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1.Introduction.

Among other things,test theory may be said to be concerned

with developing a rationale for making socalled psychometric

inferences.In this type of inference making one 1ntends to

generalize to a universe of tests,rather than to a population

of individuals which is a statistical inference problem(Kaiser

& Caffrey 1965).The characteristics of universes of tests have

been variously conceived. Classical test theory defined,sYn­

tactically. the universe of tests as composed of homogeneous

items very restrictively,such that the un1verse cons1sted of

what might be called fixed parallel tests,meaning that the

universe could only include tests that were exactly like in

certa1n statistical respects (Gulliksen 1950,Tryon 1957).A

modern and liberalized view,generalizability theory,conceives

of a universe of tests as be1ng made up of random parallel

tests.A random parallel test is construed to be a probabilis­

tic sample from a def1ned universe of tests,each test being

composed by randomly p1cking 1tems from a homogeneously de­

f1ned pool of 1tems (Cronbach,Rajaratnam & Gieser 1963).ThUS,

random parallel tests can not be exactly like in stat1stical

properties.

The generalizab1l1ty problem in psycnometr1c inference 1S to

est1mate for the random parallel test the squared correlat10n

between an observed test score and the un1verse score,thus

giving the proportion of observed test score variance that
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is determined by the un1verse score. The universe score ~s de-

fined as the average test score in the universe of tests. The

generalizabil~ty coefficient can also be defined as tne expec­

ted correlation among random parallel tests as dist~nct from

the reliab~lity coeffic~ent ~n class~cal test tneory wn~ch ~s

the correlation between fixed parallel tests (Cronbach 1951,

Eikeland 19'(0).

S~m~lar for botn class~cal test theory and general~zab~l~ty is
r

that tneoy development nas been restricted to dealing with a
rpresumed homogeneous universe of test items.Test theoy has un-

til recently been concernea w~tn tne s1mplest or all test de­

signs,tne person by ~tem design,altnougn practical test con­

struction for a long time has been going along I1nes that im­

plicitly presupposes a theory for a more complex conception of

item un~verses as being multifacet in na~re.Test theo~ un-

doubtedly has lagged far ben~nd test construct10n.Test bat­

te~es are being used for wh~ch there is no theory available.

Multiple score tests are pernaps more commonly applied in prac­

t~cal testing than single score tests,but even recent advanced

textbooks in mental test theory,e.g.Lord & Nov1ck(196~,are

exclus~vely dealin~ w~th tneoret1cal issues associated w~th

tne homogeneous test.

Uer~a~nly,~nterest~ngtheory development lies anead for making

pSYChometric inferences to un1verses of tests that are con­

structed accora~ng to more complex sampl1ng plans for universes

ot items conce1ved of as mult1tacet as compared to the simple

sampl~ng plan involved in the construction of single factor
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tests.Tne psycnometric pL'oo!em a~ issue in ~ne presen~ mono­

grapn is to conceive of a structural tneory on wnicn to oase

generalizaoility estimates for test oatteries tnat are con­

structed accoraing to a part~cularly cons~rued multifacet

universe of items.

~.The concept of a multifacet measuring operation.

When more than one source of variance is associated with a

measuring instrument, that instrument is said to be multifacet.

A rating procedure involving raters,only one trait being rated,

is a onefacet operation.Guilford's (1954) classical rating

problem involving raters and traits is conceptually a two­

facet operation in that the ratees will be given both rater

scores and trait scores.This twofacet procedure could be ex­

tended to a threefacet operation by stratifying raters into

groups of raters.By this procedure ratees could be given trait

scores,group of raters scores and rater scores.

Medley and Mitzel (1963) have treated multifacet operations

for measuring classroom behavior by systematic observation.

Their cris study involving classes,recorders,items,and situ­

ations is a fourway analysis of variance design;however,it is

a threeface~ measuring operation.Only recorders ,items ,and

situations are in this study identifying aspects of the measu­

ring procedure.Thus,the homogeneous test is a onefacet instru­

ment in that only items are identified as a source of variance

tied to the measuring operation.Yet,the design for analyzing
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observed data from such a test is a twoway analysis of vari­

ance design,involving persons in addition to items as sources

of variance.

When Rajaratnam,Cronbach & Gleser (1965) estimated the genera­

lizability coefficient for the stratified parallel test,they

were involved in a twofacet study,and not a onefacet study

as maintained by Gleser,Cronbach & Rajaratnam (1965).In the

Rajaratnam,Cronbach & Gleser (1965) study items and strata are

facets.

There should be no reason to regard multifacet studies as dif­

ferent from stratified studies,e.g.studies in which items are

grouped into defined strata such that a hierarchical design is

formed. This seems also to be the conclusion drawn by Cronbach,

Gleser,Nanda & Rajaratnam (1967) in commenting on stratified

test construction: "It appears advantageouB to reinterpret this

as a multifacet problem,especially as this then opens the way

to considering simultaneously the sampling of items and the

sampling of other conditions" (p59).

A simple rule of thumb for deciding on the number of facets

in a measuring operation is to count the number of main effects

directly connected with the operation.

Many classification schemes for stratifying measuring operations

into facets are conceivable.In testing,content, format , and

occasions are common facets.In Guilford's (1967) structure of

intellect,content,product,and operations are facets.So are

also the types of content within content,types of product with-
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in product,and types of operation within operation.In fact,

the types are facets on a lower level.

Horst (1965) has discussed the various modes or categories

which are fundamental to the investigation of a system of
to

variation.His concept of mode fits well in/a multifacet system

where characteristics of persons or entities are assessed by

multiple procedures:

(Therefore,) some systems,to be satisfactorily and complete­
ly characterized,may well take into account observations or
recordings for a number of different entities (persons) on
a number of different attributes on a number of different
occasions by a number of different evaluators with respect
to a number of different conditions or instructions. (Horst
1965,10 )

Horst's system:constitutes within the conceptual framework of

the present'monograph a fourfacet measuring operation.Attri­

butes,occasions,evaluators,and conditions are facets,while

persons are the entities being assessed.

When measuring operations are made into systems of facets,very

complex variance structures of observed individual differences

will be the result.While classical test theory was able to

distinguish conceptually among many types of variation that

go into a test score,the models for that theory could handle
of variance

only two sources/at a time,namely the universe score variance

and one undifferentiated error variance (Thorndike 1951,

Magnusson 1967).What is at issue in making efforts toward a

theory development for complex test designs,is how to treat

multiple sources of test score variance simultaneously and how

to make a rational decision for how to interpret the various
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sources as being signal or noise in the particular context a

measuring operation is being used.Here is where the multifacet

studies are extremely challenging both from a syntactical and

a semantical point of view.

The mult1facet measuring operation of concern in
e1

this report,is a threfacet test having strata,substrata,and

items as identifying aspects.This particular test design may

be said to originate in a structural conception of the item

universe which calls for a more complex sampling plan than

commonly met in unstratified test construction.The theory de­

velopment w111 be espec1ally concerned with def1n1ng universes

of threefacet tests of this particular design to which one

wants to generalize. For th1s purpose mathemat1cal models have

to be built to fit definitions and interpretations of the test

scores determined by mUlt1ple sources of var1ance.

3.Previous work on strat1fied tests:Twofacet studies.

Tne reliab11ity problem of stratified tests,or test batteries,

has been of some concern for test theory for a long time. Out­

standing references are:Jackson & Ferguson 1941,Cronbach 1951,

Mos1er 1951, Tryon 19?7. The sp11t-half and the test-

retest approach to the rel1ab1lity of a strat1f1ed test is not

of any interest in the present context where the internal con­

sistency approach 1S of concern.No satisfactory general solut10n

to the 1nternal cons1stency problem of strat1fied tests was

obta1ned w1tn1n classical test theory.The correlation of sums
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approach to th~s problem,like the solution reached by Tryon

(1957),~s ~n princ~ple a special case of a more general so\tion
ed

to be review/shortly.

Ratner tnan give a complete historical account of the internal

consistency problem of ~ne strat~fied test, emphasis w~ll be put

on some recent formulat~ons.

RaJaratnam,Uronbach & GIeser (1965) reformulated ~ne reliabi­

l~ty proolem or stra~~f~ed tests to fit a generalizab~lity

tneory.They conceived of a un~verse of items tnat had been

ident~f~ed ~d divided in~o strata.To make test construction

follow a formal sampling plan,they construed a test battery to

be made up of a predetermined number of randomly sampled items

from within the identified strata. Such a test may be regarded

as one of an indefinitely large number of tests that may be

constructed aocording to the same sampling plan provided the sub-
n

universes of items are regarded as ifinite.These tests form a

universe of stratified tests.It is to this universe one wants

to generalize,i.e.to estimate the squared correlation between

the observed score of a randomly picked test and the universe

score, the average test score across the universe of tests.

Characteristic for the development by Rajaratnam,Cronbach &

GIeser (1965) is that they restricted their definition of the

universe of tests to a fixed number of strata, those represented

in the particular test at hand. This will often be a realistic

restriction in that these strata are the very strata of inter­

est,or they exhaust the P08$ibility of obtaining strata.
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Yet,one may start playing with a more general formulation of

how to define such stratified testa.Rabinowitz & Eikeland (1964)

made an extension of the classical Hoyt (1941) procedure for

finding the reliability of a stratified teat where strata could

rationally be regarded as random. This meana that the strata ac­

tually found in the test at hand,by no means could be conceived

to exhaust the strata to which the test constructor wanted to

generalize.Thus,in the Rabinowitz & Eikeland formulation,two

models for estimating the generalizability of a stratified test

were developed,a fixed and a random model. The random model re­

gards both items within strata and strata as randomly sampled

from subuniverses of items and from a universe of strata.The
a/

fixed model regards items as random samples from within fixed

number of strata•

. Surely,items in generalizability theory will always be considered

random.In effect,this is the hallmark of the theory.Although

random strata may be more difficult to imagine than fixed ones,

it is interesting to make formulations that l::ll°e so general that

such a possibility is included.

In moving from the twofacet test to the threefacet test it is

the intention to extend the general formulation made by Rabino­

witz & Eikeland to fit a still more complex test design.As will

be shown later,there is a relationship between the original

Hoyt analysis of the unstratified,or onefacet,test via the two­

facet test to the threefacettest.
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4.Tne concept of tne hierarcn~callY strat~fied test.

One d~stinct character~st~c oi tne strat~fied ,or nierarcn~cal,

test ~s the nest~ng of ~tems w~tn~n strata.Tn~s means tnat

tnere ~s no rat~onally based one-to-one correspondence between

items from stratum to stratum.Ii sUCh a correspondence could be

estaolished,one would nave a crossed twofacet test design in

that all possible combinations oi strata and items are present

~n data.Many multiiacet operations are crossed.Tne Medley &

M~~zel (1Ybj) classroom ooservat~on design and the Guilford

(19?4) rater-trait design ment~oned aoove,nave crossed facets.

Intne stratif~ed test tne nest~ng of items comes from the

fact tnat strata are tnougnt to contain distingu~shable types

01' ~tems.One can pernaps most easily see how such types of

items can be distinguished by conceiving of a stratification

of a universe of items on the basis of content.

Now,a further stratification procedure on a universe of items

can be thought of taking place,generating new nesting on other

levels in the hierarchical structure of items.One can stratify

already grouped items into strata of a higher order,or one can

make finer groupings of already grouped items,generating strata

of a lower order.

For the present purpose a second-order stratification of an

item universe will do to make clear what is meant by a hierar­

chically stratified test. The unstratified test implies a zero­

order stratification.What is usually called the stratified test,

the test design described by Rajaratnam,Cronbach & GIeser (1965)
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II

I

FIGURE 4-1.Hypothetical structure of a threefacet

hierarchically stratified item universe.

Note.- I Zero-order stratification oflttem universe
. II First-order stratification df item universe

III Second-order stratification ofitem universe

S ~ stratum Sub = substratum
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and Rabinowitz and Eikeland (1964),implies a first-order

stratification.A second-order stratification scheme means

that items are grouped into substrata,which in turn are grouped

into strata. This structure implies that substrata are nested

within strata,and items are nested within substrata within

strata. This is a typical hierarchical structure,also called

a tree-structure.The principle of hierarchical stratification

seems to justify calling the test of a second-order stratifi­

cation a threefacet hierarchically stratified test. The facets

are items , substrata, and strata. A tree-structure of a hierar­

chically stratified item universe of second order is presented

Insert FIGURE 4-1 about here

in FIUURE 4-1.It is the simplest conceivable structure of a

balanced thr:facet hierarchically stratified test. Burt (1954)

uses another metaphor for the same structuring scheme.His

simile is a sorting machine.

For the test constructor,if he is to adhere to a formalism in

generating a hierarchically stratified test,the procedure should

be to enter on a three-stage sampling plan.First,he should pick

stratajsecond,substrata within stratajand third,he should pick

items within sUbstrata.Certainly,items have to be randomly

sampled from the subpools of items.How the selection of con­

ditions for strata and substrata is done,either by random samp­

ling or by fixing on just those strata and substrata that are

of substantive interest,or by a combination o~andom and fixed,

is dependent on the test constructor's definition of the
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universe of hierarchically stratified tests to which he wants

to generalize.The generalizability problem can be formulated

to imply how to find the expected correlation among tests that

are constructed according to one of the particular sampling

plans indicated above.

