary parts. Since the 

research articles have been written as stand-alone journal publications, a small 

amount of overlapping and repetition appears between the main sections. Paper 1 

introduces ground-based hyperspectral imaging and describes the workflow to apply 

ground-based hyperspectral and lidar scanning for geological outcrop studies with a 

focus on the spectral image processing. Paper 2 assesses the photogrammetric model 

required to precisely integrate the spectral images and lidar scans, and investigates 

the photogrammetric performance of this data fusion for geological applications. In 
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Paper 3, two case studies are used, one in carbonates and the second in siliciclastic 

sediments, to illustrate the potential of ground-based hyperspectral imaging for 

geological outcrop studies. In Paper 4 ground-based hyperspectral imaging is applied 

to the Pozalagua quarry (Spain), to map and quantify different mineral fabrics and 

other sedimentary products in a carbonate environment. The concluding section 

discusses the main results of the study and gives an outlook for further required 

research. 

Authorship statement 
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was processed in cooperation with Simon Buckley. John Howell assisted with 

detailed knowledge about the regional geology in Utah, helped choose the scanning 

locations in Utah, and supervised the geological interpretation of the results. 

• Paper 2: Kurz, Tobias H., Buckley, Simon J., Howell, John A., and Schneider, Danilo: Integration of 

panoramic hyperspectral imaging with terrestrial lidar data. Submitted to The 

Photogrammetric Record 

I am responsible for the processing and analysis of the hyperspectral data and for 

preparing and writing the manuscript. Simon Buckley processed the lidar data. Data 
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Important definitions 

Some terminology is used by different research communities with a slightly different 

meaning because an official definition is lacking. Other terms are well known and 

used by a specific research community but might be widely unknown in other 

disciplines. Since this thesis covers cross-discipline issues, relevant “key-terms” are 

briefly described and defined in the context of this work. 

Reflectance nomenclature and terminology 

Schaepman-Strub et al. (2006) noted a source of error and uncertainty in analysing 

reflectance quantities, due to an ambiguous or erroneous usage of reflectance 

terminology. The physically-based nomenclature and terminology used to describe 

reflectance problems were proposed by Nicodemus et al. (1977). One of the essential 

quantities in remote sensing is reflectance, defined as the ratio between incident and 

backscattered radiance. However, reflectance can also express different quantities 

depending on the incident and reflected beam configuration. Three general beam 

geometries are distinguished: directional, conical and hemispherical (Schaepman-

Strub et al., 2006). To specify a reflectance quantity, the geometry of the incoming 

radiance is named at first, followed by the geometry of the reflected radiance for 

example hemispherical-directional reflectance. Identical incident and reflected beam 

geometry is expressed by the prefix “bi“, for example bidirectional. The reflectance 

terminology was adapted to remote sensing applications by Martonchik et al. (2000), 

who involved diffuse and direct sky illumination. The beam geometry corresponds to 

the amount of directional and diffuse radiation received and backscattered by a 

ground pixel. The bihemispherical reflectance is also referred to as albedo. Some 

authors also use the term albedo to describe directional-hemispherical and conical-

hemispherical reflectance. Bidirectional reflectance is required to estimate the so 

called bidirectional reflectance distribution function (BRDF) which is used as a 

common concept to describe the reflection behaviour of non-lambertian surfaces 

(Nicodemus et al., 1977). 
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Close-range / terrestrial / ground-based 

The terms close-range, terrestrial and ground-based are used in this work as 

synonyms, to express that the scanning is applied with instruments mounted on a 

tripod, and to distinguish from airborne and spaceborne applications. Whereas the 

photogrammetric and geomatics communities uses close-range or terrestrial in 

contrast to airborne/spaceborne applications, the remote sensing community uses the 

terms terrestrial and extraterrestrial to distinguish between observations of the earth 

from observations of other space objects. 

Hyperspectral imaging 

Although the terms imaging spectrometry, imaging spectroscopy and hyperspectral 

imaging have by direct translation a slightly different meaning (spectrometry – 

“measuring”, spectroscopy – “observing”, hyperspectral – “many bands”), they are 

used as synonyms in the remote sensing community and also in this work. The term 

imaging spectrometry was introduce by Goetz et al. (1985) to emphasize that spectral 

data in the form of complete and continuous spectral curves are used, which are 

comparable to laboratory spectra and allow the measurement and analysis of single 

absorption features. Absorption features are also referred to as absorption bands. This 

enables data analysis by deterministic rather than statistical approaches. 

Laser scanning / lidar 

Laser scanning is also known as lidar (also written as LIDAR or LiDAR) and is the 

acronym for light detection and ranging. Laser and lidar scanning are used as 

synonyms in this work. Some authors use also the term laser radar or the acronyms 

ladar or LADAR (laser detection and ranging) for laser scanning. However, laser 

scanning and radar (radio detection and ranging) should be distinguished since both 

approaches uses different frequencies of electromagnetic radiation, which result in 

different properties of these methods. Laser uses frequencies between c. 1012 -

 1016 Hz which equates to wavelength between c. 0.05-30 �m (ultraviolet to infrared 

light). Radar instead utilises microwaves and radio waves with frequencies between 
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c. 108 - 1011 Hz which equates to wavelength between c. 0.01-10 m. The terms laser 

radar or ladar are not used in this work. 

