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Abstract

The Mumford-Shah model is an important variational image segmen-
tation model. A popular multiphase level set approach, the Chan-Vese
model, was developed as a numerical realization by representing the phases
by several overlapping level set functions. Recently, a variant representa-
tion of the Chan-Vese model with binary level set functions was proposed.
In both approaches, the gradient descent equations had to be solved nu-
merically, a procedure which is slow and has the potential of getting stuck
in a local minima.

In this work, we develop an efficient and global minimization method
for a discrete version of the level set representation of the Chan-Vese model
with 4 regions (phases), based on graph cuts. If the average intensity val-
ues of the different regions are sufficiently evenly distributed, the energy
function is submodular. It is shown theoretically and experimentally that
the condition is expected to hold for the most commonly used data terms.
We have also developed a method for minimizing nonsubmodular func-
tions, that can produce global solutions in practice should the condition
not be satisfied, which may happen for the L' data term.

1 Introduction

Multiphase image segmentation is a fundamental problem in image processing.
Variational models such as the Mumford-Shah model [27] are powerful for this
task, but efficient numerical computation of a global minimum is a big challenge.
The level set method [14, 29] is a powerful tool which can used for numerical
realization. It was first proposed for the Mumford-Shah model in [10] for two
phases and [33] for multiple phases. Both approaches have the disadvantage of
slow convergence and potential of getting stuck in a local minima.
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Graph cuts from combinatorial optimization [15, 7, 16, 4, 20, 21, 3] is another
technique which can perform image segmentation by minimizing certain discrete
energy functions. In the recent years, the relationship between graph cuts and
continuous variational problems have been much explored [5, 6, 12, 13]. It turns
out graph cuts are very similar to the level set method, and can be used for
many variational problems with the advantage of a much higher efficiency and
ability to find global minima. It can be applied to the 2-phase Mumford-Shah
model [11, 35], but for multiple phases it is probably not possible to find the
exact, global minimum in polynomial time as this is an NP-hard problem. The
usual approach to minimization problems with several regions is some heuristic
method for finding an approximate, local minimum. Most popular in computer
vision are the alpha-expansion and alpha-beta swap algorithms [7]. Recently,
also convex formulations of the continuous multiphase problem have been made
in [30, 23, 34] by relaxing the integrality constraint. A suboptimal solution is
found by converting the real valued relaxed solution to an integral one (e.g. by
thresholding).

In this paper we propose a method for globally and efficiently minimizing
the energy in the Mumford-Shah model in the multiphase level set framework
of Vese and Chan [33] by using binary level set functions as in [24]. Since the
length term is slightly approximated in this framework, global minimization is
not NP hard.

We will construct a graph such that the discrete variational problem can be
minimized exactly by finding a minimum cut on the graph, provided the energy
function is submodular. A sufficient condition on the data term is derived for
when the energy is submodular. It is shown theoretically and experimentally
that the condition is expected to hold for the most commonly used data term.

The submodularity of the energy function depends on how evenly the average
intensity values of each region are distributed and may sometimes be violated
under an L; data fitting term. To handle these cases, we have developed a
method for minimizing non-submodular functions with particular emphasis on
this energy function. It is shown in experiments that the algorithm can effi-
ciently compute global solutions in practice, but we cannot prove it will always
do so (which would conflict with NP-hardness of the problem).

The global optimization framework applies if the average intensity values of
each region are fixed. One can also simultaneously minimize with respect to
the average intensities values, by an alternating algorithm as in [2]. Although a
global minimum with respect to the average intensities is not guaranteed, such
an algorithm is much more robust to initialization.

Note that in contrast to alpha-expansion and alpha-beta swap, the approx-
imation is done in the model rather than in the minimization method. Our
approach only requires to find a minimum cut on a graph once, while alpha
expansion and alpha-beta swap need to iteratively solve a sequence of minimum
cut problems. By analyzing the complexity it can be easily seen that our method
is more efficient.

In this work we will focus fully on the case of 4 or less phases, but aim to
generalize to more phases later. Nevertheless, these are important cases since



by the four colour theorem, four phases in theory suffices to segment any 2D
image. This can potentially be exploited in an algorithm in the future, by
assigning different constant values to each disconnect component of the phases.

The paper is organized as follows: Section 1.1 reviews the Mumford-Shah
model, the Chan-Vese model and the different level set representations. Section
2 presents the new global minimization approach for the multiphase Chan-Vese
model. In Section 3 some theoretical analysis of the submodularity condition is
presented. Section 4 presents algorithms for minimizing non-submodular energy
functions.

Section 5 presents a local minimization approach for determining the average
intensity values of the phases, while numerical experiments are presented in
Section 6.

1.1 The Mumford-Shah model and its level set represen-
tation

Image segmentation is the task of partitioning the image domain 2 into a set
of n meaningful disjoint regions {€2;}? ;. The Mumford-Shah model [27] is an
established image segmentation model with a wide range of applications. An
energy functional to be minimized is defined over the regions {€;}? ;, and an
approximation image u of the input image ug. In an especially popular form, u
is assumed to be constant within each region €2;, in which case the model reads

min FE cH{) = / ¢; —ulPdx + V/ ds, 1
o ms({eit {}) ; m' | ; . (1)

where 0f); is the boundary of €;. The power § is usually chosen as = 2.
As a numerical realization, Chan and Vese [10, 33] proposed to represent the
above functional with level set functions, and solve the resulting gradient descent
equations numerically. For two phases (n = 2) the level set representation
yielded the variational problem

min v / VH(G)| + {H (6)ler — u)? + (1 — H(9))les — u[P}dw,  (2)
where H(-) : R — R is the Heaviside function H(x) =0if x < 0 and H(z) = 1 if
x > 0. The multiphase case was handled by introducing more level set functions.
By using m = log,(n) level set functions, denoted ¢!, ..., ™, n phases could be
represented. An important special case is the representation of 4 phases by two
level set functions ¢',$2, as in Table 1. The energy functional could then be
written

min  Eoy(6',6% cr,oea) = v / VH (Y| + v / VH@E) 3)
1,02 ,c1,...,Ca Q Q

+ [ @O er =+ (81 = H@ler "))