Building formal models often means idealizing conditions so

much that there is a risk of finding no real world experiments

fitting them.It is believed that one can find complex test

designs in practical test construction approximately isomorphic

to the hierarchically stratified test as here sketched,such

that the model building is thOUght to be worth while as a means

of being able to assess the properties of complex tests more

adequately than before.The Primary Mental Abilities test and

the California Test of Mental Maturity are examples of batteries

that have been used for years,for which a proper theory hRalbeen

developed. Those tests,and several others can be mentioned,are

fairly good fits to the formal models to be explicated in the

subsequent discussion.
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FIGURE 5-1. A lay-out o~ a 5 x 2 x 2 x 2 hierarchically

strati~ied test design.

Note. - P = persons, X5248 = item score ~or person 5 on

item 8 within substratum 4 within stratum 2.
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.5.A model for the hierarchically stratified test.

After having administered a hierarchically stratified test to

a sample of persons, test data at hand would be a system in which

persons are crossed with strata,substrata,and items.Items are

nested within substrata,which in turn are nested within strata.

This particularly constructed multifacet test can most approp­

riately be called a doubly nested test design. The double nesting

refers to items which are nested within substrata within strata,

and also to substrata which are nested within strata.The pre-

sent design is different from a design described by Stanley (1961i )

as doubly nested.We would prefer to describe Stanley's design

as a design with two nested variables,which implies two sepa-

rate hierarchical structures.

In order to make clear how the hierarchically stratified test

design 100ks,FIGURE 5-1 presents an exemplification with 5

persons,2 strata,2 substrata within each of the strata,and 2

items within each of the substrata.The nesting of substrata and

Insert FIGURE 5-1 about here

items is indicated by consecutively numbering substrata from

1 to 4,and items from 1 to 8.Here four different substrata

are represented in the design and eight different items.In a

completely crossed multifacet test design of the same order,

there would be only two substrata, appearing under both of the

two strata;and only two items,appearing under each of the sub-

strata.
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It seems sound to believe that the Rabinowitz & Eikeland (1964)

development of a model for the stratified test can naturally

be extended to the hierarchically stratified test.A variance

components model most probably can serve as the structural

framework for the test theory development needed for solving

the generalizability problem at issue concerning the test design

of interest here.

In developing the mathematical model for the hierarchically

stratified test an equal number of substrata within strata,and

an equal number of items within substrata is assumed.Tnis is

done in order not to complicate the formulation unnecessarily

in an effort to present the principle features of the model.
~.

Modifications of the formult~ons are possible in cases where

an unequal number of substrata W±~hin strata and items within

substrata is employed.

Let n be the number of persons,k number of items within each

of the sUbstrata,m number of substrata within strata,and ~

the number of strata.The symbols P,I,H,and S,0r p,i,h,and s,

are used for persons,items,substrata,and strata,respectively.

Capital letters are used ~n talk~ng about the var~ables;when

sUbscripts are needed, small letters are used.

As a symbol for nesting,a colon will be used. Substrata nested

witn~n strata ~s symbol~zed H:S,or n:s.Tne double nesting of

items will be wr~tten I:H:S,or i:h:s,to be read items w~thin

sUbstrata with~n strata.Arter th~s,the h~erarch~cally strat~­

fied test design can be symbolized as a PxSxH:SxI:H:S design.

For a sim~lar notat~onal system,see M~llman & Glass (1967) and

Cronbach,Gleser,Nanda & Rajaratnam (1967).
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Structural models for mean squares in an analysis of variance table of

the threefacet hierarchically stratified test
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Note. - P = persons,S = strata,H = sUbstrata,I = items,n = number of oersons,r = number of
strata,m = number of substrata within strata,and k = number of items within substrata.
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An analysis of variance table of data for tne n1erarchically

strat1f1ed test design is presented 1n TAHLE ?-1.In all,seven

sources of variance can be identified in tnis design. Not all

of them are of concern in a problem where individual differences

are at issue.Only the sources of var1ance assoc1ated w1th per­

sons are of 1nterest.Tnese are the person main efrect and the

Insert TABLE ?-1 about here

tnree interactions of persons with strata,substrata,and items.

In testing,variances associated with facet main effects are

most often not of any substantive 1nterest as these sources re­

flect more or less arbitrary variances,for example difficulty

levels of items.These sources make no contr1but1on to the in-

div1dual d1fferences var1ance,which is the information o~

part1cular 1nterest.

Anotner .restriction will be made. There are several sources 1n
that

tne present des1gn/are of considerable interest regard1ng the

1nformat10n contained on individual d1fferences.We shall 1n

the follow~ng pay attention only to tne source of variance

called persons.Tnis source reflects tne variance of the sum

score for persons across the three facets.Most often tnis is

tne test score used in practical testing.Tne test scores in

the present design to be ignorea in "the :Lollowing discussion

will be twollypes O:L d1:L!erence scol'es,contained in the persons

by strata interaction and the persons by substrata witnin stra­

ta 1nteraction.Tnese scores are of crucial impo.rtance 1t' one

1S concerned with diffeL'ential abilities,i.e.to what extent

the various strata and substrata are measuring different abili-



15

ties.There are specific generalizability problems connected

with these scores which can be more conveniently discussed in

another context (Eikeland 1972).

In approaching the generalizability of the test score,the ex­

pected mean square for persons E(MSp),expressed as a weighted

sum of variance components, is the key for unlocking what may

be called the deep structure of the test.While the observed

mean square for persons is the manifest test score variance,

it should be clear that the variance structure as represented

by the components,in effect is a theory of how the person vari­

ance is generated and composed by the particular measuring ope­

ration used.The structure can not be observed.The structure is

imposed on data.It is: an inferred latent structure that is

thought to be of considerable help in trying to interpret the

test score in terms of different types of variance that go in­

'to it.The latent variance structure can tell to what degree

the test score is influenced by a common trait running through

all the items of the test;by less common traits,common to each

of the strata;and by specific traits,common only to items with­

in the substrata.Particularly,the generalizability problem at

issue as regards the present test design makes it urgent to be

explicit as to which of thes:e more or less common traits are

of enough substantive interest to be included in our defini­

tion of the universe score.

The definition of the universe score is automatically given

by a specification of the universe of tests to which one wants

to generalize. This specification determines how the sampling
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plan for constructing tests belonging to this universe should

be conceived. The latent structure model for persons in TABLE

5-1 is developed under the assumption that strata,substrata,

and items are randomly sampled to be representative of universe

of strata,subuniverses of substrata within the strata universe,

and subuniverses of items within the substrata universes.This

completely random model is undoubtedly the least likely to be

of practical interest.However,in defining more realworld uni­

verses of tests,the completely random model is syntactically

so important that one is convinced that in just this model the

components as structural components are also meaningfully de-
al sl

fined for model that consider strata fixed and substrata ran-

dom,and a model that considers both strata and substrata fixed.

It shou~d be noted that this way of defining components is

contrary to how components are defined in traditional experi­

mental design textbooks where classical analysis of variance,

as aiming at probability statements,is exclusively emphasized.

Here components are defined differently for different models.

The conventional way of defining components can in the present

design be illustrated by considering strata fixed.Aocording to

rules of thumb in writing an analysis of varianoe table (Winer

1962,Millman & Glass 1967,Klrk 1968),a ter.m (a weighted oom­

ponent) in the random model oontaining a subsoript that is

extra to the source of varianoe naming the row in the table,

should be deleted if this extra sUbsoript ~epre8ents a fixed

factor. Deleting the person by stratum oomponent for the person

row in TABLE 5-1,aooording to the oonventional rule,means in

effeot that the value of the deleted oomponent is inoluded
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the value of
in/the person component.However,the coefficient for the person

component (the prescript) will not be affected by considering

strata as fixed.The result is that the person component defined

for the case of fixed strata and random substrata will increase

compared to the person component defined for the random model.

Instead of the traditional procedure described,we shall keep

the term for the person by stratum interaction (km6~s) intact

even in the case 'of considering strata as fixed. The strata

fixed assumption implies that the universe of generalization

is defined such that the person by stratum component will be

considered part of the universe score variance and not part of

error score variance (Eikeland 1971).

The difference of procedure in defining components,as here
y

recommended,makes no difference for the generalizabilit/coef~

ficient for the sum score,although it makes qUite a difference

if one is interested in examining the variance structure of the

observed test score.Another difference will become apparent:

When the generalizability problem concerns finding the genera­

lizability of one average item,one is in considerable trouble

employing the traditional way of defining components,while the
e

reformulation as given her/Will be congenial with the test

theory development to be discussed in the following sections.

By thus tying the defin~tion of components to the completely

random model,or more correctly in view of the subsequent dis­

cussion,to define the components according to the inferred

structural model for the observed test score varianoe,the

next step should be to def~ne the universe score variance in
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keeping with the sampling plan decided on in constructing

the test.As more than one sampling plan is possible,there are

also several ways of defining universe score variance.

The sampling plans concern the various ways of combining ran­

dom and fixed facets. The most convenient point of departure

for this procedure is the structural model for person vari-

ance,

= F?-1

According to rules of thumb for writing expected mean squares,

regarding strata and substrata as fixed would imply deleting

the weignted components for the PS and the PH:S interactions

from the model.Our way of defining components rules that these

components should be kept in the model but interpreted as be-
to

longing to un~verse score var~ance,because one does not intend /

generalize beyg.nd a universe that contains other strata and

SUbstrata than tnose chosen for the test.

When both universe score var~ance and observed test score vari­

ance are defined,tne generalizabil~tycoefficient is given as

tne ratio of universe score variance to observed score variance.

Tne sampling plan presently under consideration prescribes a

fixed model for tne ~nreefacet hier~rchically strat~r~ed test

design.Tnerertbre,tn~smodel will be designated 3F.In developing
y I

a ser~es of general~zab~l~t/coeff~c~entstney w~ll aI/be named

alpha coerr~c~ents.By this the intention is to point to the

generic nature of the alpha construct.It should not be restricted
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to its original domain,the unstratified test (Cronbaoh 1951);

it will prove fruitful to extend its domain to any kind of

test design where generalizability coefficients are sought.

=
02 + kd2 + km62 + kmr62
pi:h:s ph:s ps p

F5-2

F5-2 is here given as a defining formula for alpha3F in terms

of weighted varianoe components.Shortly,a more convenient com­

puting formula for F5-2 will be given.'

There are two options for choosing a mixed generalizability

model for the hierarchically stratified test,either random sub­

strata and fixed strata,or fixed substrata and random strata.

Both mixed models may be useful,but the fixed strata,random sub­

strata model seems to be the most realistic one. Especially when

one is generalizing to a content universe,it does not seem like­

ly that he can reasonably fix on substrata within random strata.

On the other hand,if substrata were chosen on the basis of format,

then certainly it is reasonable to use fixed formats within each

of randomly sampled strata.

Only the fixed strata,random substrata model will be presented

as a mixed model in the following. The rule for deciding how to

define universe score variance when strata are fixed and sub-

strata random is to allocate the random PH:S component to error

varianoe and the fixed PS component to universe score variance.

This model we shall call 3M,and the generalizability coeffici­

ent is defined by,
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2
dpi :h : s + k62

ph:s + kmrd~
F5-3

Lastly,a random model can be defined,regarding the conditions

for all three facets picked according to a completely random

sampling plan.In this case,the PS component in the observed

teat acore variance is a random component and will be allocated

to the error score variance,thus leaving only the P component

for the universe score variance.The generalizability coeffici-

ent for this model,designated 3R,should read,

kmr62

alpha3R =
p

F5-4
2 + k62 + lon62 + lanrd'2dpi :h: s ph:s ps p

It is apparent~hat the defining formulas for the estimation of

the generalizability for the thre models developed are unwieldy

computing formulas as they presuppose that components have
1

been estimated. Convenient computing formulas can easily be es-

tablished in terms of observed mean squares,as can be seen from

TABLE 5-1.

alpha3F =
MSp - MSpi :h : s

MSp

MS - MS h
alpha3M - p p : s

MSp

alph83R =
MSp - MSps

MS
P

F5-5

F5-6

F5-7



21

others have shown that the estimates obtained by alpha for the

unstratified test are lower bound estimates for the defined

generalizab~li~y of tests,the definition being the squared

correlation of a random test score with the universe score

(Rajaratnam,Cronbach& Gleser 1965,Novick & Lewis 1967,Lord &

Novick 1968).It is here assumed that the same will hold for

alphas developed for more complex test designs. This means that the
the

alphas for/differently defined threefacet hierarchically strati-

fied test models are considered lower bound estimates of the

squared correlation of an observed test score with a particu­

larly defined universe score within this test design.

