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Summary

A unified theory of global and squirt flow in cracked porous media was developed 

several years ago on the basis of a combination of the dynamic T-matrix approach to rock 

physics. The theory has been successfully used to model ultrasonic velocity and attenuation 

anisotropy measurements in real rocks under pressure. At the same time, it was recently 

pointed out that this theory, which contain an established theory of interconnected cracks as a 

special case contains an error related to fluid mass conservation. The error was recently 

corrected, and this paper represents an attempt to perform a systematic study of the 

implications of unified theory for the relative importance of global and squirt flow in cracked 

porous media characterized by different microstructures and fluid mobilities. Our numerical 

results suggest that squirt flow dominates over global flow and global flow appears to be 

more important at higher frequencies for more realistic models of microstructure. The 

attenuation peak of squirt flow move towards lower frequencies with the increasing fluid 

viscosity i.e. changing saturating fluid from water to oil, while the global flow attenuation 

peak move towards higher frequencies with increasing fluid viscosity. A previous observation 

of negative velocity dispersion in unified theory still remain, even if we use the correct 
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effective wave number, when dealing with the phenomenon of wave-induced fluid flow in 

models of cracked porous media where global flow effects dominates. The attenuation peak of 

the global flow obtained using the correct wave number is always shifted to the left as 

compared to the approximate solution. At seismic frequencies global flow effects are not so 

important and needs very high permeability and low viscosity to have an effect. 

Keywords: Wave induced fluid flow, Attenuation, Velocity dispersion, Cracked porous 

media 

1 Introduction 

In seismic modelling, a cracked porous medium can sometimes be replaced by a long 

wavelength equivalent homogenous medium that can be both anisotropic and viscoelastic due 

to microstructural alignments and wave induced fluid flow, respectively. Wave induced fluid 

flow can occur in the form of global or squirt flow. Global flow is caused by pressure 

gradients at the scale of the acoustic wavelength and in the direction of wave propagation, 

whereas squirt flow is caused by the pressure gradients at the microscopic or mesoscopic 

scale and in directions that are potentially different from that of the wave propagation. There 

have been several attempts to develop special (phenomenological or microstructural) theories 

of global flow (Biot 1962; Hudson et al. 1996), special (microstructural) theories of squirt 

flow (Mavko and Nur 1975; O’Connell and Budiansky 1977; Mavko and Jizba 1991; Mukerji 

and Mavko 1994; Dvorkin et al. 1995; Chapman 2003), and unified (phenomenological and 

microstructural) theories of global and squirt flow (Dvorkin and Nur 1993; Hudson et al.

1996; Chapman et al. 2002; Jakobsen et al. 2003b; Jakobsen 2004).  

The unified theory of Jakobsen et al. (2003b), which contains the theory of 

interconnected cracks developed by Hudson et al. (1996) as a special case, originally had an 

error related to fluid mass conservation, but this error was recently corrected by Jakobsen and 
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Chapman (2009). Unlike the unified theory of Chapman et al. (2002), the corrected version of 

the theory of Jakobsen et al. (2003b) presented by Jakobsen and Chapman (2009) can deal 

with effects of anisotropy as well as attenuation. 

In the unified theories for global and squirt flow presented by Hudson et al. (1996), 

Jakobsen et al. (2003b) and Jakobsen and Chapman (2009), the effective stiffness tensor *C

depends on the effective wave vector ∗k and as well as on the angular frequency ω . Since we 

are dealing with theories of the coupled physical process of wave-induced fluid flow, this is 

perhaps not surprising. In all previous studies, these non-local effects have been avoided 

simply by replacing the effective wave vector ∗k  by the unperturbed wave vector k

associated with the waves in the solid reference medium; that is, by using the approximation 

)0(/Vkk ω=≈∗ , where ω  is the angular frequency, )0(V is the speed of the wave mode under 

consideration in the solid matrix and k  is the length of k . This approximation for effective 

wave vector ∗k was considered to be one of the possible explanations for predictions of 

negative velocity dispersion in numerical experiments dealing with the phenomenon of wave-

induced fluid flow in models of cracked porous media where global flow effects dominates 

(Jakobsen and Chapman 2009).  

