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Abstract. This paper investigates a convex relaxation approach for
minimum description length (MDL) based image partitioning or labeling,
which proposes an energy functional regularized by the spatial smooth-
ness prior joint with a penalty for the total number of appearences or
labels, the so-called label cost prior. As common in recent studies of con-
vex relaxation approaches, the total-variation term is applied to encode
the spatial regularity of partition boundaries and the auxiliary label cost
term is penalized by the sum of convex infinity norms of the labeling
functions. We study the proposed such convex MDL based image par-
tition model under a novel continuous flow maximization perspective,
where we show that the label cost prior amounts to a relaxation of the
flow conservation condition which is crucial to study the classical du-
ality of max-flow and min-cut! To the best of our knowledge, it is new
to demonstrate such connections between the relaxation of flow conser-
vation and the penalty of the total number of active appearences. In
addition, we show that the proposed continuous max-flow formulation
also leads to a fast and reliable max-flow based algorithm to address
the challenging convex optimization problem, which significantly out-
performs the previous approach by direct convex programming, in terms
of speed, computation load and handling large-scale images. Its numeri-
cal scheme can by easily implemented and accelerated by the advanced
computation framework, e.g. GPU.

1 Introduction

In this work, we study image labeling with the minimum description length prin-
ciple (MDL) which naturally leads to regularities on both the spatial features,
e.g. the minimum perimeter, and the total number of ’appearence’ models. The
MDL principle provides both an important concept of information theory and
powerful tool to compress data, which states that ’the best hypothesis for a given
set of data is the one that leads to the best compression of the data’ (we refer to



[22] for a detailed review). It naturally leads to use fewer symbols or models to
describe the given data [14]. In fact, such requirement of model reduction have
been considered in model fitting problems of computer vision for a long history,
e.g. image segmentation [18, 31, 25], motion segmentation [20, 24] etc.

In image segmentation or partitioning, it boils down to the penalization of
the total number of appearence models or segments in addition to fitting data
and regularities of segmentation boundaries. For the given n models/labels li,
i = 1 . . . n, Zhu and Yuille [31] proposed to partition images based on the mini-
mization of the following energy function:

min
Ωi

n∑
i=1

{ ∫
Ωi

ρ(li, x) dx + λ

∫
∂Ωi

ds
}
+ γM , (1)

where Ωi, i = 1, . . . , n, are homogeneous partitions corresponding to li, M =
#{ 1 ≤ i ≤ n |Ωi �= ∅} gives the number of nonempty partitions, i.e. the so-called
label cost prior. The data fidelity function ρ(li, x) = − logP (Ix|li) is a negative
log-likelihood for model li at pixel x. The second term in (1) describes the total
perimeter of the partitions and favors spatially regular boundaries with mini-
mum length. Zhu and Yuille applied a local searching method, namely region
competition, to approximate the highly nonconvex optimization problem (1).
Their method slowly converges to a local minimum. Such MDL principle was
further developed in the evolution of level sets to assist merging, e.g. [17, 6, 1].
On the other hand, the label cost prior was also considered in the recent devel-
opments of graph cuts: Hoeim et al [16] introduced a technique of α−expansion
combined with MDL to the application of object recognition; Delong et al [9]
independently developed another α−expansion method which can efficiently op-
timize more general energy functions with incorporated label cost prior.

