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The image on the front page: Aerial photography of a cyclonic ice edge eddy,

taken at 79° N at 30th June, during MIZEX’84. The diameter of the eddy is

approximately 40 km. The image is retrieved from Johannessen et al. (1987a).



Abstract

The characteristic ice edge eddies in the Marginal Ice Zone (MIZ) are studied

based on satellite information from the Advanced Synthetic Aperture Radar

(ASAR) instrument. The eddies frequency of existence during the day, month,

and year, and their relationship to the wind field conditions are considered. On

average, more than 1000 sea ice eddies were counted along the ice margin per

year for 2008 and 2009.

Eddies contribute to an enhanced melting by forcing contact between the sea ice

and the warmer water off the ice edge. The amount of sea ice an eddy can carry is

estimated to be 1413.7 km2. This constitutes 0.7×106 by including the modified

total of eddies during a year. The daily retreat of the ice edge is found to be 3.5

km d−1 per 100 km of ice edge. This estimation is based on the bottom ablation,

radius of the eddy, distance between two neighbouring eddies, thickness of ice

and fraction of sea ice trapped in an eddy.

The influence of the wind shows that relative low wind speed and wind directed

from the north favours the existence of eddies.
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CHAPTER 1

Motivation and Objectives

In this thesis, mesoscale eddies in the Marginal Ice Zone (MIZ) and their con-

tribution to melting of sea ice are investigated using satellite based Synthetic

Aperture Radar (SAR). The hypothesis is that eddies advect warm water closer

to and beneath the sea ice, and sweep ice away from the ice edge into warmer

water. Eddies also contribute to a nonuniform ice motion that leads to ice defor-

mation and more open water, which enhances the melting potential.

The melting is accelerated because of these processes (Johannessen et al., 1987a,b;

Manley, 1987; Quadfasel et al., 1987; Vinje & Finnek̊asa, 1986), but the magni-

tude of the melting remains unknown. The motivation of this thesis with the

goal to examine the role of eddies for the melting of sea ice capitalizes on this.

Essential information needed to achieve this goal is how much ice an eddy can

carry and how effective the eddy can melt this ice. In addition, the total number

of eddies in the region, both seasonal and annual, are needed to determine the

full effect. A two-year period of data is chosen to obtain this information; from

1st January 2008 to 31st December 2009.

The smallest length scale of a mesoscale eddy is determined by the Rossby radius

of deformation. Here, a mesoscale eddy is defined to have a radius between 20-40

km. This is a relative small spatial scale, and by adding that the lifetime of

an eddy is 20-30 days, regular in-situ measurements are challenging to obtain.

Remote sensing overcomes these limitations, using SAR.

The area of interest is the MIZ in the Fram Strait, Central and East Greenland

1



2 Chapter 1. Motivation and Objectives

Sea and the Denmark Strait, named Area 1, Area 2 and Area 3, respectively

(cf. Figure 1.1). The MIZ, defined as the zone between the open ocean and the

ice-covered area, is a key area for interactive processes between air, sea and ice

(Johannessen et al., 1987b). Eddies are found almost everywhere they have been

looked for (Robinson, 1983), but the role of eddies in the MIZ is particularly

intriguing because they also affect the sea ice deformation and melting, as sug-

gested by Johannessen et al. (1987b). Eddies alter the current structure of the

two characteristic water masses in the area; the warm Atlantic Water (AW) and

cold Polar Water (PW), thus enabling the melting.

Area 1

Area 2

Area3

SB

Fram Strait

Denmark
Strait

Figure 1.1: The study area, divided in three parts: Area 1 between 78-80° N (the
Fram Strait), Area 2 between 70-78° N (Central and East Greenland), and Area
3 between 65-70° N (the Denmark Strait). The western boundary is at 25° W, the
eastern is at 10° E. (SB represents Svalbard)

The presence of sea ice plays a pivotal role when it comes to the world’s climate,

and changes in sea ice concentration, extent and thickness are leading indicators

of climate change (Thomas & Dieckmann, 2003). Melting of sea ice leads to more

freshwater (since the ice is relatively fresh) and modifies the freshwater flux out

of the Greenland Sea. This may affect the thermohaline ocean circulation and

formation which in turn can influence the entire climate (Thomas & Dieckmann,

2003). Any modification of the sea ice extent will therefore have an impact on

both regional and global climate.

When looking at the Earth system from an even wider perspective; the sea ice
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cover affects the Earth’s radiation budget, the surface heat exchange and albedo1.

The presence of sea ice reduces the heat and momentum exchange between the

ocean and the atmosphere. The surface heat loss is reduced by 1-2 orders due to

the presence of sea ice (Maykut, 1978). The albedo of ice is higher (between 0.5-

0.85, depending on the age of the ice) than the dark, open sea (albedo about 0.1

or lower, depending on the sun-angle) (Thomas & Dieckmann, 2003). More solar

radiation will be absorbed in regions with less ice compared to the ice covered

areas. This results in more ice melting, which leads less ice cover, that also result

in more solar absorption. This is known as a positive feedback.

The increased melting is not the only intriguing result of eddies in the ocean.

They control the horizontal mixing and are in that sense an essential element in

various special fields. Eddies have a special dynamic with important influence

on biological, chemical and physical conditions, and knowledge about the phys-

ical science of eddies gives important information about the other two sciences

(Robinson, 1983). Eddies are also suggested being a contributor to the recent

warming of the Arctic Ocean, by modifying the inflow through the Bering Strait

(Maslowski et al., 2008).

In Chapter 2, some history of eddy experiments and general information about

the area are presented, together with existing dynamical theories and eddy for-

mation mechanisms. The theory around the data acquisition and the method

used to extract the relevant data are summarized in Chapter 3. After analysis

and presentation of the results in Chapter 4, the discussion follows in Chapter 5.

Some concluding remarks are made in Chapter 6. The definitions of the abbre-

viations are listed in Appendix A, and the gathered and used data can be found

in Appendix B.

1The percentage of incoming radiation that is reflected.





CHAPTER 2

Background

2.1 History

Eddies in the ocean were noted by navigators in early time, but were not fully

documented until the end of the 1970s and the early 1980s. Exploration of the

ocean became more clearly set out after the first satellite was launched in 1957.

This made a considerable contribution to oceanography; the possibility to observe

the ocean from space has revealed various phenomena that would be difficult to

detect otherwise. In addition, the opportunity to collect synoptic data over large

areas became available. The first time the spiraling eddies in the ocean were

manifested in a photograph was in October 1968, captured by the astronauts on

the Apollo Mission (Munk et al., 2000). Investigation of eddies started with the

POLYGON-70, Mid-Ocean Dynamics Experiment (MODE-1) in 1973 and the

Polygon Mid-Ocean Dynamics Experiment (POLYMODE) in 1979 (Robinson,

1983). Approximately ten years after the first eddies were seen in the photograph,

the first satellite (SEASAT) with SAR was launched by the National Aeronautics

and Space Administration (NASA). Eddy investigation reached its peak during

the 1980s. In the Arctic region, three extensive experiments were made, doc-

umented as the Marginal Ice Zone Experiments (MIZEX). The first was made

in the summer of 1983 where physical and exchange processes around mesoscale

eddies were in focus. The larger follow-up was made in 1984. Well-documented

investigations were made; data were obtained from satellite, aircraft, ship taken

5



6 Chapter 2. Background

conductivity-temperature-depth (CTD) sections, floats and current meters (Jo-

hannessen et al., 1987a; Josberger, 1987; Sandven et al., 1991). The third experi-

ment, MIZEX’87, was a winter experiment focusing on the deep water formation

and its relation to the mesoscale eddies (Sandven et al., 1991).

2.2 The area

2.2.1 Oceanographic conditions

The Fram Strait, a 600 km wide passage between Svalbard and Greenland, rep-

resents a unique deep water connection between the Arctic Ocean and the rest of

the world oceans. The two main currents that control the water mass exchange

are the West Spitsbergen Current (WSC) and the East Greenland Current (EGC)

(Carmack, 1990). The rough location of the currents are shown in Figure 2.1.

The WSC is an extension of the Norwegian Atlantic Current (NwAC), flowing

northward trough the Fram Strait along the west coast of Svalbard. It separates

into filaments that either recirculate in the Fram Strait and continues southward

with the EGC, or continues northward into the Arctic Ocean. It carries relatively

warm and saline AW (Atlantic Water), and is the dominant heat and salt source

for the Arctic Ocean, with a characterized temperature above 3° C and salinity

above 35 (Quadfasel et al., 1987). The WSC transports on average 5.6 SV (1 SV

= 1×106 m3 s−1) of AW, and carries about 40 TW (1 TW = 1012 W) of heat

northward each year (Hanzlick, 1983).

The EGC is the southward flowing current in the area, following the east coast

of Greenland. It carries large amounts of ice in addition to cold (usually below

0° C) and fresh PW (Polar Water). It transports 2-3 SV (Aagaard & Coachman,

1968), and removes annually between 4000-5000 km3 of both multi-year (MY)

and first-year (FY) ice (Vinje & Finnek̊asa, 1986). When the wind is directed

south-westward along the East Greenland coast, the sea ice reaches a maximum

speed at the ice edge. This phenomenon is known as an ice edge jet (Johannessen

et al., 1983).

The EGC is described as a narrow jet that is dynamically stable and strongly

coupled with topography. The WSC, on the other hand, is naturally unstable, and

has a profusion of open ocean eddies (Gascard et al., 1988). These characteristics

are of interest when it comes to the subject of generation mechanisms.
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Figure 2.1: The bathymetry and the two main currents of the area. BB = Boreas
Basin, GB = Greenland Basin, GS = Greenland Sea, JM = Jan Mayen and FZ
= Fracture Zone. The currents: EGC = East Greenland Current and WSC
= West Spitsbergen Current. The bathymetric data are retrieved from General
Bathymetric Chart of the Oceans (GEBCO) (BODC, 2010), the current data
from Carmack (1990).