An important aim of this study is to investigate the implications of unified theory of 

Jakobsen and Chapman (2009) for the relative importance of global and squirt flow 

characterized by different microstructures and fluid mobilities. A change in the viscosity may 

lead to a shift of the attenuation peak towards lower or higher frequencies, depending on the 

mechanism of wave-induced fluid flow. The influence of viscosity on attenuation peaks of the 

global and squirt flow is different depending on the type of mechanism involved (Xi et al. 

2007). Also the experimental observations show that the high fluid viscosity can act to shift 

the relaxation towards lower frequencies (Winkler et al. 1985; Dvorkin et al. 1994). So it will 
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be very interesting to investigate the effects of viscosity in the context of relative importance 

of global and squirt flow. 

 A further aim is to investigate if this velocity dispersion will remain negative in these 

models, if we use the effective wave vector ∗k rather than the unperturbed wave vector k; that 

is, if we implement the global flow part of the theory in a proper manner. 

We use an iterative method for solving the nonlinear equations associated with the 

unified theory of global and squirt flow in cracked porous media, where the effective stiffness 

tensor depends on the frequency ω  and effective wave vector ∗k . A quadratic equation 

representing microstructural and phenomenological theories of wave-induced fluid flow in 

isotropic media to the first order in porosity and crack density is also presented. We also 

present and apply a simple model for the effects of viscosity on the relaxation time constant 

for squirt flow associated with a particular pore shape/orientation. 

2 Unified theory of global and squirt flow in cracked porous media 

We consider a model in which a solid contains inclusions or cavities characterized by 

different shapes, orientations and spatial distributions labeled by Nn ,...,1= . The effective 

stiffness tensor *C  is given by Jakobsen et al. (2003a, b), 
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Here )0(C represents the elastic properties of the solid matrix, : denotes the double scalar 

product (see Auld 1990), 4I  is the (symmetric) identity for fourth-rank tensors and )(rs
dG  is 

given by the strain Green’s function integrated over an ellipsoid having the same aspect ratio 
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as )()( xx ′−rsp , which in turn gives the probability density for finding an inclusion of type s

at x′ , given that there is an inclusion of type r  at point x  (Jakobsen et al. 2003a, b). The t-

matrix for an inclusion of type r  fully saturated with a homogenous fluid is given by 

(Jakobsen and Chapman 2009) 
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Here, 1)0()0( )( −= CS is the compliance tensor of the solid matrix material; 2I  is the identity 

tensor for second-rank tensors; ⊗  is the dyadic tensor product (see Jakobsen et al. 2003a, b), 

)(rG  is a fourth-rank tensor given by the strain Green’s function (for a material with 

properties given by )0(C ) integrated over a characteristic spheroid having the same shape as 

cavities of type r  (Jakobsen and Chapman 2009) and )(r�  is a second-rank tensor (fluid 

polarization tensor) that relates the fluid pressure to the applied stress. The fluid polarization 

tensor )(r�  is given by Jakobsen and Chapman (2009) under the assumption that the cavities 

are of the same scale-size and the squirt flow relaxation constant τ  is independent of the 

shape and orientation. The analysis of Chapman et al. (2002) suggests that τ  depends on the 

scale-size of the cavity, suggesting that the theory can easily be extended to model the 

cracked/fractured porous media under the assumption of inclusions or cavities of type r

having different sizes. After letting the τ  having an index r dependent on scale-size of the 

cavities the � -tensor has the form 
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Here ∗
ijK  are the components of the effective permeability tensor of the cracked/fractured 

porous media and  ∗
ik  represents the component of the effective wave number vector, where 

3,2,1, =ji , fκ  is the bulk modulus for the fluid, fη  is the viscosity of the fluid, φ  is the total 

porosity and ω  is the angular frequency of the wave, respectively.  

