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shev’s method, Halley’s method, Super-Halley’s method, and New-
ton’s method to solve example (6.3). . . . . . . . . . . . . . . . . . 52

vi



List of Tables

6.1 Chebyshev’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Halley’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Super-Halley’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Schroder’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.6 Chebyshev’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



to my

parents Mariam and Tagelsir, and to my husband

Mohamed

with my love

viii



Chapter 1

Introduction

Nonlinearity is of interest to physicists and mathematicians, since most physical

systems are inherently nonlinear in nature. One of the most important problem

in Optimization and computational mathematics is to solve nonlinear system of

equations. For example in nonlinear optimization where the aim is to find a

minimum or maximum of a given nonlinear function. The first subproblem that

we face is to solve system of nonlinear equations.

System of nonlinear equations are difficult to solve in general. The best way to

solve these equations is by iterative methods. One of the classical method to solve

the system of nonlinear equations is Newton method which has second order rate

of convergence. This speed is low when we compare to third order method.

Our work concentrate on solving the system of nonlinear equations F (x) = 0 in

the real n-dimensional linear space. F (x) is sufficiently smooth. We are interested

in solving the system using the Halley class methods with a real constant α and

an adequate starting point x0 ∈ Rn. Halley’s class defined by

xk+1 = xk −

[
I +

1

2
L(xk)

(
I − αL(xk)

)−1
]
F ′(xk)

−1F (xk), k = 0, 1, 2, . . . ,

(1.1)

where

L(x) = F ′(x)−1F ′′(x)F ′(x)−1F (x), (1.2)

and I is the identity matrix in Rn×n. Provided that F ′, F ′′ and F ′(xk)
−1 are

defined. Halley class includes well known third order methods such as Chebyshev’s

method and Halley’s method. We will show that Halley class has third order rate

of convergence.
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Introduction 2

In this thesis, we will introduce a new iterative framework for sufficient starting

point to solve the system of nonlinear equations F (x) = 0. The basis of this

framework is approximately finding the root of the quadratic model around the

current iteration. We will approximately solve the quadratic equations using one

iteration of the methods in a Halley class. One iteration of Halley class is equivalent

to solve two linear systems. Then for every outer iteration in the framework, we

will solve two linear systems of equations. Moreover, if these systems are solved

using a direct method, then we have a Halley class. And if solved using an iterative

method, we have an inexact methods in Halley class. Convergence analysis will

show that this framework is cubic convergent.

The structure of the thesis is:

Chapter 2 drives Chebyshev and Halley method in the scalar case, presents Super-

Halley method for function in one variable and reviews the convergence properties

of these methods.

Chapter 3 introduces the Halley class methods, and the relation with other classes

such as Schwetlick class. Analyses the convergence properties of this class and

makes numerical experiment to some methods in the class compared with Newton

method.

Chapter 4 introduces a new iterative framework based on a quadratic model. We

will solve the model approximately using one step of Halley class methods. We

will study the convergence properties of this framework.

Chapter 5 solves the model approximately using one step of inexact Halley class

methods. Shows the rate of convergence of the inexact Halley class methods is

Q-third order.

Chapter 6 drives the Schröder method, talks about the case when we have singu-

larity at the solution through a numerical example.

Chapter 7 summarizes the results and makes suggestion for future work.



Chapter 2

Scalar Equation

This chapter introduces in details the derivation of the Chebyshev and Halley

methods in the case of scalar function of one variable, and presents Super-Halley

method in the scalar case. Reviews the essential convergence properties of these

methods [24].

2.1 Derivation of the methods

Consider the nonlinear equation

f(x) = 0, (2.1)

where f : R→ R is two times continuously differentiable. To derive the Chebyshev

method [26] for (2.1), consider the parabola on the form

m(x, y) = ay2 + y + bx+ c = 0. (2.2)

and we solve the following equations

m(x, y(x)) = 0,
d

dx
m(x, y(x)) = 0 and

d2

dx2
m(x, y(x)) = 0, (2.3)

to find the unknown variables a and b , so we have

d

dx
m(x, y(x)) = 2ay(x)y′(x) + y′(x) + b = 0, (2.4)

3



Chapter 2. Scalar equation 4

since d2

dx2m(x, y(x)) = d
dx

[
d
dx
m(x, y(x))

]
, then

d2

dx2
m(x, y(x)) = 2ay(x)y′′(x) + 2ay′(x)

2
+ y′′(x) = 0. (2.5)

Then, imposing the conditions

y(x) = f(x), y′(x) = f ′(x) and y′′(x) = f ′′(x). (2.6)

Then the parabola equation (2.2) can be written as

m(x, f(x)) = af(x)2 + f(x) + bx+ c = 0, (2.7)

so by solving (2.5), (2.4), we obtain

a = − f ′′(x)

2(f(x)f ′′(x) + f ′(x)2)
, b = − f ′(x)3

f(x)f ′′(x) + f ′(x)2 . (2.8)

To find the unknown variable c, substitute a and b in (2.8) into (2.7), so we get

c =
f ′′(x)

2(f(x)f ′′(x) + f ′(x)2)
f(x)2 − f(x) +

f ′(x)3

f(x)f ′′(x) + f ′(x)2x,

by collecting the above equation, we get

c =
2f ′(x)3x− f(x)2f ′′(x)− 2f(x)f ′(x)2

2(f(x)f ′′(x) + f ′(x)2)
. (2.9)

And then taking the intersection of the parabola (2.7) with the x-axis at the next

iterate x+ i.e. m(x+, 0) = 0 we obtain that,

bx+ + c = 0, (2.10)

substitute the value of b in (2.8) and c in (2.9) into the equation (2.10), so we have

− f ′(x)3

f(x)f ′′(x) + f ′(x)2 x+ +
2f ′(x)3x− f(x)2f ′′(x)− 2f(x)f ′(x)2

2(f(x)f ′′(x) + f ′(x)2)
= 0,
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multiply the whole equation with the inverse of f ′(x)3

f(x)f ′′(x)+f ′(x)2
, we obtain

−x+ +
2f ′(x)3x− f(x)2f ′′(x)− 2f(x)f ′(x)2

2f ′(x)3 = 0,

rearrange the above equation, we get

−x+ + x− f(x)2f ′′(x)

2f ′(x)3 − f(x)

f ′(x)
= 0.

Then we get the Chebyshev method

x+ = x−
(

1 +
1

2

f ′′(x)f(x)

f ′(x)2

)
f(x)

f ′(x)
,

therefore we called it the method of tangent parabola.

In the same way we can derive the Halley method [9, 26] by considering the

hyperbola

m(x, y) = axy + y + bx+ c = 0, (2.11)

and solving the equations (2.3) for the unknown variables a and b, so we have that

d

dx
m(x, y(x)) = 0⇒ ay(x) + b+ (ax+ 1)y′(x) = 0 (2.12)

d2

dx2
m(x, y(x)) = 0⇒ ay′(x) + (ax+ 1)y′′(x) + ay′(x) = 0. (2.13)

By imposing the conditions (2.6) and solving (2.12) and (2.13), we get

a =
−f ′′(x)

xf ′′(x) + 2f ′(x)
, b =

f ′′(x)f(x)− 2f ′(x)2

xf ′′(x) + 2f ′(x)
, (2.14)

substitute a and b in (2.14) and use the conditions (2.6), then (2.11) can be written

as,

m(x, f(x)) =
−xf ′′(x)f(x)

xf ′′(x) + 2f ′(x)
+ f(x) +

x
(
f ′′(x)f(x)− 2f ′(x)2)
xf ′′(x) + 2f ′(x)

+ c = 0. (2.15)
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Then from (2.15), the unknown variable c is

c =
xf ′′(x)f(x)

xf ′′(x) + 2f ′(x)
− f(x)−

x
(
f ′′(x)f(x)− 2f ′(x)2)
xf ′′(x) + 2f ′(x)

,

rearrange the equation, we get

c =
xf ′′(x)f(x)− 2f ′(x)f(x)− xf ′′(x)f(x)− xf ′′(x)f(x) + 2xf ′(x)2

xf ′′(x) + 2f ′(x)
,

collect the terms, we get

c =
−2f ′(x)f(x)− xf ′′(x)f(x) + 2xf ′(x)2

xf ′′(x) + 2f ′(x)
. (2.16)

And then by taking the intersection of the hyperbola (2.11) with the x-axis at the

point x+, so we have

bx+ + c = 0,

substitute b in (2.14) and c in (2.16) into the above equation, we get(
f ′′(x)f(x)− 2f ′(x)2)x+

xf ′′(x) + 2f ′(x)
+
−2f ′(x)f(x)− xf ′′(x)f(x) + 2xf ′(x)2

xf ′′(x) + 2f ′(x)
= 0,

multiply the whole equation with the inverse of f ′′(x)f(x)−2f ′(x)2

xf ′′(x)+2f ′(x)
, we get

x+ +
−2f ′(x)f(x)− xf ′′(x)f(x) + 2xf ′(x)2

f ′′(x)f(x)− 2f ′(x)2 = 0,

rearrange the above equation, we have

x+ +
−2f ′(x)f(x)

f ′′(x)f(x)− 2f ′(x)2 −
(f ′′(x)f(x)− 2f ′(x)2)x

f ′′(x)f(x)− 2f ′(x)2 = 0,

the above equation can be rewritten as

x+ +
−2f ′(x)f(x)

2f ′(x)2(1
2
f ′(x)−2f ′′(x)f(x)− 1)

− x = 0,
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rearrange the above equation, then we obtain the Halley method

x+ = x−
[

1

1− 1
2
f ′(x)−1f ′′(x)f ′(x)−1f(x)

]
f(x)

f ′(x)
, (2.17)

so the Halley method is called the method of tangent hyperbola.

Super-Halley method or Convex Acceleration of Newton’s method [9, 13] for (2.1)

is

x+ = x−
[
1 +

1

2

f ′(x)−1f ′′(x)f ′(x)−1f(x)

I − f ′(x)−1f ′′(x)f ′(x)−1f(x)

]
f(x)

f ′(x)
, (2.18)

Sharma [24] generalized a quadratic equation m(x, y) after imposing the conditions

(2.3) that includes Chebyshev, Halley and Super-Halley for specific values.

2.2 Convergence Property

Theorem 2.1. [24] Let f : R → R three times continuously differentiable in a

neighborhood of the solution x∗. Assume that f ′(x∗)−1 6= 0. Let the starting point

x0 to be close to the solution. Then Chebyshev, Halley and Super-Halley methods

are cubically convergent to the solution.



Chapter 3

Halley Class

This chapter introduces the parametric class called the Halley Class, which is a

class of iterative methods to solve the system of nonlinear equations F (x) = 0. The

chapter also includes the convergence properties of the methods and the analysis

of some numerical experiments.

3.1 Introduction

Consider the system of nonlinear equations

F (x) = 0, (3.1)

where the function F : Rn → Rn satisfies the following basic assumptions.

Let x∗ be the solution of the problem (3.1), F ′(x) and F ′′(x) be the first and

second derivative of the function F at the point x (for the definition see (A.3) and

(A.4) in the Appendix ). Let N (x∗, r) be the ball with radius r defined by

N (x∗, r) = {x : ‖x− x∗‖2 ≤ r}.

