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Abstract. Matter–wave interferometry has been used extensively over the last
few years to demonstrate the quantum-mechanical wave nature of increasingly
larger and more massive particles. We have recently suggested the use of the
historical Poisson spot setup to test the diffraction properties of larger objects.
In this paper, we present the results of a classical particle van der Waals
(vdW) force model for a Poisson spot experimental setup and compare these
to Fresnel diffraction calculations with a vdW phase term. We include the effect
of disc-edge roughness in both models. Calculations are performed with D2 and
with C70 using realistic parameters. We find that the sensitivity of the on-axis
interference/focus spot to disc-edge roughness is very different in the two cases.
We conclude that by measuring the intensity on the optical axis as a function
of disc-edge roughness, it can be determined whether the objects behave as de
Broglie waves or classical particles. The scaling of the Poisson spot experiment
to larger molecular masses is, however, not as favorable as in the case of near-
field light-grating-based interferometers. Instead, we discuss the possibility of
studying the Casimir–Polder potential using the Poisson spot setup.
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1. Introduction

In the Poisson spot diffraction experiment, an object with a circular rim, such as a sphere or
a circular disc, casts a shadow with a bright interference spot at its center [1, 2]. See figure 2
for a diagram of the experimental setup in a Poisson spot experiment. This bright spot is due to
positive wave interference stemming from the fact that all paths from the source to the bright
spot via the rim have the same length. It convincingly demonstrated the wave nature of light at
the beginning of the 19th century, as the bright spot was interpreted as clearly contradicting the
straight-line propagation expected from classical particles.

There is plenty of experimental evidence for the wave nature of material particles as
conjectured in Louis de Broglie’s hypothesis [3]. In the Fraunhofer regime, we find, for example,
Davisson and Germer’s famous electron-diffraction experiments using nickel crystals [4]. The
Fresnel fringes from a one-dimensional (1D) Poisson spot experiment that makes use of a wire
instead of a circular disc can be readily observed in transmission electron microscopes equipped
with a biprism for electron holography [5]. Also, diffraction from a zone plate can be interpreted
as a more complex application of the Poisson spot principle and has been performed with, for
example, neutrons [6], neutral atoms [7–9] and molecules [10]. We have recently performed the
first classical Poisson spot experiment with neutral matter waves, using the diatomic molecule
deuterium (D2) [11], and argued that it is scalable to work with molecules of higher mass
and complexity. In this paper, we further explore this idea and the role of van der Waals
(vdW) interaction between the passing molecules and the circular obstacle. The latter point is
important because the vdW attraction also leads to an intensity peak at the center of the obstacle
shadow [12].

The demonstration of quantum-mechanical interference of larger molecules is motivated
by, among others, the desire to understand the transition from the quantum-mechanical regime
to the classic regime. One of the most prominent experiments was the far-field-grating
diffraction experiment with the fullerene C60 [13]. This has since progressed to experiments
with near-field Kapitza–Dirac–Talbot–Lau interferometers [14], demonstrating matter–wave
interference for particles as massive as 1632 atomic mass units. Apart from fundamental
physics, there are several other applications for such matter–wave interference experiments [15];
for example, molecule lithography [16], mass spectrometry [17] and the measurement of
dispersion forces [18]. Below we will specifically discuss the latter in the context of the Poisson
spot experiment.

To clearly distinguish between classical particle behavior and quantum-mechanical wave
nature in the Poisson spot experiment with molecules, it is important to consider the attractive
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vdW potential that is experienced by polarizable particles. In 1932, Lennard–Jones predicted
that the vdW interaction of neutral atoms and molecules with solid surfaces is governed by a
potential of the form

V (r) = −C3

r 3
, (1)

where r is the distance between the atom and the surface and C3 is a material-dependent
constant. The expression is valid provided that r �∼ 1 nm [18] and as long as r is not so large
that retardation effects become important [19]. In the wave picture, this potential induces a
phase [20] shift approximately given by

φ(r) = −V (r)d

h̄v
, (2)

where d is the interaction length (which we here assume to be equal to the grating thickness), v

is the beam velocity and h̄ is the reduced Planck constant. In the particle picture, the interaction
is represented by the force F deflecting the particle in the disc shadow,

F(r) = −dV

dr
= −3C3

r 4
. (3)