Outcrop 

In geological field studies, rock exposures that allow geological observation, 

measurement and analysis are referred to as outcrops. Excellent conditions are 

preferred, meaning that in general the locations are free of soil and vegetation 

coverage, and that observations are not contaminated by weathered crust. The 

dimensions of the outcrop have to match the study purpose and can vary from metre-

scale to tens or even hundreds of kilometres. Outcrops can be either vertically or 

horizontally oriented; however, for detailed field studies the bulk of outcrops are 

vertical cliff sections. 

Texturing / texture mapping 

In this work texturing (also known as texture mapping) is used in a photogrammetric 

or computer graphics context. Texturing is performed when a 2D image, for example 

a photograph, is integrated with a digital 3D model. The images are draped onto the 

surfaces resulting in coloured 3D models. In GIS and remote sensing applications, 

texture often refers to the pattern of an object, for example to distinguish roofing 

materials by different image patterns. Texture in a geologic-petrographic context 

refers to the geometric aspects amongst the component particles or crystal grains of a 

rock. 

VIS / NIR / SWIR / VNIR 

The classification of the electromagnetic spectrum on the basis of wavelength (or 

frequency) is not standardised. In this work the reflected part (0.4-3 μm) of the solar 

radiation which encompasses the relevant spectra in this work is subdivided as 

follows (see Fig 1 in the Introduction): visible light (VIS): 0.4-0.74 μm; near infrared 

(NIR): 0.74-1.4 μm; short wave infrared (SWIR): 1.4-3.0 μm. The abbreviation VNIR 

summarised the visible and near infrared spectral range. Other common subdivisions 

of infrared light refers to near infrared (NIR) 0.7-3.0 μm, mid infrared (MIR) 3.0-
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30 μm, and far infrared (FIR) 30-1000 μm. Infrared light with a wavelength greater 

than 3 μm is mainly emitted instead of reflected and is therefore referred to as 

thermal infrared (TIR). 
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Abbreviations 

3D / 2D three dimensional / two dimensional 

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 

AVIRIS Airborne Visible Infrared Imaging Spectrometer 

CASI  Compact Airborne Spectrographic Imager 

CCD  charge coupled device 

CP  control point 

EL  Empirical Line correction 

ENVI Environment for Visualizing Images (processing software for spectral 
images, developed by ITT Visual Information Solutions) 

FLAASH Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes  
  (atmospheric correction module implemented in ENVI) 

FOV  field of view 

GIS  Geographical Information System 

GS  ground sample 

HyMAP Hyperspectral Mapper 

iFOV  instantaneous field of view (FOV of one CCD-element) 

IR  infrared (light) 

JHU  Johns Hopkins University 

Landsat TM Landsat Thematic Mapper 

laser  light amplification by stimulated emission of radiation 

lidar  light detection and ranging (synonym to laser scanning) 

MNF  Maximum Noise Fraction Transform 
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MTMF Mixture Tuned Matched Filtering 

NIR  near infrared (light) 

RGB  red, green, blue 

Radar Radio Detection and Ranging also Radio Aircraft Detection and Ranging 

SAM  Spectral Angle Mapper 

SFF  Spectral Feature Fitting 

SNR  signal to noise ratio 

SPOT  Satellite Pour l’Observation de la Terre 

SWIR  short wave infrared (light) 

TIR  thermal infrared (light) 

TLS  terrestrial laser scanning 

USGS  U.S. Geological Survey 

VNIR  visible and near infrared (light) 

VOM  virtual outcrop model 
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1. Introduction 
Within the geosciences, geological outcrops are commonly the focus for collecting 

geospatial data, including the measurement of geometric parameters and the mapping 

of mineralogy and lithology. Near-vertical cliff sections, which are often not 

completely accessible, provide the bulk of geological outcrops used for detailed field 

studies. Conventional field methods collect data from accessible and representative 

areas, using methods such as sedimentary logging, hand specimen description, 

photographraphy and sampling. These methods are frequently hampered by the fact 

that measurements are only possible at discrete points, and spatial correlation 

between different cliff sections is difficult. Furthermore, large geometric structures 

are challenging to access. Geochemical properties of the mineralogy and lithology are 

limited to macroscopic observations in the field and for more detailed analysis, 

specimens need to be analysed by laboratory methods, which is time consuming and 

expensive. Using conventional field methods, the evaluation of large outcrops (which 

may be kilometres in extent) is costly and the correlation and visualisation of 

different data types is challenging. 

Field-based geoscience studies have been significantly enhanced by new digital 

spatial data collection technology, which provides a more efficient means of data 

collection, analysis and visualisation than conventional geological mapping 

(McCaffrey et al., 2005). Using these techniques, the integration of different data 

types has been facilitated, in a more quantitative manner, and with high accuracy. 