The following basic assumptions is used in the whole thesis.

Assumption 3.1.

1. F (x) is two times continuously differentiable on the ball N (x∗, r).

2. F ′(x∗) is nonsingular.

3. F ′′(x) is Lipschitz continuous on the ball N (x∗, r) (see (A.1) in the Ap-

pendix).

8



Chapter 3. Halley Class 9

Hernández and Gutiérrez [15] introduced a class for a parameter α ∈ [0, 1], where

xk is the current iteration and F ′(xk) is invertible. This class is refering to the

Halley class. Given an initial guess x0 close to a solution of (3.1), the Halley class

is

xk+1 = xk −

[
I +

1

2
L(xk)

(
I − αL(xk)

)−1
]
F ′(xk)

−1F (xk), k = 0, 1, 2, . . . ,

(3.2)

where

L(x) = F ′(x)−1F ′′(x)F ′(x)−1F (x), (3.3)

and I is the identity matrix in Rn×n.

The Halley class was introduced by Hernández and Salanova [16] for a scalar

function and later extended by Hernández and Gutiérrez to Banach spaces. In

other paper, Hernández and Gutiérrez [12] defined Halley class (3.2) in Banach

spaces where α lies in an interval bigger than [0, 1], provided that the second

derivative is bounded. In this thesis we will study the Halley class for all values

of α. Convergence properties of this class will be discussed in Section 3.4.

Halley class includes the Chebyshev method [3, 15, 16] when α = 0, the Halley

method [2, 4, 15, 16] when α = 1
2

and Super-Halley method [14, 15] when α = 1.

3.2 Halley class and Schwetlick class

Schwetlick [23] defined a class for a real scalar α, which we call the Schwetlick class.

This class is obtained by solving the following equation for y
(i+1)
k , i = 1, 2, 3, . . . .

F (xk) + F ′(xk)
(
y

(i+1)
k − xk

)
+ αF ′′(xk)

(
y

(i)
k − xk

)(
y

(i+1)
k − xk

)
+

(
1

2
− α

)
F ′′(xk)

(
y

(i)
k − xk

)(
y

(i)
k − xk

)
= 0, (3.4)

where y
(0)
k = xk and y

(i+1)
k = xk+1.
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Lemma 3.1 will illustrate the relation between the Halley (3.2) and Schwetlick

(3.4).

Lemma 3.1. [11] Let i = 1 in Schwetlick class (3.4), then the Halley class (3.2)

and Schwetlick class (3.4) are equivalent for any real α.

Proof. Consider the Schwetlick class (3.4), put i = 1, i.e. solve (3.4) for y
(2)
k , where

y
(0)
k = xk and y

(2)
k = xk+1, we have

F (xk) + F ′(xk)
(
y

(2)
k − xk

)
+ αF ′′(xk)

(
y

(1)
k − xk

)(
y

(2)
k − xk

)
+

(
1

2
− α

)
F ′′(xk)

(
y

(1)
k − xk

)(
y

(1)
k − xk

)
= 0. (3.5)

To solve (3.5), we need first to solve (3.4) for y
(1)
k , that means i = 0, since y

(0)
k = xk,

we get

F (xk) + F ′(xk)
(
y

(1)
k − xk

)
= 0,

then y
(1)
k is given by

y
(1)
k = xk − F ′(xk)−1F (xk). (3.6)

By substituting the value of y
(1)
k (3.6) into (3.5), we obtain

F (xk) + F ′(xk)
(
y

(2)
k − xk

)
− αF ′′(xk)F ′(xk)−1F (xk)

(
y

(2)
k − xk

)
+

(
1

2
− α

)
F ′′(xk)

(
F ′(xk)

−1F (xk)
) (
F ′(xk)

−1F (xk)
)

= 0, (3.7)

collecting the terms with
(
y

(2)
k − xk

)
and rearranging the equation, we have(

F ′(xk)− αF ′′(xk)F ′(xk)−1F (xk)

)(
y

(2)
k − xk

)
=

− F (xk)−
(

1

2
− α

)
F ′′(xk)

(
F ′(xk)

−1F (xk)
) (
F ′(xk)

−1F (xk)
)
, (3.8)
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therefore, by putting xk+1 = y
(2)
k and defining L(x) as we did before in (3.3), we

have

F ′(xk)
(
I − αL(xk)

)
(xk+1 − xk) =

− F (xk)−
(

1

2
− α

)
F ′(xk)L(xk)F

′(xk)
−1F (xk),

multiplying by
(
I−αL(xk)

)−1
F ′(xk)

−1 and rearranging the last equation, we have

xk+1 = xk − (I − αL(xk))
−1

[
I +

(
1

2
− α

)
L(xk)

]
F ′(xk)

−1F (xk),

by using Lemma A.6 in Appendix A, then we get the Halley class

xk+1 = xk −
[
I +

1

2
L(xk) (I − αL(xk))

−1

]
F ′(xk)

−1F (xk).

3.3 Practical form of Halley class

One step of Halley class methods (3.2) can be written in terms of a two steps

method [11]. Which can be more practical than using the original method.

Consider the Halley class iteration (3.2) and since F ′(xk) is nonsingular, then the

two vectors s(1) and s(2) – the index k indicate to the iteration number k – are

defined as the following,

s(1) = −F ′(xk)−1F (xk), s(2) = xk+1 −
(
xk + s(1)

)
, (3.9)

where xk is the current iteration and xk+1 is the next iteration of the Halley class

(3.2). Then by using the definition of s(2) in (3.9) and the definition of L(x) in

(3.3), we have that

(
I − αL(xk)

)(
s(1) + s(2)

)
=
(
I − αL(xk)

)(
xk+1 − xk

)
, (3.10)
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since the iterate xk+1 is defined in (3.2), then equation (3.10) becomes

(
I − αL(xk)

)(
s(1) + s(2)

)
=

−
(
I − αL(xk)

) [
I +

1

2
L(xk)

(
I − αL(xk)

)−1
]
F ′(xk)

−1F (xk),

by using Lemma A.6 in Appendix A and definition of s(1), we get

(
I − αL(xk)

)(
s(1) + s(2)

)
=
(
I − αL(xk)

)(
I − αL(xk)

)−1
[
I + (

1

2
− α)L(xk)

]
s(1)

=

[
I + (

1

2
− α)L(xk)

]
s(1),

so by rearranging the last equation, we get

(
I − αL(xk)

)
s(1) +

(
I − αL(xk)

)
s(2) =

(
I − αL(xk)

)
s(1) +

1

2
L(xk)s

(1),

therefore, we get

(
I − αL(xk)

)
s(2) =

1

2
L(xk)s

(1), (3.11)

by multiplying the both sides of equation (3.11) with F ′(xk), substituting the value

of L(xk) in (3.3) into (3.11) and using definition of s(1) in (3.9), we obtain that(
F ′(xk) + αF ′′(xk)s

(1)

)
s(2) = −1

2
F ′′(xk)s

(1)s(1). (3.12)

From equations (3.9) and (3.12), then we get the two steps method

F ′(xk)s
(1) = −F (xk),(

F ′(xk) + αF ′′(xk)s
(1)

)
s(2) = −1

2
F ′′(xk)s

(1)s(1),

xk+1 = xk + s(1) + s(2), (3.13)

which is equivalent to the Halley class (3.2).

The two steps method (3.13) for a quadratic function and for α = 1 is equivalent

to the two steps Newton method. Let Tk(s) be the quadratic approximation to
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the function F (x) at the point xk + s, as

Tk(s) = F (xk) + F ′(xk)s+
1

2
F ′′(xk)ss (3.14)

Consider the quadratic equation with unknown s

Tk(s) = 0, (3.15)

where Tk(s) is the approximation function at iteration k (3.14). problem (3.15)

can be solved by the two steps method (3.13) with α = 1. Let s(0) = 0 and from

definition of Tk(s) (3.14), we observe that

F (xk) = Tk(s
(0)), F ′(xk) = T ′k(s

(0)), (3.16)

and

1

2
F ′′(xk)s

(1)s(1) = Tk(s
(1))− F (xk)− F ′(xk)s(1), (3.17)

from equation (3.13) the term−F (xk)−F ′(xk)s(1) will vanish, so (3.17) will become

1

2
F ′′(xk)s

(1)s(1) = Tk(s
(1)), (3.18)

since α = 1, then

F ′(xk) + F ′′(xk)s
(1) = T ′k(s

(1)). (3.19)

By substituting the observations (3.16), (3.18) and (3.19) into the two steps

method (3.13) for α = 1, we get that

s(0) = 0

T ′k(s
(0))s(1) = −Tk(s(0))

T ′k(s
(0) + s(1))s(2) = −Tk(s(0) + s(1))

xk+1 = xk + s(0) + s(1) + s(2), (3.20)

which is a two steps Newton method [11]. Then we conclude that the Super-Halley

method (Halley class when α = 1) for a quadratic function is two steps Newton
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method, since Newton method of order two, therefore, Super-Halley method is of

order four which is proved in [4, 14].

Consider Chebyshev’s method (α = 0)

F ′(xk)s
(1) = −F (xk),

F ′(xk)s
(2) = −1

2
F ′′(xk)s

(1)s(1),

xk+1 = xk + s(1) + s(2),

let s(0) = 0 and Tk(s) defined in (3.14), by using equations (3.16) and (3.18) in

the Chebyshev method, we get

s(0) = 0

T ′k(s
(0))s(1) = −Tk(s(0))

T ′k(s
(0))s(2) = −Tk(s(0) + s(1))

xk+1 = xk + s(0) + s(1) + s(2), (3.21)

this is two steps of Simplified Newton method [19].

3.4 Convergence Property

This section discusses the local convergence property of the sequence {xk} that is

given by (3.2) to the solution of (3.1) under some assumptions and error estimates.

Local convergence means that the initial iterate x0 is close to a local solution x∗

at which the sufficient conditions hold Kelley [18].

In Lemma (3.1) the equivalence between the Halley class (3.2) and Schwetlick class

(3.4) was proved. Schwetlick [23] proved that the Schwetlick class (3.4) is cubic

convergent (Chapter 5 Theorem 5.7.5). Then theorem 5.7.5 in [23] can be used to

prove the convergence for the Halley class. Then the convergence theorem for the

Halley class (all real values of α) stated as the following.

Theorem 3.2. Assume that F : Rn → Rn is two times continuously differentiable

on the neighborhood N (r, x∗) of a point x∗ with radius r, where F (x∗) = 0 and
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F ′(x∗) is nonsingular. Assume that F ′′ is Lipschitz continuous on N (r, x∗). For

each α there exists ε > 0, so that for all x0 satisfying ‖x0 − x∗‖ ≤ ε the iterates

{xk} in the Halley class (3.2) are defined, and x0 ∈ N and so ‖xk − x∗‖ ≤ ε,

Moreover the iterates {xk} converges to x∗ with at least Q-order 3 (see A.3 in the

Appendix).