Since the force is radially pointing inwards from the rim of the circular object, all particles
that get accelerated enough to compensate for any velocity away from the optical axis will be
on a trajectory intercepting the optical axis. This results in a spot of diverging intensity at the
center of the shadow similar to the Poisson spot in the wave picture that has intensity equal to the
undisturbed wave front. However, in any real experiment, the circular object will deviate from a
perfect circular shape and exhibit a roughness at the edge. In [11], we have already shown that it
is necessary to include disc-edge roughness to account for the intensity variation in experimental
Poisson spot measurements. Here, we show that in the particle picture, the disc-edge roughness
has an even stronger damping effect on the diverging intensity spot. Furthermore, the edge
roughness quickly becomes less important in the wave picture as one moves the imaging plane
away from the circular object. Unfortunately, it is possible that the bright spot due to particle
deflection becomes more intense with increasing distance between the disc and image plane (b)
so that simply measuring the intensity as a function of b is not enough to discriminate between
the particle and the wave. However, it is possible to distinguish between the two pictures by
measuring the intensity of the bright spot from circular objects with different amounts of known
edge roughness �r . The edge roughness can be measured experimentally beforehand in an
electron microscope and to some extent controlled during fabrication of the circular object.

2. Poisson’s spot with molecules: deuterium and C70

To justify the statement above, we compare a Fresnel diffraction model, which we have adapted
to include a vdW phase term, to a simple classical deflection model. We account for edge
roughness in both models and use them to simulate both the Poisson spot experiment with
deuterium that we have already published [11] and a hypothetical Poisson spot experiment with
the fullerene C70.

For the deuterium beam, we use the same setup and parameters as in our experiment in [11].
The supersonic expansion beam had a nozzle temperature of T0 = 101 K and a nozzle pressure
of p0 = 10 bar. The nozzle diameter was 10 μm. This resulted in a beam with a most probable
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velocity of vdeut = 1060 m s−1, which corresponds to a de Broglie wavelength of λdeut = 96 pm.
The source-to-disc distance was g = 1496 mm and we measured the intensity at disc-to-image
distances of b = 321, 641 and 801 mm. The strength of the vdW interaction between deuterium
and SiN was determined in a grid diffraction experiment by Grisenti et al [18], where they
determined C3 = 0.33 ± 0.09 meV nm3. The disc radius was R = 30 μm with a disc edge
roughness of about 300 nm, and the disc thickness was approximately d = 1 μm.

For the C70 scenario, we consider beam properties published in [21]. C70 has an atomic
mass of 840 amu, which corresponds to a de Broglie wavelength of λC70 = 2.2 pm at a molecular
speed of vC70 = 215 m s−1. For the calculations, we assume a source-to-disc distance of
g = 1000 mm and disc-to-image distances of b = 250, 500 and 1500 mm. The vdW constant is
estimated with C3 = 90 meV nm3 in [21] based on the polarizability of C70 and the assumption
that the disc is made of gold. We also assume a smaller disc radius of R = 5 μm with a disc edge
roughness of 30 nm and a disc thickness of d = 50 nm. It is reasonable to assume that a free-
standing disc with such parameters can be fabricated using modern electron-beam lithography
processing. We have recently demonstrated [22] that free-standing zone plates with a diameter
of 388 μm and a thickness of about 150 nm can be produced successfully using electron-beam
lithography and a silicon nitride membrane.

2.1. The wave model versus the particle model

The wave diffraction model we have used in this paper is the same as the one we used for the
deuterium Poisson spot experiment [11] except that it has been modified to include the vdW
phase in equation (2). We calculate the disturbance caused at the point P1 in the image plane in
Fresnel approximation and in polar coordinates by numerically solving the integral [23],

U (P1) = − i
λ

A eik(g+b)

gb

∫∫
f (r, θ)eiπ/λ(1/g)+(1/b)r2

r dr dθ, (4)

where the factor i
λ

is due to the inclination factor at small angles. The term A eik(g+b)

gb is the
disturbance that would be present at the image plane without an aperture. The surface integral is
performed in the aperture plane over the open areas of the general aperture, as described by the
aperture function f (r, θ). It equals 1 if the point (r, θ) is transparent and 0 otherwise. Here, g
and b are the distances from the source to the aperture and from the aperture to the image plane,
respectively.

The integral can be evaluated efficiently, as described in [23], if the arbitrary aperture is
either completely transparent or completely opaque at any one place. Further, one can make
use of the rotational symmetry as in the case of a circular obstacle to increase efficiency. The
computation essentially becomes a sum over line integrals. The line integrals are along rays
in the aperture plane that originate at the point where the source-to-P1 line passes through the
aperture plane. The line integrals can be solved analytically, turning the integral into a sum of
phasors (two for each open area the ray traverses). So, all that needs to be calculated are the
intersection points of the rays with the disc edges, which can also be expressed analytically (the
intersection of a line with a circle).