For the case of anisotropic media, the real-valued phase velocities and attenuation 

factors can be obtained by inserting the viscoelastic effective stiffness tensor ∗C  into the 

Christoffel equation (see Appendix-A), which can be solved by using eigenvalue/eigenvector 

method (Jakobsen et al. 2003b; Carcione 2007). The phase velocity is the reciprocal of the 

slowness and is given in the component form by (Carcione 1995, 2007) 
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The quality factor Q  is defined as the ratio of the peak strain energy to the average loss 

energy density (Auld 1990), and is defined by (Carcione 1995, 2007) 
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3 Exact analytical solution of wave-induced fluid-flow in isotropic models 

with randomly oriented ellipsoids 

In this section, we derive exact analytical solution for a model of randomly oriented 

ellipsoids to the first order in porosity or crack density. We start from the relation of effective 

stiffness to the first order in porosity or crack density 

,)0(* tCC �+=           (13) 

where � is the porosity and t  is the averaged t-matrix for a single communicating cavity. 

Using equation (55) from Jakobsen et al. (2003b) for the averaged t-matrix with modified 

term ΘΘΘΘ~  from Jakobsen and Chapman (2009) in order to account for global flow in a 

consistent manner and substituting in equation (13), we get 
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Here, ω  is the angular frequency, fκ  is the bulk modulus for fluid and τ  is the squirt flow 

relaxation time. The relations for Z , and X  are given and discussed in detail by Jakobsen et 

al (2003b). We now have 
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The relation for velocity in terms of stiffness for an isotropic medium is given by 
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The relation for modified term ΘΘΘΘ~  is given by (Jakobsen and Chapman, 2009) 
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Substituting Δ  in relation for ΘΘΘΘ~  (equation (19)) and simplifying by using the relation for the 

wave-number as following 
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After simplification and re-arranging we are left with a simple quadratic equation in *
11C
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Using equation (17) and representing equation (22) in terms of velocity V , we have 
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Equation (24) is a quadratic equation which can be solved by a quadratic formula 

giving two solutions. The first solution is for the fast P-wave mode and the second solution is 
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slow P-wave mode (Biot 1956). We have only used the solution for the fast P-wave mode in 

our numerical experiments. The analysis for the slow P-wave mode is beyond the scope of 

this study and will be addressed in another paper. 

 4 Numerical Experiments  

In this section, we report from numerical experiments dealing with the effect related 

with different microstructures and fluid mobilities on the relative importance of global and 

squirt flow in cracked/fractured porous media. The exact analytical solution derived in section 

3 is limited to isotropic models of solids with randomly oriented ellipsoids to the first order in 

porosity or crack density. We have also used the iterative method for solving the nonlinear 

equations associated with the unified theory of global and squirt flow in cracked porous 

media, where the effective stiffness tensor depends on the frequency ω  and effective wave 

vector ∗k . The starting point of the iterations is being the wave-number associated with the 

waves in the solid reference medium. The iterative solution is important to implement the 

global flow part correctly, when investigating the relative importance of global and squirt 

flow in complex microstructural models and to the higher order in porosity and crack density. 

For the background elastic properties, we take 37=κ GPa, 44=μ GPa, and 

5.2=ρ g/cm3 to simulate the properties of quartz. The characteristic time scale constant or 

squirt flow relaxation time for micro-porosity (pores and micro-cracks) with water as a 

saturating fluid was taken to be 510−=wτ  s. We have applied a simple model for the effects 

of viscosity on the relaxation time constant for squirt flow associated with a particular pore 

shape/orientation (also see Chapman 2001). The squirt flow relaxation time for other fluids 

(oil or gas) can be calculated using the relation: 
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where τ  and η  are the relaxation time and viscosity of the corresponding fluid (can be oil of 

gas), while wη  is the viscosity of water. The viscosity of water, oil and gas is 310−  Pa s, 

3103 −× Pa s and 5102 −× Pa s, respectively (see Pointer et al. 2000). 

4.1 Isotropic models 

Spherical pores

To investigate the relative importance of global and squirt flow for a simple model of 

spherical pores, we have divided the analysis in three numerical examples. The comparison 

for each example is presented in the form of T-matrix estimates of velocity and attenuation 

spectra of the plane wave propagation for different fluid mobilities.   

In the first example (Fig. 1), we compare the exact, iterative and approximate solutions 

(the approximation for the wave-number )0(/Vkk ω=≈∗ ) to the first-order in porosity. The 

T-matrix estimates are obtained using the first-order T-matrix approach. 