2.2.2 Bathymetry

The map in Figure 2.1 covers the bathymetry of the area. The largest variation

in the bathymetry occurs in the Fram Strait, where depressions, sea mounts and

ridges exist. The maximum depth extends to 5500 m below the surface, known

as the Molloy Deep, which is recognized as the dark blue area at approximately

79° N. The sea mounts and ridges rise steeply to 1500 m below the surface.

The Greenland Sea is divided in two main basins, the Boreas Basin (BB) and the

Greenland Basin (GB), which of the latter is deeper. The basins have a depth
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around 3200-3800 m and are surrounded by ridges and continental shelves. To

the north, the BB is closed by the Hovgaard Fracture Zone, situated between 78-

79° N and around 0° E. The Knipovich mid-ocean ridge is the eastern boundary,

and the continental shelf boarder the west side. The Greenland Sea Fracture

Zone is the boundary between the BB and GB. The Mohn ridge closes the GB

on the eastern side. To the west, the continental shelf exists, in the south Jan

Mayen and the Jan Mayen Fracture Zone makes a boundary.

The depth decreases in the area west and south-west of Jan Mayen. The northern

part of the Denmark Strait is characterized by the form of a v-shaped sill, with

continental shelves as borders at each side. Note that the complex bathymetry

may impose equally complicated topographic steered currents.

2.3 Eddy dynamics in the MIZ

An eddy is defined as a relative persistent closed circulation. With that it is

implied that the time it takes for a fluid parcel to complete one turnaround is

much shorter than the time the structure is traceable at the surface (Cushman-

Roisin & Beckers, 2009). The rotational direction decide if the eddy is termed

a cyclone or an anticyclone; a cyclone is a vortex with rotational motion in the

counter clockwise direction in the Northern Hemisphere (NH) (clockwise in the

Southern Hemisphere (SH)), an anticyclone rotates clockwise in the NH (counter

clockwise in the SH). An example of a cyclone (from the NH) can be seen in

Figure 2.2a, Figure 2.2b shows an anticyclone. Other patterns that can be found

in the MIZ comprise vortex pair and mixed pattern. A vortex pair, also called

the mushroom-like pattern, consists of both a cyclone and an anticyclone, as

Figure 2.2c shows. A mixed pattern is more chaotic, with all the three mentioned

patterns included, as in Figure 2.2d.
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(a) Cyclone (b) Anticyclone

(c) Vortex pair (d) Mixed pattern

Figure 2.2: Four ASAR images that reveal eddy signature. A cyclone can be
seen in (a), an anticyclone in (b), a vortex pair in (c) and at last an image with
a mixed pattern (d). The diameters are about 40 km of the cyclone, 45 km of
the anticyclone approximately 50 km of the vortex pair, and about 100 km for the
whole area in (d), respectively. All images are taken in the MIZ in the NH.

2.3.1 Characteristics

The dominant forces regarding the eddy dynamics are usually covered by Equa-

tion 2.1, known as the gradient-wind balance. It represents an equilibrium be-

tween three forces; the centrifugal force (−v2/r), the Coriolis force (−fv ) and

the pressure force (−ρ−10 ∂p/∂r),

− v2

r
− fv = − 1

ρ0

∂p

∂r
(2.1)

v is here the azimuth velocity (positive counter clockwise), r the radius of the

eddy, ∂/∂r the derivative along r, f the Coriolis parameter, and p is the pressure.

If r →∞, the centrifugal term becomes negligible, thus the geostrophic balance

is retrieved (Cushman-Roisin & Beckers, 2009).

If the Coriolis force dominates over the centrifugal force, the eddy is termed quasi-

geostrophic. In the opposite case, the eddy is non-linear. The Rossby number
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normally represents this classification, by comparing advection to the Coriolis

force,

R0 =
g′H

f 2L2
=
(Rd

L

)2
with Rd =

√
g′H

f
(2.2)

Here, R0 is the Rossby number. It characterizes the importance of rotation in

a fluid, the effect of rotation is opposite proportional to this number. H [m]

is the depth of the mixed layer, f [s−1] is the Coriolis parameter and L [m] is

the typical width of the domain. g′ [m s−2] is the reduced gravitation, defined

as g′ = (∆ρ/ρ0)g (where ∆ρ [kg m−3] is the difference in density between the

two layers, ρ0 is the density of the lower layer, and g [m s−2] is the effect from

gravitation). If R0 ∼ O(1), the eddy is non-linear, while if R0 �1, the eddy

termed quasi-geostrophic.

In Equation 2.2, Rd is the Rossby radius of deformation. It represents the mini-

mum size of an eddy. The length scale is determined by the speed of a baroclinic

gravity wave divided by the natural time scale of the Coriolis parameter (f). Dy-

namical structures that are smaller than this radius will either evolve to larger

structures (with a radius >Rd), or they will propagate away. Structures with

length scale bigger than the deformation radius are expected to be in geostrophic

balance.

The structure is also bounded by the upper end, since f varies with latitude

(β-effect). The Coriolis parameter is zero at the equator and increases towards a

maximum at the poles. The tendency of a disturbance in a current to move in a

curved pattern increases therefore with the distance from equator (Brown et al.,

2001).

2.3.2 Vorticity equation

To describe the physical nature of eddies, the relative vorticity and the equation

for change in vorticity are introduced. Vorticity quantifies the rotation rate of a

fluid. The intensity of the vorticity is given as

ζ =
∂v

∂x
− ∂u

∂y
(2.3)

where ζ, known as the relative vorticity, is defined as ∇z × u (u = (u, v)). The
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vorticity equation, retrieved from Kundu (1990), is of importance when consid-

ering the formation mechanisms, both when it comes to the contribution from

topography and the hydrodynamic modulations. The equation is given as

D

Dt
(ω) = (f + ω) · ∇uβv +

1

ρ2
∇ρ×∇p + ν∇2ω (2.4)

where ω is defined as ∇× u. The left side of the equation represents the modi-

fication of the vorticity following a fluid parcel. The first term on the right side

represents the contribution from stretching of the vorticity gradients. The second

term of the equation, ρ−2(∇ρ×∇p), is the baroclinic contribution to a material

change of vorticity. The third term is a measure of the diffusion of the vorticity

due to frictional properties of the fluid.

2.3.3 Ekman theory

Vagn Walfrid Ekman developed a theory covering the effect of wind stress on the

ocean surface. A horizontal frictional stress takes place on the surface in relation

to the wind force. A moderate surface stress may generate large drift velocities

if the fluid is close to inviscid. Cushman-Roisin & Beckers (2009) presents the

theory more thoroughly, here it is focused on the essentials. The wind-driven

horizontal components of the transport in the surface Ekman layer are given as

U =

∫ 0

−∞
(u− ū)dz =

1

ρ0f
τ y (2.5a)

V =

∫ 0

−∞
(v − v̄)dz = − 1

ρ0f
τx (2.5b)

Here, u and v are the flow field, ū and v̄ are the interior flow field, ρ0 is the density

and f is the Coriolis parameter. τ y and τx are the wind stress components, defined

as

τx = CdρaUu , τ y = CdρaUv (2.6)

where U =
√
u2 + v2 is the wind speed, u and v are the x and y components of

the wind vector, respectively, and ρa is the density of air.

By inserting the components of Equation 2.5 in V =
∫∞
0
vdz, the perpendicular
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relationship between the wind stress and the wind driven horizontal transport

in the NH (oppositely in the SH) is evident: With a wind directed from north,

Lagrangian drifters1 in a current will be forced towards the west (90° to the right).

A sketch of this event can be seen in Figure 2.3a. With a wind blowing from the

south the drifters are forced towards the east (Figure 2.3b). This theory is of

interest when focusing on the subject of how eddies disappear, and it plays a

crucial role when it comes to the visibility of eddies at the surface.

open ocean

ice

ocean drift

(a)

open ocean

ice

ocean

drift

drift

(b)

Figure 2.3: The direction of the wind (blue arrows) and the resulting Ekman
transport (grey arrows); with wind from north (a) and wind from south (b). The
appurtenant ice edge drift and the resulting upwelling or downwelling in the two
situations are also evident. The figures are based on Cushman-Roisin & Beckers
(2009, Figure 15-6)

The drag coefficients, Cd (from Equation 2.6), depend on the surface character-

istics. For water, Cd,aw has a magnitude of 1.2×10−3, while over ice, Cd,ai has

a magnitude of 3.6×10−3 (the subscripts a, w and i are for air, water and ice,

respectively). Generally Cd,ai is 2-3 times greater than the drag coefficient of

air and water,(Cd,aw) (Häkkinen, 1986). This means that the wind experiences

more stress over sea ice than water, which results in uneven movement of the

sea ice compared to the water. This may generate upwelling or downwelling, the

outcome depends on the direction of the wind, as seen in Figure 2.3a and 2.3b.

1Drifters designed to follows a current, ocean front, river flows etc.
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2.4 Eddy formation mechanisms

Johannessen et al. (1987a) identified five sources that are capable of generating

eddies; barotropic and baroclinic instabilities, topography, advected eddies from

the WSC and external forcing. The following section is mostly based on their

findings, but the dynamical part is based on Cushman-Roisin & Beckers (2009);

Kundu (1990) and Pedlosky (1987). It should be noted that an eddy may be

generated by a mixture of the sources suggested.

Two of the generation mechanisms mentioned are of minor importance, and will

be just briefly summarized. The first is the theory covering the advected eddies.