Many authors analysed the convergence theorem to the Chebyshev method (α =

0), Halley method (α = 1
2
) and Super-Halley method (α = 1). Candela and

Marquina [3] proved the convergence of Chebyshev method under the assumptions

(1) and (3) in Assumption 3.1 and the following are satisfied

(1) F ′(x0)
−1 exists and ‖F ′(x0)

−1‖ ≤ B for some B > 0.

(2) There exists K1 > 0 such that ‖F ′′(x)−1‖ ≤ K1 for x ∈ N (r, x∗).

(3) There exists a > 0 such that ‖F ′(x0)
−1F (x0)‖ ≤ a.

Hernández and Gutiérrez [15] proved, by assuming Kantorovich-like conditions,

the convergence of the Halley class iteration (3.2) for α ∈ [0, 1]. In fact, together

with the previous assumption (3), they assume the following ones:

(4) There exists k ≥ 0 such that ‖F ′(x0)
−1(F ′′(x) − F ′′(y))‖ ≤ k‖x − y‖ for

x, y ∈ N (r, x∗).

(5) There exists b > 0 such that ‖F ′(x0)
−1F ′′(x0)‖ ≤ b.

(6) The polynomial p(t) = k
6
t3 + b

2
t2− t+a = 0, for k = 0 has two positive roots

r1 and r2, and has three roots one negative and two positive r1 and r2 for

k > 0.

And they defined the majorising sequence {tn} as

t0 = 0, tn+1 = tn −
[
1 +

Lp(tn)

2(1− αLp(tn))

]
p(tn)

p′(tn)
, n ≥ 0 (3.22)

where Lp(t) = p(t)p′′(t)
p′(t)2

. They proved the majorising sequence is convergent and the

convergence is third order. So they used this sequence to prove the convergence

for the iteration {xk}.
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They are other authors analysed the convergence property for these methods (see

[1, 6, 12, 25]).

3.5 Region of Convergence

Region of convergence consists of all starting points such that the iteration con-

verges to the solution. Polyak [20] defined a subset of the region of convergence

called the attraction basins as the following. There exist a ball N (r, x∗) of a solu-

tion x∗ such that every starting point x0 ∈ N implies convergence to the solution.

The region of convergence of Newton method, Chebyshev method, Halley method

and Super-Halley method will be studied.

The numerical example taken from Cira [5] problem (1.1). This example is solving

the nonlinear equations F (x) = 0, where the function F : R2 → R2 defined by

F (x) =

[
F1(x)

F2(x)

]
=

[
3x2

1 − x2
2

1
2

cosh(5x1

3
) + 3

5
x1 − x2 − 3

5

]
. (3.23)

Figure 3.1 plots the function’s norm of (3.23). Observe that the function’s norm

0.1

1

1

1

1
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4

4

4
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Figure 3.1: The figure shows the level curves of the function’s norm and the
four roots.

has four solutions. The solutions are:
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(1) x∗ = (1.238800915 . . . , 2.145666126 . . .)

(2) x∗ = (0.423464990 . . . , −0.733462878 . . .)

(3) x∗ = (−0.0839997787 . . . , −0.145491885 . . .)

(4) x∗ = (−1.758822925 . . . , 3.046370667 . . .)

x

y

Zeros & Singularity Curves
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det[F ′(x)]=0

Figure 3.2: The figure shows the curves for the system F (x) = 0 in (3.23) and
the singularity property of the system. The solutions of this system are in the

intersections of the two curves (marked by red and green).

In Figure 3.2 the equations Fi(x1, x2) = 0 are plotted i = 1, 2. And the intersec-

tions points of F1(x1, x2) = 0 and F2(x1, x2) = 0 are the solutions of F (x) = 0.

These solutions are shown clearly in Figure 3.1. In addition the points (x1, x2) so

that det[F ′(x1, x2)] = 0 are plotted.

The starting points for methods are chosen to be a grid of N1. N2 points in the

rectangle [a1, b1] × [a2, b2]. The first interval divided in N1 pieces and the second

interval in N2 pieces. Let h1 = b1−a1

N1−1
and h2 = b2−a2

N2−1
. The starting points are then

given by:

x0 = (a1 + (i− 1)h1, a2 + (j − 1)h2), (3.24)

where i = 1, 2, . . . , N1 and j = 1, 2, . . . , N2.

The grid and the stop criteria which we will use is taken from Cira [5]. The

rectangle is [−6, 6] × [−9, 9] and a grid 121. 181 = 21901 points. The iteration is

terminated when ‖F (x)‖ ≤ Tolerance, where Tolerance is chosen to be 10−3.
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The following experiments applies Newton’s method, Chebyshev’s method, Hal-

ley’s method and Super-Halley’s method for all the starting points in the rectangle.

In Figure 3.3, 3.4, 3.5 and 3.6 the starting points plotted versus the number of

iterations.

In all Figures in the left plots we give a different color for each starting point in the

rectangle according to number of iterations needed to converge to one of the roots.

In the right plots we give a different color for each starting points according to the

solution that the method converge to, the color degree represents the number of

iterations. When the method does not converge for a specific starting point, we

color it with dark blue which has number zero in the colorbar.
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(a) The colors indicate to the number of iterations. (b) The colors indicate to which solution the method converges.

Figure 3.3: Newton method

We see in all figures that the region of convergence of the methods ordered from

smaller to bigger as the following: Super-Halley, Chebyshev, Newton, and Halley

(look at the dark blue areas). Some of the non-convergent points for all methods

have the singular property of the first derivative of the function (compared to

Figure 3.2). The property of cubic convergence appears clearly in the lighter

areas.
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(a) The colors indicate to the number of iterations. (b) The colors indicate to which solution the method converges.

Figure 3.4: Chebyshev method
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(a) The colors indicate to the number of iterations. (b) The colors indicate to which solution the method converges.

Figure 3.5: Halley method
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(a) The colors indicate to the number of iterations. (b) The colors indicate to which solution the method converges.

Figure 3.6: Super-Halley method



Chapter 4

Methods Based on Quadratic

Model

This chapter introduces a new iterative framework to solve the nonlinear system

of equations F (x) = 0. The framework solves approximately the quadratic model

of the system around the current iterate. We will study the convergence property

of this framework.

Section 4.1 gives a general description of the iterative framework, and some obser-

vations. Section 4.2 deals with solving the quadratic model. Finally, Section 4.3

discuss the convergence properties of the iterative framework.

4.1 Introduction

Consider the system of nonlinear equations

F (x) = 0, (4.1)

where F : Rn → Rn satisfies the basic assumptions stated in Assumption 3.1.

For a given point xk ∈ Rn, k = 0, 1, 2, . . ., the model Tk(s) is obtained from Taylor

expansion of F (x) at the point xk,

F (xk + s) ≈ Tk(s) ≡ F (xk) + F ′(xk)s+
1

2
F ′′(xk)ss. (4.2)

21
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In other words, Tk(s) is the quadratic approximation of F (x) at the point xk + s

and k is the current iteration. In this strategy, the next iterate would be

xk+1 = xk + s̃, (4.3)

where s̃ is the approximate solution of the following subproblem

Tk(s) = 0. (4.4)

Therefore, we generate the sequence {xk} which converges to the solution x∗ of

(4.1). Algorithm 4.1 gives the general framework of the method described above.

Algorithm 4.1: Framework

Given x01

for k = 0, 1, 2, . . . until converge do2

Find approximate solution s̃ for Tk(s) = 03

Update xk+1 = xk + s̃4

end5

Note that step 3 in Algorithm 4.1 solves the subproblem (4.4) at each iteration.

The method to solve (4.4) is discussed in more detail in Section 4.2.

For the rest of the thesis we use the following observations. Let x∗ be the solution

of the problem (4.1), the ball N (ε, x∗) = {x : ‖x− x∗‖2 ≤ ε}.

Observation 4.1.

1. For x close to x∗, the norm of the function F at x will be small. This follows

from the continuity of F . For any 0 < δ < 1 there exists ε > 0 so that

‖F (x)‖ ≤ δ, (4.5)

for x ∈ N (ε, x∗).

2. There exists a constant B1 > 0 such that

‖F ′′(x)‖ ≤ B1, (4.6)
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for x ∈ N (ε, x∗).

3. There exist constant c6 > 0 and c7 > 0 such that

∥∥(F ′(xk + s)
)−1∥∥ ≤ c6,

∥∥(T ′k(s))−1∥∥ ≤ c7, (4.7)

for xk ∈ N (ε, x∗) and xk + s ∈ N (ε, x∗).

We assume that these observations are true.

4.2 Solving the quadratic subproblem

This section describes the solution methods to solve the subproblem (4.4) approx-

imately using the two steps of Newton’s method, which is equivalent to one step

of Super-Halley (Shown in chapter 3), and then generalize to the rest of Halley

class methods.

4.2.1 Two steps Newton method

Let Tk(s) be the quadratic function (4.2). Consider two steps of Newton method

approximate solving the subproblem Tk(s) = 0

s(0) = 0,

T ′k(s
(0))s(1) = −Tk(s(0)), (4.8)

T ′k
(
s(0) + s(1)

)
s(2) = −Tk

(
s(0) + s(1)

)
, (4.9)

s̃ = s(0) + s(1) + s(2). (4.10)

Then Algorithm 4.1 to solve F (x) = 0 will be Super Halley method. Assume that

equations (4.8) and (4.9) are solved by a direct method such as LU factorization.

Eventually, we will have a residual t, Tk(s̃) = t, where t is the error obtained

from approximate solution of the subproblem Tk(s) = 0. The following Lemma

4.1 calculate the error t when the two steps of Newton method is used to solve the

subproblem (4.4).
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Lemma 4.1. Assume that (4.4) is solved approximately by two steps of Newton

method for the starting point s(0) = 0. And assume that ‖
(
T ′k(s

(1))
)−1‖ is bounded

by a constant c1 > 0. There exists µ > 0 so that the function Tk(s) at s = s(1)+s(2)

satisfies

∥∥Tk(s(1) + s(2)
)∥∥ ≤ µ‖F (xk)‖4. (4.11)

Proof : From equation (4.8), the first step s(1) is given by

s(1) = −T ′k(s(0))−1Tk(s
(0)),

by taking the norm for both sides of the above equation, we get

‖s(1)‖ ≤ ‖T ′k(s(0))−1‖‖Tk(s(0))‖,

since s(0) = 0, and by using the definition of Tk(s) in (4.2), we observe that

Tk(s
(0)) = F (xk), T ′k(s

(0)) = F ′(xk) (4.12)

and using (4.7) in Observation 4.1 for a constant c6 > 0, we have

‖s(1)‖ ≤ c6‖F (xk)‖. (4.13)

Consider the function Tk(s) (4.2) at the point s(1)

Tk(s
(1)) = F (xk) + F ′(xk)s

(1) +
1

2
F ′′(xk)s

(1)s(1).