The second example (Fig. 2) is same as example 1, but for higher porosity. The T-

matrix estimates obtained in this example may not be strictly valid at higher porosities, but the 

purpose is to investigate the performance of exact analytical solution. 

The third example (Fig. 3) deals with the comparison of only iterative and 

approximate solutions for higher porosity. The T-matrix estimates are obtained using the 

higher-order T-matrix approach with a spherically symmetric correlation function. 

For a model of spherical pores, there is no dependence on the characteristic time for 

squirt flow, because no local pressure gradients exist for such kind of a model. We only 

observe global flow in all the three examples (Figs. 1, 2 and 3) characterized by negative 

dispersion at higher frequencies, when the porous rock model is considered to be fully 

saturated with water or oil. No global flow is observed in the case when the porous rock 

model is considered to be fully saturated with gas (Figs. 1, 2 and 3). The attenuation peak for 
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global flow move towards relatively high frequencies when viscosity is increased for this 

particular model i.e. saturating fluid of the porous matrix is changed from water to oil (Figs. 

1, 2 and 3). An increase in the matrix permeability from 1 to 10 Darcy shifts the global flow 

attenuation peak to relatively lower frequencies (Figs. 1, 2 and 3). 

In the first example, the exact, iterative and approximate solutions clearly follow each 

other. Very small differences exist for the case of approximation with respect to the exact and 

iterative solution (Fig. 1). For the second example, observable differences exist in the case of 

approximation with respect to the exact and iterative solution (Fig. 2). The global flow 

attenuation peak of the approximate solution is shifted to right as compared to the exact and 

iterative solution (Fig. 2). Similarly in the third example, the global flow attenuation peak of 

the approximate solution is shifted to the right as compared to the iterative solution (Fig. 3).  

Randomly oriented micro-cracks 

The investigation of relative importance of global and squirt flow for a model of 

randomly oriented micro-cracks is also similarly divided in three numerical examples as for 

the case of spherical pores (Figs. 4, 5 and 6).   

For a model consisting of randomly oriented micro-cracks, we observe squirt flow 

(positive dispersion) at lower frequencies due to different orientations of randomly oriented 

micro-cracks along with global flow (negative dispersion) at higher frequencies, when the 

porous rock model is considered to be fully saturated with water or oil (Figs. 4, 5 and 6). The 

squirt and global flow parts change their positions i.e. we observe global flow at lower 

frequencies and squirt flow at higher frequencies, when porous matrix is considered to be 

fully saturated with gas (Figs. 4, 5 and 6). The magnitude of global flow part dominates over 

the squirt flow part for this particular model (Figs. 4, 5 and 6). The attenuation peaks of global 

and squirt flow move towards relatively high and low frequencies when viscosity is increased 

for this particular model i.e. saturating fluid of the porous matrix is changed from water to oil 
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(Figs. 4, 5 and 6). The attenuation peak for the global flow part shifts toward relatively low 

frequencies when matrix permeability is increased from 1 Darcy to 10 Darcy (Figs. 4, 5 and 

6). 

The exact, iterative and approximate solutions clearly follow each other in the first 

numerical example. Very small differences exist for the case of approximation with respect to 

the exact and iterative solution only for the global flow part (Fig. 4). For the second example, 

observable differences exist in the case of approximation with respect to the exact and 

iterative solution only for the global flow part (Fig. 5). The global flow attenuation peak for 

the case of approximate solution is shifted to right as compared to the exact and iterative 

solution (Fig. 5). Similarly in the third example, the global flow attenuation peak of the 

approximate solution is shifted to the right as compared to the iterative solution (Fig. 6).  

Spherical pores and randomly oriented micro-cracks 

Fig. 7 shows the result of a comparison of the iterative and approximate solutions for a 

model of spherical pores and randomly oriented cracks in the form of T-matrix estimates 

(obtained using higher-order T-matrix approach with a spherically symmetric correlation 

function) of velocity and attenuation spectra of plane wave propagation to higher-order in 

porosity and crack density for different fluid mobilities. We observe both squirt and global 

flow with the dominance of squirt flow part for the case when the porous rock model is 

considered to be fully saturated with water or oil. The squirt flow for the case of the porous 

rock model saturated with water or oil is observed at relatively lower frequencies depending 

on the squirt flow relaxation time, while global flow is observed at relatively higher 

frequencies.  