It has been suggested that eddies are not produced locally in the EGC, instead

observations indicate that eddies are advected from the WSC (Smith & Bird,

1991). Parts of the AW in the WSC are recirculated in the Fram Strait, and

open ocean eddies in the AW are advected towards the MIZ; an interaction that

may lead to ice edge eddies. As the AW is forced beneath the PW (due to higher

density), the relative distance between the icopycnals increase, and the relative

vorticity must increase equally. The other generation mechanism is related to the

Ekman transport described in Section 2.3.3. The coupling air-ice-water is stronger

than the air-water coupling, resulting in different Ekman transport. The wind

along an ice edge might result in eddy formation in response to the varying ice

cover and meandering structure of the ice edge (Häkkinen, 1986).

2.4.1 Hydrodynamic instabilities

In the frontal zone of the EGC, barotropic and baroclinic processes combine to

form mesoscale eddies. The instability phenomenons are closely linked to the

transfer of energy from the mean flow to the eddy kinetic part.

Barotropic instability

A barotropic region is a region with a well-mixed (thus homogeneous and non-

stratified) water mass. The density of the water will increase with depth, an

attribute of barotrophy is that the pressure is a function of density only (p =

p(ρ)), and vice versa. The isobaric and the isopycnic surfaces will thus be parallel.

Barotropic instability is known as a shear instability due to its dependency on

the horizontal shear of the current; ∂u/∂y, ∂v/∂x. The vorticity is generated
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by the shear flow. A criterion for this instability is that an inflection point in

the horizontal current profile must exist somewhere in the flow, as in Figure 2.4

(Pedlosky, 1987). The sign of the shear state the rotational direction.

By looking at the vorticity equation (Equation 2.4) for a barotropic fluid, it is

evident that the second term on the right hand side is zero, since ∇ρ×∇p = 0.

This demonstrates that barotropic fluids does not make a contribution to the

change in vorticity.

(a) (b)

Figure 2.4: The idealized velocity shear and the corresponding direction of the
eddy motion due to the barotropic instability. Cyclonic rotation is the result in
(a), anticyclonic rotation in (b).

Baroclinic instability

In a baroclinic fluid the pressure is not a function of density alone, it is dependent

on density and temperature (p = p(ρ, T )). The isobaric and isopycnic surfaces

are not parallel at all depths, as apposed to the barotropic case. A vertical shear

thus exists, which also implies horizontal density gradients. These gradients can

store available potential energy because of the inclined density surfaces, since a

system with inclined density surfaces has more potential energy than a system

where the density surfaces are horizontal. The release of this potential energy

may generate eddies.

In the vorticity equation (Equation 2.4), the second term on the right hand side

will provide a contribution to the change in vorticity. More thorough theory about

baroclinic and barotropic instabilities can be found in Kundu (1990); Pedlosky

(1987).



2.4: Eddy formation mechanisms 15

The characteristics of a density driven coastal current bounded by a front were

investigated by Griffiths & Linden (1982) by the use of a laboratory experiment.

The result was that a comparison between the Rossby radius of deformation and

the width of the current could reveal if the current was barotropic or baroclinic.

They concluded that if the current width is comparable to the Rossby radius of

deformation (Equation 2.2), the length scale of disturbances and the width of

the current are proportional. But if the upper layer is much wider, the observed

length scale is a constant multiple of the Rossby radius. From this, Griffiths &

Linden (1982) concluded that if the current width is about the same size as the

Rossby radius of deformation, the instability will be barotropic. On the other

hand, if the horizontal scale of motion is much bigger than the deformation radius,

the instability is classified as baroclinic.

2.4.2 Topography

To consider the effect of bathymetric variations on the fluid boundary, the use of

potential vorticity is useful. The shallow-water model (which one can read more

about in e.g. Cushman-Roisin & Beckers (2009); Kundu (1990); Pedlosky (1987))

is used to obtain the equation for conservation of potential vorticity,

D

Dt

(ζ + f

h

)
= 0 (2.7)

(ζ+f) is defined as the absolute vorticity, ζ is the relative vorticity (Equation 2.3)

while f is the planetary vorticity (the effect of Earth’s rotation). The potential

vorticity (q) is defined as (ζ + f)/h, where h is the thickness of the density layer.

Equation 2.7 states that the vorticity is conserved. When a fluid parcel moves

over an area of increasing depth, the vorticity must increase (producing more

cyclonic motion). When it moves over an area with decreasing depth (h) the

fluid parcel will be compressed and lead to more anticyclonic rotation. This is

illustrated in Figure 2.5.

Proudman (1916) and Taylor (1917) calculated the generation of eddies due to

an interaction between topography and an ocean current, and they suggested

anticyclonic eddies over a sea-mount and cyclonic eddies over a depression. To

confirm this, a detailed study of the Molloy Deep area was conducted during

MIZEX’84. Deep CTD observations revealed that the eddy-signature extends all

the way down to the bottom, and the topography as a generation mechanism was
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Figure 2.5: The volume and vorticity of a fluid parcel are conserved when moving
over varying bathymetry, in accordance with Equation 2.7. h is the thickness of
the density layer, ζ1 and ζ2 are the vorticity.

with that verified (Johannessen et al., 1987a).

An eddy may be trapped or steered off a topographic feature, Huppert & Bryan

(1976) used an equation to answer the faith of an eddy generated by topography:

If (Nhm)/U0 is of O(101), the eddy generated by the bathymetry is trapped. But

if the equation is of O(100), the eddy may be shed off. The equation is the inverse

Froude number2 where N is the Brundt-Väisälä frequency, hm is the height of the

bathymetric feature and U0 is the mean flow velocity. For the eddy generated in

the Molloy Deep area that was investigated by Smith et al. (1984), one may find

the size of the parameters for the equation. It is used that U0 is 0.1 m s−1, hm is

1000 m and N is of O(10−3) s−1. This gives a value of O(101), which means that

the eddy must remain trapped. In occasions with strong pulsations of the mean

current, the number may cease towards 2. This enables the possibility for eddies

to propagate.

2.5 Eddy induced melting and the ice edge re-

treat

The eddies are known to sweep ice and PW off and advect warm AW closer to

the ice edge. The amount of sea ice trapped in an eddy and the thickness of this

2A dimensionless number that determines an objects resistance of moving through water.
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ice are the two quantities of importance when working with the eddy induced

melting. Before this subject is contemplated, the contact between sea ice and the

warmer water is considered.

2.5.1 Bottom and lateral melting

The mentioned contact between the sea ice and warmer water accelerates the ice

ablation. The vertical melting of sea ice is in response to an imbalance between

heat fluxes at the boundaries and internal conduction of heat. An ice floe is in

contact with the ocean on the bottom and the lateral surfaces. Bottom ablation

was investigated by Josberger (1987) as a part of the MIZEX. The melt rate

was measured by acoustic bottom ablation gauges, which measure the distance

between the overlying ice and acoustic transducer below the ice. Periodic mea-

surements ensure that the subsequent change in this distance becomes apparent,

and thereby exposing the melt rate. The relative ice-water velocity, salinity and

temperature were measured simultaneously at 2 and 10 meters below the ice floes.

The minimum melt rate is given as 0.25 m d−1, but rates as high as 0.5 m d−1

were also measured. The difference in bottom melt rates are mainly due to the

relative speed between the ice and the water, and the temperature. If the relative

velocity is large, the melting is enhanced. The salinity is fairly constant in the

area. On a time scale of a few days, the oceanographic conditions within a few

meters of the ice control the bottom ablation directly.

The lateral sides of an ice floe also absorb heat from the open water. In the article

by Hall & Rothrock (1987), one can read about the use of photogrammetry to

measure the lateral melting. The experiment was made during MIZEX’83-84.

The technique involves photographs of a chosen ice floe two separate days, and the

changes in the floe boundary are calculated. The lateral melt rate was measured

to be as high as 0.1 m d−1, but melt rates of 0.02 m d−1 were more commonly

observed. Lateral melting are influenced by a number of different mechanisms

that one can read more about in Steele & Flato (2000, and references therein).

They conclude that lateral melting is significant only for floes less than several

hundred metres in diameter.

Lateral ablation gain influence when the size of the ice floe decrease. This is

argued by scaling the area of the bottom versus the lateral area. The bottom

area of a circular ice floe is πr2, while the area of the lateral sides is 2πrh, where

r is the radius and h is the thickness of the ice. The circumference can become
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comparable to the area as the radius of the ice floe decreases. This is because the

ratio of lateral area to bottom area is greater for small ice floes than for large ice

floes.

2.5.2 Trapping of sea ice

The melting potential is distributed over a wider area due to the eddies’ non-

uniform motion. Moreover, this dilution will gradually make the sea ice struc-

turally weak, which makes the ice more sensitive to collisions between ice floes,

thus accelerating the melting even more (smaller ice floes melt away faster than

the larger ice floes). The trapping of sea ice in the centre of the eddy is an in-

teresting and a vital property of eddies, and the amount of ice trapped is crucial

when working out their effect on melting.

The ice is transported towards the centre of the eddy by means of the spiraling

motion. This is illustrated by Figure 2.6. One can imagine sea ice in the spirals

to understand that the motion simply transports the sea ice towards the centre,

where it also remains trapped because of the same motion.

The spiraling lines might be evidence of ageostrophic motion. The ageostrophy

ensures that the sea ice will gather in the centre of an anticyclonic eddy (con-

vergence), while dispersion is a more likely effect in the cyclones (divergence). It

is thus expected that anticyclones contain more sea ice. The frictional inward

radial motion is assumed to be the effect at work, but also the resulting surface

tilt may have an affect (Johannessen et al., 1987a).