Recently, Yuan & Boykov [29] studied the MDL based image partitioning
problem (1) in the spatially continuous setting such that

min
ui(x)∈{0,1}

n∑
i=1

{ ∫
Ω

ui(x)ρ(li, x) dx + λ

∫
Ω

|∇ui| dx
}
+ γM , (2)

subject to
∑n

i=1
ui(x) = 1, where ui(x) ∈ {0, 1}, i = 1 . . . n, is the indicator

function of Ωi ⊂ Ω. Here M is the total number of ’active’ partitions and the
total-variation terms encode the total perimeter of partitions. The authors [29]
proposed a convex relaxation formulation of (2) as

min
ui(x)

n∑
i=1

{∫
Ω

ui(x)ρ(li, x) dx + λ

∫
Ω

|∇ui(x)| dx
}
+ γ

n∑
i=1

max
x∈Ω

ui(x) (3)

s.t.

n∑
i=1

ui(x) = 1 , ui(x) ≥ 0 ; ∀x ∈ Ω (4)

where the labeling functions ui(x), i = 1 . . . n, are relaxed by the pixelwise
simplex constraint (4) and the label cost term in (2) is encoded by the sum



of convex infinity norms of ui(x) instead. (3) proposes the minimization of a
convex energy function over a convex constraint. It was optimized globally by a
direct convex programming based solver in [29], which is not feasible to handle
large-scale image data and highly time-consuming.

Actually, the first two terms of (3) together with the pixelwise convex con-
straint (4) correspond to the convex relaxation formulation of the minimal par-
tition model, i.e. Potts model,

min
ui(x)

n∑
i=1

∫
Ω

{
ui(x)ρ(li, x) + λ |∇ui|

}
dx , subject to (4) . (5)

(5) was actively studied during the last years, e.g. [7, 19, 2, 3, 27], and fast al-
gorithms were developed at the same time, upon standard theories of convex
optimization. It is well-known that the regularities of the partition boundaries,
i.e. the second term of (3) helps to smooth out small-scale partitions, hence
reduce the total number of ’appearences’ implicitly. However, only considering
such smoothness prior often fails to recover correct labeling results and often
leads to either over-partition or over-smoothness (see Fig. 1). This is in contrast
to the model (3) which explicitly couples the label cost prior. Its result possesses
optimalities of both geometry and model simplicity. We show this by Fig. 1.

(a) (b) (c) (d)

Fig. 1. (a) shows the given image. (b) shows the image partition result of (3) computed
by the proposed method in this paper. It gives only two segments left along with
properly smoothed boundaries! (c)-(d) show the partition results computed by the
Potts model (5) without the label cost prior, which give the results either oversegmented
(more labels) or oversmoothed. In this example we have used 11 evenly spaced labels.

Contributions: we focus on the convex relaxation model (3) of the MDL
based image partition and propose a novel flow maximization perspective, i.e.
the continuous max-flow formulation which is dual to (3). We show that the
label cost prior in (3) just corresponds to a new flexible flow conservation con-
straint on the proposed continuous max-flow formulation, i.e. relaxation of flow
conservation amounts to minimizing the number of ’active’ labels! This is new
to the best knowledge of the authors. It is in contrast to the crucial flow conser-
vation condition of the classical max-flow models, where the flow excess given
at each image node or pixel strictly vanishes, e.g. [27, 26]. Moreover, we derive
an efficient and reliable max-flow based algorithm which significantly outper-
forms the direct convex programming based method proposed by [29] in terms



of speed, memory load and handling large-scale data. Compared to graph-cut
based approaches [16, 9], our continuous max-flow approach comes with an ele-
gant mathematical theory and is computed in the spatially continuous setting,
which properly avoids metrication errors and can be easily implemented and
accelerated on the advanced computation environment, e.g. GPU.

2 Previous Works

2.1 Convex Relaxation Approaches

Image labeling subject to the minimum perimeter, i.e. the Potts model, was in-
tensively studied in both graph configuration [5] and spatially continuous settings
[7, 27] etc. Current studies [19, 7, 3, 27, 30] focus on computing the associated con-
vex relaxation formulation (5) in the spatially continuous context, which avoid
directly tackling the non-convex energies, as level-sets or active-contour method,
and can be solved efficiently.