From equation (4.8), the term F (xk) + F ′(xk)s
(1) will vanish and we get

Tk(s
(1)) =

1

2
F ′′(xk)s

(1)s(1),

by taking the norm for both sides, we get

‖Tk(s(1))‖ ≤ 1

2
‖F ′′(xk)‖‖s(1)‖2. (4.14)
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Using (4.6) in Observation 4.1, therefore, (4.14) becomes

‖Tk(s(1))‖ ≤ 1

2
B1‖s(1)‖2,

by substitute the inequality (4.13) into the above equation, we obtain

‖Tk(s(1))‖ ≤ C1‖F (xk)‖2, (4.15)

where C1 = 1
2
B1c

2
6. From equation (4.9), the second step s(2) is given by

s(2) = −T ′k(s(1))−1Tk(s
(1)),

by taking the norm, we get

‖s(2)‖ ≤ ‖T ′k(s(1))−1‖ ‖Tk(s(1))‖,

using the assumption that ‖T ′k(s(1))−1‖ is bounded by c1 > 0 in the above equation,

we have

‖s(2)‖ ≤ c1 ‖Tk(s(1))‖,

by substituting the inequality (4.15) into the above equation, we obtain

‖s(2)‖ ≤ β‖F (xk)‖2, (4.16)

where β = c1C1. To prove (4.11), using Taylor expansion of Tk(s) (4.2) at the

point s(1)

Tk
(
s(1) + s(2)

)
= Tk(s

(1)) + T ′k(s
(1))s(2) +

1

2
T ′′k (s(1))s(2)s(2),

from equation (4.9), the term Tk(s
(1)) + T ′k(s

(1))s(2) vanished. From the definition

of Tk(s), we have T ′′k (s(1)) = F ′′(xk). Therefore, the above equation becomes

Tk
(
s(1) + s(2)

)
=

1

2
F ′′(xk)s

(2)s(2),
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by taking the norm, we get

‖Tk
(
s(1) + s(2)

)
‖ ≤ 1

2
‖F ′′(xk)‖‖s(2)‖2,

using (4.6) in Observation 4.1 and (4.16) , we obtain

‖Tk
(
s(1) + s(2)

)
‖ ≤ µ‖F (xk)‖4,

where µ = B1

2
β2.

Lemma 4.1 shows that the error t = Tk(s̃) is O(‖F (xk)‖4) when two steps of

Newton is used to solve the subproblem.

4.2.2 One step of Halley class methods

The subproblem (4.4) will be approximately solved using one step of Halley class

method (3.2) with some value of α. In this Case, our method stated in Algorithm

4.1 is a Halley class method with some value of α.

We have shown that one step of Halley class can be written as two steps in chapter

3. Then the one step of Halley class method approximate solve Tk(s) = 0 is

s(0) = 0, (4.17)

T ′k(s
(0))s(1) = −Tk(s(0)), (4.18)(

T ′k(s
(0)) + αT ′′k (s(0))s(1)

)
s(2) = −1

2
T ′′k (s(0))s(1)s(1), (4.19)

s̃ = s(0) + s(1) + s(2). (4.20)

We want to rewrite the second equation in terms of s(1). We have from definition

of Tk(s)

T ′k(s) = F ′(xk) + F ′′(xk)s, (4.21)

and

T ′′k (s) = F ′′(xk), (4.22)



Chapter 4. Methods Based on a Quadratic Model 27

therefore, since s(0) = 0, the left hand side of equation (4.19) can be written as

T ′k(s
(0)) + αT ′′k (s(0))s(1) = F ′(xk) + αF ′′(xk)s

(1), (4.23)

by adding and subtracting the term F ′′(xk)s
(1) to the right hand side of the above

equation, we get

T ′k(s
(0)) + αT ′′k (s(0))s(1) = F ′(xk) + F ′′(xk)s

(1) − (1− α)F ′′(xk)s
(1),

thus by substituting again equations (4.21) and (4.22) into the above equation, we

obtain

T ′k(s
(0)) + αT ′′k (s(0))s(1) = T ′k(s

(1))− (1− α)T ′′k (s(1))s(1). (4.24)

Therefore, one step of Halley class can be written as

s(0) = 0,

T ′k(s
(0))s(1) = −Tk(s(0)), (4.25)(

T ′k(s
(1))− (1− α)T ′′k (s(1))s(1)

)
s(2) = −Tk(s(1)), (4.26)

s̃ = s(0) + s(1) + s(2). (4.27)

Assume that the linear systems (4.25) and (4.26) solved by a direct method such

as LU factorization.

The following theorem calculate the error t = Tk(s̃) when one step of the Halley

class method used for solving the subproblem (4.4).

Theorem 4.2. Assume that (4.4) is solved by one step of Halley class method

with some value of α. Let s(1) be the solution of the equation (4.25). Assume that∥∥∥∥(T ′k(s(1))− (1− α)T ′′k (s(1))s(1)

)−1∥∥∥∥ is bounded by a constant c3 > 0. Then

‖Tk(s(1) + s(2))‖ ≤ |1− α|µ1‖F (xk)‖3 + µ2‖F (xk)‖4. (4.28)

Proof : The first equation (4.25) in one step of Halley class method is equal to the

first one (4.8) in two steps Newton method. Therefore, the inequality (4.13) with
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a constant c6 > 0 is valid for s(1) and also the inequality (4.15) with a constant

C1 = 1
2
B1c

2
6 is verified for Tk(s

(1)).

From equation (4.19) s(2) is given by

s(2) =

(
T ′k(s

(1))− (1− α)T ′′k (s(1))s(1)

)−1

Tk(s
(1)),

by taking the norm and using assumption

∥∥∥∥(T ′k(s(1))− (1− α)T ′′k (s(1))s(1)

)−1∥∥∥∥ is

bounded by c3, we get

‖s(2)‖ ≤ c3‖Tk(s(1))‖,

by substituting the inequality (4.15) into the above equation, we obtain

‖s(2)‖ ≤ C2‖F (xk)‖2, (4.29)

where C2 = c3C1.

Consider the function Tk(s) at s = s(1) + s(2), using the Taylor expansion of Tk(s)

at s(1) we have

Tk(s
(1) + s(2)) = Tk(s

(1)) + T ′k(s
(1))s(2) +

1

2
T ′′k (s(1))s(2)s(2),

using equation (4.26), we get

Tk(s
(1) + s(2)) = (1− α)T ′′k (s(1))s(1)s(2) +

1

2
T ′′k (s(1))s(2)s(2),

by taking the norm

‖Tk(s(1) + s(2))‖ ≤ |1− α| ‖T ′′k (s(1))‖‖s(1)‖‖s(2)‖+
1

2
‖T ′′k (s(1))‖‖s(2)‖2

since T ′′k (s(1)) = F ′′(xk), then by using (4.6) in Observation 4.1 we obtain

‖Tk(s(1) + s(2))‖ ≤ |1− α| B1‖s(1)‖‖s(2)‖+
1

2
B1‖s(2)‖2,
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by substituting the inequalities (4.13) and (4.29) into the above equation, we get

‖Tk(s(1) + s(2))‖ ≤ |1− α| µ1‖F (xk)‖3 + µ2‖F (xk)‖4 (4.30)

where µ1 = c6B1C2 and µ2 = B1C
2
2/2.

We observe that from Theorem 4.2 the error t is depend on α. And for the whole

Halley class, there are two cases: when α = 1 the error is O(‖F (xk)‖4). And

for α 6= 1, using (4.6) in Observation 4.1, therefore, the error t is O(‖F (xk)‖3).
Thus Super-Halley method α = 1 give us more accurate solution of the quadratic

equation Tk(s) = 0 than the other method in the Halley class.

4.3 Convergence properties

Assume that the problem F (xk) = 0 solved by Algorithm 4.1. Also assume that

the subproblem Tk(s) = 0, where Tk(s) is the quadratic model (4.2) is solved

by an iterative method. The iterative method generates the iteration {sj}, j =

0, 1, 2, . . . which converges to sĵ, where sĵ is the solution of Tk(s) = 0. Thus the

sequence xk updates by xk+1 = xk + sĵ.

Assume that in each iteration sj and for given point xk, there exist constants

0 ≤ ηk ≤ η0 < 1 and θ > 0 so that

‖sj‖ ≤ θ‖F (xk)‖, ‖Tk(sj)‖ ≤ ηk‖F (xk)‖. (4.31)

We will show that the function F (x) at the sequence points {xk} is decreasing

‖F (xk+1)‖ ≤ λ‖F (xk)‖, (4.32)

where 0 < λ < 1. Let sĵ be the solution of (4.4), since xk+1 = xk + sĵ, we have

F (xk+1) = F (xk + sĵ).
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By using Taylor expansion of F (x) at the point xk, we have

F (xk+1) = F (xk) + F ′(xk)sĵ +
1

2
F ′′(xk)sĵsĵ +O(‖sĵ‖

3),

using the definition of Tk(s) in (4.2), we have

F (xk+1) = Tk(sĵ) +O(‖sĵ‖
3),

taking the norm, we get

‖F (xk+1)‖ ≤ ‖Tk(sĵ)‖+O(‖sĵ‖
3),

using the assumption (4.31), we obtain

‖F (xk+1)‖ ≤ ηk‖F (xk)‖+O(‖sĵ‖
3), (4.33)

using the definition of big O in [17], then there exists a constant C > 0 so that

for all k , we have

‖F (xk+1)‖ ≤ ηk‖F (xk)‖+ C‖sĵ‖
3,

using (4.31), we have

‖F (xk+1)‖ ≤ (ηk + Cθ3‖F (xk)‖2)‖F (xk)‖

using (4.5) in Observation 4.1 for 0 < δ < 1, we get

‖F (xk+1)‖ ≤ (ηk + Cθ3δ2)‖F (xk)‖

= λ‖F (xk)‖

where λ = ηk + Cθ3δ2. By choosing δ to be too small so that λ < 1, then we

obtain (4.32). And then F (x) called a contractive function (see A.2 in Appendix).

Since

1

γ
‖xk − x∗‖ ≤ ‖F (xk)‖ ≤ γ‖xk − x∗‖ (4.34)
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which proved in lemma(3.1) in [7], we have the following lemma.

Lemma 4.3. Assume that the problem (4.4) is solved using an iterative method

which satisfies (4.31). Let x0 be the starting point, so that, x0 ∈ N (x∗, ε). Assume

that (4.32) is verified. Then xk → x∗.

Proof. From (4.34), we have

1

γ
‖xk − x∗‖ ≤ ‖F (xk)‖.

Since the function F (x) is a contraction function, then ‖F (xk)‖ → 0 as k → ∞.

Then xk is convergent to x∗ when k →∞.

Theorem 4.4. Consider the problem (4.1), Suppose that the Jacobian matrix at

the solution x∗ is nonsingular. Assume that (4.1) solved by an iterative method,

which generates a sequence {xk} which converges to the solution x∗. Then the

framework converges quadratically when ηk = O(‖F (xk)‖). The framework con-

verges cubically if ηk = O(‖F (xk)‖2).

Proof. By using (4.34), we get

‖xk+1 − x∗‖ ≤ γ‖F (xk+1)‖,

by substituting the inequality (4.33)

‖xk+1 − x∗‖ ≤ γ(‖Tk(sjk)‖+O(‖sj‖3)

using the assumption (4.31) and definition of O for constant C > 0, we obtain

‖xk+1 − x∗‖ ≤ γηk‖F (xk)‖+ γCθ3‖F (xk)‖3. (4.35)

Let ηk = O(‖F (xk)‖, using the definition of O for constant L2 > 0, then (4.35)

becomes

‖xk+1 − x∗‖ ≤ γL2‖F (xk)‖2 + γCθ3‖F (xk)‖3,
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using (4.5) in Observation 4.1, we have

‖xk+1 − x∗‖ ≤ (γL2 + γCθ3δ)‖F (xk)‖2

using again the inequality (4.34), we get

‖xk+1 − x∗‖ ≤ γ3(L2 + Cθ3δ)‖xk − x∗‖2,

then the method converges quadratically to the solution.