Figure 2.6: This schematic illustration suggests how ice is transported towards
the centre. The balance of the pressure (gradient) force (PF) and the Coriolis
force (CF) resulting in geostrophic balance is also included.
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2.5.3 Calculation of the retreat

The zonal retreat of the ice edge is a good indicator of the effect of eddies. The

average retreat of the ice edge can be estimated with the help from Equation 2.8,

following Johannessen et al. (1987a):

A =
wπr2

2lh
(2.8)

Where w [m d−1] is the bottom ablation given by Josberger (1987). The eddy is

assumed to be circular, so the area of the eddy can be set to πr2, where r [km] is

the radius of the eddy. The distance between the centres of two eddies are given

by l [km], to cover the effect of eddy-eddy interaction. h [m] is the thickness of the

ice. The scaling factor by 2 is due to the fact that the eddy normally contains 50

% of ice. A [m d−1] express the average retreat of the ice edge (with the distance

l).

The sea ice volume in an eddy can be calculated using the formula for volume of

a cylinder (πr2h), where h is the thickness of the ice and r is the radius of the

eddy.





CHAPTER 3

Data and Approach

3.1 Remote sensing

In situ measurements at proper spatial and temporal scales are difficult to obtain

in terms of mesoscale to sub-mesoscale processes. When it comes to monitoring

marine coastal environments, remote sensing is a highly valuable tool, mainly

because of the wide range of scales involved (Johannessen et al., 1996). Satellite

remote sensing can be investigated for different phenomenon that may lead to new

insight and understanding of the processes that control them, and to a certain

degree even the ocean circulation as a whole. This chapter is mainly based on the

remote sensing theory found in Robinson (2004), with elements from the article

by McCandless & Jackson (2004).

Remote sensing uses different wavelengths of the electromagnetic (EM) spectrum

(see Figure 3.1), ranging from the visible light, radio and infrared (IR) wave-

lengths to the microwaves. Because the area of interest is located in a region that

is dark half the year and frequently cloudy, microwave observations are perfect

since the EM waves can pass through the clouds and are not dependent on light.

It can thus be regarded as an all weather system.

When the wavelength increases from the visible and IR area in Figure 3.1 to

the microwave area, the resolution will decrease. However, one instrument using

microwaves is capable of outperforming the resolution of IR and visible light; it

is the imaging SAR. Its high resolution and large spatial coverage makes SAR a

21
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very powerful tool. SAR images provides information about a number of oceanic

features such as surface and internal waves, currents, up-welling, sea ice, fronts,

shoals, variable wind velocities, ship traffic, oil spill and even rainfall (Johannessen

et al., 1996).
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Figure 3.1: The electromagnetic spectrum. Radar and passive radiometers use
the wavelengths on the right side. The different names on the microwave bands
are also shown. The figure is a modification of the version found in Berens (2011)

This chapter will cover the principles and methods of data acquisition and inter-

pretation, but before the attention is aimed at the SAR, the instrument providing

data for the sea ice extent is briefly presented: The sea ice extent and type data

are retrieved from the Advanced Microwave Scanning Radiometer (AMSR-E),

situated at the Earth Observing System (EOS) Aqua Satellite. The passive mi-

crowave radiometer measures the thermal radiation, also known as the brightness

temperature, emitted by the sea surface. It operates on the microwave part of the

EM spectrum. More information about the instrument can be found on Spreen

& Kaleschke (2011).

3.1.1 The Satellite

European Space Agency’s (ESA) Environmental Satellite (Envisat) was launched

1st March 2002. It is a sun synchronous polar orbiting satellite, meaning that

the satellite passes over the same part of the earth on nearly the same local time.

It orbits at an altitude of 790 km (±10 km), has a repeat cycle of 35 days, and

a complete coverage of the earth is obtained in 1-3 days. Envisat contains ten

instruments that provide measurements of land, ocean, atmosphere and ice. A

coverage map for the Envisat ASAR instrument can be seen in Figure 3.2a.

The data from the satellite are transmitted from ESA Satellite station in Kiruna

to Nansen Environmental and Remote Sensing Center (NERSC) in Bergen. They

are processed and analyzed at NERSC, where an archive with the ASAR images

has been made. The archive comprises at the time of writing over 10 000 ASAR

images, beginning with July, 2005.
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(a) (b)

Figure 3.2: (a) Map showing the satellite track coverage of ASAR images over
the polar area of the northern hemisphere, for nine days in 2005. The green
box shows the Wide Swath Mode, the red box the Image Medium Mode and the
blue box is the Alternating Polarization Mode. Made by Knut-Frode Dagestad1.
An example of the WSM can be seen in (b), showing an ASAR image from
the 19th May 2009 (descending path, H/H polarized). The size of this image is
∼300 × 1000 km.

lResearcher, NERSC
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3.1.2 Advanced SAR (ASAR)

ASAR is an extension of the SAR instruments flown on the European Remote

Sensing Satellites (ERS-1 and 2), and is one of the ten instruments operated on

Envisat. As the name indicates, it is a more advanced instrument compared to

SAR. It uses new technologies with improved performance, like a digital chirp

pulse generator, ScanSAR modus, dual polarization and an active group antenna

(antenna which both transmits and receives modules).

The ScanSAR technique makes wide area coverage possible. It enables 400 km

swath width with a resolution of 150 m or 1 km (Figure 3.2a), depending on

the mode. ASAR has seven different swath widths which gives incidence angles

ranging from 15° to 45°.

The target classification capability is improved with help from dual polarization.

The radar has the possibility to send horizontal or vertical polarized signals, and

receive either horizontal or vertical signals, or both. With dual polarization an

image is obtained with half of the looks from horizontal polarization, and the

second half from vertical polarization.

ASAR can operate in five different modes. Three of them are shown in Fig-

ure 3.2a. The green box is the Wide Swath Mode (WSM), which is utilized in

this study. The red and blue box are the Image Mode and Alternating Polariza-

tion Mode respectively. The two last modes are not included; namely the Global

Monitoring Mode and the Wave Mode. An example of an ASAR image obtained

from the WSM is shown in Figure 3.2b. Apart from the peculiar properties

mentioned above, ASAR and SAR share the same principles.

3.2 Principles of SAR

In general, the bigger the antenna, the higher resolution, thus enabling more

unique information to be reached. The SAR evades this principle. Synthetic

aperture means that the radar simulates a huge antenna by utilizing the flight

path of the satellite. As the satellite moves, the distance between the antenna

and a fixed surface target will vary continually, and the phase for the returned

signal will vary in line with the distance. The antenna has an actual length of

10 m, but with the SAR principle it seems as it has an antenna size equal to the

distance the SAR-antenna has moved (O(103) m). Without this technique, the
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SAR-antenna would have to be 80 times the size of the satellite to achieve the

same resolution. For the synthetic aperture principle to work properly, the exact

position of the satellite when sending and receiving the signals must be known.

The basic arrangement of a SAR can be seen in Figure 3.3. SAR is an active

instrument, it sends out a radar beam that it later receives as backscatter. The

pulses are emitted, and the echo is recorded coherently. The radar beam is

directed orthogonal to the satellites travelling direction, and the object on the

ground will be illuminated for an extended period of time, due to the beam

width. By demodulation and compression, the echo has the form of series of

several thousand measures of amplitude and phase of the backscattered signal,

recorded as a function of time.

Figure 3.3: Sketch illustrating the basic arrangement of a satellite SAR. One
should notice the definition of azimuth and range, the swath, the incidence an-
gle (θ) and beam footprint. The figure is retrieved from Robinson (2004).

3.2.1 Resolution in azimuth and range

The SAR sweeps over the ground like a scanning sensor, collecting data in both

the along-track (azimuth) and in the cross-track (range) direction. To gain fine

resolution in the azimuth direction, the synthetic aperture principle is applied.

The resolution is D/2, where D is the apparent length of the antenna. To sharpen
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the returned signal the Doppler frequency shift is used. The Doppler shift is

unique for every azimuth point in the beam footprint (the grey area in Figure 3.3),

since the relative velocity between the point and the radar is unique.

The range resolution is defined as cτ/2 sin θ, where c is the speed of light, τ

is the pulse duration and θ is the incidence angle. A frequency chirp (linearly

modulated pulse) is applied in order to achieve a resolution that is not limited

by the pulse duration τ .

3.2.2 Scattering

Bragg scattering

The ocean surface experiences a spectrum of waves, from short ripples to waves

hundreds of meters long. It is constantly moving with a variety of motions. SAR

backscatter is particularly sensitive to the wind induced Bragg waves that have a

wavelength of the same order as the EM wavelength projected from the antenna

(mm to cm scale). This is called Bragg scattering, a phenomenon known to

amplify the backscattered signal.

Surface and volume scattering

The signal from the sea ice is backscattered from surface scattering, volume scat-

tering or multiple volume-surface scattering (see Figure 3.4). Surface scattering

takes place at the surface. The roughness evident on an image of any scattering

surface depends on the radar frequency, polarization and the incidence angle of

the beam. The relative importance between these contributions depend on the

surface roughness and the dielectric properties of the sea ice. Examples of surface

scattering can be seen in Figure 3.4a, 3.4b and 3.4c, which show the backscat-

ter when the surface is smooth, slightly rough or rough, respectively. Volume

scattering is scattering within the sea ice, mainly due to the presence of brine

pockets. A principle sketch can be seen in Figure 3.4d. The signal from sea ice

will vary in a broad range due to variation in ice type, the dielectric properties

and spatial distribution of the ice, internal geometry, ice cover, temperature and

even the formation conditions.
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(a) Smooth surface (b) Slightly rough surface

(c) Rough surface (d) Volume scattering

Figure 3.4: Surface scattering in the situation of a smooth surface (a), a slightly
rough surface (b), and a rough surface (c). Volume scattering is sketched in (d).
The figures are based on a figure in (Robinson, 2004, Figure 9.8).