Let the convex set S denote the pixelwise simplex constraint (4) of u(x) =
(u1(x), . . . , un(x))

T. [30, 19] proposed an optimization method which involves
two substeps within each iteration: one explores the pointwise simplex constraint
u(x) ∈ S and the other tackles the total-variation term. In [7, 23], Pock et al
introduced a variant implementation of the constraint u(x) ∈ S, i.e. a tighter
relaxation based on a multi-layered configuration, and gives a more complex con-
straint on the concerning dual variable p to avoid multiple counting. In contrast
to the works of [30, 19, 7, 23] which tried to compute the labeling functions u(x)
of (5) directly, Bae et al [3] proposed to solve (5) based on its equivalent dual
formulation. The nonsmooth dual formulation can then be efficiently approxi-
mated by a smooth convex energy function.
Max-Flow and Flow Conservation: In the very recent studies of [26, 28, 27],
Yuan et al proposed the new continuous max-flow model which regards (5) as its
dual formulation in the spatially continuous setting. As the hard constraint of
the proposed max-flow model, the flow conservation condition should be strictly
satisfied.

For the Potts model (5), i.e. n ≥ 3, the spatially continuous flow configura-
tions are given as [27]: Let Ωi, i = 1 . . . n, be the n copies of the image domain
Ω. For each x ∈ Ω, the source flow ps(x) streams from the source s to the same
position x of each Ωi, i = 1 . . . n, simultaneously. For each x ∈ Ω, the sink flow
pi(x) is directed from x of each Ωi, i = 1 . . . n, to the sink t. The spatial flow
fields qi(x), i = 1 . . . n, are defined within each Ωi, i = 1 . . . n.

The sink and spatial flow fields pi(x) and qi(x), i = 1 . . . n, are constrained
by the capacities such that

|qi(x)| ≤ Ci(x) , pi(x) ≤ ρ(li, x) ; i = 1 . . . n . (6)

Especially, at each x ∈ Ω, the source flow ps(x), the sink and spatial flows pi(x)
and qi(x), i = 1 . . . n, satisfy the exact flow conservation conditions:

div qi(x)− ps(x) + pi(x) = 0 , i = 1 . . . n . (7)



Likewise, the continuous max-flow problem is formulated as [27]:

max
ps,p,q

∫
Ω

ps(x) dx (8)

subject to (6) and (7). [27] proved that (8) is dual to (5). Clearly, the three
types of flow fields ps(x), pi(x) and qi(x), i = 1 . . . n, are connected by the
flow conservation constraints (7). The labeling functions ui(x), i = 1 . . . n, just
amount to the Lagrangian multipliers to the crucial flow-conservations [27].

Clearly, the flow conservation condition (7) plays the central role in the stud-
ies of the continuous max-flow model (8), and so for the theories of continuous
max-flow and min-cut [26, 28].

2.2 Convex Relaxed MDL Approach

Now we review the convex relaxation approach [29] to the challenging nonconvex
problem (2): Given n labels {l1, . . . , ln}, if the maximum of the labeling function
uk(x) ∈ {0, 1}, 1 ≤ k ≤ n, over the whole image domain Ω is 1, there must be
some pixel x ∈ Ω which is labeled by lk, i.e. the label lk must present in the final
image labeling result. Hence we can apply the sum of labeling functions’ infinity
norms

∑n
i=1

maxx∈Ω ui(x) to denote the total number M of ’active’ models.
Then, (2) can be equivalently reformulated by

min
ui(x)∈{0,1}

n∑
i=1

{∫
Ω

ui(x)ρ(li, x) dx + λ

∫
Ω

|∇ui| dx
}

+ γ

n∑
i=1

max
x∈Ω

ui(x) (9)

s.t.
n∑

i=1

ui(x) = 1 , ∀x ∈ Ω .