1.1. Current state of research 

A number of different approaches have been developed to enable the collection of 

geospatial data in a non-contact manner, primarily from airborne or spaceborne 

platforms. Airborne laser scanning has become an alternative to in-situ surveying and 

aerial photogrammetric techniques are used for obtaining elevation data in an 

accurate and efficient manner (e.g. Axelsson, 1999). In this method, the time delay 

between an emitted and backscattered laser beam is utilized for range measurements 
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(Heritage and Large, 2009), and an angular component allows the determination of 

3D point coordinates. By collecting a high number of points, complex surfaces can be 

modelled. Applied from aircrafts, lidar technology is utilised to represent the 

topography of the Earth surface as digital elevation models with high resolution 

(Wehr and Lohr, 1999). 

For near-vertical surfaces, terrestrial laser scanning using a close range instrument 

setting has been developed, and is used in many engineering, industrial and cultural 

heritage applications (Fröhlich and Mettenleiter, 2004; Slob and Hack, 2004). 

Applied to geoscience problems, terrestrial laser scanning has become a key 

development for geological field studies (Bellian et al., 2005; McCaffrey et al., 2005; 

Buckley et al., 2008). This method allows the shape and form of vertical outcrops to 

be captured as digital 3D models in an efficient and very accurate manner. To 

enhance the interpretability, in many geological applications terrestrial laser scanning 

systems are equipped with a high resolution digital camera to allow colouring and 

texturing of the lidar derived 3D models with photographs (Bellian et al., 2005; 

Buckley et al., 2008). The resulting photo-realistic 3D models, also termed virtual 

outcrop models (VOMs), allow accurate geometric measurements to be made, and 

provide a platform for visualisation and spatial correlation. Ancillary data, such as 

sedimentary logs, can also be integrated (Bellian et al., 2005; Enge et al., 2007; 

Buckley et al., 2010). While lidar data provide accurate geometric information, the 

extraction of the mineralogy and lithology is limited to the single spectral band 

provided by the laser and the visible light of the photographs. Adequate methods to 

complement VOMs with reliable geochemical information in a non-contact manner, 

allowing the analysis of complex surface compositions, have not yet been developed. 

Remote sensing systems measure electromagnetic radiation, utilising the passive solar 

illumination as an energy source. In geology this has been used for regional mapping 

of mineralogy and lithology, either from airborne or spaceborne platforms. This 

method is applied to many different geological problems for instance in 

geomorphologic and landform studies (Short and Blair, 1986), structural and 

deformation analysis (Kurz et al., 2007), mineral (Debba et al., 2009) and 
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hydrocarbon (Berger, 1994) exploration or environmental studies (van der Werff et 

al., 2008). 

For reflectance spectroscopy, the solar reflection range with wavelength between 0.3-

2.5 �m is measured, which is largely transmitted through the atmosphere. Earth 

observers such as Landsat TM, ASTER or SPOT collect a relatively small number of 

broad (commonly 100-200 nm wide) often discontinuous spectral bands. Since these 

imagers have a relatively low spectral resolution, resulting in smoothed reflectance 

characteristics of the surface, they are also termed multispectral sensors (Fig 1). 

Instead, modern hyperspectral sensors such as AVIRIS, CASI, HyMAP (airborne) or 

Hyperion (spaceborne) acquire up to hundreds of very narrow spectral bands, usually 

between 5-15 nm wide, which results in near-continuous spectral curves for each 

image pixel (Fig 1). Since many earth surface materials have diagnostic absorption 

features that are 20-40 nm wide (Hunt, 1980; Clark et al., 1990), the high spectral 

resolution provided by hyperspectral sensors allows detailed analysis of reflectance 

properties. Using hyperspectral data, imaging spectrometry (Goetz et al., 1985) can 

be applied, enabling the application of more deterministic approaches, sub-pixel 

fractions, and a generally more quantitative approach to analysing surface 

composition. 

Imaging spectrometry from airborne/spaceborne platforms is an established method 

and has been applied to many geological problems. Since the amount of literature is 

extensive only a few examples, mostly related to sediments, are given. Bowen et al. 

(2007) analysed fluid-flow pathways in altered Navajo sandstone (Utah) by mapping 

variations of iron oxides, carbonate and clay content using HyMap data and spectral 

measurements from the ground. Harris et al. (2005) applied Minimum Noise Fraction 

(MNF) transformed image products, derived from airborne hyperspectral data, for 

regional mapping of gneissic-granitoid basement, sandstones and volcanic rocks in 

northern Canada. Leverington (2010) compared the results of regional geological 

mapping in an arctic environment (Melville Island, Canada) derived from Landsat 

and Hyperion data, which differ in spectral and spatial resolutions. In that study, in 

addition to bedrocks, sandstone, mudstone and limestone units were spectrally 
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separated. Windeler and Lyon (1991) classified limestone and hydrothermal dolomite 

from airborne imagery. Due to the presence of a host of minerals with well 

understood spectral properties including carbonate and clay minerals, the Cuprite area 

(Nevada, US) has been utilised by various authors (e.g. Kruse et al., 1990; Chen et 

al., 2010) as a test site for evaluating sensor calibrations and spectral mapping 

methods. 