Only squirt flow is observed at relatively higher frequencies when the porous rock 

model is considered to be fully saturated with gas. The squirt and global flow attenuation 

peaks move towards relatively low and high frequencies, when viscosity is increased for this 
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particular model i.e. saturating fluid of the porous rock model is changed from water to oil. 

The global flow attenuation peak shifts toward relatively low frequencies when matrix 

permeability is increased from 1 to 10 Darcy.  

 Very small differences exist for the global flow part (Fig.7), and the global flow 

attenuation peak is shifted to the right for the case of approximate solution as compared to the 

iterative solution. 

4.2 Anisotropic models 

Aligned micro-cracks    

  Fig. 8 shows the result of a comparison of the iterative and approximate solutions for a 

model of aligned micro-cracks in the form of T-matrix estimates (obtained using higher-order 

T-matrix approach with correlation function equal to the aspect ratio of micro-cracks) of 

velocity and attenuation spectra of plane wave propagation to higher order in porosity and 

crack density for different fluid mobilities. Like in the case of spherical pores, there is no 

dependence on the characteristic time for squirt flow in this case, because no local pressure 

gradients exist for such kind of a model. We observe global flow characterized by negative 

dispersion at higher frequencies, when the porous rock model is considered to be fully 

saturated with water, oil or gas.  

The magnitude of global flow is smaller, when the porous rock model is considered to 

be fully saturated with gas. The global flow attenuation peak move towards relatively high 

frequencies when viscosity is increased for this particular model i.e. saturating fluid of the 

porous rock model is changed from water to oil. An increase in matrix permeability from 1 to 

10 Darcy shifts the global flow attenuation peak towards relatively lower frequencies. 

Observable differences exist in the approximate solution with respect to iterative 

solution and the global flow attenuation peak is shifted towards the right for the approximate 

solution as compared to the iterative solution (Fig. 8). 



14

Pores and aligned micro-cracks

 Fig. 9 shows the result of a comparison of the iterative and approximate solutions for 

a model of pores and aligned micro-cracks in the form of T-matrix estimates (obtained using 

higher-order T-matrix approach with correlation function equal to the aspect ratio of micro-

cracks) of velocity and attenuation spectra of plane wave propagation to higher-order in 

porosity and crack density for different fluid mobilities. We observe squirt and global flow at 

low and high frequencies with the dominance of squirt flow part the case when the porous 

rock model is considered to be fully saturated with water or oil (Fig. 9). We only observe 

squirt flow at higher frequencies when the porous rock model is considered to be fully 

saturated with gas. 

The squirt and global flow attenuation peaks move towards relatively low and high 

frequencies, when viscosity is increased for this particular model i.e. saturating fluid of the 

porous rock model is changed from water to oil. The global flow attenuation peak shifts 

toward relatively low frequencies when matrix permeability is increased from 1 to 10 Darcy.  

Very small differences exist for the global flow part (Fig. 9) for the case of approximate 

solution as compared to the iterative solution. 

Spherical pores, randomly oriented micro-cracks and aligned meso-fractures 

We finally consider a more realistic model consisting of pores, randomly oriented 

cracks and one set of aligned meso-fractures. The orientation of meso-fractures is 45o. For this 

case, the elastic background properties are 70=κ GPa, 29=μ GPa, and 71.2=ρ g/cm3 to 

simulate the properties of calcite. For aligned meso-fractures the characteristic time scale 

constant with water as the saturating fluid was calculated depending on the size/length of the 

fractures using the flowing relation (Chapman 2003, Agersborg et al. 2007)  

   m
f

f
r

τ
ξ

τ = .        (26) 
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Here, fτ  is the squirt flow relaxation time for the meso-fractures, fr  is the radius of 

fractures, ξ  is the size of the grains ( 610200 −×  m assumed in this study) and mτ  is the squirt 

flow relaxation time for micro-porosity. The squirt flow relaxation times corresponding to 

different fluids (oil or gas) can be computed using equation (25). The characteristic time scale 

constant or squirt flow relaxation time for micro-porosity (pores and randomly oriented 

cracks) with water as a saturating fluid is taken to be 7102)( −×=wmτ s. The radius of fractures 

in this study is 0.5 m. 

