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Abstract

Methods for implementing variable surface tension on two popular Lattice-
Boltzmann models, the original gradient-based chromodynamic model[1],
and the Shan-Chen model[2], are explored and examined. The experiment,
inspired by a work of Greenspan[3], consists of reducing the surface tension
at two poles of a circular droplet due to a diffusive solute (surfactant). Both
Lattice Boltzmann models are able to simulate the expected initial defor-
mation where the droplet is stretched along the pole axis, and contracts at
the equator. We observed no furrowing to the droplet, which verifies a work
of He and Dembo[4] who concluded that variation in surface tension cannot
alone account for such furrowing. We were able to simulate the process as
the surfactant diffuses over the entire interface and the spatial variation in
surface tension vanishes. The droplet reverts back to its original circular
shape with the overall surface tension reduced. Variable surface tension is
easier to implement with the chromodynamic model. The physically direct
Shan-Chen model, which has superior isotropic qualities, can also be used
for variable surface tension. However, coordinating the decline of the sur-
face tension with the reduction in the separation forces is a more delicate
matter, and the diffusivity of the interface increases if the surface tension is
weakened.
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1 Introduction

The study of fluid flow with variable surface tension has seen multiple appli-
cations, including biological fields related to cell division [5][4][6], and oil
reservoir dynamics.

In this article, we apply the Lattice Boltzmann method to study this
effect. We consider two popular models, the chromodynamic method, and
the Shan-Chen method.

In order to simulate the effects of microemulsions, lattice Boltzmann
models with amphiphile surfactants are largely based on the free energy
model of Orlandini et. al.[7], see for example references [8], [9], [10], and
[11]. The model used here is simpler, since the purpose is primarily to inves-
tigate the deformative effects of surface tension rather than the effects on
the interface structure. Lattice Boltzmann methods with variable surface
tension have also been employed by Farhat and Lee [12] in order to simu-
late the biconcave shape of red blood cells.

If the surface tension is constant, all droplets will attain a circular shape,
but if surface tension varies along the interface, the interface curvature will
be greater where the surface tension is low. By manipulating the surface
tension, it is possible to create deformations to an initially circular droplet.

In this article we employ an experiment based on that conducted by
Greenspan [3], where surface tension-reducing surfactant is applied to two
poles of a droplet. The expected deformation is an elongation along the axis
and a contraction at the equator. Greenspan even demonstrated furrowing
to the droplet, although Sapir and Nir [13], He and Dembo [4], and Li and
Lubkin [14] were unable to produce deformations as large as this.

Our main goal with conducting this experiment is to demonstrate the
validity of our variable surface tension methods. In addition we wish to
illustrate the relative ease with which a solute surfactant can be applied in
the method.

2 Lattice Boltzmann method

The Lattice Boltzmann method was introduced by McNamara and Zanetti
[15] as an extension to the lattice gas cellular automata. The method can
alternately be derived by discretizing the Boltzmann equation.[16] The first
method to extend the method to handle multiphase flows was introduced



by Gunstensen et. al. [1] in 1991, and an alternate method was proposed by
Shan and Chen in 1993.[2]

Our interest is in two component multiphase flow. The components are
labelled “red” (superscript R) and “blue” (superscript B). An arbitrary
component is labelled superscript s, while we let ŝ represent the other com-
ponent.

Lattice Boltzmann methods aim to simulate the evolution of the discrete
distribution functions fs

i (x, t), which tells how many particles of mass 1 are
moving along vector ei at site x at time t. Summing the distribution function
over all i will yield the mass density, summing fs

i ei over all i will yield the
particle momentum. As long as we are away from the interface, we use the
ideal gas equation

p = (ρR + ρB)c2, (1)

for pressure where c2 = 1
3 is the square of the speed of sound.

We have employed the D2Q9 lattice[17], which has two dimensions and
nine possible velocities at each site, given by
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The equation to update the distribution function is given by

fs
i (x + ei, t + 1) = fs

i (x, t) + Ω(fs
i , fs1

i , fs2
i , . . .), (3)

where the first terms handle propagation (streaming) of particles, while the
collision term Ω deals with interparticle collisions, including the generation
of surface tension and phase separation.