 

 
Fig 1 Spectral range and resolution of the Landsat, AVIRIS, HySpex SWIR-320m sensors and 
conventional photographs. The effect of the spectral resolution for mineral and rock analysis is 
illustrated by four spectral curves from the USGS spectral library (Clark et al., 1993) and the JHU 
spectral library (www1; Baldridge et al., 2009). 
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1.2. Objectives 

The aim of this study is to apply imaging spectrometry with a close-range instrument, 

to enable data acquisition and analysis from near-vertical outcrops, ultimately to 

complement 3D models derived from terrestrial lidar data with reliable geochemical 

information. The HySpex SWIR-320m sensor, developed recently by Norsk Elektro 

Optikk AS is used. This instrument operates solely in the infrared wavelength range 

of 1.3-2.5 �m. The main objectives of this work are: 

1. Evaluate the potential of close-range hyperspectral imaging for geological 

outcrop studies. 

2. Assess instrumentation and scan configuration suitable for geological field 

applications. 

3. Evaluate the photogrammetric performance of the HySpex SWIR-320m 

camera in close-range geological field applications. 

4. Integrate close-range hyperspectral imaging with terrestrial lidar models in a 

photogrammetric correct manner. 

5. Apply close-range hyperspectral imaging to geological case studies with 

different geological environments. 

1.3. Terrestrial laser scanning in geosciences  

The benefits provided by an integrated data collection of field data with TLS are used 

in a number of applications in geosciences. To improve the understanding of 

erosional processes TLS has been utilized for monitoring coastal cliff evolution (Lim 

et al., 2005) and landslides (Rowlands et al., 2003). Fault and fracture analysis from 

terrestrial lidar data are demonstrated by Olariu et al. (2008). Milan (2009) 

determines grain sizes of gravel-beds from TLS to extract surface roughness and 

topography data which are required to model and predict flow mechanics of gravel-

bed rivers in a more accurate way. Another field in which TLS has been successfully 
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applied is the analysis of stratigraphic evolution and geometric architecture of 

sediment systems (Phelps et al., 2008; Enge et al., 2010). 

Although the generation of VOMs from TLS is briefly described in Paper 1, two 

major processing steps are shown in figure 2. After multiple lidar scans have been 

registered to a common coordinate system, the lidar point cloud is meshed by 

triangulation to reconstruct the 3D surface. The imagery can be registered to the lidar 

coordinate system in an automatic manner since the camera is rigidly mounted to the 

laser scanner. Thus the orientation of the imagery is known. Applying the collinearity 

condition for frame images (Luhmann et al., 2006), the triangulated lidar surfaces can 

be textured and coloured with the photographs. 

In petroleum geology, VOMs are frequently used in reservoir analogue studies, for 

building models that give a geometric component in analysing fluid flow and seismic 

wave propagation through subsurface reservoirs and aquifers (Pringle et al., 2006). 

Since subsurface data is limited to seismic and drill core data which cannot represent 

the full geological heterogeneity of subsurface reservoirs, the prediction of fluid flow 

behaviour is hampered. Surface outcrops are therefore used as reservoir analogues 

which provide the analysis and quantifications of geometric and mineralogical 

properties influencing heterogeneities and fluid flow in more detail (Alexander, 

1992). Enge et al. (2007) present a workflow for generating geocellular models form 

VOMs, which are than used to simulate fluid flow through the model to understand 

how it would behave as a reservoir. 
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Fig 2 Main processing stages to create a photorealistic lidar model; a: lidar point cloud; 
b: triangulated (meshed) and decimated point cloud; c: triangulated surface textured with 
photographs (from Buckley et al., 2008). 

1.4. Imaging spectrometry 

To extract useful geological information from reflected radiation, the nature and the 

way electromagnetic radiation interacts with matter needs to be understood. Hunt 

(1980) gives an excellent introduction to the physical concepts and principles for 

remote sensing purposes, with a focus on the origin of spectral signatures of minerals. 

Details of radiative transfer theories, which provide physical and analytical 

descriptions of scattering, transmittance, absorption and emission processes can be 

found in Hapke (1981; 1993) and Thomas and Stamnes (2002). In the following 

section, a brief introduction to the physical principles and concepts of imaging 

spectrometry in remote sensing applications is given, which may be helpful for a 

better understanding of the strengths and limitations of this method. 

While the wave nature of electromagnetic energy can be described by Maxwell’s 

electromagnetic wave theory, the particulate nature of electromagnetic energy is 

explained by modern quantum theory based on the Schrodinger wave equations. The 
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quantum theory is based on the principle that energy is transmitted as indivisible 

packets referred to as quanta or photons. Spectral sensors collecting the number of 

photons per wavelength emitted by the material contained within a ground pixel. The 

number of photons can be transformed into radiance, which expresses the emitted 

energy per unit of time in a specific direction by a unit of area, measured in watt per 

steradian per square metre (W sr-1 m-2). In spectrometry, the reflectance is commonly 

the desired quantity determined by calculating the ratio of the irradiance (incident 

radiance) and backscattered radiance. 