Traditional level set functions | Binary level set functions

x € phase 1iff | ¢!(x) >0,¢%(x) <0 ol(r) =1,¢6%(x) =0
x € phase 2 iff o(x) > 0,0%(x) >0 ol(r) =1,¢%(x) =1
x € phase 3iff | ¢l(x) <0,¢%(x) <0 o (z) =0,¢%(x) =0
x € phase 4 iff ol(x) < 0,0%(x) >0 ol(x) =0,0%(x) =1

Table 1: Representation of four phases by traditional and binary level set func-
tions (note: a little permutation compared to the original paper [33]).

+(1 = H(¢")H(¢")|ea = u’|Pdx + (1 = H(¢")(1 — H(¢"))|es — u’|” }da.

Note also that we have made a permutation in the interpretation of the phases
compared to [33]. The energy is still exactly the same for all possible solutions.
This permutation is crucial for making the corresponding discrete energy func-
tion submodular. Note also that the length term in (1) is slightly approximated,
since some of the boundaries are counted twice. In fact there are a total of 6
types of boundaries between two different regions. In this model only two of
them are counted twice, while the remaining 4 are counted once. This is very
close to the ideal situation where each boundary is counted once.

The functional in the variational problem (3) is highly non-convex, even for
fixed constant values ¢y, ..., ¢4. The traditional minimization approach of solving
the gradient descent equations can therefore easily get stuck in a local minima.
Furthermore, the numerical solution of the gradient descent PDEs is expensive
computationally.

In [26, 24], the same multiphase model was formulated using binary level set
functions ¢!, ¢ € D = {¢] ¢ : @+ {0,1}}, representing the phases as in Table
1. This resulted in the energy functional

min Ecv(¢', ¢ c1,.ica) = V/ |V¢1|d$+V/ V¢ |da+E™* (", ¢%),
¢1,¢2€D,c1,...5ca Q Q
(4)

where
Edata(¢17¢2) _ /{¢1¢2|02 _ u0|/3 +¢1(1 _ ¢2)|Cl _ u0|/3)
Q

(1= 9P e — u®)? + (1= 61 (1 = ¢?)|es —u®| }da.

The functional was written in a slightly different form in [26, 24], but is exactly
equal to the above in case ¢! and ¢? are binary functions. The constraint D
was represented by the polynomials K (¢') = 0 and K(¢?) = 0, where K(¢) =
¢(1 — ¢). Minimization of this constrained problem was carried out by the
augmented lagrangian method. Since both the side constraints were non-convex,
global minimization could not be guaranteed. Also, convergence was slow just
as in the traditional level set approach. A similar approach could also be used
for finding a local minimum with exact curve lengths [25].



Let us mention that a method often referred to as continuous graph cut can
be used to globally minimize the Mumford Shah model in case of two phases.
By letting ¢ € D, this model can be written

min V/ |Voldx + {¢lcr — u®)? + (1 — ¢)|ca — u°|P}Yda. (5)
¢ED,c1,c2 Q

The idea, presented in [28] is to relax the constraint D by the convex constraint
D' ={¢|¢: Q2 [0,1]}. It was shown that thresholding this solution at almost
any threshold in (0, 1] yields the optimal solution within D. Since (5) is convex,
this procedure would yield the globally optimal solution.

One might immediately think the same idea could be extended to the multi-
phase case by iteratively minimizing (4) for ¢! and ¢? in D’ and finally threshold
the results. However, since E9%1%(pl, $?) is not convex with respect to ¢! and
¢?, the minimization would not be global.

In general, discrete graph cut has the disadvantage of some metrication ar-
tifacts over continuous graph cuts. However, discrete graph cuts is faster and
can elegantly be used for minimization problems with non-local operators. The
method we propose can easily be generalized to minimize non-local measure-
ments of the curve lengths as was done for two phases in [8].

In the next section we will propose a method which globally minimizes (4) for
fixed constant values cy, ..., cq4. This new approach is also shown to be very su-
perior in terms of efficiency compared to gradient descent. We start by deriving
a discretizatation of (4).

1.2 Discretization of energy functional

Instead of discretizing the Euler-Lagrange equations, we will discretize the vari-
ational problem (4). In the next section we show how to minimize the resulting
discrete energy function exactly by graph cuts. Let us first mention there are
two variants of the total variation term. The isotropic variant, by using 2-norm

TVa(6) = [ (Volado = [ Vo P16 Pdo (6)

and the anisotropic variant, by using 1-norm

Vi) = [ 1Volide = [ 60|+ 6] do ™

Only the anisotropic variant is graph representable and will be considered here.
A more isotropic graph representable version can be obtained by splitting T'V;
using the original gradient operator, and one rotated counterclockwise /4 ra-
dians

TVi5(0) = 5 [ {IV0(a)l + R Vo)l } da, (®)

where Rz V is the gradient in the rotated coordinate system. It is also possible
to create even more isotropic versions by considering more such rotations.