In this model, we have also accounted for the vdW phase given in equation (2) by adding
it to the exponent in equation (4),

U (P1) = − i
λ

Aeik(g+b)

gb

∫∫
f (r, θ)eiπ/λ((1/g)+(1/b))r2+iφ(r)r dr dθ. (5)
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Figure 1. The top and bottom panels show the oscillation of the sine of the vdW
phase as a function of distance from the disc edge for the deuterium and C70

cases, respectively. The deflection of the molecules based on the particle model
are also shown as a function of distance from the disc edge and in units of
the radius of the shadow in the image plane. Hence, the particle’s trajectories
intersect the optical axis in the image plane when deflection is equal to one in
this graph. This helps us to visualize at what distance from the rim the particles
contribute to the classical on-axis spot. Note also how the region where the vdW
forces cause phase changes in the C70 experiment extends much further away
from the disc edge. Finally, also note that the classical forces acting on the C70

molecules are stronger due to their larger polarizability. However, the amount of
deflection is also compensated for by their larger mass.

This makes the line integrals mentioned in the previous paragraph more complex to solve,
requiring a numerical integration at a computationally expensive step in the algorithm. We
therefore computed the line integrals only in a ring surrounding the disc and neglected the
contribution from the vdW phase outside of that ring. For the deuterium simulation, this ring
had a width of 1 μm, and in the C70 simulation it was 2 μm wide. As can be seen in figure 1, the
vdW phase shift is close to zero even at 100 nm distance. Hence, this is a good approximation.

As is already known [12], the intensity of the Poisson spot increases due to the phase
contribution of the vdW force. This can be understood also by looking at the phase plot in
figure 1. The phase contribution oscillates so that for some distances r , the phase is changed
so that positive interference is increased on the optical axis. This is also how a phase zone
plate works, except that the nth radius rn where the phase contribution switches from positive
to negative is proportional to n−1/3 instead of n1/2 for a normal zone plate [24], which one can
deduce by requiring that the phase shift φ(r) is a multiple n of π/2,

C3d

h̄vr 3

!= n
π

2
. (6)
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Figure 2. Schematic diagram of the Poisson spot experiment and notation for the
classical deflection model.

For the inner edge of a circular aperture, the trend would be even in the same direction as
for a phase zone plate. In other words, in that case we have a decreasing zone width with an
increasing radius (and a decreasing distance to the inner edge). We therefore conclude that a
sufficiently small aperture can be used to focus neutral matter waves to some extent provided
that the vdW interaction is strong enough.

We move on to simulate the particle picture. Here, we use a Monte Carlo type algorithm to
calculate the number of deuterium molecules that would be classically deflected into the shadow
of the disc. The notation we use is explained in figure 2. The force exerted on each particle as
it passes the region close to the disc edge is given by equation (3). Since the interaction time is
very short compared to the total flight time,

tpass ≈ d

v‖
. (7)

All we have to calculate is a change in vertical velocity,

−vb = F(r)/m × tpass = − 3C3d

r 4 mv‖
, (8)

where m is the particle mass and v‖ is the particle’s velocity along the optical axis, which we
estimate with v0 in this paper, since g and b are large compared to R + r . Thus, the final position
in the imaging plane is given by

x = (R + r)(1 + b/g) − 3C3db

r 4 mv2
‖
. (9)

The disc edge roughness included in both models is a fourth power sine extending the rim
of the disc with a period of approximately 1 μm in the case of deuterium and 167 nm for C70.
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We have used the fourth power of a sine to make the protrusions from the edge sharper,
which makes them more similar to the edge roughness we actually observed in scanning-
electron microscopy images. A further improvement of the model could use a randomized edge
roughness or use the actual imaged edge roughness at the cost of increased computation time.
We have used the periodic sine function because it was easier to implement and we judged it to
be a reasonably good approximation.

When solving the Fresnel integral, we numerically find the intersections of the corrugated
edge with the ray along which we have to integrate. When calculating the vdW phase, we assume
that the molecule is interacting with a surface plane that is tangential to the disc edge. The
roughness is modeled by taking into account the changed distance to the edge. A more thorough
model might derive the potential as a function of position in the disc plane using finite-element
analysis.

In the case of the particle deflection, we simply remove the particles that are blocked by
the corrugated edge. The direction of the new force vector for those particles that pass the disc
close to the corrugated edge is found numerically by summing the vectors from the point where
the particle intersects the disc plane to equally spaced points on the corrugated edge. In the
simulation, we used 100 points per period, which we found to be a good compromise between
model accuracy and computation times. The vectors that intersect the corrugated edge are not
included in this summation to simulate the shadowing effect of the roughness. The absolute
force is estimated by finding the distance of the corrugated edge in the new direction, which is
also not ideal but a good approximation due to the strong decrease with distance of the vdW
force.