1.4.1. Origin of absorption features 

The origin of absorption bands in minerals observable in reflectance spectra can be 

explained by quantum mechanical concepts. The following discussion is based on 

Hunt (1980). Isolated atoms or ions have discrete energy states. A change of the 

energy state is referred to as transition. If a photon of a specific wavelength is 

absorbed or emitted, the energy state is changed. Absorption results in a higher 

energy state and emission in a lower energy state. Since an absorbed photon of a 

specific wavelength is usually not emitted at the same wavelength, absorption bands 

can be generated. Absorption bands within the visible and reflected infrared light are 

related to electronic and vibrational processes within the crystal lattice. Electronic 

transition processes require more energy; hence they occur mainly at shorter 

wavelengths within the VIS and NIR spectrum, and give rise to broad absorption 

features. Electronic processes in solids are discussed in more detail by Burns (1993a, 

b). Vibrational processes take place within the infrared spectra (NIR, SWIR and 

thermal) and result typically in small and sharp absorption bands. Details on 

vibrational processes in minerals can be found in Farmer (1974) and Gaffey et al. 

(1993). The position and shape (depth, width and asymmetry) of an absorption 

feature are controlled primarily by the kind of absorbing ion or molecule and its 

position within the crystal lattice (e.g. octahedral, tetrahedral site). But also the kind 

of chemical bond and the elements involved in the bond influence the position and 

shape of the absorption feature. 
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Electronic processes 

In minerals, electronic transition processes yielding absorption features are related to 

crystal field effects, conduction bands, charge transfer transition and colour centres. 

Which processes take effect depends on the chemical bond and the involved 

elements. Crystal field effects are typically associated with transition metal ions such 

as Cu, Ni, Co, Mn, Cr, Ti, and particularly Fe, which split and displace the energy of 

the unfilled d orbitals of the isolated atoms into new energy levels, by interaction 

with the surrounding crystal field. Transitions between these new energy levels are 

primarily determined by the valence (oxidation) state of the ion (for example Fe2+ or 

Fe3+), its coordination number and site symmetry (octahedral, tetrahedral) and 

secondarily by the type of the connected ligand (for example metal-oxygen), the 

extent of distortion of the metal ion site and the metal-legand interatomic distance. 

Rhodochrosite (MnCO3) is an example where absorption features in the VIS spectra 

appear due to manganese and crystal field effects (Hunt and Salisbury, 1971). Since 

iron is a common substitute element and its bonding in a crystal lattice is very active 

within the VIS, NIR and SWIR spectra, even with low iron concentrations, iron 

absorption occurs (and is often dominating) in many earth materials. 

Some minerals behave as semiconductors, and display properties which are 

intermediate between those of metals and dielectrics. In such materials conduction 

bands can be responsible for sharp absorption features. Conduction bands refer to 

higher energy levels allowing electrons a free movement throughout the crystal lattice 

whereas valence bands represent lower energy levels where electrons are attached to 

individual atoms. Conduction and valence bands are divided by the forbidden band 

(also called forbidden gap), a zone of energies which the electrons may not adopt. 

Absorption occurs when photons have sufficient energy to excite electrons across the 

forbidden band. Many sulphides show absorption features related to conduction 

bands. 

Charge transfer transition refers to the specific case where electrons migrate between 

neighbouring ions without entering the conduction band, and occurs often when metal 

ions with different oxidation states are present in a mineral. In general, absorption 
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caused by charge transfer is much stronger (hundreds to thousands of times) than 

absorption by crystal field effects (Burns, 1993b). The absorption maxima usually 

occur in the ultraviolet spectra, although the absorption edges may extend into the 

VIS spectra. Reddish colours of iron oxides and hydroxides are related to charge 

transfer absorption. 

Colour centres are related to the irradiation of an imperfect crystal. Imperfect crystals, 

caused for example by impurities, can create discrete energy levels. Photon energy 

can move electrons into the defects, resulting in a change of energy levels. Fluorites 

show typical absorption related to colour centres. 

Vibrational processes 

Oscillating small displacements of atoms in a crystal lattice or molecule can be 

understood in analogy to the oscillation of a spring with attached weights (Clark, 

1999). The oscillation frequency of a spring depends on the strength of the spring and 

the mass of the weights. Analogously, the vibration frequency in a crystal lattice is 

determined by the bond in the molecule and the mass of each element in the 

molecule. For molecules with N atoms, 3N-6 independent types of vibration are 

possible and referred to as fundamental vibration modes (usually labelled with � and 

a subscribed number, for example �1, �2, �3) which show different oscillation vectors 

(Clark, 1999). 

Stimulated by the fundamental vibration modes, so called overtones and combination 

tones can occur. Overtones are vibrations with frequencies which have integer 

multiplications of the fundamental frequencies (labelled and expressed for example 

by 2�1, 3�1, 2�2). Combination tones are vibrations with frequencies resulting from 

addition (or subtraction) of the fundamental frequencies (labelled and expressed for 

example by �1+�2, �2+�3, �1+�2+�3). The fundamental vibration modes and the 

associated overtones and combination tones can be considered as energy levels of the 

crystal lattice. By interaction of photons with the vibrational system, energy levels 

can be changed and absorption can occur. 
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Absorption related to fundamental vibration occurs usually at longer wavelengths 

beyond the SWIR spectra. However, diagnostic absorption features within the SWIR 

range can be generated due to overtones and combination tones for materials with 

very high fundamental frequencies. Such absorption can be observed for instance if 

carbonate ions, hydroxyl ions or water are present in a mineral. 