Let P = {(i,j) C Z*} denote the set of grid points. For each p = (i, j) € P,
the neighborhood system le C P is defined as

Ny ={(i£1,5),3G,j£1)}nP

NS ={(i+1,5),(i,j+1),(i+1,j+1)}nP.

The discrete energy function can be written

min Ed(¢17¢27cl7...,04) :VZ Z wpq|¢]1)—¢é|+yz Z wpq|¢]2,—¢§|

1 ¢2€D,cy,...,c
oo et PEP qeNE PEP qEN
(9)

+Y EL (¢, 07),

peP

where
By (9p, 87) = {@pdple = upl” + 95 (1= Gp)ler — w,)°)
+(1 = p)dples —wpl” + (1= &) (1 = p)les — |’}
and k = 4 for T'Vy and k = 8 for T'V; =. The weights w,q are then given by wy, =
44°

kllp—all2
of integral geometry as was done for two phases in [5]. It can furthermore be

proved that as the mesh size decreases and the size of the neighborhood system
increases, the minimizers of the discrete energy function converges to minimizers
of the continuous energy functional.

. Similar weights can also be derived from the Cauchy-Crofton formula

2 Graph cut minimization

We will show that the discrete problem (9) can be minimized globally by finding
the minimum cut on a specially designed graph. This is possible provided the
constant values c1, ..., ¢4 are sufficiently evenly distributed. We show that such
a distribution makes the discrete energy function sub-modular. Some analysis
of the condition is given in Section 3, where it is argued it will be satisfied in
practice for the most commonly used data terms. In Section 4, an algorithm is
developed for minimizing non-submodular functions with particular emphasize
on functions of the form (4).

2.1 Brief overview of graph cuts in computer vision

Graph cut is a well known optimization problem. Due to a duality theorem by
Ford and Fulkerson [22], there are several fast algorithms for this problem. It
was introduced as a computer vision tool by Greig et. al. [16] in connection
with markov random fields [15] and has later been studied by Kolmogorov et. al.
[4, 20]. Its applications range from stereo vision [19], segmentation [3, 17, 35, 11]
to noise removal [12, 13, 9].



A graph G = (V,€) is a set of vertices V and a set of edges £. We let (a,b)
denote the directed edge going from vertex a to vertex b, and let c(a, b) denote
the capacity/cost/weight on this edge. In the graph cut scenario there are two
distinguished vertices in V, called the source {s} and the sink {¢t}. A cut on G
is a partitioning of the vertices V into two disjoint connected sets (Vs, Vi) such
that s € V, and t € V;. The cost of the cut is defined as

Vo, Vi) = > c(i, §).

(i,5)EE s.t. i€V, E€EV:

A flow f on G is a function f : £ — R. For a given flow, the residual
capacities are defined as R(e) = c(e) — f(e) Ve € €. The max flow problem is to
find maximum amount of flow that can be pushed from {s} to {t}, under flow
conservation constraint at each vertex. The theorem of Ford and Fulkerson says
this is the dual to the problem of finding the cut of minimum cost on G, the min-
cut problem. Therefore, efficient algorithms for finding max-flow, such as the
augmented paths method [22] can be used for finding minimum cuts in graphs.
An efficient implementation of this algorithm specialized for image processing
problems can be found in [4]. This algorithm, which is available on-line has
been used in our experiments.

In computer vision this has been exploited for minimizing energy functions

of the form
min  FE(x) E’ (x; EW (x;,5).
ze{O 1}"’ Z z ; ( 2 J)
Typically, i = 1, ..., m denotes the set of grid points and = contains one binary

variable for each grid point. In order to be representable as a cut on a graph,
it is required that the energy function is submodular (or regular) [20, 15], i.e

E™(0,0) + B (1,1) < EY(0,1) + EY(1,0), Vi<

2.2 Graph construction

Observe that the energy function E is composed of pairwise interaction terms
between binary variables. Such energy functions can be minimized exactly via
graph cuts, provided the pairwise interaction potentials are submodular [20, 15].
In particular, this requires the data term to satisfy

EJeta(1,1) + E2*(0,0) < Ed*“(1,0) + E4**(0,1) (10)

We will construct a graph G such that there is a one-to-one correspondence
between cuts on G and the level set functions ¢' and ¢?>. Furthermore, the
minimum cost cut will correspond to the level set functions ¢! and ¢ minimizing
the energy (9).

min c¢(Vs, Vi) = mlnE Cl,y...,C4) + op- 11
(vg,v,)( t) = m a(0', 0%, ¢, a) I;) P (11)



Figure 1: (a) The graph corresponding to the data term at one grid point p.
(b) A sketch of the graph corresponding to the energy function of a 1D signal
of two grid points p and ¢, red: data edges, blue: regularization edges.

where 0, € R are fixed for each p € P. In the graph, two vertices are associated
to each grid point p € P. They are denoted v, 1 and vy, 2, and correspond to
each of the level set functions ¢! and ¢?. Hence the set of vertices is formally
defined as

V={v,;| peP, i=12}U{s}U{t} (12)
The edges are constructed such that the relationship (11) is satisfied. We begin
with the edges constituting the data term of (9). For each grid point p € P they
are defined as

Ep(p) = (8,0p,1) U (8,0p,2) U (vp,1,1) U (vp2,8) U (Up,1,0p,2) U (vp,2,0p,1). (13)

The set of all data edges are denoted £p and defined as UpepEp(p). The edges
corresponding to the regularization term are defined as

Er = {(vp1,v4.1), (Vp2,v42) VD,q C P s.t.q€ Nf} (14)