2.2. Results

The results of the Fresnel integration for our two case studies are shown in figures 3 and 4.
The plots show the point spread function (PSF) of the discs for the three different disc-to-image
distances b mentioned earlier. The data we can expect to measure would be further convoluted
with the source size (incoherent source) and the finite detection area. The graphs also show the
expected relative intensities for different amounts of edge roughness. The most important point
to note is that the effect of edge roughness changes from halving the Poisson spot intensity at
the smallest b-value to almost not affecting it at the largest value of b.

In figures 5 and 6, we present the results for the PSFs from the classical particle deflection
model for the deuterium and C70 experiments, respectively. The results with 0 nm roughness
were calculated with a 30 × 30 nm pixel size. This means that the data point on the optical axis
corresponds to the ratio of particles passing through a pixel centered on the optical axis to the
number of particles passing through a pixel outside of the shadow. For the data corresponding
to higher roughness, we used 60 nm square pixels. This finite pixel size is the reason why the
graph does not completely diverge to infinity in the 0 nm roughness case. Each of the graphs is
the result of a simulation of 108 or 109 particles passing through a 2 μm-wide ring area adjacent
to the disc.

We note that in the particle model, the attenuation due to the edge roughness is almost
independent of how far behind the disc we sample the image. This is mainly due to the vdW
force’s strong dependence on distance. The point on the edge that is closest to the particle
contributes the most to the attractive force and therefore can easily deflect the particle on to a
trajectory that does not pass through the optical axis of the experiment. However, as mentioned
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Figure 3. The Poisson spot’s lateral intensity distribution for the case of the
deuterium experiment assuming a point source and point detector. The length
values in the legend refer to the peak-to-peak roughness accounted for in the
calculation. The top, middle and bottom panels correspond to disc-to-image
distances of b = 321, 641 and 801 mm, respectively. The simulated beam has
a de Broglie wavelength of 96 pm and the 30 μm-radius disc is at a distance of
g = 1496 mm from the source.

before and as we can see especially in figure 6, the intensity in the ideal disc case increases with
distance b. Therefore, showing an increase in spot intensity as a function of b with respect to the
undisturbed beam intensity is not enough to conclude that the wave model is valid. (The intensity
behind the disc is also modulated by the 1/(g + b)2 dependence of beam intensity and also due
to the magnification factor g/b that results from imaging an incoherent source.) However, it is
possible to record the intensity of the spot from discs with different amounts of edge roughness
and show that the intensity variation corresponds to that calculated with the wave model.

It is interesting to look at the phase shift due to the vdW potential and compare this to the
amount of particle deflection as a function of the distance r from the disc edge. This is visualized
in figure 1. Note how the region that affects the phase of the molecule is much wider in the C70

case and starts to overlap the region where the particles are deflected towards the optical axis.
The deflection is given in units of the shadow radius in the image plane. Hence, if the deflection
is 1 in the graph, the particle intersects the optical axis at the corresponding value of b.

In a realistic Poisson spot experiment, we have to also take into account that we have to
deal with incoherence of the source and the finite size of the detector. To answer the question
whether a Poisson spot experiment with C70 is possible with current methods, we first look at
the center line intensity I(0) of an effusive source [25],

I (0) = 1.125 × 1022 p0√
MT

σ

[
molecules

sr s

]
. (10)
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Figure 4. The Poisson spot’s lateral intensity distribution for the case of the C70

experiment assuming a point source and a point detector. The length values in
the legend refer to the peak-to-peak roughness accounted for in the calculation.
The top, middle and bottom panels correspond to a disc-to-image distance of
b = 250, 500 and 1000 mm, respectively. The simulated beam has a de Broglie
wavelength of 2.2 pm and the 5 μm-radius disc is at a distance of g = 1000 mm
from the source.

Here, p0 is the pressure within the source in torr and σ is the area of the source orifice
in square centimeters. M is the molecular weight and T the temperature of the gas or vapor
inside the source. An effusive C70 source at a temperature T = 900 K will have a pressure of
approximately 2 Pa [26].