In the chromodynamic model by Gunstensen, the process is to first create
surface tension by increasing the proportion of particles moving normal to
the interface, and then enforce phase separation through a recolouring step.
Central to this idea is the concept of the color gradient F

F (x, t) =
8∑

i=1

ei(ρR(x + ei) − ρB(x + ei)). (4)

The collision operator Ωs can be written as Ωs = Ω3s[Ω1s + Ω2s] [18],
where Ω1s is the single relaxation time (BGK [19]) operator



Ω1s = − 1
τ s

(fs
i − f

s(eq)
i ), (5)

with local equilibrium distribution f
s(eq)
i given by

f
s(eq)
i (us) = wiρ

(
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3(ei · us)
c2

+
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2c4
− 3

2
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)
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where us is the macroscopic velocity of component s. The weights wi are
w0 = 4/9, w1,...,4 = 1/9, w5,...8 = 1/36. Surface tension is generated by Ω2
and is given by [20]

Ω2s
i =

A

2
|F |

(
wi

(ei · F )2

|F |2 − Bi

)
, i = 0, . . . , 8, (7)

with A being a parameter for surface tension, and Bi are the constants B0 =
−4/27, B1,...,4 = 2/27 and B5,...,8 = 5/108. Surface tension is proportional
to the parameter A in (7), and a variation in surface tension can therefore
be conveniently applied by adjusting A.

The recolouring algorithm, which accounts for phase segregation, can be
applied through the formula given by Latva-Kokko and Rothman [21]

Ω3i =

{
fR

i = φRfi + φRφBfeq
i (ρ, 0) cos θ,

fB
i = φBfi − φRφBfeq

i (ρ, 0) cos θ,
, (8)

where φR and φB are the fraction of particles which are red and blue respec-
tively.

In the Shan-Chen model, the collision operator is basically the BGK
operator (5), but the velocity us used to calculate feq

i is perturbed to u′s

by a repulsive force between particles of opposite color

ρu′s = ρus − ψs(x, t)G
8∑

i=1

wiψ
ŝ(x + ei, t)ei, (9)

where ψs simply can be defined as ρs in the multicomponent model. The
parameter G controls surface tension and phase separation. If G is large
enough, the separation forces will overcome the diffusion and yield separate
phases. The critical value of G for separation is a function of the proportion
of each phase.[22]

The Shan-Chen model does not conserve momentum on each individ-
ual site as the chromodynamic model does, but if we maintain symmetry



between two interacting sites we maintain global conservation of momen-
tum [23]. A practical drawback to the Shan-Chen model is the difficulty in
determining the surface tension a priori. The surface tension generally rises
with G, but it is not a convenient proportional relationship as there was for
the chromodynamic model.[24]

For both the chromodynamic and Shan-Chen models, solute flow is
implemented by introducing a third component with its own distribution
function g. This component evolves according to an equation like (3), with
a relaxation time τg which controls its diffusivity, but it does not contribute
to the calculation of u.[25] In order to keep the solute on the interface, we
implemented a force perturbing the solute’s velocity u to u′ by

u′ = u + a(
8∑

i=1

wiφ
R(x + ei)φB(x + ei)ei), (10)

where a is a positive constant which we set to 10. This is large enough to
keep almost all the solute on the surface, but not so large that it destabilizes
the model.

For both models, the surface tension can be found by measuring the
radius r and pressure difference Δp between a circular droplet’s interior
and exterior. The surface tension parameter σ is then given by Laplace’s
law σ = rΔp.

3 Simulation and discussion

In our simulation, we started with an initially stable droplet of radius 10.4
in units of grid spacing. For the chromodynamic test, we set the parameter
A = 0.10 while we set the parameter G = 2.0 for the Shan-Chen model.
These choices yield almost the same initial pressure difference of Δp = 0.122
for the chromodynamic model and 0.121 for the Shan-Chen model.

At t = 0 a surfactant solute is applied at two nodes, at opposite ends
of the droplet, with an initial concentration of C = 1. Following the lead
of Greenspan, we attempt to let the reduction in surface tension be pro-
portional to the concentration of surfactant, although we do not let it go
below zero. The new and reduced parameter for the chromodynamic test is
therefore

A(x) = max(0, A0 − ζC(x)), (11)

where the parameter ζ controls how effective the solute is at reducing the
surface tension.