For any cut (V4, V), the corresponding level set functions are defined by

1 _ 1 if Up,1 € Vg’ 2 1 if Up,2 € ‘/;7
O = { 0 ifopreVn PPV 0 ifuecVi (15)

Weights are assigned to the edges such that the relationship (11) is satisfied.
Weights on the regularization edges are simply given by

¢ (Up,1,0g,1) = € (Vg,1,Up,1) = € (Vp,2,0g,2) = € (Vg,2,Vp2) = VWpq, VpeP, qe Nﬁ

(16)
We now concentrate on the weights on data edges Ep. For grid point p € P, let

A(p) = C(vp,lvt)a B(p) = C(UP’Qat)v C(p) = C(Savp,l)v

D(p) = 0(871):0’2)7 E(p) = C(Up,lvvp,Q)a F(p) = C(UP,Qa vp,l)'



In Figure 1(a) the graph corresponding to an image of one pixel p is shown. It
is clear that these weights must satisfy

A(p) + B(p) = ez —up|® + oy
A(p) + E(p) + D(p) =le1 —up|” + o
B(p) + F(p) + C(p) = lea —upl® + 0y

This is a non-singular linear system for the weights A(p), B(p), C(p), D(p), E(p), F(p).
Negative weights are not allowed. By choosing o, large enough there will
exist a solution with A(p), B(p), C(p), D(p) > 0. However, the requirement
E(p), F(p) > 0 implies that

ler —u)| + |es — u)|” = A(p) + B(p) + C(p) + D(p) + E(p) + F(p) — 20,

> A(p) + B(p) + C(p) + D(p) — 20 = |ca — ud|’ + |5 — ul)”.

This condition must hold for all grid points p € P, which is exactly the sub-
modular condition (10). Hence, the following condition on the constant values
c1, ..., c4 must be satisfied

e —11P +|es —11° < |ey = I|P +|es — 1P,  VI€[0,L], (18)

where L is the maximum intensity value.

A detailed analysis of the condition (18) is given in Section 3.

Assuming (18) holds, the linear system (17) has infinitely many solutions. It
was shown in [20] that at most three edges are required for representing a general
submodular term of two binary variables. Therefore, it is possible to pick a
solution such that at least three of the weights A(p), B(p), C(p), D(p), E(p), F'(p)
in Ep(p) become zero for each p € P. The construction of the solution is as
follows

A(p) = max{|ca — u2|5 —leq — ug|ﬁ,0}7 (19)
C(p) = max{les — up|” = [uy — e, 0} (20)
B(p) = max{les — up|” — |es —up|”, 0}, (21)
D(p) = max{|es — u2|ﬁ —leq — u2|57 0}, (22)
E(p) = ler —up|” + |ea —up|® — |ea —up|” — |es —up|®, F(p)=0. (23)

The value o, is given implicitly by this solution.

Therefore, by analyzing the complexity of the method in the augmented
paths framework, it is easily seen that the computational cost is equal to the
cost of one single iteration of the alpha expansion method.

Note finally that three phase segmentation is a special case that can be
handled by putting infinite cost to one of the four possible solutions, i.e. E(p) =
oo or F(p) = 0.
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Figure 2: (a), (b) and (c) distributions of ¢ which makes energy function sub-
modular for all 8. (d) distribution of ¢ which may make energy function non-
submodular for small 3

3 Analysis of submodular condition

The condition (18) says something about how evenly {c;}1_; are distributed.
First we characterize situations for which (10) is always satisfied.

Proposition 1. Let 0 < ¢; < ¢ < ¢3 < ¢4. (18) is satisfied for all T €
[25%, 454 for any 3 > 1.

Proposition 2. Let 0 < ¢; < ¢2 < ¢3 < ¢4. (18) is satisfied for any 8 > 1 if
Cy —C1 = C4 — C3.

Further, it can be observed that (18) becomes less strict as [ increases, as
the next two results show.

Proposition 3. Let 0 < ¢1 < 3 < ¢3 < ¢q. If (18) is satisfied for some § > 1,
then (10) is satisfied for all powers o > .

Proposition 4. Let 0 < ¢; < ¢3 < ¢3 < ¢4. There exists a B € N such that
(18) is satisfied for any 8 > B.

In fact we have observed that for 8 = 2, (18) is always satisfied in practice
for optimal constant values.

Figure 2 shows examples where the condition is satisfied and may fail. Prop.
3 is illustrated in Figure 2 (b) and (c). Figure 2 (d) shows the only possibility in
which (18) may be violated, i.e. c¢1,ca, c3 are clustered compared to ¢4 (the sym-
metrical version would also be a problem). However, the model (4) will disfavor
solutions where the constants are clustered. Experiments will demonstrate that
under L? data fidelity (18) is always satisfied for optimal values of c. Under L*
data fidelity, it may be more easily violated.

In case (18) does not hold at some p € P, the energy function is non-
submodular. Not only does this mean it cannot in general be minimized by
graph cut. It also implies the minimization problem is NP-hard, hence no
algorithm exist that can solve the problem in polynomial time (unless P = N P).