A test theory development for a complex test design in terms

of a formalized language like analysis of variance will most

likely be difficult to grasp unless the reader is well versed

in this particular language.In order to get a deeper under­

standing of the thinking going into this formalized procedure,

first a numerical example,as simple as possible,will be pre­

sented,emphasizing meaning. Later alternative conceptual ap­

proaches to the generalizability problem will be made.Hopefully,

these explorations will make clear how the structure of the

generalizability theory is generated.



TABLE 6-1

Hypothetical data for a 5 x 2 x 2 x 2 hier­

archically stratified test design

I .,--T .' s.·~' '.' ,......, '1""---" ··· .. ·s~··_---_··_··--·r···_··,_·· -t
,,,.,. _ .._-j-- - "'_."'" ·..·T · _.-_ --.----..-_ ··l' '-"" t-·-

l-- -i i~' ~1 1~ I 1
3
12

I41 i~_H)-i~li;T~i~i s,;.,
I· J. .. t +.--... .j... _... . ,.. "'-"'-" +_······· --1-·--··
I p 1 ! 5 ! 5 ! 5 I 4 4 4 4 I 5 I 36

p 2 '2 3: 3 I 2 5 4 4! 3 26

P3 4 3 4 I 4 3 2 2 I 3 25

P4 2 3 4 I 3 1 2 1 2 18

t;~ :4 J_;~-_];~--L_;~_-t~~~~~~.~~_ .=·~1_~~4~~--;:- .



TABLE 6-2

Analysis of variance of hypothetical test data

.- _.. -~~ ...__........ .'......._.............. .'.- ..... ..~.~.'.' ., .......~" ......._.,,_,,~' .0.

F 35,60 4 8,900

S 1 ,23 1

H:S 1 ,25 2

I:H:S 2,10 4

Source SS df MS
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6.Numerical example.

The technique for estimating the generalizability of a hi­

erarchically stratified test will be illustrated by hypothetical

data contain~ng 5 persons,2 strata,2 Bubstrata within each of

the strata,and 2 items within each of the sUbstrata.Imagine that

the test design is a k~nd of Wechsler scale.Let the two strata
af

be verbal and a performance battery,with similarities and vo-

cabulary as subtests within the verbal stratum,and picture com­

pletion and picture arrangement as subtests within the per-

Insert TABLE b-1 about here

formance stratum.Wi thin eaCh of the subtests two items are

picked.The data are presented in TABLE b-1.It is the variance

of the sum score for the? persons across all 8 items that is

of most interest. The problem to solve is how to estimate the

proportion of that variance that can be considered to be uni­

verse score variance.Tne basic data information for this pur­

pose ~s contained in the intercorrelat~ons among the 8 item

columns.Tne analysis of variance result for the hypotethical

test data is given ~n TABLE b-2.0nl~ those mean squares are

Inser~ TABLE 6-2 about nere

presen~ed ~hat are of concern for the general~zab~lity problem.

These are the mean squares for the sources of variance which

contr~bute to the test score variance. There are four sources
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determin~ng th~s var~ance,all of them hav~ng a P ~n the row

symbol.Tne PS ~nteract~on assesses the lack of convergence be­

tween tne two subscores for s~rata.In a way,it is the complement

of a correlat~on measure. Tnus, the more ~nteraction,the less

correlat~on between the two suoscores.The PH:S ~nteract~on and

the PI:H:S ~nteract~on can be ~nterpreted the same way.Tne f~rst

interact~on term ~s concerned w~th the d~screpancy between the

suostrata scores witnin strata,tne second with the discrepancy

Oetween item scores within the substrata.What is important to

realize intu~t~vely is that these interaction terms are influ­

encing ~he test score var~ance.The more ~nteraction,the less

interindi~dua1 differences. ThUS, by manipulating tne data mat­

rix by delioerately chang~ng the correlat~on either between

items w~~h~n suostrata,oetween SUbstrata witnin strata,and

between strata,the test score variance will be changed.

An insight into the mechan~sm at work here makes ~t somewnat

more understandaole why the interaction components should go

into the model for the P variance.When the equations for the

various components going into the observed test score variance

are solved for,that variance can be written as a sum of weighted

components according to the model for P in TABLE 6-2,

MS - 0,338+2.0,081+2.2. 0,588+2.2.2. 0,756 = 8,900
p

= 0,338+ 0,162+ 2,352+ 6,048 = 8,900

1,000 = 0,038 + 0,018 + 0,264 + 0,680

In setting the P variance like 1,OOO,the contribution to total

test score variance made by the weighted components can be
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read as the proportion of variance accounted for. This is the

structure of the total variance of individual differences.Ac­

c0rding to this 68 per cent of the variance is explained by

a common trait running through all the test items,irrespective

of whether they are verbal or performance items ,similarities ,

vocabulary,picture completion,or picture arrangement items.

About 26 per cent of the variance is accounted for by the fact

that verbal and performance are tapping different traits. This is

a reflection of the PS interaction. The contribution to variance

made by the PH:S interaction is negligible,meaning that the sub­

strata within strata are so highly correlated that they may be

said to measure the same trait within their respective strata.

The specificity component's contribution to variance is also

negligible.This should be interpreted to mean that items within

substrata to a very great extent are measuring the same thing.

The structural properties of the test score variance as here

presented are crucial for a meaningful interpretation of the

battery score.

From the structure of the test score variance the generaliza­
found by

bility estimates for the three models are allo-

eating the components to universe score variance or to error
should be

score variance.How this allocation / done is determined by

the definition of the universe of generalization.

In the present case it is reasonable to regard both strata and

substrata as fixed. Probably the verbal and the performance

domains as strata exhaust the universe of strata to which one

wants to generalize.Also,the generalization intended is res-
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stricted to the similarities and vocabulary tests within the

verbal stratum and to the picture completion and picture ar­

rangement tests within the performance stratum.In other words,

if a parallel battery was to be constructed,a new sampling of

items had to be undertaken within the same substrata within

the same strata.For this fixed model,both components involving

strata and substrata are included in the universe score vari-

ance together with the common component, the P component.There­

fore,the generalizability coefficient for this model will be,

0)162+2,352+6.048 6= 0,9 2
0,338+0,~62+2,352+6,048

= MSp- MSpi :h : S _ 8,900-0&338 _ 0 962
MS - 8 90 -,p ,

When verbal and performance are regarded as fixed,i.e.not

sampled,and similarities and vocabulary,picture completion and

picture arrangement as randomly sampled within verbal and per­

formance strata,respectively,from subuniverses of tests,a mixed
m/

moael is ~ppropriate.Because substrata are regarded as sapled,

the random PH component is allocated to error variance,and the

generalizability estimate will be,

= 0,944alpha3M =

=

2,352+6,048
0,338+0,162+2,352+6,048
MS - MSP ph:s _ 8,900-0&500 =

MSp - 8,90 0,944

In considering both strata and substrata as random,the least

likely case for this Wechsler-like test battery,the PH:S and

the PS components will as random components be ascribed to the

error variance term.Only the common to all items component,
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the P component,is allocated to un1verse score variance. Thus

the proportion of universe score variance will be,

0,680

= 0,6806,048

0,338+0,162+2,352+6,048

= MSp- MSps = 8,900-2,850 =
MS 8,900

P

alpha3R =

A most meaningful interpretation of the three alpha coeffici­

ents as obtained from the hypothetical test dataJis that they

are the estimated correlation of ;,rthe :test.·'scores at hand with

another set of test scores obtained from another test battery
defined

constructed according to the sp :ecific sampling plans for

each of the models.It 1S also meaningful to see how the genera­

lizability estimates are related to the proportional composition

of the test score variance.As a matter of fact, the three esti­

mates can be taken from that structure by simply adding compo-

nents.
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7.A covariance approach to the generalizability of

hierarchically stratified tests.

The drawback by following a more or less rule of thumb pro­

cedure in developing the models for the generalizability of

hierarchically stratified tests is apparent.By adhering to

rules one can generate correct formulas, but no deep under­

standing necessarily follows.Particularly,the introduction

of fixed and random facets in more complex test designs makes

it difficult to see how the various generalizability formulas

obtain under different sampling plans.

Fortunately,there are alternative approaches to generalizability

estimates and the structural features of the generalizability

theory that facilitate a more readily understandable rationale

for how to obtain the generalizability coefficien~s presented

in the discussion of the analysis of variance approach. Seeming­

ly,the covariance procedure to be dealt with in the following

is something qUite different from the analysis of variance ap­

proach.Yet,as will most likely become clear in proceeding along

a covariance line of thinking, there is not at all any differen, .ce

between the two procedures.However,the covariance approach

seems to be much more conducive to a fundamental understanding

of what kind of structure one is imposing on data in order to

arrive at the specific formulas for the different models.

As mentioned previously, the generalizability coeffic:ient. can

also be defined as the expected correlation between random

parallel tests. The ratio of the expected covariance between



TABLE 7-1
Variance-covariance matrix of hypothetical test data

8,
-"_.__ •.._--

32 ..
H, H2 H3 H4_.._.w_·_____

I, 12 13 14 15 16 17 IS

11' 2,70 1,55
H1 12 1,55 , ,20 5,00

31 13 1,30 1,00 '2,10
H2 14

5,00 1,00 1,00.
1--,-1--.

15 2,20 1,30
H3 16 1,30 1,20 5,75

32 17
12,10 2,30 , ,S5

H4 IS
5,75 1,S5 2,20

- -Note. - cbb = 0,756, c bw = 1,344, Cww = 1,425,and vi = 1,763
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two such random parallel tests,in our case two tests being

constructed according to the same complex sampling plan,to

the expected test variance (i.e. the product of the two tests'

standard deviations) is the wanted correlation. Applying a co­

variance of sums rationale will serve our purpose for esti­

mating the expected covariance between random parallel tests

under different sampling plans.

First,consider the observed variance-covariance matrix of

one test constructed according to the hierarchically strati­

fied test design.Por convenience, let the variance-covariance

matrix be illustrated by the one generated from the hypotheti­

cal test data in TABLE 6-1.The variance-covariance matrix con-

Insert TABLE 7-1 about here

tains three distinguishable types of covariance among items.

For the sUbsequent discussion it is important for the reader

to be able to see this distinction clearly. One type of covariance

is a monosubstratum-monostratum interitem covariance. (For a

similar terminology, see CQrnpbell& Fiske 1959. )This is a co­

variance among items within substrata within strata.Another

type is a heterosubstratum-monostratum inter-item covariance.

It is a covariance among items between substrata (among items

from different substrata) within strata.Lastly,the third type

of covariance is a heterosubstratum-heterostratum interitem

covariance.It is a covariance among items between substrata

between strata (among items from different substrata and dif-



Test 1

TABLE 7-2
Covariance matrix for two random,hier­
archically stratified tests.Fixed model.

Test 2--_...•.__.._..._................_............_.........~

31 Sf)-_ .._- _._.__.._._~ ..•._...._.
··4

H, H2 H3 H4
_.....- ........_.. ..._-- .!q I 10 I 11 I 12 I 13 I 14 I15 I,6

H, I, Cww c bw
3, I? cbb

H2
I 3 cbw Cww

1-0--'
I.I1

H3
I 5 Cww cbw

32
I 6 ebb

H4
I 7 c bw Cww
Is

..-

Note.-Fixed model:strata fixed,substrata fixed,
items random.
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ferent strata).As a shorthand the three types of covariance

will be called the covariance within-within,or ww;the covari--
ance betwcen-within,or bw;and the covariance between-between,

or bb.

It is reasonable to believe,if a rational stratification plan

is followed, that the average interitem covariance within-within

is larger than the average interitem covariance between-within,

which in turn is larger than the average interitem covariance

between-between.lf items belonging to different substrata and

different strata are tapping the same trait, generally speaking,

the three types of average interitem covariance are expected

to be equal.In TABLE 7-1 the average covariances"are,

0bb= 0,756; cbw= 1,344; and cww= 1,425.It should be noted that

the covariance between-within is pooled for the four submatrices

where ~his type of covariance is found,i.e.the covariance be~

tween substratum 1 and substratum 2 ,within stratum 1 is added

to the covariance between substratum 3 and substratum 4 within

stratum 2,and then averaged. The same pooling procedure is per­

formed for the covariances within-within.

Next,let us construct a hypothetical covariance matrix between

two random parallel hierarchically stratified tests, assuming a

fixed model. Under this assumption both substrata and strata

are fixed, implying that the same substrata and strata are used

for the two tests. Under this particular sampling plan all of the

three types of covariance defined above are established in the

covariance matrix,as is hopefully evident from TABLE 7-2.In

Insert TABLE 7-2 about here
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that table the same strata and substrata that appear in test

1 reappear in test 2,whereas a new sampling of items has been

undertaken for test 2.In what is here called the fixed model,

i.e.strata and substrata fixed,it should be quite cl~ar that

items within substrata within strata are still assumed to be

randomly sampled from subpools of items.Therefore,it is legi­

timate to regard the tests in TABLE 7-2 to be random parallel.

They are random parallel; fixed hierarchically stratified tests.