Relax the binary constraint of the labeling functions ui(x) ∈ {0, 1} to-
gether with

∑n
i=1

ui(x) = 1 to the pointwise simplex constraint (4), i.e. u(x) :=
(u1(x), . . . , un(x))

T ∈ S. The nonconvex optimization problem (9) can then be
written as the continuous convex optimization problem (3), i.e.

min
u(x)∈S

n∑
i=1

{∫
Ω

ui(x)ρ(li, x) dx + λ

∫
Ω

|∇ui(x)| dx
}
+ γ

n∑
i=1

max
x∈Ω

ui(x) (10)

where S denotes the pointwise simplex constraint (4). Obviously, the convex
constrained convex optimization problem (10) can be solved globally. Its third
term penalizes the infinity norm of each labeling function ui(x), i = 1 . . . n,
which amounts to convex relaxation of the label cost prior.

3 Continuous Max-Flow Approach

In this section, we adopt the flow setting proposed in [27] and introduce a novel
continuous max-flow formulation which is dual to the convex relaxed MDL-based
labeling model (3) or (10). We show the label cost term is reduced to new flexible
flow conservation constraints.



3.1 Continuous Max-Flow Formulation

In this section, we adopt the flow-maximization configurations and notations
proposed in [27] and follow discussions in the above section.

By virtue of such continuous flow settings, the flow capacity constraints of
flows pi(x) and qi(x), at x ∈ Ω, are given in the same way as (6).

The flow conservation condition is formulated in a new flexible way:

(
div qi−ps+pi

)
(x) ∈ Rγ

i , R
γ
i := {ri(x) |

∫
Ω

|ri(x)| dx ≤ γ } ; i = 1 . . . n . (11)

Note: The new flow conservation condition (11) proposes that at each x ∈ Ω,
the total in-coming flow is not balanced by the total out-going flow. However, the
total absolute flow excesses associated with each label li, i = 1 . . . n, is controlled
below γ as (11). This is in contrast to the exact flow conservation condition (7)
in the classical max-flow theory, where the total in-coming flow should be strictly
balanced by the total out-going flow.

We propose our new continuous max-flow model such that

max
ps,p,q,r

{
P (ps, p, q) :=

∫
Ω

ps(x) dx
}

(12)

subject to (6) and (11). In the following section, we study the equivalence be-
tween the proposed continuous max-flow formulation (12) and the convex relaxed
MDL-based labeling model (3) or (10), especially for the case where C(x) = λ.

3.2 Equivalent Primal-Dual Model

We introduce the multiplier functions ui(x), i = 1, . . . , n, to the new flow con-
servation condition (11). Therefore, we have its equivalent primal-dual model:

max
ps,p,q,r

min
u

{
E(ps, p, q, r;u) :=

∫
Ω

ps dx +

n∑
i=1

∫
Ω

ui(div qi − ps + pi − ri) dx
}

(13)

s.t. pi(x) ≤ ρ(li, x) , |qi(x)| ≤ Ci(x) ;

∫
Ω

|ri(x)| dx ≤ γ ; i = 1 . . . n .

Rearranging the energy function E(ps, p, q, r;u) of (13), we have

E =

∫
Ω

(1−
n∑

i=1

ui) ps dx +

n∑
i=1

{∫
Ω

ui pi dx −

∫
Ω

ui ri dx +

∫
Ω

ui div qi dx
}
. (14)

For the primal-dual model (13), the conditions of the minimax theorem [11]
are all satisfied. That is, the constraints of flows are convex, and the energy
function is linear to both the multiplier u and the flow functions ps, p and
q, hence convex l.s.c. for fixed u and concave u.s.c. for fixed ps, p and q. This
confirms the strong dualities of (13) and the existence of at least one saddle point
[11, 12]. It follows that the min and max operators of (13) can be interchanged:

max
ps,p,q,r

{
min
u

E(ps, p, q, r;u)
}

= min
u

{
max

ps,p,q,r
E(ps, p, q, r;u)

}
. (15)



3.3 Equivalent Dual Model

Now we consider the optimization of (13) by switching the max-min order of
the left hand side of (15), i.e. first maximizing E(ps, p, q, r;u) over the functions
ps(x), p(x), q(x) and r(x). Then we have

Proposition 1 The maximization of (13) over the flow functions ps(x), p(x),
q(x) and r(x) amounts to the following dual model:

min
u(x)∈S

D(u) :=
n∑

i=1

{∫
Ω

ui(x) ρ(li, x) dx +

∫
Ω

Ci(x) |∇ui| dx
}

+ γ
n∑

i=1

max
x∈Ω

ui(x) (16)

which is equivalent to (3) and (10) for the special case when C(x) = λ.