10



4 Minimization of non-submodular energy func-
tions

Assume that the submodularity condition (18) is not satisfied. We will develop
a method for minimizing non-submodular energy functions with particular em-
phasize on energy functions of the form (9). The algorithm cannot be guaran-
teed to always find a global solution, but works well in practice. Minimization of
non-submodular functions via graph cuts has been investigated previously, see
[18] for a review. The usual idea is to develop a method for determining most
of the variables, while leaving some of the variables undetermined. We instead
aim to determine all the variables. Even when (18) does not hold, the energy
function is ”almost submodular”, which we believe explains why the following
very efficient algorithms work so well in practice.
Assume that

lea — u2|ﬁ + |cs — u2|5 > ler — u2|5 + Jca — u2|ﬁ7

for some p € P. In this case the linear system (17) has a solution only if either
E(p) < 0 or F(p) <0, in which case one of the edges, (vp,1,vp2) or (Vp2,vp.1),
will have negative weight. In order to construct the solution we consider two
cases. If ug > c3, then

E(p) =1 — u2|5 +lcs — ug|ﬁ —Jea — u2|6 —leg — ug|ﬁ7 F(p)=0 (24)

A(p :max{|02—u2|ﬁ—|04—ug|5,0}—E(p , 25

)
C(p) 26

)

)

max{|cg — ug|ﬁ — |ug — 62|5, 0} — E(p),
B(p 27
(»
)

in which case F(p) < 0. If ug < cg, then

(25)
(26)
(27)
(28)

)
)
max{|cs — un|® — |es — ud|?, 0} — E(p),
)

S

28

max{|es — up|” —[eg —up|”, 0} — E(p),

F(p) = ler —upl” + lea —up)” = |ez —wp)® —|es —wpl®, E(p) =0 (29)
A(p) = max{|c; — u2|5 —les — u2|ﬁ,0} — F(p),
C(p)
B(p)
D(p) = max{ler — up|” — |e2 — upl®, 0} — F(p),

30
31

)
max{les —up|” —|up — e1]?, 0} = F(p),
)

max{|02—ug|ﬁ —la —u2|670}—F(p , 32

(30)
(31)
(32)
(33)
in which case F(p) < 0. By Prop 1, the condition holds whenever uj € [co, c3].
In this section we let G denote the graph with data edges set according to

(24)-(33) (some of which may be negative) and regularization edges set to (16).

11



4.1 Truncation of non-submodular terms

It is difficult to interpret what is physically meant by max flow on a graph with
negative edge weights. The concept of min-cut, on the other hand, certainly
have a meaning even if some of the edges have negative weight. If all the
edges have negative weight, the min-cut problem becomes equivalent to the
max-cut problem on a graph with negated edge weights. The first step of the
method finds a good feasible solution, and therefore also a good upper bound
on the objective function (9). It seems that most often this feasible solution is
in fact the optimal solution. All edges with negative weight will be removed,
resulting in a new graph G. It has been observed in [31] that removing negative
edges, often called truncation, can be effective in minimizing non-submodular
functions. We will see that this applies especially well to our energy function.
Furthermore, we will derive a criterion for when the minimum cut on the graph
with removed edges of negative weight is also a minimum cut on the original
graph with negative edge weights.

Let G be the graph identically to G except that all edges of negative weight
are removed. The minimum cut on G can be easily computed by max-flow. As
discussed in the previous section, the condition (18) may only be violated if
c1, ca, cg are close to each other compared to ¢4 and ug at p € P is close to cy.
Measured by the data term, the worst assignment of p is to phase 1, which has
the cost |¢; — u2|ﬁ. By removing the edge with negative weight F(p) < 0, the
cost of this assignment becomes even higher |c; — uY|? — E(p). Alternatively,
if ¢9,c3,cq are close to each other compared to ¢; and ug is close to ¢ then
F(p) < 0. By removing the edge with negative weight, the cost of the worst
assignment of u$ becomes higher |cs—u|®—F(p). We therefore expect minimum

cuts on G to be almost identical to minimum cuts on G. Define the sets
P'={peP|E(p) <0,F(p) >0},

P?={peP|F(p) <0,E(p) =0},

consisting of all p € P for which either F(p) < 0 or F(p) < 0.

Assume the maximum flow has been computed on G, let R4(p), Rg(p), Rc(p), Rp(p)
denote the residual capacities on the edges (vp,1,1t), (vp,2,t), (S, Up,1), (S, Up2) re-
spectively. The following theorem gives a criterion for when the minimum cut
on G yields the optimal solution of the original problem.

Theorem 5. Let G be a graph as defined in (12)-(14) and (16), with weights
A(p), B(p),C(p), D(p), E(p), F(p) satistying (17). Let G be the graph with
weights as in G, with the exception (v 1,vp2) = 0Vp € Pt and ¢(vp 2, vp1) =0
Vp € P2

Assume the maximum flow has been computed on the graph G. If

Ra(p)+Rp(p) > —E(p), VpeP' and Rp(p)+ Rc(p) > —F(p), Vpe P2,

(34)
then min-cut (G) = min-cut (G).

12



Figure 3: Illustration of graph G in case E(p) < 0.

Proof. We will create a graph G of only positive edge weights, such that the
minimum cut problem on ¢ is a relaxation of the minimum cut problem on G.
The graph G is constructed with weights as in G with the following exceptions

C\Up,1, )_ ( )_RA(p)v VP€P17

(

(5, p2) = D(p) ~ Rp(p), Vpe P!
c(vp2,t) = B(p) — Rp(p), VpeP?
c(s,vp,l) = C(p) — Re(p), Vpe P2

We will first show min-cut(G) < min-cut(G) < min-cut(G). The right inequality
follows because all the edges in the graph G have greater or equal weight than the
edges in the graph G. To prove the left inequality, observe that only data edges
for p € P1 UP;, differ between G and G. For each p € P; there are 4 possibilities
for the cut (Vs,V%). Since Ra(p), Rp(p), Rc(p), Rp(p) > 0, the cost of all the
3 cuts vp 1,Vp2 € Vs, Up1,vp2 € Vs and v, 1 € Vi, v, 2 € Vs are lower in G than
in G. The last cut vp1 € Vs,vp2 € V; has the cost A(p) + B(p) — E(p) in the
G and the cost A(p) + D(p) — (Ra(p) + Rp(p)) < A(p) + D(p) + E(p) in the
graph G. The same argument shows that all possible cuts have a lower or equal
cost in G than in G for p € Ps.