Reducing the surface tension in the Shan-Chen model is a more delicate
matter. As mentioned in section 2, maintaining symmetry between sites is
essential, so introducing a spatial variation to the parameter G in equation
(9) by

G(x) = max(0, G0 − γC(x)). (12)

would violate the conservation of momentum unless C(x) is constant in
space. However, we can achieve a result similar to (12) by multiplying the
ψs values in (9) with a factor d(x), where 0 < d < 1 reduces the surface
tension and d > 1 increases the surface tension. If we set

d(x) = max(0,
√

1 − γC(x)/2), (13)

we have the same result with constant C as (12) would have given us.
As mentioned, σ is not proportional to G, since much of the separation

force is used to overcome diffusion. Chin et. al. did however indicate a linear
relationship between G and σ for moderate G, and some experiments we
have conducted indicate that σ is roughly proportional to G − 1/ρ. We
therefore estimate that surface tension vanishes when

C ≥ 1
γ

(
G − 1

ρ

)
, (14)

where ρ is the average density, equal to 1 in our experiments. We set the
parameters ζ = 2.5 and γ = 25 so that both these models give zero surface
tension for C ≥ 0.04. The relaxation time τg for the solute species is 1. The
evolution of the droplets’ shapes and surfactant concentrations are shown
in figures 1 and 2 for the tests with the chromodynamic and Shan-Chen
models respectively.

In the chromodynamic model, the deformations are relatively small, but
are clearly noticeable at t = 150. When the surfactant is evenly distributed,
there is no longer any variation in surface tension, and the droplet reverts
back to the original circular shape, as seen for t = 500. At t = 2000 (not
pictured) the pressure difference has dropped to 0.0107 (we recall that Δp =
0.0122 at t = 0).

A major difference between the chromodynamic method and the Shan-
Chen method is that the former scheme enforces surface tension and phase
separation in separate operations, (7) and (8), while these effects are inti-
mately coupled together in the Shan-Chen method through the forcing terms
in (9). Therefore, in figure 2 we see diffusion occurring between the red and
blue phases once the surfactant is applied.



The final reduction in pressure difference was almost identical to that
observed from the chromodynamic model, with the pressure difference drop-
ping from 0.0121 at t = 0 to 0.0108 at t = 2000 when the droplet has
restabilized.

When the surface tension is weakened at the poles of the droplet, there
will be a flow towards the weakened interface, reducing the number of par-
ticles at the equator. The result is an elongation along the polar axis and
a contraction of the equator.[3] This expected deformation was success-
fully reproduced by our experiment. Greenspan also observed the droplet’s
reversion to circular shape with a reduced surface tension as the surfactant
diffused over the entire interface.

Neither droplet showed any signs of furrowing or cleavage to the droplet,
and the deformation was in both cases fairly small. Although Greenspan’s
laboratory experiment did show furrowing for certain cases, He and Dembo
[4] showed that surface tension variation alone cannot account for such
furrowing.

Figure 1: Evolution of the droplet (top) and concentration of surfactant
(bottom) for the test with the chromodynamic model. Snapshots
taken at t = 20, t = 75, t = 150, and t = 500



Figure 2: Evolution of the droplet (top) and concentration of surfactant
(bottom) for the test with the Shan-Chen model. Snapshots taken
at t = 20, t = 75, t = 150, and t = 500

4 Conclusion

We have demonstrated ways to implement variable surface tension with both
the chromodynamic and Shan-Chen lattice Boltzmann models. Comparing
the two models, we think variable surface tension is easier to implement with
the chromodynamic model because of the convenient relationship between
the surface tension and the parameter A in (7). Implementing variable sur-
face tension with the Shan-Chen model is nonetheless possible if we keep
in mind the need to maintain symmetry between sites, and remember that
the surface tension vanishes when the concentration exceeds the inequality
(14).

The Shan-Chen model is known to possess superior isotropic qualities,
and adherence to Laplace’s law.[26] Weakening the surface tension in the
Shan-Chen method does entail weakening of the phase separation as well,
which produces a diffusive interface as observed in figure 2 (top left).

The purpose of our method was to simulate the effects of variable surface
tension, not any emulsification process. In order to simulate emulsification,
the free energy method is a more circumspect approach, although a more
complex representation of the surfactant can be used for the Shan-Chen
model, as seen for example in references [27] and [28].



The deformations we observed are relatively small, affirming the conclu-
sions found by He and Dembo[4] who found that surface tension variations
alone will generally not yield large deformation or furrowing.

Lattice-Boltzmann methods allow for easy simulation of solutes, a fea-
ture which we exploited by implementing the surfactant as a solute.
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