In order to obtain the iterative solution for this particular case, effective permeability 

∗K along with the correct use of wave-number (effective wave-number ∗k ) must be used, 

because two types of permeabilities exist in this model i.e. matrix permeability (due to pores 

and micro-cracks) and fracture permeability (due to aligned meso-fractures). This is also 

explained by the fact that the terms for effective permeability components ( ijK ) and effective 

wave number components ( ji kk ) always come together in Jakobsen and Chapman (2009) 

theory indicating a summation over the indices 3,2,1, =ji  (see equation (9)). Their contraction 

can be written as by expanding the summation over indices and collecting the identical terms 

2
3333223

2
22231132112

2
111 222 kKkkKkKkkKkkKkKkkK jiij ++++++= .  (27) 

To obtain the independent effective permeability components for this particular model, we 

used the effective permeability model of Jakobsen (2007) (see appendix-B). The effective 

wave vector ∗k is given by  

   lk ∗∗ = k         (28) 

where ∗k is the length of ∗k  and l in spherical coordinates is given by 
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Then the components of effective wave vector ∗k are given by  
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Fig. 10 shows the result of comparison of iterative and approximate solutions for a 

model of pores, randomly oriented cracks and meso-fractures in the form of T-matrix 

estimates (obtained using higher-order T-matrix approach with correlation function equal to 

the aspect ratio of meso-fractures) of velocity and attenuation spectra of plane wave 

propagation to higher order in porosity and fracture density for different mobilities. 

Approximate solution for this case was obtained by using approximation for wave-number as 

well as the matrix permeability instead of effective permeability.  

Due to the introduction of one set of aligned meso-fractures, we observe squirt flow 

(positive dispersion) associated with aligned set of meso-fractures as well as due to micro-

porosity (pores and micro-cracks). The squirt flow peak associated with the aligned 

mesoscopic fracture set is observed at seismic frequencies, while the squirt flow peak 

associated with micro-porosity (pores and randomly oriented cracks) is observed at higher 

frequencies, respectively, when the porous rock model is considered to be fully saturated with 

water or oil. We only observe squirt flow associated with meso-fractures and micro-porosity 

at higher frequencies, when the porous rock model is considered to be fully saturated with 

gas. Global flow characterized by negative dispersion is also observed at relatively higher 

frequencies, with water or oil as the saturating fluids in the porous rock model.  

The attenuation peak for squirt and global flow move towards relatively low and high 

frequencies when viscosity is increased for this particular model i.e. saturating fluid of the 

porous rock model is changed from water to oil. The attenuation peak of the global flow shifts 

toward relatively lower frequencies when matrix permeability is increased from 1 to 10 

Darcy.  
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Very small differences exist in the case of approximate solution as compared to 

iterative solution only for the global flow part. The global flow attenuation peak in the case of 

approximate solution is shifted to right as compared to the iterative solution (Fig. 10).  

5 Conclusions

We have investigated the relative importance of global and squirt flow in 

cracked/fractured porous media using the unified theory (Jakobsen and Chapman, 2009) for 

different microstructures and fluid mobilities. The magnitude of squirt flow dominates over 

global flow and global flow appears to be important at higher frequencies for more realistic 

microstructures (models like pores and randomly oriented cracks or pores, randomly oriented 

cracks and aligned mesoscopic fractures).  

The attenuation peak of squirt flow move towards relatively low frequencies with the 

increase of viscosity i.e. changing saturating fluid from water to oil, while the global flow 

attenuation peak move towards relatively high frequencies with the increase of viscosity. The 

attenuation peak of the global flow obtained using the approximate wave number is always 

shifted to the right as compared to the solution with correct wave number (exact analytical or 

iterative solution).  

 The observations of negative velocity dispersion in Jakobsen and Chapman (2009) 

theory still remain, even if we use the correct effective wave number, when dealing with the 

phenomenon of wave-induced fluid flow in models of cracked /fractured porous media where 

global flow effects dominates.  