3.3 SAR image interpretation

SAR provides a two dimensional image of the surface, as the example in Fig-

ure 3.2b. Each pixel represents an estimation of the backscatter for a confined

area on the surface. The dark areas represent low backscatter, while brighter ar-

eas can be interpreted as high backscatter. High backscatter means that a large

fraction of the energy from the transmitted pulse are returned to the antenna,

while low backscatter indicates the opposite. When looking at a radar image, a

useful rule-of-thumb is that the brighter area, the rougher the surface.

The magnitude of the backscatter is normally denoted as σ0 and is as mentioned

a measure of the surface roughness. The surface roughness is, in addition to

wind, influenced by waves, currents, surface films (natural or e.g. oil) and sea

ice. The wind generates the sea surface roughness field, and the feature of an

ocean phenomenon appears on the image because the phenomenon modulates

this wind generated roughness field. With too high wind speed (>12 m s−1), this

modulation is indistinguishable. In contrast, with too calm conditions (≤2 m s−1)

the backscatter is close to the SAR noise floor. Small regions of low backscatter
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can be found in the SAR images that may be related to damping materials on

the surface. These materials may be shed off in case of strong wind. The optimal

wind conditions for the SAR are a wind speed between 4 and 12 m s−1.

3.3.1 Eddy signature

The resolution of the instrument makes it capable of imaging eddies on a broad

range of length scales, from 5 to 200 km. The ocean circulation, like the spiraling

eddies, can be detected easy if surface manifestations are present. The sea ice act

as Lagrangian drifters moving with the current (Shuchman et al., 1987), simpli-

fying the search of eddies. By the presence of these surface manifestations, one

can retrieve interesting information about the eddies; their rotational direction,

horizontal dimensions, area of sea ice, spiraling structure and with that the eddy

asymmetry (Ivanov & Ginzburg, 2002).

During this study, close to 4000 ASAR images have been investigated for the

presence of eddies. The eddy characteristics in focus were the size, the area of

its presence and the rotational direction. The daily number of eddies and the

number of images with eddy signature were also counted.

The interpreting accomplished is a fairly subjective method; two examinations

of the same image might differ in the result due to the potential ambiguity. In

Figure 3.5, three examples of extracted ASAR images are presented; a clear and

indubitable eddy signature can be seen in Figure 3.5a, and a case of doubt in 3.5b.

A debatable example is shown in Figure 3.5c; two eddy signatures are evident at

the ice boundary even though the sea ice in the eddy is absent. In this thesis,

the third example are considered as two adequate eddies. It should be mentioned

that it is highly possible that an eddy has been counted several times, a fact that

must be taken into consideration when using the data. One can with relative well

certainty assume that each eddy is counted twice.
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(a) (b) (c)

Figure 3.5: Three examples of images with different difficulty regarding inter-
pretation. In the first example, (a), it is easy to manifest at least one eddy. The
second, (b), can be ambiguous. (c) has the signature of two eddies at the boundary.
The horizontal scale of the images is ∼100 km.

3.4 Wind retrieval

Information about the wind speed and direction can be obtained from SAR images

due to their dependency on the surface roughness, σ0, relative to the radar viewing

direction. σ0 = σ0(U, χ, θ, p), where U is the wind speed, χ is the direction,

θ is the incidence angle, and p is the polarization. p is a known parameter

and θ is dependent on the range location. This information reveals the possible

combinations of U and χ. One has to know the wind direction so that U can

be solved directly. The CMOD-4 algorithm can be applied to calculate the wind

speed (Stoffelen & Anderson, 1997).

The wind direction is estimated from numerical weather prediction models, like

HIRLAM or NCEP. HIRLAM, or the High Resolution Limited Area Model, is

a European cooperative program that develops a numerical weather prediction

system. More details about the HIRLAM can be found in e.g. (HIRLAM, 2010;

Unden et al., 2002). The National Centers for Environmental Predictions (NCEP)

delivers, among other products, global weather forecasts. More information about

this model can be found on (NOAA, 2011).

CMOD-4 provides information about σ0 as a function of relative wind direction,

wind speed and incidence angle. The function is given as

σ0 = B0[1 +B1 cosχ+B2 cos 2χ] (3.1)

where
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B0 = 10α+LUT (θ)+γf1(U+β) (3.2)

The coefficients in Equation 3.1, B0, B1 and B2, depend on the incidence angle of

the radar beam, in addition to the wind speed. B1 is the upwind/downwind term

and B2 is the upwind/cross-wind term. In Equation 3.2, α and γ are parabolic

functions of θ (Stoffelen & Anderson, 1997). The problem with wind speed at the

low velocity scale is solved by the parameter β, which has a parabolic dependency

on θ. LUT (θ) must be computed from a comparison between the satellite mea-

sured σ0 and European Centre for Medium-Range Weather Forecasts (ECMWF)

simulated σ0. f1(U + β) depends on the size of (U + β):

f1(U + β) =


−10 if (U + β) ≤ 10−10

log(U + β) if 10−10 < (U + β) ≤ 5√
(U + β)

3.2
if (U + β) > 5

(3.3)

The forecast model used in the CMOD-4 algorithm is the NCEP Global Forecast

System (GFS) model. The flow chart in Figure 3.6 shows how consistent wind

speed data are retrieved by the use of the ASAR data, the NCEP data and the

CMOD-4 algorithm.

The estimated wind direction and the solved wind velocity are made available in

the same archive as the ASAR images (described in Section 3.1.1). An example

of an ASAR image with the appurtenant wind data can be seen in Figure 3.6.

Wind data were gathered simultaneously with the eddy data; when an eddy

was observed in an image, the wind field data of the same area were collected.

In case of two eddies in the same image, the representative mean wind was se-

lected. The weather prediction model used for wind direction is mainly HIRLAM.

When HIRLAM does not deliver the data, the NCEP wind direction is invoked.

HIRLAM has a poor coverage in Area 3, so NCEP is used as required.
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Figure 3.6: Flow chart showing the arrangement of CMOD-4 together with wind-
and ASAR data. The result, the consistent wind speed, shows the speed (from light
blue (weak wind) to black (strong wind)) the direction and the surface signature
of the sea ice.





CHAPTER 4

Results

4.1 Statistics of eddy occurrence

The occurrence of eddies in the MIZ varies from year to year, month to month

and day to day. The total number of eddies in 2008 and 2009 can be found in

Table 4.1, it shows that the number of eddies in 2009 exceeds 2008 with 238. Due

to the lack of longer time series the variation on a shorter time scale will be in

focus from here on.

Table 4.1: The total number of eddies in each month in 2008 and 2009. The
total number of each year is given in the last column.

J F M A M J J A S O N D Total

2008 39 26 35 80 92 108 97 101 145 82 49 95 949

2009 101 84 56 108 225 142 111 140 48 62 52 58 1187

4.1.1 Monthly variability

Eddy occurrences

The total number of eddies each month is the intentional subject of Table 4.1.

This, in combination with Figure 4.1, highlights the monthly and seasonal vari-

33
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ability of the eddy occurrence. The upper part of Figure 4.1 represent the data

from 2008, the 2009 data are in the lower.
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Figure 4.1: The annual variation of the occurrence of eddies. The upper has
data from 2008 (blue), the lower from 2009 (green).

The data from 2008 reveal some eddy activity in the beginning of the year before

a draught is apparent in the end of January to mid-February. A rising trend from

the last part of February to the beginning of July can be seen, with a maximum

in the end of May and in June. July experiences a relatively even distribution

of the occurrence of eddies. Another maximum of eddy occurrence is reached in

mid-September, with a maximum of twelve in one day. The presence of eddies

decrease towards the end of the year, with a slight increase in the end of October

and beginning of November, and in December. The month with highest number

of eddy occurrences in 2008 is September, the lowest is February (cf. 4.1).

The data from 2009 reveal relatively high eddy occurrence in the beginning of

the year, compared to 2008. Somewhat more calm conditions are evident in the

beginning of March. Then an increase follows toward the end of May, reaching

a maximum of twenty eddies per day. Another peak is seen at the beginning of

July, but this does not reach the same magnitude. Late summer and early fall

experiences some eddy activity, with a decrease towards the beginning of October.

Mid-October points out one day with eight eddies present, the rest of the year
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shows no intense eddy occurrence. The month with the highest number of eddy

occurrences is May, the lowest is September.

Even though the variation is versatile, a common pattern in the two figures can

be found: The eddy occurrence is more frequent from the late spring to the early

fall, and less frequent rest of the year. With that said, it is worth mentioning

that some exceptions exist, e.g. December, 2008 and January, 2009.

The bar charts in Figure 4.2 show the total number of SAR images that contain

eddy signature compared to images without the characteristic signature. It does

state a similar trend as Figure 4.1.
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Figure 4.2: The annual variation of eddy images with (blue bars) and without
(green bars) eddy signature. The upper has data from 2008, the lower from 2009.

The data from 2008 (upper part) show that there are fewer images with eddies in

the beginning of the year, but the number increases relatively steady toward the

summer months, followed by a slight decrease the rest of the year. The columns

showing images without eddies state the opposite, with many images without

eddy signatures in the beginning of the year, a decrease towards the summer

and early fall, and again a rise towards the end of the year. Two months does

not follow the expected trend; June has less images with eddies than without,

December has the opposite.

The data from 2009 (lower part) show in general the same trend. During the
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summer months, there exist more images with eddies than without, and oppo-

sitely the rest of the year. One exception that is worth mentioning is July, which

has less images with than without.