The fundamental vibration modes (relevant for remote sensing purposes) of a free 

carbonate ion (CO3
2+) are shown in figure 3 and table 1. 3D animations of the 

fundamental vibration motions can be examined at www1. A carbonate ion consists of 

4 atoms; consequently for N=4, 6 fundamental modes are possible. Fundamental 

vibration at c. 7 μm and c. 14 μm appear as couples. That means that in each case 

actually two vibrations with very similar frequencies and respectively with the same 

vibration modes occur. Vibration with the same mode but a slightly different 

frequency is termed doubly degenerate and results in a single absorption band, hence 

only 4 (instead of 6) fundamental vibration modes are listed for carbonate ions in the 

context of absorption. In carbonates five pronounced absorption bands appear within 

the SWIR due to overtones and combination tones (Tab 2). The exact position of 

these band centres depends on the metal ions connected to the carbonate ligand; 

hence, for example calcite (CaCO3) and dolomite (CaMg[CO3]2) can be distinguished 

due to a slight shifting of carbonate absorption features. 

 

 
Fig 3 Fundamental vibration modes with motion vectors of a free carbonate ion (CO3

2+) 
(after www1). 
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Tab 1 Fundamental vibration modes of a free carbonate ion (Hunt and Salisbury, 1971), 
considered in remote sensing applications. 
Fundamental Vibrational 

mode 
Wavelength 

(μm) 
Wave number 

(cm-1) 
comment 

�1 symmetric stretch 9.25 1080 not IR active 
�2 out-of-plane bend 11.36 880  

�3 
asymmetric 

stretch 6.99 1430 doubly degenerate 

�4 in-plane bend 13.98 715 doubly degenerate 

Tab 2 Absorption features (sorted by strength) of carbonates within the 
SWIR spectra (Hunt and Salisbury, 1971). 

Absorption 
band 

Wavelength 
(μm) 

Wave number 
(cm-1) 

Overtones / 
combination tones 

1 2.5 – 2.55 4000-3900 �1 +  2�3 
2 2.30 – 2.35 4350-4250 3�3 

3 2.12 – 2.16 4720-4330 
�1 +  2�3 +  �4 

or 
3�1 +  2�4 

4 1.97 – 2.00 5080-5000 2�1 +  2�3 
5 1.85 – 1.87 5400-5350 �1 +  3�3 

1.4.2. Spectral signatures of minerals and rocks 

The spectral signatures of minerals and rocks have been studied in detail by 

numerous authors. Hunt, Salisbury and Lanhoff present a large catalogue of mineral 

and rock spectra in a series of publications (Hunt et al., 1970-76). Libraries of digital 

spectra are provided for example by Clark et al. (1993). Hunt (1977) shows the most 

common absorption features for minerals within the VIS, NIR and SWIR ranges in a 

single diagram, sorted according to their electronic and vibrational origin (Fig 4). The 

minerals listed in figure 4 are representative examples. Absorption at similar 

positions occurs for minerals containing the absorbing ions or molecules at the same 

position within the crystal lattice. 

Rocks are composites of minerals; hence, rock spectra are compositions of individual 

spectra of its constituent minerals. In general, imaging spectrometry allows semi-

quantitative analysis of mineral abundances from rock spectra for example by 

analysing the intensity of absorption bands (Clark, 1999). However, some minerals 

such as quartz and feldspar do not possess absorption features within the measured 

spectral range (VIS, NIR, SWIR). Such minerals are referred to as featureless or 
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minerals with flat absorption, and cannot be analysed by spectrometry (within the 

featureless spectral range). Furthermore, specific minerals or an absorbing type such 

as iron ions, organic material or hydroxyl ions might dominate the rock spectra and 

hamper the identification of other constituent minerals that have less pronounced 

absorption properties. Consequently, an analysis in a petrographic manner cannot be 

obtained from rock spectra. However, in many cases a mineral (or a specific kind of 

ion or molecule such as hydroxyl ions) with a unique absorption signature can be 

correlated to a specific lithological unit which can be used to trace and map the 

lithology. Additionally, abundance and in turn spatial variation can be determined 

from the rock spectra. Common reflection features in sedimentary rocks are for 

example often related to carbonate material and hydroxyl, water or iron connected to 

clay minerals or weathering products (Hunt and Salisbury, 1976). 
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Fig 4 Spectral signature diagram from Hunt (1977). 

1.4.3 Factors influencing the spectral response 

A number of physical properties can influence and modify the spectral curve of 

minerals and rocks (Gaffey et al., 1993; Clark, 1999). However, while most of these 

factors affect the overall brightness or contrast (intensity differences) of the spectral 

curve, the position of the absorption features are not shifted. Some properties are 

recognisable in laboratory measurements, such as porosity (Hapke, 2008), but they 

might not be significant in remote sensing applications, due to low spatial resolution 

and higher noise levels. Factors such as particle size, mineral mixture, view geometry 

and surface roughness might influence spectral curves obtained from image scenes 

(Hapke, 1984; Gaffey et al., 1993). In general, the depth of an absorption feature 
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indicates the amount of light absorbed and is therefore related to the abundance of the 

absorber (Clark and Roush, 1984; Clark, 1999). However, the particle size can affect 

the absorption band intensity (Gaffey et al., 1993). In non-opaque material, the 

absorption intensity (depth of the absorption band) increases with increased grain or 

particle size, whereas the overall reflectance decreases (Clark and Roush, 1984; Clark 

et al., 2003). Larger particles provide a greater internal path - the distance radiation 

can travel through the material, where photons may be absorbed according to Beers 

Law. 