Now by putting ηk = O(‖F (xk)‖2 in (4.35), using the definition of O for constant

L4 > 0, we get

‖xk+1 − x∗‖ ≤ γL4‖F (xk)‖3 + γCθ3‖F (xk)‖3,

collecting the terms with ‖F (xk)‖3

‖xk+1 − x∗‖ ≤ γ
(
L4 + Cθ3

)
‖F (xk)‖3

using again the inequality (4.34), we get

‖xk+1 − x∗‖ ≤ γ4(L4 + Cθ3)‖xk − x∗‖3,

then the method has cubic convergence to the solution.



Chapter 5

Practical Methods

Consider the system of quadratic equations

Tk(s) = 0, (5.1)

where the function Tk(s) defined in (4.2). We have shown that one step of Super-

Halley is two steps of Newton’s method with starting point s(0) = 0 on a quadratic

function.

T ′k(s
(0))s(1) = −Tk(s(0)), (5.2)

T ′k(s
(1))s(2) = −Tk(s(1)), (5.3)

where we solve for the unknown variables s(1) and s(2). s̃ = s(0) + s(1) + s(2) will

then be an approximate solution of (5.1).

In the previous chapter, the linear system (5.2) and (5.3) were solved using a

direct method such as Gaussian elimination or LU Factorization. But in this

chapter, (5.2) and (5.3) are solved approximately using an iterative method such

as Conjugate gradient (CG) method. Also in this chapter the Observation 4.1 is

used in the analysis.

5.1 Inexact Super-Halley

Suppose that the subproblem (5.1) approximately solved by two steps Newton

method (4.8, 4.9 and 4.10) for starting point s(0) = 0. And assume that the linear

33
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systems (4.8) and (4.9) solved by an iterative method. Then we have

T ′k(s
(0))s(1) = −Tk(s(0)) + r

(1)
k , (5.4)

T ′k(s
(1))s(2) = −Tk(s(1)) + r

(2)
k , (5.5)

and s̃ = s(0) + s(1) + s(2) is an approximate solution of (5.1). It is called two

steps of inexact Newton method [7]. We assume that the residual r
(1)
k and r

(2)
k for

0 < p, q ≤ 1 satisfy the following

‖r(1)
k ‖ ≤ ‖Tk(s

(0))‖1+p, (5.6)

‖r(2)
k ‖ ≤ ‖Tk(s

(1))‖1+q. (5.7)

In terms of the function F , the two iterations of inexact Newton method can be

written as:

F ′(xk)s
(1) = −F (xk) + r

(1)
k , (5.8)

(F ′(xk) + F ′′(xk)s
(1))s(2) = −r(1)

k −
1

2
F ′′(xk)s

(1)s(1) + r
(2)
k , (5.9)

s̃ = s(0) + s(1) + s(2).

Lemma 5.1. Let Tk(s) be a function of the form (4.2). Let s(1) and s(2) as given

by (5.4) and (5.5), respectively. Assume that r
(1)
k and r

(2)
k satisfy (5.6) and (5.7),

respectively. Then there exists a constant L > 0 such that

‖s(1)‖ ≤ L‖Tk(s(0))‖, (5.10)

and

‖s(2)‖ ≤ L‖Tk(s(1))‖, (5.11)

provided that

max{‖Tk(s(0))‖, ‖Tk(s(1))‖} ≤ 1,

where L = 2 max
{∥∥(T ′k(s(0))

)−1∥∥, ∥∥(T ′k(s(1))
)−1∥∥} <∞.
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Proof : To prove (5.10), start from equation (5.4) and so s(1) defined as

s(1) = −
(
T ′k(s

(0))
)−1(

Tk(s
(0)) + r

(1)
k

)
,

by taking the norm, we get

‖s(1)‖ ≤
∥∥(T ′k(s(0))

)−1∥∥(‖Tk(s(0))‖+ ‖r(1)
k ‖
)
,

using equation (5.6) for p ∈ (0, 1], we get

‖s(1)‖ ≤
∥∥(T ′k(s(0))

)−1∥∥(‖Tk(s(0))‖+ ‖Tk(s(0))‖1+p
)
,

since ‖Tk(s(0))‖ ≤ 1, then ‖Tk(s(0))‖1+p < ‖Tk(s(0))‖ and so the above equation

becomes

‖s(1)‖ ≤ 2
∥∥(T ′k(s(0))

)−1∥∥∥∥Tk(s(0))
∥∥,

The above equation can be rewritten as

‖s(1)‖ ≤ L
∥∥Tk(s(0))

∥∥,
where L = 2 max

{∥∥(T ′k(s(0))
)−1∥∥, ∥∥(T ′k(s(1))

)−1∥∥}.
Prove (5.11), from equation (5.5) s(2) is given by

s(2) = −
(
T ′k(s

(1))
)−1(

Tk(s
(1)) + r

(2)
k

)
,

taking the norm for both sides

‖s(2)‖ ≤
∥∥(T ′k(s(1))

)−1∥∥(‖Tk(s(1))‖+ ‖r(2)
k ‖
)
,

using the assumption on the residual r
(2)
k (5.7) for q ∈ (0, 1] , we get

‖s(2)‖ ≤
∥∥(T ′k(s(1))

)−1∥∥(‖Tk(s(1))‖+ ‖Tk(s(1))‖1+q).
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Since ‖Tk(s(1))‖ ≤ 1, and so ‖Tk(s(1))‖1+q < ‖Tk(s(1))‖. Then we get

‖s(2)‖ ≤ 2
∥∥(T ′k(s(1))

)−1∥∥‖Tk(s(1))‖.

The above equation can be rewritten as

‖s(2)‖ ≤ L‖Tk(s(1))‖,

where L = 2 max
{∥∥(T ′k(s(0))

)−1∥∥, ∥∥(T ′k(s(1))
)−1∥∥}. �

Theorem 5.2. Let Tk(s) be a function of the form (4.2). And assume that s(1)

and s(2) are the solutions of the equations of the two steps inexact Newton method

in (5.4) and (5.5) respectively, 0 < p, q ≤ 1. Then there exists a constant M > 0,

such that

‖Tk(s(1))‖ ≤ ‖Tk(0)‖1+p
(
1 +M‖Tk(0)‖1−p

)
, (5.12)

and

‖Tk(s(1) + s(2))‖ ≤ ‖Tk(s(1))‖1+q
(
1 +M‖Tk(s(1))‖1−q

)
, (5.13)

where M = 1
2
B1L

2. Moreover, for x sufficiently close to x∗ where F (x∗) = 0.

Then there exists a constant M1 > 0 so that

‖T
(
s(1) + s(2)

)
‖ ≤M1‖Tk(0)‖(1+p)(1+q) (5.14)

Proof : We start by proving (5.12). Using the definition of Tk(s) in (4.2), we get

Tk(s
(1)) = F (xk) + F ′(xk)s

(1) +
1

2
F ′′(xk)s

(1)s(1),

using the definition of s(1) in (5.8), we get

Tk(s
(1)) = r

(1)
k +

1

2
F ′′(xk)s

(1)s(1),
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taking the norm for the both sides, we get

‖Tk(s(1))‖ ≤ ‖r(1)
k ‖+

1

2
‖F ′′(xk)‖‖s(1)‖2,

using the assumption on r
(1)
k (5.6), Lemma 5.1 and (4.6), we get

‖Tk(s(1))‖ ≤ ‖Tk(s(0))‖1+p +
1

2
B1L

2‖Tk(s(0))‖2,

= ‖Tk(0)‖1+p(1 +M‖Tk(0)‖1−p
)
,

where M = 1
2
B1L

2. Then we obtain (5.12).

The inequality (5.13) will be shown as the following. Let Tk(s) defined in (4.2).

Using Taylor expansion of Tk(s) at s(1), we have

Tk(s
(1) + s(2)) = Tk(s

(1)) + T ′k(s
(1))s(2) +

1

2
T ′′k (s(1))s(2)s(2).

Combining the equation (5.5) and the above equation, we get

Tk(s
(1) + s(2)) = r

(2)
k +

1

2
T ′′k (s(1))s(2)s(2),

since T ′′k (s(1)) = F ′′(xk), we have

Tk(s
(1) + s(2)) = r

(2)
k +

1

2
F ′′(xk)s

(2)s(2),

taking the norm to above equation, we get

‖Tk(s(1) + s(2))‖ ≤ ‖r(2)
k ‖+

1

2
‖F ′′(xk)‖‖s(2)‖2,

using Lemma 5.1, the assumption on r
(2)
k (5.7) and (4.6), we obtain

‖Tk(s(1) + s(2))‖ ≤ ‖Tk(s(1))‖1+q +
1

2
B1L

2‖Tk(s(1))‖2,

collecting the terms with ‖Tk(s(1))‖1+q, we get (5.13)

‖Tk(s(1) + s(2))‖ ≤ ‖Tk(s(1))‖1+q
(
1 +M‖Tk(s(1))‖1−q

)
,
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where M = 1
2
L2B1.

To prove (5.14), equation (5.13) used with q in the interval (0, 1]

‖Tk(s(1) + s(2))‖ ≤ ‖Tk(s(1))‖1+q
(
1 +M‖Tk(s(1))‖1−q

)
,

substituting the inequality (5.12) with p in (0, 1] into the above equation, we get

‖Tk(s(1) + s(2))‖ ≤‖Tk(0)‖(1+p)(1+q)
(
1 +M‖Tk(0)‖1−p

)1+q(
1 +M‖Tk(0)‖(1+p)(1−q)(1 +M‖Tk(0)‖1−p)1−q)

Since x is sufficiently close to the solution x∗ and Tk(0) = F (xk). Then by using

(4.5) in Observation (4.1), we get (5.14)

‖Tk(s(1) + s(2))‖ ≤M1‖Tk(0)‖(1+p)(1+q)

where M1 =
(
1 +Mδ1−p)1+q(

1 +Mδ(1+p)(1−q)(1 +Mδ1−p)1−q).
Now look at equation (5.14) and equation (4.31), then ηk is this case defined as

the following,

ηk ≤ O
(
‖F (xk)‖(1+p)(1+q)−1

)
(5.15)

from Theorem 4.4, the method is Q-third order if (1 + p)(1 + q) ≥ 3.

5.2 The inexact Halley class

In this section we consider the case when α 6= 1.