Sea ice extent

The sea ice extent and composition varies seasonally and annually, in Figure 4.3

one can see the maximum and minimum extent. Maximum occurs normally in

the late March and April (Figure 4.3a and 4.3c), and minimum in September

(Figure 4.3b and 4.3d). The fraction of the ice cover is indicated with different

colours, defined by the colour bar on the right.

(a) April, 2008 (b) September, 2008

(c) April, 2009 (d) September, 2009

Figure 4.3: Maximum (left) and minimum sea ice extent in the area of inter-
est. The maximum occurs in the beginning of April, the minimum extent around
September. The colour bar to the right represents the fraction of the ice cover (1
= 100%, 0 = ice free surface). The figures are made by Francois Counillon1 with
data from AMSR.

1Post-doc, NERSC
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The results from the study of the monthly variability (e.g. Figure 4.1) shows

that the climax of eddy occurrence is reached around September. Contemplating

Figure 4.3 with this in mind, it is evident that the maximum occurs when the

sea ice extent is near its minimum.

4.1.2 Regional variability

Table 4.2 shows the distribution of eddies by comparing the three areas against

each other. Area 1 has almost 39% of the eddy occurrence, Area 2 has 54%,

compared to Area 3, which has only approximately 7% (in total for both years).

Table 4.2: The total number of eddies in the three areas with an emphasis on the
regional variability. The total number of eddy occurrence highlights the differences.
Data from both 2008 and 2009 are included.

Area 1 Area 2 Area 3

No. of cyclones 651 881 118
No. of anticyclones 171 276 39
Total 822 1157 157
% cyclones 79 76 75

In addition to the regional difference in eddy occurrence, Table 4.2 highlights the

relation between cyclonic and anticyclonic rotation in the three areas; Area 1 has

79% cyclones, Area 2 has 76%, while Area 3 has 75%. This difference between

cyclones and anticyclones is also the subject of Table 4.3. The number of cyclonic

eddies are 734 for 2008 and 916 for 2009, while the total number of anticyclones

are 215 in 2008 and 271 in 2009. Some percentage calculations are performed to

emphasize the differences; ∼77% of the eddies rotate cyclonic, thus 23% rotate

in the opposite direction. This relation applies to both 2008 and 2009.

Table 4.3: The total number of cyclones versus anticyclones. The percentage
calculation emphasizes the distinct difference.

2008 2009 Total

No. of cyclones 734 916 1650
No. of anticyclones 215 271 486
% cyclones 77 77 77

In search of some possible annual variation of the rotational direction, the yearly

distribution of cyclones and anticyclones are investigated (see Figure 4.4). In gen-
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eral, the cyclonic distribution (upper part) shows the same pattern as Figure 4.1

and 4.2. The presence of anticyclones (lower part) are relatively even distributed

over the two year period, with a maximum of four eddies in the same day.
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Figure 4.4: Annual variation of the presence of cyclonic (top) and anticyclonic
eddies during 2008 (blue) and 2009 (green).

4.2 Size

The Rossby radius of deformation is presented in Equation 2.2. To calculate

the radius one must have in situ data covering the area. This can be found by

inspecting the hydrographic sections in the paper by (Johannessen et al., 1987a,

Their figure 4(c,d)). The sections are taken during MIZEX’84 in the area between

78-79° N, but are assumed applicable for the entire area. The calculation of the

Rossby radius and the dimensionless Rossby number in the three areas are given

in Table 4.4.

The Rossby number is of O(10−2). By definition, the eddies will thus be referred

to as quasi-geostrophic. The mean radius of the eddies are set to 30 km (±5 km).

In comparison, the deformation radius is approximately 4 km in the MIZ. That

means that the eddies will run their course in accordance with geostrophic bal-

ance.
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Table 4.4: Overview of the important values regarding eddy characteristics. θ is
the latitude, f is the Coriolis parameter and β is the variation of Coriolis with
latitude. These are parameters used in the calculation of the the Rossby number
(R0) and the Rossby radius of deformation (Rd).

θ [° N] f [s−1] β [s−1] Rd [km] Ro

Area 1 79 1.43 * 10−4 2.78 * 10−5 3,75 0,0160
Area 2 74 1.40 * 10−4 4.02 * 10−5 3,83 0,0163
Area 3 67 1.34 * 10−4 5.70 * 10−5 4,00 0,0178

The Rossby radius of deformation varies with both region and season. The re-

gional variation is due to the Coriolis parameters (f) dependency on latitude;

the deformation radius decreases with the distance from the Equator, as seen in

Table 4.4.

The deformation radius depends on both the density difference and the depth of

the mixed layer. These are parameters that varies with the season. In the winter

H is thicker the density difference is lower than in the summer. During winter,

the radius is closer to the O(101) (Häkkinen, 1986).

4.2.1 The amount of sea ice trapped in the eddy

The eddies move sea ice away from the ice edge and into the warmer water. This

amount of removed sea ice is interesting to quantify. The amount depends on

the area of the eddy. An eddy is capable of trapping (πr2)/2 km2 of sea ice,

when assuming that 50% of the eddy is covered with ice. This equals 1413.7 km2,

using a mean radius of 30 km. The thickness of the ice is not possible to directly

estimate from the satellite sensor used, so a representative thickness is invoked.

Assuming an ice thickness of 1.5 m the volume of sea ice in an eddy is calculated

to be 2 km3.

The anticyclones have an advantage of trapping the ice in the centre over cyclonic

eddies, as described in Section 2.5.2. Two contradictory examples found in the

MIZ can be seen in Figure 4.5 and in Figure 4.6. In both figures, (a) shows little

sea ice in the centre, whereas (b) shows a more gathering case.
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(a) (b)

Figure 4.5: An example showing the difference of the amount of sea ice in two
cyclonic eddies. The eddy in (a) contain less sea ice than the one in (b). The
diameter of (a) is around 25 km, while (b) is close to 40 km.

(a) (b)

Figure 4.6: An example showing the difference of the amount of sea ice in two
anticyclonic eddies. The eddy in (a) contain less sea ice than the eddy in (b).
The diameter of (a) is around 60 km, while (b) has a diameter of approximately
50 km.

4.3 Wind influence

Table 4.5 and 4.6 show the number of eddies traceable during different wind

direction and intervals. The tables are a reproduction of data found in Appendix

B, but with a more straightforward presentation of the wind. The data from

Area 1, Area 2 and Area 3 are represented in separate sub-tables. It should be

noted that eddies without wind data are excluded from these tables. The wind

velocity is given in four intervals, the same intervals as the wind rose is separated

into. The circles of the wind rose denote the percentage of one particular wind

direction.
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Table 4.5: The three sub-tables show the total number of eddies for each month
of 2008. (a) covers Area 1, (b) Area 2 and (c) covers Area 3. Wind direc-
tion and velocity [m s−1] are given in four intervals; Blue=[0-6], Green=[7-11],
Yellow=[12-15] and Red= >15. The wind rose can be interpreted as a histogram;
the circles represent the percentage of the wind with that particular direction where
the outermost circle is 15% and the inner is 5%.

(a) Area 1

 

 

Month Total Wind Velocity      Wind Direction 

  6 [0-6]  

January 2 [7-11]  

 
1 [12-15]  

  0 >15  

 
1 [0-6]  

February 3 [7-11]  

 
0 [12-15]  

  0 >15  

 
6 [0-6]  

March 5 [7-11]  

 
2 [12-15]  

  0 >15  

 
6 [0-6]  

April 5 [7-11]  

 
0 [12-15]  

  0 >15  

 
10  [0-6]  

May 8 [7-11]  

 
0 [12-15]  

  2 >15  

 
6 [0-6]  

June 4 [7-11]  

 
3 [12-15]  

  0 >15  

 
5 [0-6]  

July 9 [7-11]  

 
0 [12-15]  

  0 >15  

 
9 [0-6]  

August 8 [7-11]  

 
1 [12-15]  

  0 >15  

 
6 [0-6]  

September 17 [7-11]  

 
2 [12-15]  

  0 >15  

 
6 [0-6]  

October 12 [7-11]  

 
0 [12-15]  

  1 >15  

 
2 [0-6]  

November 7 [7-11]  

 
0 [12-15]  

  1 >15  

 
5 [0-6]  

December 2 [7-11]  

 
2 [12-15]  

  2 >15  
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Table 4.5: Continued

(b) Area 2

Month Total Wind Velocity Wind Direction 

 
6 [0-6]  

January 2 [7-11]  

 
0 [12-15]  

  0 >15  

 
3 [0-6]  

February 5 [7-11]  

 
0 [12-15]  

  1 >15  

 
4 [0-6]  

March 2 [7-11]  

 
2 [12-15]  

  0 >15  

 
8 [0-6]  

April 7 [7-11]  

 
0 [12-15]  

  0 >15  

 
13 [0-6]  

May 4 [7-11]  

 
1 [12-15]  

  1 >15  

 
9 [0-6]  

June 7 [7-11]  

 
1 [12-15]  

  0 >15  

 
13 [0-6]  

July 9 [7-11]  

 
0 [12-15]  

  0 >15  

 
8 [0-6]  

August 8 [7-11]  

 
0 [12-15]  

  0 >15  

 
5 [0-6]  

September 12 [7-11]  

 
2 [12-15]  

  0 >15  

 
6 [0-6]  

October 6 [7-11]  

 
1 [12-15]  

  2 >15  

 
2 [0-6]  

November 5 [7-11]  

 
2 [12-15]  

  0 >15  

 
3 [0-6]  

December 10 [7-11]  

 
3 [12-15]  

  1 >15  
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Table 4.5: Continued

(c) Area 3

Month Total Wind Velocity Wind Direction 

 
0 [0-6]  