In general, four different types of spectral mixture need to be distinguished: linear, 

intimate, molecular mixture and mixing due to coating (Clark, 1999). If materials are 

optically separate and there is no multiple scattering between the components, the 

resulting spectrum will be a linear mixture (also termed as spatial mixture), whereas 

the mixed spectrum is a linear weighted sum of the individual components. Intimate 

mixture result in complex non-linear mixed spectra due to multiple scattering 

between materials which are in intimated contacts, such as grains of different 

minerals in rocks. Molecular mixture occurs on a molecular level when for instance 

liquids or liquids-solids are mixed together, and can result in band shifts. An example 

is interlayer water in montmorillonite. In spectra mixed due to coating, each coat acts 

as a scattering-transmittance layer, with different optical thickness and material-

dependent absorption properties. 

 If spatial separation of different materials can be assumed, and if the spectrum of 

each component is known (end-member spectra), the fraction of each component 

present in a pixel can be determined by linear spectral unmixing algorithms. An 

overview about the concepts and the application of spectral unmixing can be found in 

Adams et al. (1993), Ichoku & Karnieli (1996) and Keshava & Mustard (2002). 

1.4.4. Analysis of absorption features 

The wavelength position, the depth and shape of an absorption feature, cannot be 

directly analysed from the reflectance curve (Clark and Roush, 1984). Before the 

analysis can be performed, the absorption features need to be isolated from other 
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effects (Clark et al., 2003; van der Meer, 2004). For example strong atmospheric 

absorption features often affect adjacent parts of the reflection curve which becomes 

visible as slopes within the spectra. Hence, absorption features situated within such a 

slope are distorted (see absorption feature at 1.8 μm in Fig 5). 

Absorption in a spectrum consists of two components, the continuum and individual 

features. The continuum is the background or overall reflectance and can be 

determined by fitting a convex hull at the top of the spectrum, connecting local 

maxima (Fig 5). To remove the continuum, the original spectrum is divided by the 

continuum curve. Consequently, the resulted continuum removed spectrum is 

normalized to one. Detailed analysis of absorption features, such as the determination 

of the position, the absorption depth and the shape, are performed using continuum 

removed spectra. Spectral feature fitting approaches used for spectral mapping or to 

compare measured spectra with library spectra (Clark et al., 1991; Clark et al., 2003) 

are based on continuum removed pixel spectra. 

 

 
Fig 5 Extraction and analysis of absorption features based on 
continuum removed spectra (from van der Meer, 2004). 
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1.4.5. Interaction with atmosphere and adjacencies 

In remote sensing applications, the intrinsic radiance of a ground sample (GS) 

measured by the sensor is influenced by a number of effects. The measured at-sensor 

radiance is a “mixed-signal” consisting of the directional intrinsic radiance of a GS 

and additional radiance received by scattering with atmospheric gases and the 

surrounding area (see Fig 1 in Paper 1). Atmospheric and topographic effects have to 

be removed to allow quantitative evaluation of remote sensing data (Gao et al., 2009). 

Imaging spectrometry in remote sensing applications utilises solar energy as the 

illumination source, while the solar irradiance is significantly reduced by the 

atmosphere. The available solar energy at the Earth’s surface (sea level) is shown in 

figure 6. Since the composition of the atmosphere is temporally and geographically 

variable, the local solar irradiance varies. Besides atmospheric gases, aerosols 

particularly in the lower atmosphere cause significant scattering, and interfere with 

reflectance measurements. Within the SWIR spectra, strong atmospheric absorption 

due to water vapour appears between approximately 1.35-1.45 μm, 1.8-1.95 μm and 

2.47-3.5 μm. Additionally, two relatively sharp absorption bands appear around 

2.01 μm and 2.08 μm due to carbon dioxide (Fig 6). Within these spectral ranges, this 

atmospheric effect can result in near-total absorption, making affected spectral 

channels unusable for detecting and evaluating mineral absorption features. 

Atmospheric correction can be performed in an empirical manner, by using correction 

parameters based on reference spectra known in the image (Gao et al., 2009). While 

the processing cost is low, not all atmospheric and topographic effects can be 

adequately removed. Furthermore, the comparability of the reflectance spectra 

retrieved from different images is restricted. Alternatively, atmospheric correction 

can be applied using radiative transfer models to quantify atmospheric and 

topographic scattering effects in an analytical manner (Richter, 1998; Gao et al., 

2009). However, additional data such as the local composition of the atmosphere, 

optical thickness and illumination-viewing geometry are required, and the processing 

can be costly and time consuming. 
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Fig 6 Solar radiation at the top of the atmosphere and at sea level, 
with absorption by various atmospheric gases (from Jensen, 2007). 

1.5. Instrumentation 

1.5.1. Hyperspectral imager HySpex SWIR-320m 

The HySpex SWIR-320m scanning system developed by Norsk Elektro Optikk AS 

consists of the sensor head, a rotation stage, various acquisition devices (frame 

grabber, rotation stage controller, camera link and current transformers), and a field 

laptop (Fig 7). This imager was primarily developed for industrial applications, for 

which the size, weight and the energy consumption is not a critical issue. A 

lightweight generator is used to provide power supply in the field. 
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Fig 7 HySpex SWIR-320m scanning system. 