Both G and G have only positive edge weights. Since all the edges have
greater or equal weight in G than in G it follows that

max-flow(G) < max-flow(G).
Hence, since the max flow on G is feasible on G it is also optimal on G. Therefore,

by duality min-cut(G) = min-cut(G) which implies min-cut(G) = min-cut(G).
o
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Therefore, by computing the max flow on G and examining the residual
capacities for criterion (34), we can check whether the solution is optimal on
G. Most often it is possible to stop at this stage, since the residual capacity
conditions are satisfied everywhere.

4.2 Refinement of truncated solution

If the regularization parameter is set extremely high, the residual criterion (34)
may be violated at a small set of the pixels. In that case one could accept
the computed solution as suboptimal. We have also developed an algorithm
which iterates upon the cut on G until it finds a cut on G. We cannot prove the
algorithm always converges (which would conflict with the NP-hardness of the
problem), but it works well in practice.

If the residual capacity conditions are violated, there is a possibility the
optimal assignment is ¢! (p) = 0, ¢*(p) = 1 if p € Py and ¢'(p) = 1, ¢%(p) = 0 if
p € Po, even if a different assignment was produced by the cut on the graph G.
In the first step of the algorithm, the weights on the data edges at p are modified
such that the cost of the above assignments are correct, at the expense of one
of the remaining 3 assignments. There are possibilities for several variants.
In the variant below, the weights are modified such that the cost of either
assignment ¢*(p), ¢*(p) = 0 or ¢*(p), ¢*(p) = 1 are reduced, while the remaining
assignments are correct. Which assignment to be modified, is determined by
examining the cut on the graph G. The cut on the modified graph is expected
to be closer to a cut on G. If the cut on the new graph may causes either: (1)
the residual capacity condition to be violated at some new p € Py U P, (2)
the assignment of ¢! (p), ¢?(p) to a region of reduced cost, one cannot guarantee
the obtained cut is also optimal on G. In that case, the same procedure can be
reiterated until neither (1) or (2) are violated.

The algorithm creates a sequence of graphs {G;}7,, with Gy = G, of only
positive edge weights, such that the min-cut on G; converges to a min-cut on
G. The graphs satisfy min-cut(Go) = min-cut(G), min-cut(G;) < min-cut(G) for
all 7, and min-cut(G,) = min-cut(G). For a given flow on G; we define two new
sets P} C Pl and 771»2 C p?

Pl ={peP'| Ry(p) + Rp(p) < —E(p)},

P; = {p e P?| R(p) + R:(p) < —F(p)},

where RY(p), R5(p), R (p) and Ry (p) are the residual capacities in graph g;
on edges (vp.1,t), (Vp.2,t), (S, vp1), (S, vp2) respectively.

By construction, a sufficient stopping criterion that ensures both (1) and (2)
above is to require G; = G;_1, that is, the weights on all edges of G; and G; 1
are equal. The algorithm is as follows.

Algorithm 1:

G=6,6.1=0,i=0
Find max flow on Gy, update P; and P32

14



if (P} and PZ are empty)
stop, optimal solution found
else:

while(G; # Gi—1){

1. Construct G;;1 as in G except for the following weights

for all p € P}
if(vp,1 € Vy and vp 2 € V; in G;): set c(vp1,t) = A(p) + E(p)
if(vp,1 € Vs and vp2 € Vi in G;): set ¢(s,vp2) = D(p) + E(p)
if(vp,1 € Vs and vp 2 € V; in G;): set ¢(s,vp1) = A(p) + E(p)
if(vp1 € Vi and vy 2 € Vs in G;): set ¢(s,vp1) = D(p) + E(p)

for all p € P?

if(vp,1 € Vy and vp 2 € Vy in G;): set c(vp2,t) = B(p) + F(p)
if(vp,1 € Vs and vp 2 € Vi in G;): set ¢(s,vp1) = C(p) + F(p)
if(vp1 € Vs and v, 2 € V; in G;): set ¢(s, vp2) = B(p) + F(p)
if(vp1 € Vi and v, 2 € Vs in G;): set ¢(s,vp2) = C(p) + F(p)

2. Find max-flow on G; 1
3. Update P}, and P? ; by examining residual capacities in
gi+1 4. 1+ 1+1

}

Theorem 6. Let G,, be the graph at termination of Algorithm 1 and let (Vs, V)
be the minimum cut on G,, computed at the last iteration. Then (Vs,V}) is a
minimum cut on G.

Proof. If the algorithm terminates with Gy, optimality was proved in theorem 5.
Assume therefore n > 1. The proof follows some of the same ideas as the proof
of theorem 5. We will use G,, to construct a graph G such that the minimum
cut problem on G is a relaxation of the minimum cut problem on G. Observe
first that since G,, = G,,_1, the minimum cut on G, is feasible, no edges in the
cut have a reduced cost. Therefore, min-cut(G,,) > min-cut(G)

The graph G is constructed with weights as in G,, except

C\Up,1, ) - ( ) - RZ(p)v Vp S Pl\Prlm

(

c(s,vp2) = D(p) — Rp(p), VpeP"\P,
c(vp2,t) = B(p) — RE(p), Vpe P\P7,
c(s, vp,1) =C(p) — R&(p), Vpe PA\P..