Consider one step in a method of the Halley class (4.25, 4.26 and 4.27) for approx-

imately solve the subproblem (5.1). Assume that the linear systems (4.25) and

(4.26) are solved by an iterative method. Then we obtain the one step of Inexact
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Halley class

s(0) = 0

T ′k(s
(0))s(1) = −Tk(s(0)) + r

(1)
k (5.16)(

T ′k(s
(1))− (1− α)T ′′k (s(1))s(1)

)
s(2) = −Tk(s(1)) + r

(2)
k (5.17)

s̃ = s(0) + s(1) + s(2). (5.18)

Since s(1) has the same definition as in (5.8), then equation (5.10) is verified

and also equation (5.12) will be satisfied. Then to find the bounded for s(2) and

Tk(s
(1) + s(2)), we assume that there exists c3 > 0 such that∥∥∥∥∥

(
T ′k(s

(1))− (1− α)T ′′k (s(1))s(1)

)−1
∥∥∥∥∥ ≤ c3. (5.19)

Define G = T ′k(s
(1))− (1− α)T ′′k (s(1))s(1). From equation (5.17), s(2) is given by

s(2) =−
(
T ′k(s

(1))− (1− α)T ′′k (s(1))s(1)
)−1

Tk(s
(1))

+
(
T ′k(s

(1))− (1− α)T ′′k (s(1))s(1)
)−1

r
(2)
k ,

taking the norm for both sides of the above equation

‖s(2)‖ ≤ ‖(G))−1‖‖Tk(s(1))‖+ ‖(G)−1‖‖r(2)
k ‖,

using the assumption on the residual r
(2)
k (5.7) and (5.19)

‖s(2)‖ ≤ c3(‖Tk(s(1))‖+ ‖Tk(s(1))‖1+q)

Since ‖Tk(s(1))‖ ≤ 1, and so ‖Tk(s(1))‖1+q < ‖Tk(s(1))‖. Then we get

‖s(2)‖ ≤ L3‖Tk(s(1))‖ (5.20)

where L3 = 2c3.
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Now look at Tk(s) at s = s(1) + s(2), using Taylor expansion of Tk(s) at s(1)

Tk(s
(1) + s(2)) = Tk(s

(1)) + T ′k(s
(1))s(2) +

1

2
T ′′k (s(1))s(2)s(2),

using the definition of s(2) (5.17), we get

Tk(s
(1) + s(2)) = r

(2)
k + (1− α)T ′′k (s(1))s(1)s(2) +

1

2
T ′′k (s(1))s(2)s(2),

since T ′′k (s(1)) = F ′′(xk)

Tk(s
(1) + s(2)) = r

(2)
k + (1− α)F ′′(xk)s

(1)s(2) +
1

2
F ′′(xk)s

(2)s(2),

taking the norm for the above equation, we get

‖Tk(s(1) + s(2))‖ ≤ ‖r(2)
k ‖+ |1− α|‖F ′′(xk)‖‖s(1)‖‖s(2)‖+

1

2
‖F ′′(xk)‖‖s(2)‖2,

using the assumption on r
(2)
k (5.7), (5.20), (5.10) and (4.6)

‖Tk(s(1) + s(2))‖ ≤ ‖Tk(s(1))‖1+q + |1− α|D1‖F (xk)‖‖Tk(s(1))‖

+M‖Tk(s(1))‖2, (5.21)

where D1 = B1L3L and M = 1
2
B1L

2.

from equation (5.12), equation (5.21) becomes

‖Tk(s(1) + s(2))‖ ≤‖Tk(0)‖(1+q)(1+p)
(
1 +M‖Tk(0)‖1−p

)1+q

+ |1− α|D1‖Tk(0)‖2+p
(
1 +M‖Tk(0)‖1−p

)
+M‖Tk(0)‖2(1+p)

(
1 +M‖Tk(0)‖1−p

)2
,

since Tk(0) = F (xk), so (4.5) used for small δ > 0. Then we obtain

‖Tk(s(1) + s(2))‖ ≤ σ1‖Tk(0)‖(1+q)(1+p) + σ2|1− α|‖Tk(0)‖2+p + σ3‖Tk(0)‖2(1+p),

(5.22)

where σ1 =
(
1 +Mδ1−p)1+q

, σ2 = D1(1 +Mδ1−p) and σ3 = M
(
1 +Mδ1−p)2. Since

q ∈ (0, 1], we observe that (1 + p)(1 + q) ≤ 2(1 + p). And by using equation (4.5),
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equation (5.22) becomes

‖Tk(s(1) + s(2))‖ ≤ σ4‖Tk(0)‖(1+q)(1+p) + σ2|1− α|‖Tk(0)‖2+p, (5.23)

where σ4 = σ1 + σ3.

Remark 5.3.

1. Equation (5.23) is valid for all methods which α 6= 1 in the Inexact Halley

class (5.18).

2. The case of the inexact Halley class when α = 1 (i.e. the inexact Super-

Halley), the inequality (5.23) becomes

‖Tk(s(1) + s(2))‖ ≤ σ4‖Tk(0)‖(1+q)(1+p),

where σ4 =
(
1 + Mδ1−p)1+q

+ M
(
1 + Mδ1−p)2. This case was discussed in

Section 5.1. And from Theorem 5.2, we have

‖Tk(s(1) + s(2))‖ ≤M1‖Tk(0)‖(1+q)(1+p),

where M1 =
(
1 +Mδ1−p)1+q

+Mδ(1+p)(1+q)
(
1 +Mδ1−p)2. Since δ < 1, then

we have M1 < σ4 and

‖Tk(s(1) + s(2))‖ < σ4‖Tk(0)‖(1+q)(1+p).

Then the inequality (5.23) is also valid for α = 1.

3. Puting σ5 = σ4 + σ2|1− α| and α 6= 1, equation (5.23) can be rewritten as

‖Tk(s(1) + s(2))‖ ≤ σ5‖Tk(0)‖min{(1+q)(1+p),2+p}. (5.24)

In the above equation, min{(1 + q)(1 + p), 2 + p} means that we have two

possibilities. The first case : (1 + q)(1 + p) ≤ 2 + p, and then

q ≤ 1

1 + p
. (5.25)
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The second one : (1 + q)(1 + p) ≥ 2 + p, and then

q ≥ 1

1 + p
. (5.26)

Thus for both possibilities, p ∈ (0, 1] and q depend on p by (5.25) or (5.26).

4. From equations (5.24) and (4.31), the sequence ηk is satisfied

ηk ≤ O
(
‖F (xk)‖min{(1+q)(1+p),2+p}−1

)
. (5.27)

Therefore, by using Theorem 4.4, we conclude that the method is Q-third

order when min{(1+ q)(1+p), 2+p} ≥ 3 which means p = 1 and 1
2
≤ q ≤ 1.

For special case α = 1, also we have Q-third order of convergence when p = 1

and 1
2
≤ q ≤ 1.

5.3 Comparison

This section compares between the method used in the thesis and the method used

in the literature.

Assume that the nonlinear system of equations F (x) = 0 solved by the Chebyshev

method (α = 0 ) (3.13)

F ′(xk)s
(1) = −F (xk), (5.28)

F ′(xk)s
(2) = −1

2
F ′′(xk)s

(1)s(1), (5.29)

xk+1 = xk + s(1) + s(2), k = 0, 1, 2, . . . , (5.30)

and the linear systems solved iteratively. Then we have the Inexact Chebyshev

method (Inexact Halley class for α = 0)

F ′(xk)s
(1) = −F (xk) + r

(1)
k , (5.31)

F ′(xk)s
(2) = −r(1)

k −
1

2
F ′′(xk)s

(1)s(1) + r
(2)
k , (5.32)

xk+1 = xk + s(1) + s(2), k = 0, 1, 2, . . . , (5.33)
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where r
(1)
k and r

(2)
k obtained by solving iteratively the linear systems (5.28) and

(5.29), respectively. We assumed that r
(1)
k and r

(2)
k are satisfied

‖r(1)
k ‖ ≤ ‖F (xk)‖1+p, (5.34)

‖r(2)
k ‖ ≤ ‖Tk(s

(1))‖1+q, (5.35)

where p, q ∈ (0, 1], the function Tk(s) defined in (4.2) and s(1) is given by equation

(5.31). Since the first step s(1) is defined by one way regardless α. We use Theorem

5.2 in equation (5.35) to get

‖r(2)
k ‖ ≤ ‖Tk(0)‖(1+p)(1+q)

(
1 +M‖Tk(0)‖1−p

)1+q
,

since Tk(0) = F (xk) and using equation (4.5)

‖r(2)
k ‖ ≤ σ1‖F (xk)‖(1+p)(1+q), (5.36)

where σ1 =
(
1 +Mδ1−p)1+q

.

Deng and Zhang [8], Gui-feng and Xiang [10] and Zhang, Cheng, Xue and Deng [27]

solved the system of nonlinear equations F (x) = 0 using the Inexact Chebyshev

method in the form

F ′(xk)s
(1) = −F (xk) + r̃

(1)
k , (5.37)

F ′(xk)s
(2) = −1

2
F ′′(xk)s

(1)s(1) + r̃
(2)
k , (5.38)

xk+1 = xk + s(1) + s(2). (5.39)

This method is the Inexact Halley class for α = 0, except there is some change in

the right hand side of the second equation. By adding and subtracting the term

r̃
(1)
k in the right hand side of the equation (5.38), we get

−1

2
F ′′(xk)s

(1)s(1) + r̃
(2)
k = −r̃(1)

k −
1

2
F ′′(xk)s

(1)s(1) + r̃
(2)
k + r̃

(1)
k .
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Thus the method (5.37, 5.38, 5.39) can be written as

F ′(xk)s
(1) = −F (xk) + r̃

(1)
k , (5.40)

F ′(xk)s
(2) = −r̃(1)

k −
1

2
F ′′(xk)s

(1)s(1) + r̃
(1)
k + r̃

(2)
k , (5.41)

xk+1 = xk + s(1) + s(2). (5.42)

This method is the Inexact Halley class with α = 0 (5.31, 5.32 and 5.33). Where

the first residual r
(1)
k is corresponding to r̃

(1)
k and the second one r

(2)
k is correspond-

ing to r̃
(1)
k + r̃

(2)
k .

Deng and Zhang [8] proved that the residual -the stop condition- is satisfying the

following conditions:

‖r̃(1)
k ‖ ≤ ω′‖F (xk)‖1+min{2, lNm/v}, (5.43)

‖r̃(2)
k ‖ ≤ ω′′‖F (xk)‖2+min{1, lHm/v}, (5.44)

where ω′ > 0 and ω′′ > 0 are constants and lNm and lHm are the maximum number

of subiterations can be reached when we solved the linear system (5.28) and (5.29)

respectively, and the progress index v ≥ 1 (see Lemma 3.2 in Deng and Zhang

[8]). We assume that we never reach the maximum number of iterations when the

linear system was solved, otherwise, may be the exact solution is obtained. We

set the values min{2, lNm/v} = 2 , min{1, lHm/v} = 1, ω′ = 1 and ω′′ = 1. So

equations (5.43) and (5.44) becomes

‖r̃(1)
k ‖ ≤ ‖F (xk)‖3, (5.45)

‖r̃(2)
k ‖ ≤ ‖F (xk)‖3, (5.46)

which are the error chosen in Algorithm PCG in Deng and Zhang [8].