Then we have I (0) ≈ 1011 molecules sr −1 s−1 for our chosen parameters and an 8 μm-
diameter source orifice. The brightness of the effusive source is thus about 2 × 1021 molecules
sr−1 s−1 m2, which compares to about 1028 molecules sr−1 s−1 m2 for the supersonic expansion
deuterium source [27]. This huge difference is, however, reduced when taking into account that
the detection efficiency of molecular beams is 10−5 while for C60 a value close to unity has
been reported [16]. Moreover, the background in the vacuum chamber at the same mass of the
probed molecules contributes to noise and at mass 840 this background will be very close to
zero, so also a signal of very low count rate can be measured with C70. Therefore, if we assume
similar collimation in the incident beam and similar acceptance angle of the detector, the two
experiments have the same feasibility. Unfortunately, for C70 the wavelength is smaller and the
size of the disc has to be reduced. We have reduced the size of the disc in the C70 example
simulated in this paper, but more ideally the experiment would be optimized also with smaller
g and b to mitigate the reduction in the solid angles. In the present calculation, considering
the worst case, we have not tried to optimize the setup and we have used a similar geometrical
distance for deuterium and C70.
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Figure 5. The on-axis bright spot due to classical deflection of the deuterium
molecules at the rim of the disc. The top, middle and bottom panels correspond to
a disc-to-image distance of b = 321, 641 and 801 mm, respectively. The different
curves correspond to the peak-to-peak edge roughness given in the legend. The
simulated beam had a speed of 1060 m s−1 and the 30 μm radius disc is at a
distance of g = 1496 mm from the source.

If we use a 4 μm-diameter detector aperture to record the bright spot, we can expect a
flux of approximately 1 particle s−1 through it if it is mounted at a distance from the source
of g + b = 1.25 m. The intensity of the Poisson spot is proportional to the square of the width
of the PSF, reducing the measurable intensity by a factor of 100. Also, the Poisson spot in the
deuterium experiment was about a factor of 100 less than the undisturbed wave front. So, in
total, we expect one particle in 10 000 seconds to deposit in the Poisson spot. The vdW phase
increases the intensity of the Poisson spot by almost a factor of 4, as shown in figure 1, but
such low count rates would be very challenging to measure, and the improvements suggested
above are necessary for the success of the experiment. In addition, one could also attempt to
coherently increase the wavelength of the C70 molecules by slowing them down; for example,
using an atomic paddle [28], or by increasing the brightness of the effusive source by increasing
its temperature.

From this, we can conclude that the scaling to larger molecular masses is not as favorable
as, for example, in the case of the Talbot–Lau–Kapitza–Dirac grating-based experiments, where
a scalability of up to 106 atomic mass units is expected [14]. We expect that the above-discussed
experiment with C70 is close to the limit of what is feasible with current beam sources and
detectors. Nevertheless, studying the Poisson spot with large molecules could give new insights
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Figure 6. The on-axis bright spot due to classical deflection of the C70 molecules
at the rim of the disc. The top, middle and bottom panels correspond to disc-
to-image distances of b = 250, 500 and 1000 mm, respectively. The different
curves correspond to the peak-to-peak edge roughness given in the legend. The
simulated beam had a speed of 215 m s−1 and the 5 μm-radius disc is at a distance
of g = 1000 mm from the source.

into the interaction potential between molecules and a wall represented by the disc edge. We
have described this interaction using the vdW potential given in equation (1) and we noted
that this potential can lead to an increase in the observed Poisson spot intensity. At distances
roughly equal to or larger than the characteristic absorption wavelength, the dispersion force
potential is more accurately described by the Casimir–Polder potential [29]. In the Poisson
spot experiment, we expect this long-range interaction to also contribute to the intensity of the
Poisson spot, whereas in grating-based experiments this would be canceled out by the potential
from the next adjacent grating bar. Furthermore, it would be interesting to study using the
Poisson spot intensity the dependence of the Casimir–Polder potential on edge roughness or
periodic corrugations, which is nontrivial and a subject of ongoing research [30].

3. Conclusion

We have presented a wave diffraction model and a classical deflection model for the
on-axis bright spot from a disc with a certain edge roughness. We applied the models to our
already performed deuterium Poisson spot experiment that has already been realized and to a
hypothetical experiment with C70. The attenuation effect on the central spot in the shadow of the
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disc is much more pronounced in the particle model, and the attenuation is reduced significantly
in the wave picture as one moves the imaging plane away from the disc. We therefore propose
that this difference between the two models could be used to distinguish between wave and
particle behaviors in quantum mechanical experiments with large molecules. We also estimated
whether a Poisson spot experiment with C70 molecules can be performed with state-of-the-art
equipment. The answer is that with a sufficiently bright source, a sufficiently efficient detector
and optimized parameters, this could be achieved, but we note that the scaling to smaller de
Broglie wavelengths is not very favorable in the case of the Poisson spot experiment. However,
we believe that a Poisson spot experiment with large molecules could give new insights into the
study of the Casimir–Polder interaction.
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