January 1 [7-11]  

 
0 [11-15]  

  0 >15  

 
0 [0-6]  

February 0 [7-11]  

 
0 [11-15]  

  0 >15  

 
0 [0-6]  

March 0 [7-11]  

 
0 [11-15]  

  0 >15  

 
0 [0-6]  

April 1 [7-11]  

 
0 [11-15]  

  0 >15  

 
1 [0-6]  

May 2 [7-11]  

 
0 [11-15]  

  0 >15  

 
2 [0-6]  

June 3 [7-11]  

 
0 [11-15]  

  0 >15  

 
0 [0-6]  

July 1 [7-11]  

 
0 [11-15]  

  0 >15  

 
0 [0-6]  

August 0 [7-11]  

 
0 [11-15]  

  0 >15  

 
0 [0-6]  

September 0 [7-11]  

 
0 [11-15]  

  0 >15  

 
0 [0-6]  

October 0 [7-11]  

 
0 [11-15]  

  0 >15  

 
2 [0-6]  

November 0 [7-11]  

 
2 [11-15]  

  0 >15  

 
3 [0-6]  

December 1 [7-11]  

 
0 [11-15]  

  0 >15  
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Table 4.6: The three sub-tables show the total number of eddies for each month
of 2009. (a) covers Area 1, (b) Area 2 and (c) covers Area 3. Wind direc-
tion and velocity [m s−1] are given in four intervals; Blue=[0-6], Green=[7-11],
Yellow=[12-15] and Red= >15. The wind rose can be interpreted as a histogram;
the circles represent the percentage of the wind with that particular direction,
where the outermost circle is 15% and the inner is 5%.

(a) Area 1

Month Total Wind Velocity Wind Direction 

 
6 [0-6]  

January 10 [7-11]  

 
3 [11-15]  

  0 >15  

 
2 [0-6]  

February 5 [7-11]  

 
1 [11-15]  

  1 >15  

 
6 [0-6]  

March 3 [7-11]  

 
2 [11-15]  

  3 >15  

 
5 [0-6]  

April 7 [7-11]  

 
2 [11-15]  

  2 >15  

 
8 [0-6]  

May 11 [7-11]  

 
1 [11-15]  

  0 >15  

 
13 [0-6]  

June 5 [7-11]  

 
0 [11-15]  

  0 >15  

 
15 [0-6]  

July 8 [7-11]  

 
0 [11-15]  

  0 >15  

 
17 [0-6]  

August 8 [7-11]  

 
0 [11-15]  

  0 >15  

 
5 [0-6]  

September 8 [7-11]  

 
0 [11-15]  

  0 >15  

 
4 [0-6]  

October 4 [7-11]  

 
1 [11-15]  

  1 >15  

 
10 [0-6]  

November 9 [7-11]  

 
1 [11-15]  

  0 >15  

 
5 [0-6]  

December 9 [7-11]  

 
1 [11-15]  

  1 >15  
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Table 4.6: Continued

(b) Area 2

Month Total Wind Velocity Wind Direction 

 
10 [0-6]  

January 7 [7-11]  

 
1 [12-15]  

  0 >15  

 
1 [0-6]  

February 9 [7-11]  

 
1 [12-15]  

  3 >15  

 
4 [0-6]  

March 3 [7-11]  

 
3 [12-15]  

  1 >15  

 
3 [0-6]  

April 13 [7-11]  

 
4 [12-15]  

  0 >15  

 
14 [0-6]  

May 15 [7-11]  

 
0 [12-15]  

  0 >15  

 
7 [0-6]  

June 10 [7-11]  

 
0 [12-15]  

  0 >15  

 
23 [0-6]  

July 3 [7-11]  

 
0 [12-15]  

  0 >15  

 
17 [0-6]  

August 8 [7-11]  

 
0 [12-15]  

  0 >15  

 
3 [0-6]  

September 7 [7-11]  

 
1 [12-15]  

  3 >15  

 
4 [0-6]  

October 6 [7-11]  

 
0 [12-15]  

  0 >15  

 
3 [0-6]  

November 5 [7-11]  

 
1 [12-15]  

  1 >15  

 
8 [0-6]  

December 5 [7-11]  

 
2 [12-15]  

  0 >15  
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Table 4.6: Continued

(c) Area 3

Month Total Wind Velocity Wind Direction 

 
3 [0-6]  

January 2 [7-11]  

 
0 [12-15]  

  0 >15  

 
0 [0-6]  

February 4 [7-11]  

 
1 [12-15]  

  0 >15  

 
0 [0-6]  

March 0 [7-11]  

 
0 [12-15]  

  0 >15  

 
5 [0-6]  

April 4 [7-11]  

 
0 [12-15]  

  0 >15  

 
3 [0-6]  

May 6 [7-11]  

 
1 [12-15]  

  0 >15  

 
6 [0-6]  

June 3 [7-11]  

 
0 [12-15]  

  0 >15  

 
2 [0-6]  

July 1 [7-11]  

 
0 [12-15]  

  0 >15  

 
0 [0-6]  

August 0 [7-11]  

 
0 [12-15]  

  0 >15  

 
0 [0-6]  

September 0 [7-11]  

 
0 [12-15]  

  0 >15  

 
3 [0-6]  

October 2 [7-11]  

 
0 [12-15]  

  2 >15  

 
2 [0-6]  

November 0 [7-11]  

 
1 [12-15]  

  3 >15  

 
2 [0-6]  

December 2 [7-11]  

 
1 [12-15]  

  1 >15  
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Strong winds are here defined to have velocities ≥12 m s−1, with moderate winds

following as <12 m s−1. With this in mind, one can see from the first table (4.5)

that eddies are observed even though the wind is supposed to be too strong. In

Area 1, this is the case in every month, except February, April and July. The

latter two months also experience calm conditions in Area 2 in addition to January

and August. Area 3 experiences relative strong wind from west in November, the

conditions are calm beyond that. One common feature regarding eddy occurrence

in spite of strong wind is that the wind is mainly directed from the north or the

south, with a majority of the wind-from-north case. When it comes to the wind

with lower speed, a typical direction can not be manifested. In cases with a high

percentage of a particular wind event, the wind is from north of south, again

with a higher number with wind from the north. Exceptions exist however, as in

Area 1 in October, which contain eddies during a western wind field. A general

seasonal cycle can be drawn; the highest wind speeds occur in the beginning and

end of the year (the late fall and winter months), with May as an exception. More

calm conditions are evident in the summer months (June, July and August).

In 2009 (Table 4.6) the same trend regarding wind with high speed applies; north

or south directed wind does not erase the eddy signature. The majority of wind

from north still applies. Some exceptions worth mentioning is in March and May

in Area 1, where strong winds from east and west, respectively, are evident, and

in January in Area 2, showing strong easterly wind. Area 3 experiences strong

wind from the north, which is especially strong at the end of the year. When a

high number of eddies is evident, the wind is mainly directed from the north, but

also situations with a southerly wind are registered. The seasonal cycle regarding

the highest wind velocities is more prominent in 2009 than in 2008. From the

beginning of the year until April, the highest velocities are experienced, and the

same applies from September to December. The summer months show mainly

calm conditions.

Most eddies are found in the summer when the wind fields are predominantly weak

to moderate. It is noticeable that eddies exists even when both wind direction

and wind velocity would indicate a signature free surface.

4.4 Retreat of the ice edge

In Section 4.2.1 the area of sea ice in an eddy were found to be 1413.7 km2. The

total number of eddies during a year were counted to be around 1000, but are here
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assumed to be 500, since the total number must regarded as an overestimation

(due to the likelihood of counting the same eddy several times, as mentioned in

Section 3.3.1). By multiplying the number of eddies (500) with the amount of

sea ice in an eddy, the yearly effect of the eddies amounts to 0.7×106 km2. By

considering the ice edge in Figure 4.3, a yearly mean extent of ∼1000 km can be

assumed. The mean ice loss along the entire edge is thus 700 km each year.

How efficient the sea ice trapped in the eddy melts is considered next. Table 4.7

hold the values used. The thickness of the ice is assumed to be in a range between

0.5-4.0 m. The mean bottom ablation is 0.38 m d−1 (Josberger, 1987). It will

thus take 1.3-10.5 days for an eddy to melt the ice it has captured. An eddy that

contains sea ice with a mean thickness of 1.5 m will use 4 days to completely melt

it all, independent of the horizontal extent of the ice.

Table 4.7: The range of values for the different terms in Equation 2.8 together
with the values used in the calculation.

Variable Value Range Unit

h = Thickness of sea ice 1.5 0.5 - 4.0 m
ice = Percentage of ice in the eddy 50 10 - 50 %
l = Eddy separation distance 100 60 - 200 km
w = Bottom Ablation 0.38 0.25 - 0.50 m d−1

r = Radius 30 20 - 40 km

When calculating the daily zonal retreat of the ice edge, the usefulness of Equa-

tion 2.8 makes it worth repeated:

A =
wπr2

2lh

It depends on the five parameters listed in Table 4.7. By inserting the values

from this table in Equation 2.8 one will get an average retreat of the ice edge of

3.5 km d−1. This is an average for a length (l) of the sea ice (here 100 km). By

again using a mean ice extent of 1000 km, the daily retreat of the entire ice edge

becomes 35 km d−1.

The respective impact of the five parameters on the retreat is given in Figure 4.7.
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Figure 4.7: The retreats dependency on the varying parameters in Equation
2.8, the parameters are plotted against each other to see the contribution from
each of them. The subscripts used are h, the thickness of the ice; ice denotes
the percentage of ice in one eddy; l is the distance between the center of two
neighbouring eddies; w is the bottom ablation; and r is the radius.