We may also conclude from these numerical experiments that at seismic frequencies 

global flow effects are not so important and needs very high permeability and low viscosity to 

have an effect. 
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Appendix-A Christoffel equation for viscoelastic media

From Hooke’s law the stress-strain relation can be written as using the matrix notation 

(Carcione, 2007) 

   eC ⋅=σσσσ         (A-1) 

where σσσσ  is the stress tensor, e  is the strain tensor and C  is the stiffness tensor. The equation 

of motion in the absence of body forces can be written as (Carcione, 2007) 

   uu 2
tt∂=⋅∇ ρΓΓΓΓ ,        (A-2) 

where  

   T∇⋅⋅∇=∇ CΓΓΓΓ ,        (A-3) 

where u  is the displacement vector and the symmetric gradient operator ∇ using the matrix 

representation is given by (Auld, 1990; Carcione, 2007) 
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The strain displacement relation is given by (Carcione, 2007) 

   ue ⋅∇= T .        (A-5) 

A general plane wave solution for the displacement vector of the body waves is given by 

(Carcione, 2007) 

   [ ])(exp0 xkuu ⋅−= ti ω ,      (A-6) 

where 0u  represents a constant complex vector, ω  is the angular frequency and k  is the 

wave-number vector. The particle velocity is given by time derivative of equation (A-6) given 

by 

   uuv ωit =∂= .         (A-7) 

In the absence of body forces )0( =f , we consider plane waves propagating along the direction 

given by (Carcione, 2007) 
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   332211 ˆˆˆˆ eeek lll ++= ,       (A-8) 

where 1l , 1l  and 1l  are the direction cosines. The wave-number vector k  can be written as 

(Carcione, 2007) 

  ,ˆ),,(),,( 321321 kk klllkkkk ===       (A-9) 

where k is the magnitude of the wave-number vector. The spatial differential operator in 

equation (A-4) can be replaced by 
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Now substituting the time derivative as ωit →∂ and using equation (A-10) in equation (A-2), 

we get (Carcione, 2007) 

   ,22 uu ρω=⋅ΓΓΓΓk                 (A-11) 

where 

   TLCL ⋅⋅=ΓΓΓΓ ,                 (A-12) 

is the Christoffel matrix. The dispersion relation is given by (Carcione, 2007) 

   .0)det( 3
2 =− IVρΓΓΓΓ                 (A-13) 

where 

   
k

V ω= ,                 (A-14)  

is the complex velocity. 

The equation (A-13) is known as the Christoffel equation. Using equation (A-14), the 

components of the slowness and attenuation vectors can be expressed in terms of the complex 

velocity as (given by Carcione, 1995) 

              ks ˆ1Re ��
�

��
�=
V

,                 (A-15)  

and 

                      .ˆ1Im k��
�

��
�−=
V

ωα                 (A-16) 
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Appendix-B The effective permeability tensor 

The effective permeability tensor *K of the fractured porous reservoir model, 

assuming that the distribution of fractures is same for all fracture families is given by 

(Jakobsen 2007)  

,)( 1
121

)0(* −⋅+⋅+= KgIKKK d      (B-1) 
where 

.)()(
1 �=

r

rrv ττττK       (B-2) 

Here, )0(K  is background or matrix permeability, 2I  is the (Kronecker-delta) identity for 

second rank tensors, )(rv is the volume concentration for fractures of type r and dg  is a tensor 

given by the strain Green’s function integrated over an ellipsoid determining the symmetry of 

the correlation function for the spatial distribution of fractures (see Jakobsen 2007, Shahraini 

et al. 2010). The )(rττττ  for a single fracture of type r is given by (Jakobsen 2007) 

[ ] 1)0()()(
2

)0()()( )()(
−

−⋅−⋅−= KKgIKK rrrrττττ .   (B-3) 

Here, )(rg  is a second-rank tensor given by the pressure gradient Green’s function integrated 

over a characteristic spheroid having the same shape as inclusions of type r (see Jakobsen 

2007, Shahraini  et al. 2010), and )(rK  is a second-rank tensor of permeability coefficients for 

fractures of type r , which can be estimated using the cubic law given by (Van Golf-Racht 

1982) 
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Figure 1. Spherical pores - First-order T-matrix estimates of velocity and attenuation spectra 
for different fluid mobilities. The exact, iterative and approximate solutions are presented. 
The porosity of spherical pores is 10%. Panels (a) and (b) show results with permeability of 1 
Darcy. Panels (c) and (d) show the same as panels (a) and (b) but with permeability of 10 
Darcy. 
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Figure 2 Same as Fig.1, but the porosity of spherical pores is 35%.  
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Figure 3. Spherical pores - Higher-order T-matrix estimates of velocity and attenuation 
spectra for different fluid mobilities. The iterative and approximate solutions are presented. 
The porosity of spherical pores is 35%. 