Then min-cut(g) < min-cut(G) < min-cut(G, ). These inequalities can be shown
by the same argument as in the proof of Theorem 5. By construction, the max
flow on G, is feasible on G, and therefore also optimal on G. Hence, by duality
min-cut(G) = min-cut(G, ) which implies min-cut(G) = min-cut(G,,). O
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There is a lot of redundancy in this algorithm. It is not necessary to compute
the max-flow from scratch in each iteration, especially in the augmenting paths
framework. Rather, starting with the max flow in G;, flow can be pulled back
along s — t paths passing through vertices v, 1 or v, o for p € P} U P2 until it
becomes feasible in graph G; 1. With such an initial flow, only a few augmenting
paths are required to find the max flow on G;;1. Since P! and P2 are small
subsets of P, and P} UPZ are small subsets of P1UP?, the cost of this algorithm
is negligible.

5 Unknown constant values, algorithm

The algorithm presented in the last sections minimizes Eg4(c, ¢!, $?) with respect
to ¢!, @2 for a fixed c. Vice versa, for a fixed ¢!, $? the values ¢ minimizing
Eq4(c, ¢, $?) are given by the average intensity in each region

fQ ul dz
o, e

We want an algorithm to minimize both with respect to ¢ and c. As in [2], this
is achieved by combining the two above results in the following iterative descent
algorithm

ci i=1,..n (35)

Algorithm 2:
Estimate initial values ¢, set [ = 0.
while( ||c! — ¢! 71| > tol)

Use graph cuts to estimate ¢ from

o= argmin(g1,<52Ed(Cl,<517f2>2)- (36)

Update c'*! according to equation (35).
Update I <1 +1

Note that no initialization of the level set functions are required. Only the
values c” need to be initialized, which can be achieved very efficiently by the
isodata algorithm [32]. In our experiments, convergence was reached in around
5-15 iterations. It must be noted that this algorithm is no longer guaranteed
to find the global minima. Theoretically, it may get trapped in a local minima
close to the initial values c¢. However, in practice it is usually rather insensitive
to initialization.

6 Numerical results

Numerical examples are shown in Figure 4 - 7, where we have used the power
B = 2 in the data term. The constant values {c;}}_, are estimated by running
Algorithm 2 until convergence (6-10 iterations). During each iteration, the
energy minimization problem was submodular.

16



ON ON ON O™

(a)

Figure 4: L? data fidelity. From left to right: input, level set method gradient
descent, our approach, alpha expansion/alpha beta swap.

Figure 5: Level set method: (a) bad initialization, (b) result.

In the relatively simple image in Figure, the level set method finds a good
local minima. If the initialization is bad, the level set method gets stuck in an
inferior local minima also for this simple image as shown in Figure 5. White
points indicate the zero level set of ¢! and dark points indicate the zero level
set of ¢2.

More difficult images are presented in Figure 6 - 7. The L? data fidelity
term has been used (5 = 2) and the different methods are compared by keeping
the same constant values {c}}1 , and regularization parameter v fixed, while
minimizing in terms of the regions. One can clearly see the advantages of the
global approach over earlier approaches.

6.1 Experiments on L, data fitting term: submodularity

In Section 3 we gave theoretical insights on how submodularity of the energy
function was related to the distribution of the values ¢;, i = 1,...,4. It was
shown that the condition becomes less strict as § increases. In this section we
demonstrate that for Lo data fitting term (5 = 2 in (3)), the energy function
is submodular in practice. The L, norm tolerates rather uneven distributions
of ¢;, i = 1,...,4. In addition, the parameters ¢; i = 1,...,4 minimizing the
energy function are not expected to get too clustered. To verify this, we have
run Algorithm 2 for optimizing the parameters ¢;, ¢ = 1, ...,4 on all images from
the data base [1]. For all the experiments, the submodularity condition was
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Figure 6: Experiment 2: (a) Input, (b) gradient descent, (c¢) our approach, (d)
alpha expansion, (e) alpha-beta swap.

(@) © (1)

Figure 7: Experiment 3: (a) Input image, (b) ground truth, (¢) gradient descent,
(d) our approach, (e) alpha expansion, (f) alpha-beta swap.
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(a) Experiment 5

Figure 8: L' data fidelity. Note that the constant values of ci,co,c3 are very
close to each other compared to ¢4. From left to right: input image, set of pixels
Pl U P? where the submodular condition was not satisfied, set of pixels where
residual criterion (34) is not satisfied (empty set), output image.

satisfied during each iteration of the algorithm.

6.2 Experiments on non-submodular energy minimization

The purpose of this section is to demonstrate the methods for minimizing non-
submodular energy functions. For that reason, we will use the L; data fidelity
term and fix the values ¢;, ¢ = 1,...,4 in such a way that the submodular
condition (18) is violated. Figure 8 shows such an example, which is a modified
version of the example in Figure 4, where the average intensities values of 3 of
the objects are close compared to the 4th object. Some more natural examples
are shown in Figure 9 and 10. Subfigures (b) show the set of pixels p € P; UPs,
where the submodular condition was violated. Subfigures (c) show the set of
pixels where the residual capacity conditions (34) were violated, which is the
empty set in all cases. Therefore, the solutions obtained by the cut on the
graphs G are also global solutions to the original problems.