The HySpex SWIR-320m imager operates within the infrared part of the 

electromagnetic spectrum, between 1.3-2.5 �m. 240 bands are collected, with an 

average band width of 5 nm (full width at half maximum). Specifications of the 

HySpex SWIR-320m sensor are shown in table 3. Since many rock forming minerals 

provide diagnostic absorption bands within infrared light and with absorption band 

widths in the order of 20 nm (Hunt, 1980; Clark et al., 1990), this instrument is 

suitable for many geological applications and for detailed analysis of absorption 

properties. To enable close-range image acquisition, the instrument is integrated with 

a rotation stage and mounted on a tripod. Images are acquired by rotating a vertical 

sensor line with 320 spatial pixels (pushbroom scanning) which provides a field of 

view (FOV) across track of 14°. Although panoramic images with a FOV along track 
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of 360 º can be acquired, image acquisition is usually carried out with a smaller 

panoramic angle to ensure uniform illumination condition in a scene. 

The optical elements of the sensor are shown in figure 8. With the regular scanning 

mode, the inbuilt lens provides scanning ranges from c. 15 m to infinity. The inbuilt 

lens has a focal length of c. 40 mm which results in an image pixel resolution of 

3.25 cm at 50 m scanning range. Additional close-range lenses can optionally be 

mounted to enable scanning at shorter ranges than 15 m. However, these lenses have 

a very low depth of field, which can limit their practical usage in the field. More 

details about the scanner specifications are described in Papers 1 and 2. 

Table 3. Specifications of the HySpex SWIR-320m imager. 
Detector HgCdTe  (320 x 256 pixels) 
Spectral range 1.3-2.5 �m 
Spectral sampling ~5 nm 
Number of bands 240 
Digitisation 14 bit 
Spatial pixels in the vertical line 320 
Field of view across track (sensor line) 14° 
Pixel field of view along/across track 0.75 mrad, 0.75 mrad 
Focal length  ~40 mm 
Focal plane array cooling temperature  ~195 K 
Image storage format band interleaved by line (BIL) 

 

 
Fig 8 Optical unit of the HySpex sensor (after HySpex user manual); 
close-range lenses can optionally be mounted to enable scanning at 
distances less than 15m. 
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1.5.2. Terrestrial lidar system Riegl LMS-Z420i 

The lidar data were collected using the Riegl LMS-Z420i scanning system from Riegl 

Laser Measurement Systems GmbH (Fig 9). The scanner operates on the principle of 

time-of-flight and provides range measurements from 2 m up to 800 m (at 80 % 

reflectivity). 3D images with a FOV of 360º x 80º and a quoted single measurement 

precision of 0.01 m can be acquired. The data acquisition rate is up to 12,000 points 

per second. The point grid resolution can be user defined at which the maximal angle 

resolution is 0.002º in the vertical and 0.0025º in the horizontal direction. A high 

resolution digital camera can be mounted rigidly on top of the scanner (Fig 9) to 

allow automatic registration of the imagery and to enable colouring and texturing of 

the lidar point cloud with the photographs. A single-frequency GPS instrument which 

collects data relative to a base station can additionally be mounted on the scanner. 

However, since the registration of the lidar models in a global geographic coordinate 

system was not essential in this work, processing of the GPS data is omitted. This 

instrument has been designed for rapid data acquisition under demanding field 

conditions and its performance is well-suited for many earth science applications. 
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Fig 9 Riegl LMS-Z420i terrestrial laser scanning system. 

1.5.3. Scanning setup 

To facilitate the data integration, the hyperspectral and lidar data were collected 

simultaneously with similar scanning views and scanning angles. Details on the data 

collection are described in Paper 1 and 2. Figure 10 shows a typical instrument setup 

in the field. Retro-reflective targets (cylinder and tape), shown in figure 11 (a and b), 

were used for control point (CP) measurement to support photogrammetric 

processing. Retro-reflective tape was also used to mark sample locations which could 

then be located in the lidar models as well as in the spectral images. Calibrated 

Spectralon diffuse reflector targets (Fig 11c) were placed in accessible cliff sections 

and scanned with the spectral imager to obtain reference spectra for spectral image 

corrections. 
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Figure 12 shows a scanning setup with the 1 m lens to acquire spectra for rock 

samples in the field. The rock samples spectra were intended to ensure pure end-

member spectra and to support the spectral mapping of the scanned cliff sections. 

However, images collected with the 1 m lens in the field were characterized by 

extremely low signal to noise ratios. Sample spectra retrieved from these images 

could not be utilised for spectral mapping of the outcrops. The origin of the high 

noise level could not be completely explained, and must be analysed further. 

 
Fig 10 Instrument setup in the field. 

 

 
Fig 11 Reflection targets. (a) Cylindrical retro-reflective targets for semi-automatic control point 
collection (b) Sample locations marked with retro-reflective tape (c) Spectralon reflection panels for 
spectral image calibration. 
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Fig 12 Scanning setup with the 1 m lens to collect rock sample spectra in the field. 
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