The expected covariance between two random parallel tests of

the fixed model will be the sum of the different types of co­

variance in the matrix.An expected correlation between the tests

can be defined by using the expectations for the different inter-

item covariances as a,numeratbr and the product of two expected

test standard deviations,i.e. the expected test variance,as a

denominator.This definition of the correlation between two

random parallel fixed hierarchically stratified tests is also

the definition of coefficient alpha.

Let d~J.ww, d.. bw, d . .bb,where i I j,symbolize the three expec-
~ ~J ~J

tations of the differently defined interitem covariances.Further,

to make the formulations more general,let k be the number of

items within sUbstrata,~ the number of substrata within strata,

and ~ the number of strata.In such a matrix of covariances,

there will be k2mr covariances ww,k2m(m-1)r covariances bw, and

k2m2r.(r~1) covariances bb.The expected correlation between two

random parallel tests of the threefacet hierarchically strati­

fied test design,fixed model,can be defined
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= k2mr~ijWW + k2m(rn-1)r~ijbw + k2m2r(r-1)6ij bb

E(V)
F7-1

There should be no problem estimating alpha3F with data avail­

able from one test only.This can be done by using the average

interitem covariances in the test as estimates for the three

previously defined covariances. An estimation form of the de­

fining formula F7-1 can therefore be written

v

2 E0i'ww EC ..bw 2 2 ECijbb
k mr k(k_:L....mr· + k2m(m_1 )r 2 J.J! +k m r( r-1) 2 2__ ~;;.I_~..:..1·~)m_=-r ~_---!k~m~(~m=-..!..1 ~)r~ ~k~m....:r~(r:;.:-:...:1..1-)alpha3F= -

F7-2

By a little algebra,F7-2 reduces to

alpha3F

k
= (k=1)ECijWW + ECijbw + ECijbb

V
F7-3

Inserting the covariances and the test variance from the hypo-

thetical test data in TABLE 7-1,the following result is obtained,

alpha3F
= 2 • 11,40 + 21,50 + 24,20 =

71,20
0,962

It is important to note that this result is identical to that

obtained in the analysis of variance approach. Thus F7-3 is equal

to F5-5,although they a.re seemingly quite different formulas.

The relationship between the~wo approaches will be discussed in

a subsequent section.



Test ,

TABLE 7-3
Covariance matrix for two random,hier­
archically stratified tests.Mixed model.

Test 2
I ---- f----... --.,-. - ......-.-.....--....--...•------..--

! 8, 82
HI=) H6

.__..._-......._-_......- ......._..__.__.._._--
H7 H..__ .._..__:8.._..__.._........_

_~_9._:J.9..__ I" 112 113 114 115 1 16
--"- .~----- 1--..-_._-

H1
11 °bw cbw
I? ebb
13H2 °bw c bw
14.-

~. ••••__ '0 __ ., •• " _..._--~.,._- --
H3

15 c bw cbw
If)

ebb
17H4 °bw °bw
IS

·'_ ••__'H

Note.-Mixed model:strata fixed,substrata random.
items random.
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Next,consider a hypothetical covariance matrix between two

hierarchically stratified tests,assuming a mixed model. Under

this substrata random, strata fixed assumption, the covariance

matrix will be somewhat different from the covariance matrix

under the fixed model in TABLE 7-2.Vfuat is notew6thy about this

Insert TABLE 7-3 about here

in the first test
modified covariance matrix is that no sUbstratum/reappears in

the second test. Thus no covariance can be established among

items from the same substrata. This is a result of the random

sampling of substrata.Consequently,in the covariance matrix of

this particular model there will be no covariance of the ~.type.

Under the mixed model only two types of covariance can be estab­

lished,the ~ and the £Q type. What is interesting to note is that

the k2mr covariances ~ in the fixed model have to be substi­

tuted by the same number of covariances ~.

By finding the correct number of the interitem covariances of the

bw and the ~ types, the ratio of common variance to test vari­

ance,or the expected correlation between tests of the mixed

model can be defined.In changing from the fixed model assumption

to the mixed model assumption it should be noted that the ex­

pected test vari~ce does not change.

2 2 2 2= (k mr +- k m(m-1)r)oij bw + k m r(r-1)oij bb

E(V)

= k2m2roij bw + k2m2r(r-1)oij bb

E(V)
F7-4
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The estimation form of F7-4 can be obtained by substituting

average interitem covariances from one test for the expectations

in the defining formula,

alpha3M =

ECi,bw 2 2 ECi,bb
k2 2 2 J + k m r (r-1 )-2-i2~JOl..---

m r k m(m-1)r k mr(r-1)
V

F7-5

By a little algebra F7-5 reduces to

(~)EC, .bw + EC .. bbm-, ~J ~J

V
F7-6

Inserting the covariances and the variance from the hypothetical

test data in TABLE 7-1 in F7-6,the following alpha coefficient

is obtained,

alpha3M
_ 2 • 21,50 + 24,20 =

71,20
0,944

p
Again,the covariance aproach gives the same result as the ana-

lysis of variance approach. The equivalence of F5-6 to F7-6 should

be noted.

Lastly,the random model will be considered in terms of the co­

variance approach.In the random model both substrata and strata

are assumed to be randomly sampled. The hypothetical covariance

matrix between two hierarchically stratified tests constructed

according to the same sam:Jling plan defined for the random model,

will be different from the two preceding covariance matrices

under the fixed and mixed models,in TABLE 7-2 and TABLE 7-3,

respectively.



Test 1

TABLE 7-4
Covariance matrix for two random,hierarchi­

cally stratified tests.Random model.

Test 2
. -_._-_._.~

8 Sod_................_............] .............--...........--.-. ..

H5 H6 H7 HR
....-...._-- f-..

I 9 I 10 1 11 I 12 I 13 I 14 I'5 I 16

1H,
I,

-

cbb cbb
S, I I 2 cbb

IH2
I 3 cbb cbb
I 4~._-f--_..

H3
IS ebb cbb

82
I 6.

'. I 7H4 ebb cbb ebb
IS.........- ..•. ~

Note.- Random model:strata random,substrata random,
items random.
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Wilat i[l (lifi'ercmt in the covariance matrix for the random

model ::lS presented in ~rABL]~ 7-4 compared to the covariance

ll18.trix for the mixed model in TAl3IJ1~ 7-3, is that the same stra­

tum will not appear two times in th~atrix for the random model.

Vrnile the strata fixed assumption in the mixed model implied

that the same strata would be used for all random parallel tests,

th 'b ae strata random assumption in the random model prescr1 es

new sampling of strata for every new test to be constructed.

Insert TABLE 7-4 about here

Therefore,in the covariance matrix under consideration now,neither

the interitem covariance of the ~ type,nor the covariance of the

~' type can be established.AII the interitem covariances are of
different

one type,namely the ££ type. They will be covariances between /

items from different substrata and from different strata.Conse-

quently,the expected correlation between random parallel tests

of the random model will have a relatively simple form,

alpha3R =

222k m r <1i ,bb
.1

E(V)
F7-7

The estimation form of F7-7 can be obtained by substituting the

average interitem covariance bb for the covariance parameter and

taking the observed test variance as an estimate of E(V).
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(rer)ECijbb

V
P7-8

ll.n interestin,! structllral similarity between In-8 and tradi­

tional coefficient 8lpha will become apparant when ECijbb is

substituted for V - EVs,i.e.the total test variance minus the

sum of the strata variances,

alpha3R

EV
(r:1)(1 - -r) F7-9

Evidently,under the random assumption model, strata are regarded

as items in a homogeneous test.The alpha3R is concerned with the

internal consistency of randomly sampled strata.

Inserting the covariance and the variance from the hypothetical

test data in TABLE 7-1 in F7-8,the following alpha coefficient

is obtained,

alpha3R
= 2 • 24,29 =

71,20
0,680

Exactly the same result is obtained here by the covariance

approach as was obtained by the analysis of variance approach.

The most important feature to pay attention to in the covariance

approach is the rationale established for defining the different

sum~of covariances to go into the alpha formula for the various

models.It should be understood how the different covariances

obtain under the three specifications made for the sampling plan

for each of the models.
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The convergence of the analysis of variance approach and the

covariance approach to the generalizability of a hierarchically

stratified test as established in terms of exactly the same

results,is at this moment not easily explained by reference to

an underlying,more basic,oommon conceptual framework. This funda­

mental model will hopefully become clearer as we proceed to
the

another way of looking at/structure of th~eneralizabilityprob-

lem involved in the hierarchically stratified test.
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8. Generalizability estimates in terms of the expected

variance-covariance matrix of a random parallel hierar-

chically stratified test.

The covariance approach to the generalizability of hierarchi­

cally stratified tests estimates the expected covariance be­

tween two random parallel tests constructed according to a

particularly defined sampling plan,reflecting the universe of

tests to which one wants to generalize. The three categories of

covariance defined above are expected observed covariances in

the universe of tests. The covariance structures conceived in

TABLE 7-2,TABLE 7-3,and TABLE 7-4 are manifest covariance struc­

tures for the different models of the hierarchically stratified

test design.

Instead of hypothetically correlating random parallel tests of

the design at issue,as was done above,one can think of an alter­

native approach that is concerned with an inferred variance
one

structure of /random parallel hierarchically stratified test.

The intuitive logic of this approach has been described by

Eikeland (1970) for the random parallel, unstratified test. The

same logic seems also to be sound for stratified tests.In the

following this rationale will be extended,first,to the twofacet

hierarchical test;next,to the threefacet hierarchically strati-

fied test.

As regards the unstratified test,one can conceive of a latent

structure of the variance-covariance matrix of a random paral­

lel test consisting of two components,a covariance component

and a variance component.In the universe of items this covariance



TABLE 8-1

Latent structure of the variance-covariance

matrix for a 4-items unstratified test



38

component is the common variance shared by items in the defined

universe.It is an expected value. Under certain assumptions the

observed covariance among items is equal to the expected universe

score variance.When all items are pooled,the observed-score

variance equals the universe score variance plus error score

variance (see Lor~ & Novick 1968,Chapter 8).The inference made

in constructing the latent variance-covariance matrix for a

random parallel composite is to impose on the expected item

variance the covariance component plus a residual component,the

error component,which is the difference between the expected

item variance and the imposed covariance component.Thus the

Insert TABLE 8-1 about here

latent variance-covariance matrix of a random parallel unstrati­

fied test will be conceptually composed of k2 covariance compo­

nents and k error components,or residuals,as seen from TABLE 8-1.

The generalizability estimate for the test is the ratio of the

universe score variance,the sum of the covariance components,to

the test variance which is the sum of all components in the

matrix.On the basis of this expected variance-covariance matrix

coefficient alpha can be given a fairly well known form,

alpha F8-1

Eikeland (1970) has shown that the reconstruction of the gene-
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ralizability for the unstratified composite in terms of this

intuitive logic is identical to the formal analysis of variance

approach as first developed by Hoyt (1941).Vfhat is called the

universe score component,or true score component, in the ana­

lysis of variance approach (6~), is just another name for the

expected covariance among items (6ij ). This identity, ~ij= 6~,

explains the interchangeability of formulas in F8-1 and the

particular SYmbols used in TABLE 8-1 ,where traditional analysis

of variance symbols are adhered to.F8-1 should make it clear

that the more abstract,and for many a somewhat obscure,analysis

of variance approach can be conceived in terms of a latent

variance-covariance matrix of items.

The intuitive logic as developed for the latent variance-

covariance matrix of the unstratifie test will next be exten-

ded to the twofacet stratified test,in order to make a still

further extension to the hierarchically stratified test more

easy to grasp. The formal approach to the generalizability of

the stratified,or hierarchical, test design can be found in

Rabinowitz & Eikeland (1964) and Rajaratnam,Cronbach & GIeser

(1965).

In a test constructed according to the twofacet,hierarchical

design with items nested within strata,two types of covariance

among items are conceivable. First,a covariance among items

within strata,called the within covariance, is defined, 6ijw.

Next,a covariance among items between strata,called the between

covariance,can be defined, 6ij b.
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The inferred variance structure of the test scores revealed

by the construction of a latent variance-covariance matrix for

the twofacet,hierarchical test will be somewhat more complex

than for the unstratified test.The covariance among items be­

tween strata,the between covariance,represents the common

variance across strata. These covariances reflect the most

general of the traits tapped by a multifacet measuring procedure.

The covarianoe between strata accounts for the common-to-all-

items variance,regardless of strata. This component of the

variance structure is the 6 .. b covariance,as defined above.
~J

In keeping with what was found for~ unstratified test,the

covariance component,6ij b, for the hierarchical test,is equal

to the person component,6~,as defined in the analysis of variance

approach.This identity, ~ijb = 6~,ShOUld be kept in mind for

the SUbsequent discussion.