If the regularization parameter v is set extremely high, the residual capacity
condition (34) may also be violated at a small set of the pixels. Two such
examples are shown in Figure 11 and 12. As we see from subfigures (c), the
residual capacity condition is only violated at a small set of the pixels. By
applying the refinement algorithm from Section 4.2, the exact global solution
can be obtained in two iterations, as shown in subfigures (c)-(e).

7 Conclusions

We have developed a global minimization method for the multiphase Chan-Vese
model of image segmentation based on graph cuts. Numerical experiments also
demonstrated superior efficiency of the new approach over gradient descent.
It was shown that the energy function was submodular provided the average
intensity values of each region was sufficiently evenly distributed. The strictness
on of the condition depended on the data term. For L, data term with p > 2, the
condition was satisfied in all our experiments. For L; data term the condition
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Figure 9: Segmentation with L' data fidelity (3 = 1): (a) Input; (b) Set of
pixels P* U P? where the submodular condition was not satisfied; (c) Set of
pixels where residual capacity criterion (34) was not satisfied (empty set); (d)
Output.

(©)

Figure 10: Segmentation with L' data fidelity (8 = 1): (a) Input; (b) Set of
pixels P! U P? where the submodular condition was not satisfied; (c) Set of
pixels where residual capacity criterion (34) was not satisfied (empty set); (d)
Output.
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Figure 11: Segmentation with L! data fidelity (8 = 1) and very high regular-
ization v: (a) Input image; (b) Set of pixels P* U P? where the submodular
condition was not satisfied; (c) Set of pixels where the residual capacity condi-
tion (34) was violated; (c) -(e) Set of pixels where the weights on graph G; differ
from the weights on the graph G;_1, ¢ =1,...,3; (f) Output (global solution).

was more easily violated. Algorithms for minimizing non-submodular functions
were developed, which most often computed global solution, but could not be
proved to always do so.

In this work, we have restricted our attention to four (or less) phases. The
results can be generalized to more phases by using more level set functions.
For m level set functions, m vertices in the graph will be associated to each
grid point. Since the data term then would involve interactions between m
binary variables, we expect submodularity to be more restrictive. We plan to
investigate how submodularity is related to the constant values in these cases,
and extend the non-submodular algorithm to this setting. On the other hand,
four phases suffices in theory to segment any 2D image by the four color theorem.
Therefore, algorithms can alternatively be designed to take advantage of this,
which makes extensions to more than four phases unnecessary.

A Proofs of Prop 1-4
A.1 Proof of Prop 1

Proof. Let 5% < I < “5%. Then

leo —I)P < |ey — 1| and |es — I|° < ey —1)P,
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Figure 12: Segmentation with L! data fidelity (8 = 1) and very high regular-
ization v: (a) Input image; (b) Set of pixels P! U P? where the submodular
condition was not satisfied; (c) Set of pixels where the residual capacity condi-
tion (34) was violated; (c) -(e) Set of pixels where the weights on graph G; differ
from the weights on the graph G;_1, i = 1,...,3; (f) Output (global solution).
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for any 8 > 1. Therefore, adding these two inequalities

lea = I|P + ez = I|P < |ex = I|P + |ca — I|°.

A.2 Proof of Prop 3

When 252 < [ < “2% the result follows from Prop (2). Consider [ < <522,
then
I —c1|P <|T—cal® <|T—c3® <|IT—culP. (37)

Together with (10), this implies
0<|I—co|f =T —c1]? S| —cal® = |1 - c3)P. (38)
Therefore, there exists 1 > 65 > 1 such that
I —cal? =011 —c3® and |I —col = 0|1 — c1]P. (39)
For a > 8
I —ca|*=077P|T —cs]* and |I—co|* =057 [T —c1]®,  (40)
where 6977 > 6377 > 1, hence

1
9o

1

[I—cal "I —co|” = 05 PIT—er|* 4l =] < 7P| —er| "+
1

[ —cq|®

<O — 1| +

— |I - C4|a7
9"

where the last inequality follows from |I — ¢1|* < |I — c4|®. Exactly the same
argument can be used to show Prop 3 when I > 5%,

A.3 Proof of Prop 4

Proof. Assume first I > c3, then
lex —I| > |ea — I| > |es — |
Therefore, there exists a 6 > 1 s.t.
[T —c1] =0]co — 1.

Pick B} € N s.t.

Then

lev =1 +es—11P > |er =11 > 20ea — I|P > |ea = I)P + |es — I)P. V3 > B}
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If I < cg, then
|C4—I|>|03—I|>|CQ—[|

and thus the same argument can be used to show there exists B% € N such that
les =17 + ey = 1|7 > Jea = 1P + |es — 11, VB > BY.

In case co < I < c3, the existence of such a B was proved in Prop 1, e.g. B =1.
Therefore the condition (10) is satisfied for any I € [0, L] by choosing 5 >
B = maXIe[O’L] max{B}, B?} O

A.4 Proof of Prop 2

We will show the condition holds for § = 1, which by Prop (3) implies it holds
for all 8 > 1. Observe that if ¢y, co and c3,cq4 are equidistant it follows that
c1+cg=co+c3. For I <cy

|I—Cg|—‘r|[—03|:(CQ—I)—F(Cg—I)2—21+(02+63)
=24+ (c1+ca)=(cr—I)+(ca—I)<|I=c1]|+|I—cal
For I > ¢3
|I—CQ|+|I—03|:(I—CQ)+(I—03):21—(02+C3)

221—(014-64):(I—Cl)+(I—C4)§|I—Cl|+|I—C4|.
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