Recall the first residual r
(1)
k of the Inexact Halley class method is defined in equa-

tion (5.31). And the corresponding residual r̃
(1)
k of Deng and Zhang method is

defined in equation (5.40). By considering the conditions (5.45) and (5.34). Since

the method is Q-third order of convergence then from Remark 5.3 p must be equal
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to one and q in the interval [1/2, 1]. And since ‖F (xk)‖ < 1 from (4.5), we have

‖F (xk)‖3 ≤ ‖F (xk)‖2,

and then we get

‖r̃(1)
k ‖ ≤ ‖r

(1)
k ‖, (5.47)

provided xk is close to x∗.

The term r̃
(1)
k + r̃

(2)
k in (5.41) correspond to r

(2)
k in (5.32). Using triangular inequal-

ity, we have

‖r̃(1)
k + r̃

(2)
k ‖ ≤ ‖r̃

(1)
k ‖+ ‖r̃(2)

k ‖,

using the equations (5.45) and (5.46), we get

‖r̃(1)
k + r̃

(2)
k ‖ ≤ ‖F (xk)‖3 + ‖F (xk)‖3

= 2‖F (xk)‖3.

Now we can compare (5.36) with the above equation by looking at the right hand

side of each equation. We know p = 1 and 1/2 ≤ q ≤ 1 from previous stage, and

we need to choose q and σ1 such that the following is fulfilled

2‖F (xk)‖3 ≤ σ1‖F (xk)‖2(1+q),

from above, we have q ≤ 1/2 then q = 1/2. Clearly, to have σ1 ≥ 2 the value of

M ≥ 0.5874 (since ω depend on M see (5.36)).

‖r̃(1)
k + r̃

(2)
k ‖ ≤ ‖r

(2)
k ‖. (5.48)

Gui-feng and Xiang [10] used the termination criteria

‖r̃(1)
k ‖ ≤ ‖F (xk)‖3+ε, (5.49)

‖r̃(2)
k ‖ ≤ ‖F (xk)‖3+ε, (5.50)
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where ε > 0 is small number. Put p = 1 to have Q-third order of convergence (see

Remark 5.3). By using the same way that used in Deng, we get

‖r̃(1)
k ‖ ≤ ‖r

(1)
k ‖. (5.51)

Now we look at r̃
(1)
k + r̃

(2)
k , by using triangular inequality

‖r̃(1)
k + r̃

(2)
k ‖ ≤ ‖r̃

(1)
k ‖+ ‖r̃(2)

k ‖,

using the equations (5.49) and (5.50), we get

‖r̃(1)
k + r̃

(2)
k ‖ ≤ ‖F (xk)‖3+ε + ‖F (xk)‖3+ε

= 2‖F (xk)‖3+ε.

To have Q-third order of convergence from Remark 5.3 q must be in the interval

[1/2, 1]. Choose q ∈ [1/2, 1] such that the following is satisfied

2‖F (xk)‖3+ε ≤ σ1‖F (xk)‖2(1+q),

then q = 1/2, and as shown above M ≥ 0.5874. And therefore, we get

‖r̃(1)
k + r̃

(2)
k ‖ ≤ ‖r

(2)
k ‖. (5.52)

Remark 5.4.

1. The result obtained from the analysis in Section 5.2 used to investigate the

local convergence and cubic rate of convergence.

2. The condition ‖r(1)
k ‖ ≤ ‖F (xk)‖2 is sufficient to have Q-third order of con-

vergence. The conditions (5.49) and (5.45) are so rigid .



Chapter 6

Numerical Experiments of a

Problem with Singular F ′(x∗)

This chapter illustrates in detail the derivation of Schröder’s method. Analyzing

the Chebyshev method, Halley method, Super-Halley method, Newton method

and Schröder’s method in the case where the first derivative of the function at the

solution is singular.

6.1 Schröder’s method

Schröder’s method [22] is derived using Newton’s method on the system of equa-

tions

F ′(x)−1F (x) = 0.

Let G(x) = F ′(x)−1F (x). Newton’s method is then

xk+1 = xk −G′(xk)−1G(xk), k = 0, 1, 2, . . . .

G′ computed by using the definition of G(x), we have

F ′(x)G(x) = F (x),

by taking the derivative on both sides, we have

F ′′(x)G(x) + F ′(x)G′(x) = F ′(x),

47
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post-multiplication with F ′(x)−1, then we have

G′(x) + F ′(x)−1F ′′(x)G(x) = I,

rearranging the above equation, we get

G′(x) = I − F ′(x)−1(x)F ′′(x)G(x).

Using the definition of G(x), we have

G′(x) = I − F ′(x)−1(x)F ′′(x)F ′(x)−1F (x),

define L(x) = F ′(x)−1F ′′(x)F ′(x)−1F (x), the above equation becomes

G′(x) = I − L(x). (6.1)

Using the definition of G(x) and substituting the value of G′(x) in equation (6.1)

into the Newton method iteration, we have

xk+1 = xk − (I − L(xk))
−1F ′(xk)

−1F (xk), k = 0, 1, 2, 3, . . . . (6.2)

This is called Schröder’s method.

6.2 Numerical experiments

The numerical example to solve the nonlinear system of equations (4.1) in two

dimension, is taken from Rall [21]. The function is

F (x) =

[
F1(x)

F2(x)

]
=

[
x2

1 − x1x2 + x2
2 + x1 − 2

3x2
1 + 2x1x2 + 2x2 − 7

]
(6.3)

In Figure (6.1) the intersection of the plotted F1(x) = 0 and F2(x) = 0 (marked

by red and green) is defined the solutions of the problem (6.3). Also the points

where have singular property to the first derivative are plotted. We observe that

the solution x = (1, 1) lies on the singularity curve. This can be shown clearly
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using the definition of the first derivative (see A.3 in the Appendix) at that point.

F ′(1, 1) =

[
2 1

8 4

]
, det[F ′(1, 1)] = 0. (6.4)

Applying Chebyshev’s method, Halley’s method, Super-Halley’s method, New-

x

y

Zeros function and singualrity
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Figure 6.1: The curves for the system F1(x) = 0 and F2(x) = 0 and the
singularity property of the first derivative of example (6.3).

ton’s method and Schröder’s method for the starting point (0, 0). All these

methods implemented in Matlab for double precision and stop criteria ‖F (x)‖ ≤
1.410−10 and the maximum number of iterations is 25.

The following Tables show the number of iterations, the iterates and the function

norm at these iterates.

In particular, Table 6.3 and 6.4 depict that one iteration from Super-Halley’s

method equivalent to two iterations of Newton’s method. Table 6.1 shows that

the Chebyshev’s method did not converge to the solution (1, 1) from standard

starting point. However, when we choose the starting point to be the first iterate

in Newton method x0 = (2, 3.5), it will converge to the desired solution. Figure

6.2
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Table 6.1: Chebyshev’s Method
k x1 x2 ‖F (xk)‖
0 0 0 7.280109889280500
1 -7.250000000000000 -9.500000000000000 277.0939174043703
2 -2.968996813954100 -4.114769660009700 36.66220242433760
3 -1.583699601962200 -2.371038965535100 3.386002884748000
4 -1.358793773909200 -2.087570589247100 0.038032185681500
5 -1.355996429862800 -2.084039365035900 0.000000103579600
6 -1.355996422236900 -2.084039355394600 0.000000000000000

Table 6.2: Halley’s Method
k x1 x2 ‖F (xk)‖
0 0 0 7.280109889280518
1 0.506666666666667 0.546666666666667 4.740849095798747
2 1.026144685213466 0.898943403525560 0.201407441244827
3 1.014789524024398 0.970365418262718 0.001544436414059
4 1.004936854453253 0.990126269702986 0.000172331325504
5 1.001645620854597 0.996708758288070 0.000019148931309
6 1.000548540285213 0.998902919429573 0.000002127659163
7 1.000182846761747 0.999634306476506 0.000000236406574
8 1.000060948920403 0.999878102159194 0.000000026267397
9 1.000020316306819 0.999959367386362 0.000000002918600
10 1.000006772102609 0.999986455794781 0.000000000324289
11 1.000002257372266 0.999995485255467 0.000000000036032

Table 6.3: Super-Halley’s Method
k x1 x2 ‖F (xk)‖
0 0 0 7.280109889280518
1 1.133720930232558 1.909883720930232 5.355214977605924
2 0.927122115124097 1.145199552758963 0.037174889898064
3 0.981833265991789 1.036333431153082 0.002333646958440
4 0.995458319993551 1.009083360012750 0.000145853906513
5 0.998864579998406 1.002270840003187 0.000009115869161
6 0.999716144999560 1.000567710000881 0.000000569741823
7 0.999929036249757 1.000141927500485 0.000000035608864
8 0.999982259062446 1.000035481875109 0.000000002225554
9 0.999995564764280 1.000008870471441 0.000000000139097
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Table 6.4: Newton’s Method
k x1 x2 ‖F (xk)‖
0 0 0 7.280109889280518
1 2.000000000000000 3.500000000000000 27.596421869510547
2 1.133720930232558 1.909883720930232 5.355214977605924
3 0.899185401750811 1.320530880585975 0.514445410962792
4 0.927122115124097 1.145199552758963 0.037174889898064
5 0.963669012504749 1.072668440837878 0.009337399130329
6 0.981833265991790 1.036333431153081 0.002333646958440
7 0.990916640026858 1.018166720050791 0.000583415670517
8 0.995458319993556 1.009083360012741 0.000145853906513
9 0.997729159996805 1.004541680006390 0.000036463476644
10 0.998864579998402 1.002270840003197 0.000009115869161
11 0.999432289999206 1.001135420001588 0.000002278967290
12 0.999716144999638 1.000567710000724 0.000000569741822
13 0.999858072499790 1.000283855000420 0.000000142435456
14 0.999929036249960 1.000141927500080 0.000000035608864
15 0.999964518125401 1.000070963749198 0.000000008902216
16 0.999982259063008 1.000035481873983 0.000000002225554
17 0.999991129530671 1.000017740938658 0.000000000556389
18 0.999995564767107 1.000008870465786 0.000000000139097

Table 6.5: Schroder’s Method
k x1 x2 ‖F (xk)‖
0 0 0 7.280109889280518
1 0.267441860465117 0.319767441860465 6.196980990894691
2 0.664649873269063 0.731178040241718 3.348760512962943
3 0.955058828497382 0.969868224931951 0.485943964480452
4 1.000215909885402 1.000137328916793 0.002346862051056
5 0.999997519478809 0.999998421468273 0.000026963328146
6 1.000000014062650 1.000000008948954 0.000000152861064
7 1.000000000016669 1.000000000010592 0.000000000181131
8 1.000000000000038 0.999999999999994 0.000000000000291
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Table 6.6: Chebyshev’s Method
k x1 x2 ‖F (xk)‖
0 2.000000000000000 3.500000000000000 27.596421869510547
1 0.975315263121487 1.577120469738513 2.260813650918351
2 0.917090720554475 1.164191135947230 0.047657957656361
3 0.969142465137966 1.061720107585319 0.006735964013134
4 0.988427705570531 1.023144582887343 0.000946940352832
5 0.995660390439370 1.008679219123930 0.000133163843203
6 0.998372646414380 1.003254707171239 0.000018726165291
7 0.999389742405399 1.001220515189201 0.000002633366994
8 0.999771153402029 1.000457693195942 0.000000370317234
9 0.999914182525885 1.000171634948229 0.000000052075861
10 0.999967818446913 1.000064363106174 0.000000007323168
11 0.999987931916919 1.000024136166162 0.000000001029821
12 0.999995474470645 1.000009051058710 0.000000000144818
13 0.999998302916068 1.000003394167864 0.000000000020366
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Figure 6.2: Comparing the number of iterations of Schröder’s method, Cheby-
shev’s method, Halley’s method, Super-Halley’s method, and Newton’s method

to solve example (6.3).
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These experiments show that in the case where the first derivative of the function at

the solution is singular, the Chebyshev’s method, Halley’s method, Super-Halley’s

and Newton’s method are linearly convergent. However, Schröder’s method con-

verges super-linearly, and then reaches the solution faster than the above methods.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we introduced a new iterative framework to solve the system of

nonlinear equations in n-dimensional real space. The framework is based on ap-

proximate solving the quadratic equations which is an approximation of the func-

tion at the current iterate. We showed that the Halley class methods is based on

the quadratic equation, which is approximately solved by two linear systems. We

considered the inexact Halley class methods by solving iteratively the two linear

systems. We have shown that the convergence rate for this class is cubic.