In the stratified universe of generalization,the covariance
6ijWy .

among items within strata,is construed to be composed of two

covariance components.First,the common-to-all-items variance
2component,6p ,or 6ijb, is naturally defined into the covariance

within. Second, in addition to the more general trait measured

by 62,the covariance within strata is thought to measure alsop

a trait that is specific for each of the strata.This less gene-

rally conceived component of the covariance· structure,reflects

the common-to-groups-of-items variance, the groups being defined

by the stratification plan for the item universe.While the

common-to-all-items component is dependent upon the inter­

individual differences in the sum scores across all strata when

allowance is made for the less general effects, the common-to­

-groups-of-items component reflects the interaction between
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persons and strata. This means that profiles of strata scores

are different for different persons.It is therefore reasonable
pi

that the common-to-grous-of-items component has been denoted as

an interaction component,as is customary in the analysis of

variance approach. In the construction of a conceptual framework

for an inferred,latent variance structure of hierarchical test

scores,the expected covariance among items within strata is

conceived to be composed of two additive covarianc~ components,

~. ,b and 0, ,w - 0l.'J,b.The first can also be designated 6p
2 , thel.J l.J

second will be called 6~s.Thus,the structure of the expected

covariance among items within strata can be written,ifijw=6~s+ d~.

The expected item variance from such a stratified universe can

now be conceived of as consisting of the two covariance components

defined above,and a residual component,6;es.ThiS component is

technically an interaction component.It is the person by item

interaction within strata.Thus the residual component will also

be called 62, • By now,having established the conceptual frame-pl.:s

Insert TABLE 8-2 about here

work for a latent variance structure . of the hierarchical test

score ,the inferred structure of the variance-covariance matrix

of these scores can be seen from TABLE 8-2. For convenience,

TABLE 8-2 is based on a 2-strata-by-,2.,-i tems design. In gene­

ralizing to a twofacet,hierarchical test with~ strata and k

items within each stratum, the sum of such a latent variance­

covariance matrix will be a sum, of weighted components. In a

kr x kr matrix there will be ~ residual components, ~2E
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interaction components,and ~2~2 common components. Thus the

expected test score variance as an inferred structure can be

written,

E(V) = 1-62 + k2 ~2 + k2 262
Z\,L~ res !\Ups It p F8-2

The generalizability problem at issue,having established F8-2,

is to find the ratio of universe score variance to total test

score variance.In order to do ~his one has to define which of

the covariance components should go into the universe score

variance. This is a question of deciding on the universe of gene­

ralization of substantive interest for a particular testing

purpose.In the present case, there are two possibilities of

defining a universe of generalization,either to regard both

components, 6~s and 6~,as belonging to the universe,or only the

common component,the 6~ component.

B,y regarding strata as fixed,one is interested in generalizing

to just those strata whiah are found in the test at hand. There­

fore,it is reasonable to consider the within covariance as

replicable oovariance in that the same strata will reappear in

the construction of another random parallel test. Consequently,

for the fixed model, the universe score variance should include

both covariance terms. This conclusion can be made still more

convincing by referring to the logic established in TABLE 7-2,

TABLE 7-3,and TABLE 7-4. While those tables illustrate the
e

threfacet hierarchioally stratified test design, one could by

the same reasoning construct covariance matrices for random

parallel hierarchical tests,showing that the present conclusion

is correct.
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According to the reasoning establiShed for the definition of

universe score variance for the fixed model,the generalizability

estimate should be,

alpha2F =
k?62 + k? .2..,(2
~ ps --n up

F8-3

The eventual form of F8-3 is identical to the reliability form

for the fixed model as developed by Rabinowitz & Eikeland (1964)

for the same test design by an analysis of variance approach.

At this point it should be noted that the test variances as

estimated by the covariance approach for the unstratified test

and the hierarchical test,are different from the test variances

as estimated by the MSp in the analysis of variance approach.

However,they bear a functional relationship to each other.

sum of the

for the same

is 02 .+ k62•
p~ P

as seen from

While the E(V) for the unstratified test is the

components in TABLE 8-1, k6~i + k26~,the E(MSp )

test design in an analysis of variance approach

Correspondingly,for the hierarchical test the E(V)
222 222TABLE 8-2 is lut6pi : s+ k r6ps+ k r. 6p ' and the E(MSp ) in an

analysis of variance approach would be 62. + k62 + kD62 The
p~:a ps p.

relation ship between E(V) and E(MSp ) obviously is the following,

kE(MSp ) = E(V) for the unstratified test,and ~E(MSp) = E(V)

for the hierarchical test.Actually,the difference noted can be

seen as a difference in the conventions established in esti-

mating the test score variance.According to these conventions
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the sum score variance of an unstratified two';';item test would

be computed the following ways,

What is shown in F8-4 and F8-5 can easily be generalized to

k items for an unstratified test and to kr items for a hier­

archical test.

The relationship established between E(V) and E(MS ) clearly
p

implies that the basic reasoning in the analysis of variance

approach is concerned with a latent variance-covariance matrix

as developed above.However,this convergence of the analysis

of variance approach on the deep covariance structure conceived

in the present monograph has never been explicated in the

literature,as far as the author lmows.

Returning now to the generalizability estimates for the two­

facet hierarchical test,a random model regards strata as ran-

domly sampled from a pool of defined strata. Compared to the

fixed model developed above,one has to reinterpret the universe

score variance such as to match a differently conceived uni­

verse of generalization. In the case of the random model one

intends to generalize to a universe of tests where there can be

no room for resampling of items within the same strata.As a

matter of fact,in the covariance matrix of two random parallel

hierarchical tests,constructed in aacordance with the prescrip-
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tions of the random model,there will be no covariance among

items within strata,only a covariance among items between

strata.Thus the component for the covarianoe among items within

strata in the varianoe-covariance matrix of such a test has to

be reinterpreted as belonging to the error score variance,beoause

it is not a replicable variance component.The thinking going

into this conclusion may become more convincingly olear if the

reader can be able to modify TABLE 7-4 to fit the random model

of the twofacet,hierarchical test design.

According to the rationale developed for the random model,the

alpha coefficient as a generalizability estimate should be,

=
62 +
res

F8-6

The defintion of alpha2R reached in F8-6 is equal to the defini­

tion of the reliability for the random model of the hierarchical

test design as developed by Rabinowitz & Eikeland (1964) in

their analysis of variance approach.Again,this result is a new

corroboration of the convergence of the covariance approach and

the analysis of variance approach.
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The generalizability estimates developed s'o far for the un­

stratified test and the hierarchical test in terms of the

latent structure of the expected variance-covariance matrices

should facilitate the next extension of the conceptual frame­

work.In going to the threefacet hierarchically stratified test

design the structural conception of the complex test score will

be further complicated by another covariance component compared

to the twofacet case just considered. The previous discussion

of the threefacet test in Section 7 made it clear that one can

define into the variance-covariance matrix three types of co­

variance: (1) A covariance among items between strata between

substrata,called between-between,or bb. (2) A covariance among

items between substrata within strata,called between-within,or

B!. (3) A covariance among items within strata within sUbstrata,

called within-within. The theoretical construction that lies

ahead for the threefacet test design is to incorporate a third

covariance component into the inferred structure of the variance­

covariance matrix of the hierarchically stratified test.

The most general trait measured by the test battery of this

design is reflected in the covariance between-between, since

this is a covariance among items that are maximally dissimilar.

It is the covariance among different items from different sub­

strata and from different strata. This common trait is thought

to run through all of the items,so that the component due to

the common factor is built into the covariance between-within

and also into the covariance within-within.LastlY,because the

items belong to a defined family, of items:,it is reasonable to

impoae the Ba component also on the item variances.



I ~

as Ol
a Q)

~
Q)

0 'd
@ Q)

or;
or; ~
H or;
as ~

> as
0 H
0 ~

I Ol
Q)

0 >..
~ rlas rl

l"\ or; as
I H 0

co as or;
> ~

r.:zq 0

~
Q) H
~ as

< .p H
8 Q)

~ or;
0 ~

Q) C\I
H ><
::l C\I
.p ><
0 C\I
::l
H as
~
Ol H

0
.p ~

~
Q) ><.p or;
as H
H .p

---
31 32

H
1 H2 H3 H4

11 1
2 13 14 IS 16 17 1

8
I

2
~

,,2+,,2
If r ph:s °ph:s+ 2 +02 0

2
+02 2

02 02 2

I
0 0p

+02 +02 02 +02 °ps p - ps p p p P
H1

ps P ps P --
02 + 02+02

2 +02
,

02 +02 0 2 02 2 21
2

~h:S r ph:s
0p 0p.

o +02
+02 +02 °ps p ps p p P

3 1
ps P ps P

02+02 2
2 2 0

2
+02 °ph:s+ 2

O~ 02 02I y
r ph:s

°ps+op ps p
+02 +02 02 +02 0p P P

H2
ps P ps P

2 + 02+02
.--_ .._--

I 14 02 +02 02 +02 °ph:s r ph:s 02 02 02 2
ps p ps p 02 +02

+02 +02 P P P 0p
! ps P ps P
i

2 +I
2 2

IS 0 2 02 2 ci °r+oph:s °ph:s 2 +02 (12 +02
P p 0p p +02 +(12 2 +02 (1ps P ps p

H3 ps p (1ps P

2 2+ 2
16 02 (12 2 (12 (1ph: s + or 0ph:s 2 + 2 (12 +(12

P p (1p p (12 +(12 +02 +(12
(1ps (1p ps p

S - ps p ps P2

02 02 (12 (12 (12 +(12 ~ +(12
2+(12 (12 +

17
(1r ph:s ~h:Sp p p p ps p ps P 2 2 o +(12H4
+(1ps+(1p ps p

2 + 2 2
2 (12 2

02 (12 +02 (12 +(12 °ph: s °r+oph: s0p p 0p p ps p ps p 02 +02
+02 +02

Ips p ps p I
'l.T_._ _2 __2 _2



47

Lesa general traits can be assumed to be measured by the co­

variance among items between substrata within strata. This type

of covariance should reflect the common-to-each-stratum variance

in addition to the common-to-all-i tems variance which',has al­

ready been imposed on it.Consequently,the structure of the

covariance between-within can be conceived as a sum of the

common component and a stratum-specific component. This more

specific component reflects the person by stratum interaction

and will be called 6p
2

s .ThUS one defines ~.. bw = 02 + 62•
~J ps p

Still less general traits can be assumed to be measured by the

covariance among items within strata within substrata.This type

of covariance should reflect the common-to-each-substratum

variance in addition to the common-to-all-items variance,6~,

already imposed.However,also the common-to-each-stratum compo­

nent' should be imposed on the 'within-within covariance,since

what is common-to-each-stratum variance must also be common to

the substrata within each stratum.It seems therefore reasonable

to define a covariance component that accounts for the specific

traits tied to the different substrata.This component will be

the residual within-within covariance when the 6; and the 6;s

components have been accounted for. Thus one defines 6 ..ww =
~J

62
h

+ 02 + 62 ,where the new component is conceived as a personp:s ps p, .
by substratum interaction within each stratum.

Insert TABLE 8-3 about here

The item variance structure can reasonably be conceived to

contain all three covariance components.In the completely
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hierarchical structure of the defined item universe each item

should tap common-to-all-items variance,common-to-its-stratum

variance,and common-to-its-substratum variance.In addition each

item will measure something wholly specific which goes as .the

person by item interaction within substrata.This specific com­

ponent is called 6~i:h:S,or 6;es.After this,the expected item

variance can be written as a sum of four components, three co­

variance components and one residual variance component,

( ) 62 62 62 + 62
E Vi = pi:h:s+ ph:s+ ps p.

The latent variance-covariance matrix for a hierarc~ically

stratified test can according to the theoretical construction

above be illustrated by a 2-strata-2-substrata-2-items design

as presented in TABLE 8-3.In generalizing to a threefacet

hierarchically stratified test with ~ strata,~ substrata within

each stratum,and ~ items within each sUbstratum,the sum of a

latent variance-covariance matrix will be a sum of weighted

components.In a kmr x !m£ matrix there will be kmr residual

components,k2mr ph:s interaction components,k2m2r ps inter­

action components,and k2m2r 2 p components. Thus the expected

test score variance as an inferred structure can be written,

F8-1

Which of the covariance components in F8-7 to consider universe

score variance in estimating generalizability can only be de­

cided after having made clear what kind of family of tests one

is interested in generalizing to.Once again the generalizability

problem involves whether strata and substrata are defined as

random or fixed,or as an admixture of both.
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The most restricted universe of generalization will result

by defining both strata and substrata as fixed. This means

that all tests belonging to the defined family of tests have

to be constructed by random sampling of items from within the

fixed substrata within the fixed strata. The same strata and

substrata have to provide items for the class of tests to which

one wants to generalize. For the fixed model all of the three

covariance components defined above will be part of the syste­

matic variance in the test. Thes,e will under fixed assumptions

be replicable variances, while only that part of the test vari­

ance attributable to random sampling of items within sUbstrata,

the person by item interaction,will naturally be considered

error variance. The reasoning going into this discussion may be

made considerably clearer by examining once again TABLE 7-2,

which shows which of the covariances to expect in a covariance

matrix of two random parallel,fixed,hierarchically stratified

tests.

According to the definition of the universe score variance for

the fixed model as reached above,the generalizability estimate

will be,

alpha3F =

F8-8
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The reduced form of F8-8 is identical to the alpha form for

model 3F as developed formally by following rules of thumb in

an analysis of variance approach (see F5-2).