To see Prop. 1, we follow the same analyzes as [26, 28] , which gives

max
pi(x)≤ρ(li,x)

∫
Ω

uipi dx =

∫
Ω

ui(x)ρ(li, x) dx (17)

together with ui(x) ≥ 0, i = 1 . . . n.
For the maximization of (14) over qi and ri, i = 1 . . . n, it is well-known [13,

15] that

max
|qi(x)|≤Ci(x)

∫
Ω

ui div qi dx =

∫
Ω

Ci(x) |∇ui| dx , (18)

and by the symmetry of the L1-ball R
γ
i , we have

max
ri(x)∈R

γ
i

−

∫
Ω

uiri dx = γ max
x∈Ω

ui(x) . (19)

Moreover, observe the source flow ps(x) is unconstrained, then the maximiza-
tion of (14) over ps gives 1−

∑n
i=1

ui(x) = 0, ∀x ∈ Ω. Therefore, we have

Proposition 2 The continuous max-flow model (12), the primal-dual model
(13) and the dual model (16) are equivalent to each other.

4 Fast Continuous Max-Flow Algorithm

Observe that the energy function of the primal-dual model (13) is nothing but
the Lagrangian function of the proposed max-flow formulation (12) and the
labeling functions ui(x), i = 1 . . . n, give the corresponding multipliers to the
introduced new flow conservation constraints (11). Observe this, we derive the
new algorithm for (3) based on its equivalent continuous max-flow model (12).

We define the augmented Lagrangian function

Lc(ps, p, q, r, u) :=

∫
Ω

ps dx +

n∑
i=1

〈ui, div qi − ps + pi − ri〉 −
c

2

n∑
i=1

‖div qi − ps + pi − ri‖
2

where c > 0 and the auxiliary L2 penalty term facilitates the vanishing of
div qi(x)− ps(x) + pi(x) − ri(x) at each x ∈ Ω.

Now we construct our multiplier-based max-flow algorithm based on the aug-
mented Lagrangian scheme [4]. Each k-th iteration includes the following steps:



– Maximize the energy Lc(ps, p, q, r, u) over the spatial flows qi(x), i = 1 . . . n,
by fixing other variables, which amounts to:

qk+1

i := arg max
‖qi‖

∞
≤λ
−
c

2

∥∥div qi − Ck(x)
∥∥2

, (20)

where

Ck(x) = −pki (x) + pks(x) + rki (x) + uk
i (x)/c .

(20) can be approximated by a Chambolle-like projection-descent step [8].

– Maximize the energy Lc(ps, p, q, r, u) over the sink flows pi(x), i = 1 . . . n,
by fixing other variables, which corresponds to

pk+1

i := arg max
pi(x)≤ρ(�i,x)

−
c

2

∥∥pi −Dk
∥∥2 , (21)

where

Dk(x) = − div qk+1

i (x) + pks(x) + rki (x) + uk
i (x)/c .

(21) can be directly computed pointwise at each x ∈ Ω.

– Maximize the energy Lc(ps, p, q, r, u) over ri(x), i = 1 . . . n, by fixing other
variables, which amounts to

rk+1

i := arg max
ri(x)∈R

γ
i

−
c

2

∥∥ri − F k
∥∥2 (22)

where

F k(x) = div qk+1

i (x)− pks (x) + pki (x) − uk
i (x)/c .