Figure 4. Randomly oriented micro-cracks - First-order T-matrix estimates of velocity and 
attenuation spectra for different fluid mobilities. The exact, iterative and approximate 
solutions are presented. The aspect ratio of randomly oriented cracks is 1/1000, while crack 
density is 0.1. Panels (a) and (b) show results with permeability of 1 Darcy. Panels (c) and (d) 
show the same as panels (a) and (b) but with permeability of 10 Darcy. 
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Figure 5. Same as Fig.4, but the crack density was 0.25. 

Figure 6. Randomly oriented micro-cracks - Higher-order T-matrix estimates of velocity and 
attenuation spectra for different fluid mobilities. The iterative and approximate solutions are 
presented. The aspect ratio of randomly oriented cracks is 1/1000, while crack density is 0.25.  



27

100 105 10102500

3000

3500

4000

4500
V

el
oc

ity
 (m

/s
)

(a)

100 105 10100

0.1

0.2

0.3

0.4

Frequency (Hz)

A
tte

nu
at

io
n 

(1
/Q

)

(b)
Water/Iterative
Water/Approx.
Oil/Iterative
Oil/Approx.
Gas/Iterative
Gas/Approx.

100 105 10102500

3000

3500

4000

4500

V
el

oc
ity

 (m
/s

)

(c)

100 105 10100

0.1

0.2

0.3

0.4

Frequency (Hz)

A
tte

nu
at

io
n 

(1
/Q

)

(d)

1 Da

1 Da 10 Da

10 Da

Legend

Figure 7. Pores and randomly oriented micro-cracks - Higher-order T-matrix estimates of 
velocity and attenuation spectra for different fluid mobilities. The iterative and approximate 
solutions are presented. The aspect ratio of randomly oriented micro-cracks is 1/1000. The 
porosity and crack density is 35% and 0.4, respectively. Panels (a) and (b) show results with 
permeability of 1 Darcy. Panels (c) and (d) show the same as panels (a) and (b) but with 
permeability of 10 Darcy. 

Figure 8. Aligned micro-cracks - Higher-order T-matrix estimates of velocity and attenuation 
spectra for the plane wave propagation with polar and azimuthal angles of 30o and 45o for 
different fluid mobilities. The iterative and approximate solutions are presented. The crack 
density of aligned micro-cracks is 0.3. Panels (a) and (b) show results with permeability of 1 
Darcy. Panels (c) and (d) show the same as panels (a) and (b) but with permeability of 10 
Darcy. 
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Figure 9. Pores and aligned micro-cracks - Higher-order T-matrix estimates of velocity and 
attenuation spectra for the plane wave propagation with polar and azimuthal angles of 30o and 
45o for different fluid mobilities. The aspect ratio of aligned micro-cracks is 1/1000. The 
porosity and crack density is 35% and 0.4, respectively. Panels (a) and (b) show results with 
permeability of 1 Darcy. Panels (c) and (d) show the same as panels (a) and (b), but for a 
permeability of 10 Darcy. 
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Figure 10. Pores, randomly oriented micro-cracks and meso-fractures - Higher-order T-
matrix estimates of velocity and attenuation spectra for the plane wave propagation with polar 
and azimuthal angles of 30o and 45o for different fluid mobilities. The aspect ratio of 
randomly oriented micro-cracks and aligned meso-fracture set is 1/1000. The porosity 
(spherical pores), crack density (randomly oriented cracks) and fracture density (aligned set of 
mesoscopic fractures) is 10%, 0.01 and 0.4, respectively. Panels (a) and (b) show results with 
permeability of 1 Darcy. Panels (c) and (d) show the same as panels (a) and (b), but for a 
permeability of 10 Darcy. 