For the two other generalizability models under the threefacet

test design here considered,the mixed and the random model,a

similar line of reasoning as used for F8~8,can be adopted. When

strata are considered fixed and substrata random, the covariances

of the between-between and the between-within types will be

defined as belonging to universe score variance. The covariance

within-within has to be allocated to error variance,since that

type of covariance for this particular sampling plan will re­

present non-replicable variance. Therefore, this source of vari­

ance has to be regarded as error. This argument can be more con-

vincing by referring to TABLE 7-3,which shows the covariance

matrix for two tests constructed according to the sampling plan

for the mixed model. The generalizability estimate for the

mixed model will read,

alpha3M =
kmr pi:h:s+ k mr ph:s+

lon62 + lonr62
= --,,:- ~~s-----~p~_---,~

6~i:h:S+ kOph: s + km6~s+ kmr6~
F8-9

When both strata and substrata are considered random,only the

covariance between-between can be defined into universe score

variance. This can most easily be made clear by the reasoning
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established in TABLE 7-4,where the covariance matrix for two

hierarchically stratified tests are shown. These tests have been

constructed according to the sampling plan prescribed for the

random model.The generalizability estimate for this model will

be,

F8-10

The three alpha coefficients for the hierarchically stratified

test design,including the fixed,mixed,and random models,have
w

no/been derived by three different methods: (1) B,y an analysis

of variance approach (F5-2, F5-3,F5-4). (2) B,y a covariance

approach (F7-1, F7-4, F7-7). (3) B,y conceiving of a latent

variance-covariance matrix of ~andom parallel test of this

particUlar test design (F8-8, F8-9, F8,10).

It bears repeating that the different approaches converge.The

seeming differenoe is not a real difference. What is of consider­

able interest to note is that the abstract and formal analysis

of varianoe approach,more often used as a mechanical technique

rather than as a tool for thought,can be reinterpreted in

terms of a conceptual framework of covariance constructs.B,y

seeing this convergence,analysis of variance as a technical

device for most users can be made much more intuitively under­

standable,such that the generalizability estimates can be derived

as logical and meaningful constructs.
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9. The family of hierarchical alpha coefficients.

Traditionally coefficient alpha has been associated with the

unstratified test design. Yet it seems quite reasonable to

believe that the logic of alpha as an internal consistency

construct naturally applies to more complex test designs. Also,

alpha conceived as the expected correlation among random paral-

leI tests, seems to apply to the different sampling plans with­

in different test designs,like the fixed and random models for

the hierarchical test design and the fixed,mixed,and random

models for the hierarchically stratified test design. There
I

should be no reason to doubt that the alphas developed for com-

plex test designs are equally suited as lower bound estimates

for the defined generalizability coefficients as is traditional

alpha. It should be recalled that the defined generalizability

is the squared correlation between observed test score and the

universe score. No attempt will be made in this monograph to

prove that the inequality demonstrated for onefacet alpha also

holds for multifacet alpha. The proof for traditional alpha can

be found in Rajaratnam,Cronbach & GIeser (1965), Novick & Lewis

(1967), and Lord & Novick (1968).

In extending test designs from onefacet to multifacet ones,

there are more and more possibilities for design versions. One

aspect of the diversity of designs is whether facets are crossed

or nested,or a combination of both. The concern in the present

study is a threefacet test design with doubly nested items. Yet

there are much more to tell about threefacet test designs,not

of interest in this particular context. A threefacet measuring
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FIGURE 9-1. The relationship of sources of variation for the onefacet,twofacet hierarchical,
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operation may well be of a doubly crossed,or a crossed-nested

type (see,for example,Medley & Mitzel 1963). A twofacet

operation may be either crossed or nested. The test design

described by Rabinowitz & Eikeland (1964) is a twofacet nested

design.

There is a relationship between the alphas developed for various

test design. In order not to complicate unnecessarily this

relatedness,we shall be concerned with establishing a family of

alpha coefficients restricted to alphas connected with the

unstratified test design,the twofacet nested,and the threefacet

doubly nested test design.

t
These three tes/designs form a tightly knit structure. \Vhat is

characteristic about the hierarchically stratified test design

is that

complex

as many

the lower order test designs are built into this more
e

one. Within th/strata of the threfacet test one can find
E/

twofacet nested deigns as there are strata,consisting of

substrata and items within substrata. }urther,each substratum

is an unstratified test,consisting of homogeneous items.

Insert FIGURE 9-1 about here

One way of conceiving the relationship between the three test

design considered can be seen from FIGUIll~ 9-1. The family tree

can be regarded both as a generating and as a degenerating

scheme in building item structures. In the case one thinks un­

stratified items to be heterogeneous, a stratification of items

can be undc~rtaken to take care of clustering effects in items.
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If desircable,hierarchical clustering effects can be isolated

by a second-order stratification,generating a hierarchically

stratified test. Conversely, if a doubly nested design should

prove too elaborate by showing negligible clustering effects,

one can degenerate to less complex designs.

'ro brinG the generalizabili ty formulations for the three test

designs more closely together,a little recapitulation may be

in order. I\lthough the logic of the various alpha coefficients

may be more readily understood by emphasizing a conceptual
'1 and 8

framework of covariances,as was done in Sections ,/the more

technical development of the coefficients is most elegantly

performed by the analysis of variance formulation.In developing

the family of alpha coefficients by the analysis of variance

technique,the reader should keep in mind that the covariance

approach and the notion of the latent variance-covariance mat­

rix are basically the same models as revealed by the analysis

of variance technique (see Section 5).

The latent test score variance for the three test designs is

a structure of weighted variance components. In effect,this
on

amounts to focusing/the inferred structure of the variance-

covariance matrices of the different tests. The expected test

score variance will be in terms of E(NIS ).
p

Onefacet E(MS )
P

Twofacet E(MS )
P

rPhreefacet E(MSp )

F9-1

F9-2

F9-3



TABLE 9-1

.£t'ormulas for the family of alpha coeffi.cients
I

i pefining formulas

,..

k62
Alpha1 =.

p

.<1 2 +k62
res p

kr62
Alpha2R

:::.
p

:d2 +k62 +kr62
res ps p

-

Alpha2F =.
k6~s+kr~

:<12 +k62 +kr62
I res ps p

Oomputing formulas

MS -MS .P pl
MS

P

MS -MS sP P
MS

P

MSp-MSpi : s

MS
p

Alpha'.5M

kmr6~
- I---------'~---

'62 +k62 +km62 +kmr62
res ph:s ps p

=: lan6~s+kmr6~
i 2 2 2 2;6 +k6 h +km6 +kmr6­: res p:s ps p

MSp-MS ph : s
MS

P

MS p- MS pi :h : s

MS p .

No te 62 _. 62 62 62 for onefacet, twofacet and.- res - pi' pi:s' pi:h:s
threefacet modals,respectively.

t'. '. '"



55

From the conceptual structures of test scores in F9-1 to F9-3

one can generate altogether six distinct alpha coefficients

when definitions of universe scores are considered by taking

into account the different sampling plans that match the con­

ception of the various universes of generalization.

Insert TABLE 9-1 about here

In TABLE 9-1 the alpha coefficients are given both as defining

and computing formulas. The definitions are given in terms of

weighted variance components, the computations in terms of

observed mean squares.

In considering the defining formulas of TABLE 9-1, it may be

useful to be reminded that the variance components are defined

unconventionally in that a component has the same definition

within a test design whatever the sampling plan. This means

that whether strata and/or substrata are regarded as fixed or

random in the threefacet case,or whether strata are regarded as

fixed or random in the twofacet case, the components are

uniquely defined as if the facets are all considered random.

This ensures that the variance structures of defined universe

scores and expected observed scores are maintained intact as

structures even when facets are considered fixed. It should be

understood that a conventional procedure,as prescribed in ex­

perimental design textbooks, where components are defined

differently for different sampling plans,would give the same

alphas,as the sums of weighted components are intact.



TABLE :~-2

Items Strata I Substrata

l
Random i 1

i J

Random i Random I.. -- ·r- . r··

:::: ·l:::~--l~~i;: --
Randomt· ·F~~;~--l-Fi~~dl

3Rr---·····
I 3M
t···
:

i 3F
;

The family of alpha models

~Mo:el·
r-- .
I--~~.

2F
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A summary table of the family of alpha coefficients in TABLE

9-2 shows the criteria for the classification of the six

measurement models considered. It should be clear that model 1

Insert TABLE 9-2 about here

is the classical onefacet test. Except for the random parallel

assumption as adopted by generalizability theory, model 1 is

the one discussed by Hoyt (1941) within an analysis of variance

framework. Model 2R has been discussed by Rabinowitz & Eikeland

(1964). They also discuss model 2F,as do Rajaratnam,Cronbach &

Gleser (1965). As far as the author lmows, the thre models

under the threefacet,doubly nested test design have not previous­

ly been discuss:ed in the literature.

10. Describing test score variance in hypothetical data by

the family of alpha coefficients.

The relationship established between the three test designs as

diagrammed in FIGURE 9-1,makes it feasible to degenerate an

originally hierarchically stratified test to a twofacet nested

test,which in turn may be degenerated into an unstratified test.

It is interesting to see how the alpha coefficients are changed

in this degenerating process. It shows the effect of ignoring

facets.

The hypothetical test data presented in TABLE 6-1 will be used

to illustrate how alpha coefficients change in degenerating



TJl.BLE 10-1

F~pha analysis of hy~othetical test data as a threefacet,a t~ofacet,an5 a onefacet ~e­

sL';n by succes sivel;}' c)l::"['~p 3 iT.:.; fcc [ts, first substrata, next strata.

alpha3~ = :),
~,

alpha3,.,; = 0,
1••

alpha3F = 0,

----- T··-
ITwofacet I Onefacet. I
I

I.ffi I Source 5S df I.1S I Source SS df IvlS!

! 1
8,900 I P 35,60 4 8,90 1 P 35,60 4 8,90

i
i

I;
! S 1 ,23 1

~
I 4,58 7

I:S 3,35 6

2,850 PS 11,40 4 2,85

)0,500 .... PI 20,80. 28 0,74
~ PI: S 9,40 24 0,39

0,338
-

60,98 39 60,98 39
~.-

680 alpha2?. = 0,680 a1lJha1 = 0,917
I

944 al)ha2F = 0,956 I
!

962
. -_.- - .... -_~

Threefacet-_......_--_.-. . ..__ .- --'--'-'--

Source SS df
--"'_~_.'-

-;::; 35,60 4

'"' 1,23 1:J

H:S 1,25 2

I :H: S 2,10 4

-;::;" 11,40 4_:J

PH:S 4,00 8

PI:H:S 5,40 16
_..._.•.._'~._--_._.-

Total 60,98 39
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the threefacet design to a onefacet design. The analysis is

shown in TABLE 10-1. What can be learnt from the threefacet

Insert TABLE 10-1 about here

alphas,simultaneously viewed,is that substrata within strata

are on the average substantially correlated,while the strata

are moderately correlated. This is reflected in the negligible

difference between alpha3M and alpha3F• From this result it is

evident that almost no information on individual differences

will be lost in degenerating the threefacet test to a twofacet

one. This is confirmed by the alpha2F coefficient which is

something in between the alpha3M and the alpha3F coefficients.

By ignoring the substrata the two fixed alphas,3F and 2F, are

practically the same magnitude. This amounts to saying that the

correlation among items between substrata are almost equal to

the correlation among items within substrata. B,y this result

the substrata may be said to be nonexistent. The indication is

that they do not serve any function in the test and can be

ignored.

In considering the threefacet test as an unstratified composite,

the alpha1 gives a misleading information of how the internal

structure of the complex test is constituted.In this analysis

the differential traits measured by the strata,as evidenced by

the moderate correlation between strata, are ignored.

Applying all alphas to successively more degenerate test designs,

undoubtedly can tell which test design is most parsimonious in
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accounting most economically for the information sought by

the test user. In the present case it seems sound to regard the

twofacet design as appropriate for a parsimonious description

of the test score variance.

strictly speaking,the analysis performed in TABLE 10-1 has here

been commented upon as a description of test data beyond a more
~

narrowly coceived generalizability study.In addition to give

the expected correlation between random parallel tests according

to specified designs, the alpha coefficients considered together

can be exploited for the stIuctural infonnation they convey about

the composition of the test score variance. Both ways of inter­

preting and drawing conclusions about test scores may be useful.

11. rrraditional Spearman-Brown prophecy formula and the genera­

lizability of hierarchically stratified tests.

For a complex test,say the hierarchically stratified test,it

is not easily understandable how a traditional Spearman-Brown
the

rationale is applicable in estimating/generalizability of the

whole battery by knowing how different parts of the battery go

together. Compared to the unstratified test where the Spearman­

Brown prophecy formula takes advantage of the average interitem

correlation,the situation in the case of the hierarchically

stratified test is so much more complicated in that one has to

take into account that different parts of the test may go to­

gether differently. One has to consider simultaneously the

correlation among items within sUbstrata, the correlation of
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substrata within strata,and the correlation between strata.