We assume that the existence and uniqueness of the solution obtained by the

framework. There are some experiments on the rate of convergence of Chebyshev’s

method, Halley’s method, Super-Halley’s method and Newton’s method that did

not include in the thesis regard to the limited time.

54
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7.2 Future work

The suggestions for future work we state as the following:

1. Study the region of convergence for Chebyshev’s method, Halley’s method,

Super-Halley’s method, Newton’s method and Schröder method in higher

dimension (n ≥ 2).

2. Study (theoretically and experimentally) the radius of the attraction basin

for the above methods in Halley class compared to Newton’s method using

the both weighted norm and regular norm.

3. Implementing the Halley class methods for large scale problems using spar-

sity structure.

4. Study and analyze the convergence properties of Halley class methods and

Schröder’s method in the case when the first derivative is singular at the

solution.

5. Using the stationary refinement iteration to solve the linear system.



Appendix A

Basic Definitions

We consider the nonlinear equations

F (x) = 0 (A.1)

where F : Rn → Rn, which can written as

F (x) =


F1(x)

F2(x)
...

Fn(x)

 . (A.2)

The first derivative of the function F at the point x is F ′(x). F ′(x) is a matrix in

Rn×n, and

F ′(x) =


∂F1(x)
∂x1

∂F1(x)
∂x2

· · · ∂F1(x)
∂xn

∂F2(x)
∂x1

∂F2(x)
∂x2

· · · ∂F2(x)
∂xn

...
...

. . .
...

∂Fn(x)
∂x1

∂Fn(x)
∂x2

· · · ∂Fn(x)
∂xn

 . (A.3)

Then the component ij of F ′(x) is defined by

[F ′(x)]ij =
∂Fi(x)

∂xj
.

The second derivative of the function F at the point x is F ′′(x). F ′′(x) is a tensor

in Rn×n×n, where

[F ′′(x)]ijk =
∂2Fi(x)

∂xk∂xj
. (A.4)
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Definition A.1. A function F : D ⊂ Rn → Rm is Lipschitz-continuous on D0 ⊂
D, if there exist constant L > 0 so that, for all x, y ∈ D,

‖F (y)− F (x)‖ ≤ L‖x− y‖. (A.5)

The tensor F ′′(x) is Lipschitz-continuous on D0 ⊂ D, if there exist constant L > 0

so that, for all x, y ∈ D,

|||F ′′(y)− F ′′(x)||| ≤ L‖x− y‖. (A.6)

The computation of the tensor norm |||.||| is mentioned in Appendix B.

Definition A.2. A function F : D ⊂ Rn → Rn is contractive on D0 ⊂ D, if there

exist a constant β < 1 such that, for all x, y ∈ D0,

‖F (y)− F (x)‖ ≤ β‖x− y‖. (A.7)

Definition A.3. A sequence {xk}, k ≥ 0 converges to x∗ with Q-order (at least)

q ≥ 1, if there exist two constants βq ≥ 0 and kq ≥ 0 such that for all k ≥ kq, we

have

‖xk+1 − x∗‖ ≤ βq‖xk − x∗‖q. (A.8)

For q = 2, 3 the convergence is said to be (at least) Q-quadratic, Q-cubic respec-

tively. For q = 1 the expression Q-linear convergence if in the above 0 ≤ β1 < 1.

Definition A.4. If A is a square matrix, ‖A‖ < 1, then I −A is nonsingular and

(I − A)−1 = I + A+ A2 + · · · =
∑∞

k=0A
k. This is the Neumann series.

Theorem A.5. Let L be a matrix in Rn×n, α be a real number and I be the

identity matrix. Assume that I − αL is invertible, then

L(I − αL)−1 = (I − αL)−1L

Proof. Consider

L(I − αL) = L− αL2 = (I − αL)L,
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So we have

L(I − αL) = (I − αL)L, (A.9)

By pre-multiplying and post-multiplying the equation (A.9) with (I − αL)−1 , we

get

(I − αL)−1L(I − αL)(I − αL)−1 = (I − αL)−1(I − αL)L(I − αL)−1

The multiplication (I−αL)(I−αL)−1 and the swap gives the identity matrix, we

obtain that

(I − αL)−1L = L(I − αL)−1.

Lemma A.6. Let L ∈ Rn×n, I be the identity matrix and α be a real number.

Assuming that I − αL is invertible, So we have

(I − αL)−1(I + (
1

2
− α)L) = I +

1

2
L(I − αL)−1 (A.10)

Proof. We starting with the left hand side of (A.10) and rearrangement the interior

of the right multiplication

(I − αL)−1(I + (
1

2
− α)L) = (I − αL)−1(I − αL+

1

2
L)

= I +
1

2
(I − αL)−1L

By using the theorem A.5, so then we get the right hand side of (A.10).
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Norm

we will review the definitions of the norm for vector and matrix. we will define

the norm of the tensor and make sure it satisfy the norm conditions.

Vector’s norms

Let x ∈ Rn and A ∈ Rm×n, recall the vector’s norms

‖x‖1 =
n∑
i=1

|xi|, ‖x‖∞ = max
1≤i≤n

|xi|, ‖x‖2 =

√√√√ n∑
i=1

x2
i , (B.1)

where xi is the component number i in x.

The matrix norms defined by

‖A‖1 = max
1≤j≤n

m∑
i=1

|Aij|, ‖A‖∞ = max
1≤i≤m

n∑
j=1

|Aij|, (B.2)

where Aij is the element (i, j) in the matrix. However, the induced norm of the

matrix A is defined by

‖A‖2 = max
‖x‖2=1

‖Ax‖2. (B.3)

Moreover, there exists z ∈ Rn so that ‖z‖2 = 1 and

‖A‖2 = ‖Az‖2. (B.4)
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Let T ∈ Rm×n×n, p ∈ Rn, we define tensor multiplication with a vector T p ∈ Rm×n

as

[T p]ij =
n∑
k=1

Tijkpk. (B.5)

Then

‖T p‖∞ = max
1≤i≤m

n∑
j=1

|
n∑
k=1

Tijkpk|

=
n∑
j=1

|
n∑
k=1

Tı̂jkpk|

≤
n∑
j=1

n∑
k=1

|Tı̂jk| |pk|

≤
n∑
j=1

n∑
k=1

|Tı̂jk| ‖p‖∞

≤ max
1≤i≤m

n∑
j=1

n∑
k=1

|Tijk| ‖p‖∞

using that there exists an index ı̂ so that the maximum occurs, and |pk| ≤
max1≤k≤n |pk| = ‖p‖∞.

Tensor’s norms

The tensor norm (B.9) is a norm iff the following conditions is satisfied:

For all T (1), T (2) ∈ Rm×n×n and for all α ∈ Rn

|||T (1)||| = 0⇔ T (1) = 0 (B.6)

|||αT (1)||| = |α| |||T (1)||| (B.7)

|||T (1) + T (2)||| ≤ |||T (1)|||+ |||T (2)||| (B.8)
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Definition B.1. The infinity tensor norm T ∈ Rm×n×n can be defined by the

following

|||T |||∞ = max
1≤i≤m

n∑
j=1

n∑
k=1

|Tijk| (B.9)

The norm defined in (Referencesnorminfty) is a norm.

Proof. Using the definition (B.9), So it is clear to see that the condition (B.6) is

satisfied. Since α is a sclar then we have that

|||αT (1)|||∞ = max
1≤i≤m

n∑
j=1

n∑
k=1

|αT (1)
ijk |

= |α| |||T (1)|||∞

Then the condition (B.7) is satisfied. To prove the triangular inequality, we define

a tensor T = T (1) + T (2) then ,

|||T |||∞ = max
1≤i≤m

n∑
j=1

n∑
k=1

|Tijk|

= max
1≤i≤m

n∑
j=1

n∑
k=1

|T (1)
ijk + T (2)

ijk |

≤ max
1≤i≤m

n∑
j=1

n∑
k=1

|T (1)
ijk |+ max

1≤i≤m

n∑
j=1

n∑
k=1

|T (2)
ijk |

= |||T (1)|||∞ + |||T (2)|||∞

Therefore the infinty tensor norm is a norm.

To derive an easy computable ||| . |||1 consider

T p =
n∑
k=1

T.,.,k pk

‖T p‖1 ≤
n∑
k=1

‖T.,.,k‖1 |pk| ≤ max
1≤k≤n

‖T.,.,k‖1
n∑
k=1

|pk|

= max
1≤k≤n

‖T.,.,k‖1 ‖pk‖1‖T p‖1 ≤ |||T |||1‖p‖1.
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Definition B.2. The tensor 1-norm of T ∈ Rm×n×n is defined by

|||T |||1 = max
1≤k≤n

max
1≤j≤n

m∑
i=1

|Tijk| (B.10)

Using the same argument used in the above proof we can verify that the norm

defined in Definition B.2 is a norm.

Definition B.3. The tensor Forbinous norm of T ∈ Rm×n×n is defined as the

following

|||T |||F =
n∑
k=1

n∑
j=1

m∑
i=1

|Tijk|2 (B.11)

Let p ∈ Rn, then tensor Forbinous norm satisfy the following induced property

‖T p‖2 ≤ |||T |||F‖p‖2 (B.12)

Proof. We start by using the vector-tensor product as follows

‖T p‖22 =

(
‖

n∑
k=1

T.,.,k|p|‖2

)2

≤

(
n∑
k=1

‖T.,.,k‖2|p|

)2

,

using the Cuachy Schwartz inequality we get

‖T p‖22 ≤

(
n∑
k=1

‖T.,.,k‖22

)(
n∑
k=1

|pk|2
)

= ‖pk‖22
n∑
k=1

‖T.,.,k‖22,

using the relation between the Forbinous norm and 2-norm

‖T p|‖22 ≤ ‖pk‖22
n∑
k=1

‖T.,.,k‖2F ≤ |||T |||2F‖p‖22,

this complete the proof.
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