(22) can be addressed by the projection of F k(x) to the L1-ball R
γ
i with the

fast projection algorithm of linear O(N) complexity [21, 10].

– Optimize the energy Lc(ps, p, q, r, u) over the unconstrained source flow ps
and

pk+1

s := argmax
ps

∫
Ω

ps dx −
c

2

n∑
i=1

∥∥ps −Gk
∥∥2

(23)

where

Gk(x) = pk+1

i (x) + div qk+1

i (x) − rk+1

i (x) − uk
i (x)/c .

Finally, update the multiplier functions ui(x), i = 1 . . . n, as follows

uk+1

i =uk
i − c (div qk+1

i − pk+1

s + pk+1

i ) . (24)

Both (23) and (24) can be computed in a closed form.



5 Numerical experiments

Experiments demonstrate the advantages of the label cost model over Potts
model and the superior efficiency of the new max-flow algorithm over the previ-
ous SOCP method [29]. Gray scale image segmentation can be modeled as (1)
with the data term

ρ(li, x) = |f(x)− li|
p
, i = 1 . . . n ; p = 1 or 2

where l1, ..., ln are predefined gray values, for instance the gaussian distribution
model of images. For colour image segmentation, the labels are instead colour
vectors (lj

1
...ljn), where j ∈ {r, g, b}. The data term is modeled as

ρ(�i, x) =
∑

j∈{r,g,b}

∣∣∣f(x)− lji

∣∣∣p , i = 1, . . . , n ; p = 1 or 2 .

In the experiments of Fig. 2 - 3, �1, ...�n are chosen as evenly spaced gray values
in the interval between the smallest and largest gray value. For the color image,
�1, ..., �n are evenly spaced color vectors. The results of Potts model are shown in
the 2nd coloumns. It may produce more labels than desired. On the other hand,
the label cost prior, 3rd and 4th coloumn, greatly greatly helps to generate
less labels along with properly smoothed edges, such that the objects are more
clearly distinguished. The label cost model allows to reduce the number of labels
without simultaneously oversmoothing the partition boundaries, as Potts model
does (see also Fig. 1).

The efficiency of the proposed max-flow algorithm is significantly superior
to the SOCP implementation in [29]. Whereas [29] requires several hours to
converge for even one small input image (150 × 150), the proposed max-flow
algorithm converges around 2 minutes for a large image (about 500×500) (serial
matlab implementation). The convergence is just a little slower than the max-
flow algorithm [27] without label cost prior, due to the projections onto the
L1-ball (22). The algorithm [29] even fails to converge when the problem size is
too big, due to the intense memory requirement. For instance, the problem in
Fig. 3 bottom (21 labels) could not be handled by [29] for the Ubuntu desktop
we used (Intel Xeon 3.06G, 16G Memory).

6 Conclusions

We studied a convex relaxed MDL based labeling model (3) in this work, and
showed its effectiveness for image partitioning in minimizing both the total num-
ber of ’active’ labels and the perimeter of partitions [29]. More specially, we pro-
posed and investigated a novel continuous max-flow model which is dual to (3).
We showed that the label cost prior introduced in (3) just corresponds to the new
flexible constraint of flow conservation under the flow-maximization perspective.
This is in contrast to the strict flow balance for the classical max-flow/min-cut
theories. In numerics, the proposed continuous max-flow model naturally leads



Fig. 2. Image segmentation with 15 labels. From left to right: input image (508 ×

336); labeling with Potts model; label cost model with γ = 250; label cost model with
γ = 1000. Top: Full image. 2nd - 4th row: zoomed parts (red-line croped areas of the
input image). Visible differences can be clearly noticed in the zoomed images.

to a new fast max-flow based algorithm, which greatly outperforms the direct
convex programming method proposed in [29] in terms of efficiency, computation
load, implementation on GPUs, and handling large-scale image data.
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