A further complicating feature is that in estimating the

generalizability of a lengthened threefacet test,one has to

consider the many possibilities in reaching a predetermined

number of items for a test battery by a combination of number

of items within sUbstrata, number of substrata within strata,

and number of strata. Still further, how can the notion of

fixed and random substrata and strata be included in a tradi-

tional Spearman-Brown rationale?

Intuitively,one might think of a procedure that will be con­

ceptually on a par with the Spearman-Brown rationale,and that

will give approximate estimates of the generalizability of the

threefacet tests,compared to the estimates obtained by the

analysis of variance.

Let us be quite concrete about this problem by employing the

hypothetical test data of TABLE 6-1 as processed in 'llABLE 7-1.

If the test user is most interested in seeing to what extent

the test battery is tapping one common trait,he certainly will
wi

pay attention to the beteen strata correlation. In doing this

he ignores how substrata go together within strata and how

items within substrata correlate. In effect what counts

is to find how items from different strata go together.

From the variance-covariance matrix of hypothetical test data,

TABL~ 7-1, the correlation between strata can easily be obtained

by taking the ratio of the covariance between strata to the

product of the standard deviations of the two strata. According

to classical test theory the correlation between the two strata
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would be the reliability for one of them,or for each of them.

In going from the reliability of one stratum to the reliability

of the sum of the two strata,it seems reasonable to apply the

simple Spearman-Brown prophecy formula.

r s1 / s2 =
12,10 = 0,5171 t

(21,30)~ (25,70)2

r tt
2 • 0,517 0,682= =
1 + 0,517

The reliability of the whole test battery according to the

Spearman-Brown procedure is 0,682. Indeed,one should not be too

much surprised to find that this is approximately the genera­

lizability for the random model, 0,680, as found by the preVious

approaches. By ignoring the correlations between substrata

within strata and among items within substrata one has in effect

allocated those common sources to the category of error variance

as sources of no substantive interest for describing individual

differences. It can not be expected that the value obtained by

way of the Spearman-Brown procedure should equal the value ob­

tained by the analysis of variance approach. The reason why is

that the present approach is an interclass correlation procedure,

while the estimate by analysis of variance is an intraclass

correlation coefficient. In order for the two procedures to

give exactly the same results,the variances of the two strata

would have to be equal. A proof for this contention can be found

in Haggard (1958), Appendix.
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It mig,ht be that the test user is sUbstantively interested

in the common variance that is reflected in the correlation

between substrata wi thin strata in addition, to the common

variance reflected in the correlation between strata. In that

case he intends to generalize to a universe of tests that is

more narrow than the preceding one in that the less common

variance between substrata included in the universe score

variance means that generalization is restricted to fixed

strata.

The traditional Spearman-Brown rationale as applied to the

present case would involve correlating the two substrata with­

in each of the two strata. The average correlation between sUb-

strata within strata is the reliability of one average sub­

stratum. In order to obtain the reliability of the full-length

test one has to lengthen the substratum four times. To do this,

one has to apply the Spearman-Brown prophecy formula once more.

The correlations of interest can be obtained by using the

correct covariances and variances in the variance-covariance

matrix of the whole test in TABLE 1-1.

I'sub1/sub2

I'sub3/sub4

5,00

= 5,15 =
(6,00 )~ (8, 20 ) ~f

0,911

0,820

Average substratum correlation: 0,911+0,820 = 0,865
2



r tt =

62

4 • 0,865
1 + (4-1)0,865

= 0,962

Conceptually, the reliability of 0,962 is equivalent to the

generalizability estimate obtained for the mixed model. The

estimate obtained by analysis of variance for the same model

is 0,944. The discrepancy results from the differences in sub­

stratum variances.

still another way of applying the Spearman-Brown rationale for

finding the reliability of the whole test is possible. By also

regarding the common variance for items within substrata as

substantively interesting variance, the test user in effect

considers the fixed model as the most appropriate for his pur­

pose. In estimating the reliability of the whole test for this

model by the Spearman-Brown procedure, the test user is best

advised to find the average correlation between items within

substrata o This correlation is taken as the reliability of one

average item. As there are 8 items in the test,one has to

lengthen the test 8 times in going from the item reliability

to the reliability of the whole test. From the variance­

covariance matrix for hypothetical test data,TABLE 7-1, the

variances and covariances for computing the correlations can

be found.

r i 1!i2 ==
1 ,55

== 0,861
(2,70)-&'

1
(1 ,20 ):~

r i3!i4 ==
1,00

== 0,877
(1,30)-~ (1 ,00 )~l~_
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r i5 / i 6 = 1,30 = 0,8001
(1,20)~(2,20)Y

r i7/ i8 = 1,85 = 0,823
(2,30)~ (2,20)1

),361Average item correlation within substrata: = 0,840
4

8 • 0,840
1 + (8-1)0,840

= 0,977

The total test reliability of 0,977 as found by the Spearman­

Brown prophecy formula for the fixed model is in conception

equivalent to the result obtained for the same model by analysis

of variance. That result was 0,962. Again,the discrepancy is a

function of unequal item variances in the correlations computed

above.

The reasoning underlying the application of the Spearman-Brown

procedure for estimating the generalizability for the three

models of the hierarchically stratified test seems to be sound,

and is corroborated by the results obtained. However,the results

are only approximate compared to the analysis of variance re­

sults, and the procedure is awkward. What is a desideratum is

to be able to see all features of the generalizability problem

for this complex test design included in one general formu­

lation. This would be the aim for an extended Spearman-Brown

rationale applicable to test batteries of complex structures,

like the l)rimary Mental Abilities tests and the Wechsler scales.
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e
In considering th/way the generalizability problem was solved

by the analysis of variance approach,and also in terms of the

latent variance-covariance matrix of the total test, there

seems to be a fresh starting point for a reformulation of the

Spearman-Brown rationale in terms of variance components. That

approach will be general enough to take into account the vary­
e

ing number of conditions of each facet going into th/test,and

differing sampling plans,simultaneously.

The clue to a completely general solution for a Spearman­

Brown prophecy formula that also covers complex test designs,

is the inferred structure imposed on the test score variance in

the variance-covariance matrix of the test in terms of the

variance (covariance) components. By reviewing the expected

test score variance as given by F8-7 it should be clear that

that formulation cont&ins all that is needed for estimating

generalizabilities both for same-length and lengthened tests

conceived under different sampling plans. It is here maintained

that it is sound reasoning to consider all of the six alpha

coefficients,as defined in terms of variance components in

TABLE 9-1, to be Spearman-Brown prophecy formulas adopted to

particular designs,sampling plans,and number of conditions

within each of the facets. CertainlY,say for the threefacet

test,by regarding the estimates of the parameters (components)

as constants and the coefficients as variables,one is free to

generalize to lengthened test of any kind of number-of-items,

number-of-substrata,and number-of-strata combinations.
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12. Analysis of real-world data.

There are qUite a few notable test batteries currently in use

that fit the hierarchically stratified test model. The Primary

Mental Abilities Tests are constructed with abilities as strata

and subtests within the strata. The six primary mental abilities

are number,verbal meaning,space,word fluency,reasoning,and

memory. Within each of the abilities are two subtests (except

for memory which has only one). These substests are nested

within the abilities, as there is no one-to-one correspondence

between subtests for the different abilities. The California

Test of Mental Maturity is principally a battery of the same

structure. The Wechsler scale is also designed as a threefacet

doubly nested test. In WISC,for example, verbal and performance

tests constitute strata. Within the verbal stratum the subtests

are information,comprehension,arithmetic,similarities,vocabulary,

and digit span. Within the performance stratum are picture

completion,picture arrangement,block design,object assembly,

coding,and mazes. The items are certainly nested within the sUb­

tests.

As mentioned,for such complex test batteries, internal consis­

tency analysis has lagged far behind construction. To be sure,

the separate substests have been analyzed according to standard

procedures for assessing internal consistency for homogeneous

tests. But for the whole battery nothing else could be done

than performing a split-half reliability study,or correlating

strata,or substrata. A simUltaneous analysis that can reveal

the variance structure of the test scores for such complex

designs by specifying the contribution made by each of the
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sources to score variance has not been possible until models

could be built that fit these designs. These models can only

be formalized by exploiting complex mathematical structures

that are capable of decomposing variance systems into compo-

nent variances.

We think that much unexploited information on test score vari-
a

ance can be teased out of / hierarchically stratified test by

applying the models conceived in the present monograph. This

will be shown by analyzing real-world test data from a Norwegian

test battery intended to measure mental maturity. Essentially,

this battery is of the Thurstone type with strata composed of

five abilities,subtests within abilities,and items within the

subtests. The abilities are memory,verbal meaning,space,

reasoning,and number. Within each of the abilities are are two

subtests,except for the space factor which has three subtests.

There are three versions of this test battery for different age

groups. From Series III,age group 12-15,data for 13-years old

girls are arbitrarily chosen. From the relatively large group

used for the standardizing of the test battery, 100 girls are

randomly drawn from the larger sample.

The total test battery consists of 114 items. As last items in
ry'

the subtests to a great extent seemed to be uattempted items,

only the first half of each subtest is analyzed in this illus­

trating study. As is well known,unattempted items scored zero

will spuriously increase the internal consistency of a test.

In the presont analysis the five-strata-eleven-substrata test

battery is reduced to 65 items.



TABLE 12-1

A threefacet alpha analysis of real world test data

I Source SS

I
df lVlS

I

, P 102,617 99 1,037I
32,781

,
4 8,195' S ,

i

H:S 21,389 6 3,565
174,008

i
54 3,222! I:H:S I ,

I JlS
,

114,420 396 0,289
i PR.S 152,834 594 0,257) ,.
i })I:R:S 920,199

!
5346

't'
0,172r----- ,-

1518,248 i 6499i Total [
--'~-"~"''''

*

MS - MS 1 ,0)7 - 0,289Alpha3H = p ps
== = 0,721

MS p 1,037

MS p- MS ph : S 1,037-0,257Alpha3M == = = 0,752
MS 1,037

P

Alpha3F =
MSp-MSpi:h:S

::::
1,037-0,172 =0,834

MSp 1,037
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In the test to be analyzed there are unequal numbers of sub­

strata within strata,and u~qual numbers of items within sub­

strata. The models developed in the sections above have for

convenience assumed an equal munber of substrata wi thin each

stratum, and an equal number of items within substrata. No

complication will arise in the analysis as long as we keep to

the mean squares in the analysis of variance approach. Compli-

eating features arise when it comes to estimating the components.

Although the rationale for analyzing tests of this complexity

may be more readily understood by going about the analysis in

terms of a covariance approach, the most convenient and practi-

cal technique in performing the study is the analysis of variance

approach,which will be used here.

Insert ~eABIJJ~ 12-1 about here

rrho analysis of test data is presented in rrAB1.E 12-1, in which

all of the three generalizability estimates are given. If one

is solely interested in the generalizability of the test, only

one of the estimates can be correct, dc;pending on the definition

of the un:iverse for which a psychomc tric inference is though t

to be valid. '[lhe choosin{r, of the correct estimate follows the

decision to regard strata as fixed or random,and substrata as

fixed or random. Test batteries were Illost likely never construc-

ted according to formal sampling plans like the ones presupposed

for the models discu.ssed in this monograph. Therefore, the test
rI

constructor will pobably not prOVide any information as to how

the universe of generalization should be defined. Concerning
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the test b3.ttery in question,it is reaonable to think that

strata should be regarded as fixed. A battery constructed along

the lines of reasoning done by Thurstone is not likely to have

a random sample of abilities drawn form a universe of abilities.

Therefore, alpha3R should not be considered the correct estimate

of the correlation with another random parallel battery. It might

be that the subtests could be regarded as random,as there should

be ample possibilities to measure the abilities by choosing

other types of subtests. Most likelY,in spite of this, the sub­

tests would be regarded as fixed. In that case the generaliza­

bili ty estimate is 0,834. Prom TABILE 12-1 it is evident that

by considering both strata and substrata as fixed, one has

gained in generalizability. However,the price to pay for this

increase in generalizability is that the universe of generali­

zation is a relatively narrow universe.

With no view to the definition of the universe of generalization,

it should be clear that the three alpha coefficients given in

TABLE 12-1 are all necessary in obtaining a picture of the

structure of the test score variance, and they certainly tell

a lot about the coherence among parts in the test battery.

According to the rationale established in the discussion of the

models in terms of a covariance approach, the total test score

variance is construed to be composed of several additive com­

ponents. This structure of the test score can be extracted

directly from the mean square colllilU1 in TABLE 12-1 by a subtrac­

tion procedure. :Prom the structural model of the hierarchically

stratified test presented in TABLE 5-1 it can be seen how one
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should proceed to find the weighted components reflecting

the pure interaction effects going into the latent structure

of the test score variance.

26res = 0,172

k62 = MS - MSpi:h:s = 0,257-0,172~0,085ph:s ph:s

km62 = MS MS = 0,289-0,257=0,032ps ps ph:s

lanr62 = MS MS = 1,037-0,289=0,748
P P ps

The sum of' these weighted components makes up the total test
) '.

score variance, 1,037 = 0,172 Y+ 0,032 + 0,748.

More often than being interested in components of absolute

magnitudes, one prefers the relative contribution to test score

variance made by the different components. Setting the total

variance to unit variance, the following structure of propor-

tions is obtained,

pi:h:s ph:s ps p

Vt = 1,000 =0,166 + 0,082 + 0,031 + 0,721

What is evident from this variance structure is that the con-

tributions are unevenly divided. Most of the variance, 72 %,

is contributed by the person component, which is the source of

variance representing the common variance running through the

whole battery. This is a measure of the loading of the test by

one common factor. The person by item component, to the left

in the structure, is a measure of the inconsistency of items

within substrata. As items in random parallel tests are always
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regarded as random, this insconsistency will be a minimum

definition of error variance in the test. The two other compo­

nents are associated with the covariances previously called

between-within (0,082) and between-between (0,031). Recalling

that in the models constructed,the more general components are

imposed

(except

bute in

on the less general sources of covariance, the components

62 ) are partial values,reflecting how much they contri-p

addition to the more general components.

From the obtained variance structure it is obvious that there

can not be much correlation between substrata within strata,and

between items within substrata, that according to the model

can not be explained by the common factor running through the

whole battery. Slif~tly more than 10 % of the test score vari-

ance is explained by these more secific factors, tied to sub­

tests within strata and to items within subtests.

From this description of the test score variance one has gained

insight into the homogeneity of the test by how much of the

variance can be attributed to one common trait tapped by the

battery as a whole,and how much to more specific traits tied

to strata and substrata, as parts of the battery. These conside­

rations come close to a factor analytic conception of the

hierarchically stratified test.

Without eoing into any detail in relating the present approach

to factor analysis, it should be clear that the factoring in

a hierarchically stratified test has been done prior to the

analysis. Therefore it may be called an a priori factor analysis

in that the factors are associated with strata and substrata
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just by the rational stratification made of items. Thus factors

as represented by strata and substrata are hypothetical until

the analysis reveals whether the test constructor was right in

his anticipation of differential abilities that might be

measured by the parts of the battery.

A clear interpretation of an over all analysis of the test

battery, like the analysis performed in TABLE 12-1, requires

that certain assumptions about data are met. These assumptions

concern the variances and covariances of the parts constituting

the whole test. In the hierarchically stratified test the

nesting of substrata within strata and items within substrata

is a characteristic feature. As a consequence of nesting,several

sources of variance within facets have to be pooled across

the facets. For instance,within each stratum there is a person

by substratum interaction,conveying information of how much

substrata correlate within each of the strata. These interactions

are pooled in the analysis to form an over all measure of the

person by substratum interaction. It is obvious that such a

measure to be meaningful should be based on approximately equal

interactions within each of the strata. As is well known,analysis

of variance is heaVily involved in averaging procedures. The

pooling of variances can be misleading if lack of homoscedas­

ticy is apparent in the parts pooled.

Next,an analysis of data by the degenerating procedure described

above willbe undertaken. This is done in order to see the effect

of collapsing substrata as a facet. The sophisticated reader

should have no difficulty interpreting the approximately equal

values of alpha3H and alpha3M to indicate that the correlation



'TABLE 12-2

Al;)ha analysis of real world data as a threefacet,a twofacet,and a onefacet design

by successively collapsing facets. first substrata, next strata •

Threefacet
.

Twofacet Or~efacet

Source SS df ':'""'r-'1

,I..'.':'l2,) Source ,..,~

oJu df :,~s Source SS
----------_. --.-

df ..." ~,...,

'-'. oJ

64

99 1,037

228,178

102,617

1518,248 6499 I

t
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1187,453 6336 0,187
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)

I r PI
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I
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396 0,289114,420
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alpha2P = 0,825
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EH:S

I:H:S
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p
-----------_._-------- ..------ ._.

alpha-.li' = 0,834
- 2_-:-.. .__._... . . _____i. . ._." I

.. -.--.. .----1... _
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between strata is almost as large as the corr8lation between

substrata within strata. Therefore negligible information on

Insert TABL8 12-2 about here

individual differences will be lost by deleting substrata. This

is brought out by analyzing data as a twofacet test design,as

seen from TABLE 12-2.

is
Nevertheless,one might speculate whether this/the most correct

way of collapsing the design. Deleting substrata means that

the PH:S interaction is pooled with the PI:H:S interaction.

The difference between alpha3F and alpha3M indicates that some­

thing specific may be said to be measured by the substrata.It

may be reasoned that because strata correlate about as much as

substrata within strata, these sources should be pooled,rather

than those pooled in TABLE 12-2. This alternative pooling would

mean that strata are collapsed, leaving 11 substrata and the

same number of items within substrata. In performing this

alternative twofacet analysis the following results are obtained:

alpha2R = 0,740 and alpha2F = 0,834. The practical result may

seem to amount to the same, whatever strategy chosen. Yet the

alternative twofacet analysis is logically to be preferred in

the light of the alpha coefficients for the threefacet analysis.

The analysis of the hierarchically stratified test as an unstra­

tified test, as performed in TABLE 12-2, has not much to recom­

mend it. In collapsing both strata and sUbst~ata the clustering

effects have been lost and mixed up in alpha1 , which has

become conceptually obscure,despite the fact that the value of

alpha1 does not seem to be substantially lower than alpha3F •



'rABLE 12-3

A onefacet alpha analysis of substrata and a two­
facet analysis of strata for real-world test data.

Stratum Substratum k alpha2R alpha2F

0,580

0,566

0,598

0,433

0,322

0,085

0,523

f

1°,428 I

"---J.1_.-J
0,690

0,481

0,432

0,282

0,340

0,465

0,614

0,528 0,730

__._~~ 5~~_____ __._._. J

0,533
--_..~---~._--

0,369

4

6

5

14M1

" .. ~~2

V1
I

.+.._....._~L___ __..._.5_•..._..
l F1 4

I
. I F2

F 4 0,005______2...__.._ _ ... .__"
R1 6

R2 I 5
..... w ~ _ _ .. _ ..__.._+__._" ..__ _

Q1 6

Q2 6
.................. --_••• __ .j •. - , _ .

R

v

F

M

Note. - M = memory, V = verbal, F = form, R = reasoning,

Q = quantitative
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The over all analysis of test data performed in TABLE 12-1 is

concerned with decomposing the total test score variance.Such

a battery is also a multiple score test.Each of these scores

on lower levels in the battery may also be analyzed to get a

more detailed information on internal consistency in the parts

going into the battery. Without further analysis,these parts

must be assumed to behave such that the over all analysis can

be meaningfully interpreted.

It should be clear that each stratum in the battery is a two­

facet nested test unit to which the Rabinowitz-Bikeland models

can be applied to examine in more detail how the variance struc­

ture'is for these lower units in the hierarchy. Further,each of

the substrata are unstratified tests that can be analyzed by

means of the Hoyt model. The suggested analyses of the twofacet

and onefacet test units going into the whole threefacet test

battery are shown ip TABIJE 12-3. First each substratum is ana-

Insert TABLE 12-3 about here

lyzedas a homogeneous test as indicated by the alpha1 column.

Next each stratum is analyzed according to the twofacet test

models as shown by the alpha2R and alpha2F columns. In the two­

facet analysis the coherence of substrata is of particular

interest. The number of items going into each substratum after

cutting down the tests beause of unattempted items is given in

th k column.
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The various analyses performed in exploring the internal

consistency of the hierarchically stratified test design have

demonstrated how the whole family of alpha coefficients in the

hierarchy of designs considered in the present monograph can

be brought to bear upon both the suprastructure of variance

for the total threefacet test battery and the substructures of

variance for the lower level designs as parts of the battery.

13. Concluding remarks.

The purpose of the present monograph has been to approach the

problem of making psychometric inferences based on measuring

operations of complex designs,and examing the composition of

the variance structure of scores from such batteries. The

hierarchically stratified test design that has been of parti­

cular concern is but one of many complex test designs in need

of a structural theory. For a long time complex tests containing

multiple scores have been lacking such a theory. The theory for

the unstratified test is altogether an inadequate theory for

multifacet tests.

Guttman saw this need for a structural theory in order to

solve the inference problem in psychometrics:

Conventional sampling problems concern the selection of
people from a large population. Mental test theory faces
also another type of sampling problem, that of selecting
items from one or more indefinitely large universes of
content. This is a basic problem of item analysis. To this
reviewer it appears that there can be no solution without
a structural theory. (Guttman 1953, 129)
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Guttman said this in his review of Gulliksen's (1950) Theory

of Mental Tests. In the almost twenty years that have passed

since this review, some progress has been made in conceiving

of such a structural theory. Guttman himself saw the implica­

tions for the building of more sophisticated mathematical

models. In a later discussion he presented a conceptual frame­

work of how such structures could be conceived in terms of a

mathematical system (Guttman 1958).

It might be said that presently we are about to see some of

Guttman's facet theory intuitions come true. The multifacet

studies in the sixties all converge in th~t they are basically

involved in structural descriptions of complex measuring

operations (Medley & Mitzel 1963, Gleser,Cronbach & Rajarat­

nam 1965).

On the conceptual level,Thorndike ( 1951) made an excel-

lent approach to classifying the manifold of possible systema­

tic and error variance sources in testing, but no comprehensive
e

theory emerged although complex test designs wer/in frequent

use. At that time there also seemed to be a lack of techniques

to analyze complex test data simultaneously to see how the

contribution to test score variance by the diverse sources listed

by Thorndike could be distinguished.While experimental designs

had reached a sophisticated level by way of analysis of variance

thinking, a similar sophistication for test designs lagged far

behind. This situation was a regrettable result of the schisma

that existed for so long between experimental and differential

psychology (Cronbach 1957, Cattell 1966, Cronbach,Gleser,Nanda

& Rajaratnam 1967).
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By now we are about to bridge a gap between a sophisticated

conception of the composition of complex test scores and a

mathematical system that is considered isomorphic to that

conception, emerging in a structural theory. When substantive

theory and a formal relational system is brought to converge

for complex test designs, a considerable step forward in theory

development has been made.

The exploration of the hierarchically stratified test made in

this monograph has been involved both in generalizability

estimates and structural descriptions of test score variance

for this design. There is a close connection between the two

ways of considering test data. As shown,the structure imposed

on test score variance is an inferred structure,applicable for

a pure descriptive purpose. Yet this structure can be exploited

in making inferences about how much of the test score variance

can be attributed to universe score variance. Crucial for this

mode of thiru{ing is that one defines a family of hierarchically

stratified tests,constructed according to a specified sampling

plan. For a multifacet instrument a sampling plan prescribes

what facets to regard as fixed and/or random. The construction

of tests belonging to the same defined family of tests will have

to follow the companion sampling plan.

It ought to be recalled that for a test to be random parallel,

whatever the sampling plan, items at least have to be considered

random. In the context of generalizability theory,items can

never be fixed. For the interpretation of test scores in terms

of generalizability the information needed is contained in the
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composition of the test score variance , brought forth by the

structural analysis. The generalizability part of the game is

to reassemble the components of the test score variance into

two categories of variance, the universe score and the error

score variance. For each of.the models under the hierarchically

stratified test considered, this splitting up into two cate­

gories of variance will be different.

At present it might be difficult to find real world experiments

that fit all of the three models for the hierarchically strati­
test/
fied. It is not difficult to find tests that most likely can be

thought to fit the fixed model. There might be tests that are

appropriately interpreted to fit the mixed model. For the random

model,however,there seems to be no known existing real world

experiment that applies. Yet it seems likely that tests could

be conceived that match a practical testing situation in which
. s/

all facets could reaonably be considered random.

It should be strongly emphasized that whether the three

generalizability models fit or not,the structural analysis is

still useful. As a matter of fact, it is here argued that the

most interesting and informative analysis of complex test data

is the descriptio~ of test sC9re variance. The structural

analysis is a correlational approach that de~cribes the rela­

tionship of the parts going into the hierarchy. The decomposing

into variance components is the fundamental basis for making

a meaningful interpretation of the observed test score in terms

of the extent to which the battery is measuring one common

trait running through all items and less common traits attri­

buted to strata. Even specific traits can emerge, attributable

to the substrata.
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The idea of a latent covariance structure is the basis for the

theory of the hierarchically stratift~~jas here developed. This

inferred structure,imposed on data,makes it more easily under­

standable what the underlying rationale for the analysis of

variance approach is. Yet the structural theory for the parti­

cular threefacet test design discussed in this monograph is in

fact a very general conceptual framework that applies to other

designs as well.

Actually, we think that this general structural theory is but

an extension of the long-respected Spearman-Brown rationale.

That rationale has so far been restricted to the lowest level

in the hierarchy of test designs,the unstratified test. The

Spearman-Brown rationale has been the cornerstone in mental

test theory for more than sixty years. Vfuat seems to come out

of multifacet studies conducted so far, is that the Spearman­

Brown basic thinking in test theory is about to get a much

more general formulation. The new perspective for this old

formula covers a variety of complex measurement procedures,

where the hierarchically stratified test design is but one.
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