The parameters

When the ice is thin, the retreat is high, while the retreat diminishes in relation

to the thicker ice. This can be seen from Figure 4.7, presented by the blue line.

The thickness of the ice, h, varies with the season in the range of 0.5-4.0 m.

In the summer this range is narrow, with mainly MY to FY ice present. The

range is wider in the winter as new ice formation occurs. FY is relatively thin

(typically O(100 m). MY ice has survived at least one summer melting season

and is thus thicker than the FY ice (typically >2.5 m). It is here assumed an ice

thickness of 1.5 m. The ice has had the possibility of growing for a while, but

still not to extreme thickness.

The effect of high (50%) or low (10%) ice concentration in an eddy is highlighted

by ice (green line). Low ice concentration contributes to a higher retreat than

eddies with higher ice concentration. In summer this is related to the absorption

of heat from the solar radiation. The sea ice has high albedo (∼0.85), so with

sea ice present a high proportion of the solar radiation is reflected. Open water
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absorbs radiation (albedo <0.1). With reduced ice concentration in the eddy, the

solar absorption is increased. The melting thus increase when the fraction of sea

ice in an eddy decreases. A value of 50% is used in the calculation, a relatively

good approximation argued by taking a close examination of the distinct eddy in

Figure 3.2b, located right west of Svalbard and a bit south of the Molloy Deep.

The frictional forces between the ice floes does also have a contribution, but the

exact influence is difficult to state. The amount of sea ice in an eddy is also

related to the life cycle of the eddy.

The next parameter is the effect of eddy-eddy interaction. The distance between

two neighbouring eddies, l, contribute to increased retreat when eddies are in close

proximity of each other. This indicates that separate eddies have an influence on

each other. It should be mentioned that the frequency in the zonal direction is

not emphasized. In Figure 4.7, l is given by the red line. Since the mean radius

is 30 km, the minimal value of l is 60 km (2×r). The maximum distance is here

assumed to be 200 km. The distance of 100 km represent a common scenario,

founded by evaluating a number of images, e.g. Figure 3.2b.

The sea ice floes in the MIZ are found to have a diameter of less than 1 km

(Gascard et al., 1988), predominantly formed by wave propagation into the MIZ.

This is confirmed in the article by Johannessen et al. (1987a), where they observe

relative small ice floes (200 m across). In Section 2.5.1, the contribution from

bottom versus lateral melt was highlighted. The relation between the area of the

circumference versus the area of the bottom is calculated to be 1:70 when the ice

floe is assumed to have a diameter of 200 m. Thus the bottom ablation has the

biggest contribution, a result that is confirmed by Josberger (1987). The bottom

ablation, ω, is based on his findings. It is highly variable, both in time and space.

It depends on the temperature elevation above the freezing point, which again

depends on the salinity of the water. A salinity of 32 was assumed as a mean for

the whole area. In cases when the relative speed between water and ice increases,

the melting is enhanced. Bottom ablation is not the only process that results

in ice destruction along the ice edge. Surface waves and ice floe collisions will

also have a contribution, in addition to lateral melt. The lateral melt will have

an increasing importance as the size of the ice floes decrease. These additional

ablation effects are not included in the calculation. The increasing retreat depends

linearly on the increasing bottom ablation.

It is found that the retreat of the ice edge increases in step with increasing radius

(black line). Eddies with large horizontal extent contributes to a higher retreat
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of the ice edge due to the amount of sea ice it can trap and remove. It should be

noted that an abundance of small eddies may have a bigger contribution than a

few big ones.

In Figure 4.8 six images from different days are presented in a mosaic to see

how the sea ice content in an eddy evolve. A cyclonic ice edge eddy with a

mean diameter of 30 km started to form around 77°N and ∼18°W. Its presence is

traceable from 4th August to 10th September. It may be present for even longer

time, but this is not verified by the satellite. Based on the amount of sea ice in

the eddy centre, the assumed full development of the eddy was reached between

14th and 17th of August.
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17.8 20.8 28.8
Figure 4.8: The evolution of an eddy in twenty days. The upper image shows the
location of the eddy (approximately 77° N and 18° W). The six sub-images show
an in-zoom of one chosen eddy with a mean diameter of 30 km. The evolution
and the beginning of the decay can be seen. The exact date of acquisition is shown
in the lower left corner of each sub-image.



CHAPTER 5

Discussion

5.1 Regional and seasonal variation

Regional

The occurrence of eddies varies in the three areas of interest; 39% of the eddies

are located in Area 1, 54% in Area 2 and only 7% in Area 3.

The most important factor when explaining this regional variability is the uneven

division of the three areas. Area 1 has a length of approximately 220 km, Area

2 is much bigger with a length of 880 km, while Area 3 has a length around 500

km where eddies likely occur.

The regional variability is also related to the seasonal variation of the location

of the ice edge, cf. Figure 4.3. The varying balance between northward and

westward advection of near-surface oceanic heat, and the southward and eastward

wind-driven ice drift is indicated as determining factors deciding the location of

the ice edge (McPhee et al., 1987). There are evidence of sea ice eddies even

though the sea ice do not extend all the way south to the area where the eddies

are located. This situation are found in Table 4.5 and 4.6, compared with the sea

ice extent in Figure 4.3b and 4.3d. A typical example is Area 3 in the summer

months. This contradiction may be explained by the resolution of the AMSR

data the sea ice extent figures are based on (12.5 km). The interfering from land

also impoverish the data; a reduced data quality must be assumed in a band of
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50-100 km near land (Johannessen, 2011).

Another factor is the different generation mechanisms, most comprehensible the

varying bathymetry in the different areas. For example, the generation mecha-

nism related to the topography is only relevant if the bathymetry contains sea

mounts or deeps. Most of the observations of eddies are made in areas where

structures like these are not represented (typically Area 2). The eddies that are

advected from the WSC tend to follow fracture zones and ridges, as described

briefly in Section 2.4. The bathymetric chart in Figure 2.1 gives an immediate ex-

planation why this generation mechanism elevate the occurrence in the northern

part of the area.

As mentioned in Section 2.2.1, Johannessen et al. (1983) suggested an ice edge jet

in the EGC to describe the motion of ice floes they observed. They also observed

horizontal current shear between EGC and the recycled AW, and noted that an

inflection point existed in the area of the current shear. Thus, the mean kinetic

energy can be transferred to the eddies. The vicinity to this jet is thus a factor

that may explain the variability.

Seasonal

The seasonal distribution of the occurrence of eddies shows in general the same

trend over the two years; the winter and early spring experience less eddies than

the late spring, summer and early fall. This applies despite the fact that the

extent of the sea ice is much smaller in these months compared to the winter

season.

The reason why eddies occur more frequent during the summer months might be

due to the wind force. By studying Table 4.5 and 4.6 with focus on weak winds,

June, July and August stand out as the months that experience fewest occasions

with strong wind. This is verified by Figure 5.1, which shows the wind strength

during the two years. The summer of 2008 experiences separate days of moderate

wind, but overall relative calm conditions. The data for 2009 indicate in general

a calm summer regarding the wind. To conclude that the wind are weaker during

these months is too daring, but it can be viewed as a pointer.

The sea ice in the MIZ melts during both summer and winter, due to the proximity

of water with temperatures above the freezing point, as described in Section 2.2.1.

One of the main reasons why the melting increases during the summer months
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are mainly because the solar radiation is at its most intense. This heating of the

surface layer increases the melting potential.
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Figure 5.1: The variation of the wind force with focus on the wind speed. The
blue chart has data from 2008, the green shows the data from 2009.

Some of the formation mechanisms are also affected by the season. During winter

the water column becomes well mixed and fairly homogeneous due to the cooling

in anticipation of freezing. The system is more barotropic due to less stratifi-

cation. During summer, the sun heats the upper layers of the ocean, creating

stronger baroclinicity and thus arranging the rise of eddies. The formation of

open ocean eddies in the WSC is also affected by the heating and cooling, thus

the number of advected eddies varies with the season.

In Figure 5.2 the seasonal variations of the different parameters of Equation 2.8

(discussed in Section 4.4) are multiplied with the number of eddies each month

(from Table 4.1) to emphasize the seasonal variation of the retreat. The values of

the parameters are adjusted to the conditions that reflect the season they belong

to, the range can be found in Table 4.7. The mean retreat (A) is also inserted,

to emphasize the affect of the abundant eddies. The seasonal variation shows a

resemblance to the trend shown by the eddy occurrence (e.g Figure 4.1); one can

see an increase towards the end of April, reaching the peak in May-June, and

then a decrease rest of the year. The slightly increase in retreat in December is
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due to the increased number of eddies apparent.

J F M A M J J A S O N D
0

5

10

15

20

25

A

J F M A M J J A S O N D

R
et

re
at

 [k
m

 d
−1

]

Figure 5.2: The calculated retreat (by using Equation 2.8) multiplied with the
number of eddies (Table 4.1) on the y-axis, plotted against the months on the
x-axis. The pink line (A) denotes the calculated mean retreat. The data are from
both 2008 and 2009.

5.2 Wind influence

Eddy signature is evident in all wind directions, but most frequent occurrence is

when the wind is directed from south or north, with a distinct predominance of

the latter. The eddy occurrences are plotted against the wind direction in Figure

5.3 to support this conclusion. They show the same as Table 4.5 and 4.6, but in

a more unifying way. Note the different scales on the two sub-figures.



5.2: Wind influence 57

  10   20   30   40

30

210

60

240

90270

120

300

150

330

180

0

(a) 2008

  20   40   60   80

30

210

60

240

90270

120

300

150

330

180

0

(b) 2009

Figure 5.3: Eddy distribution in relation to wind direction. Note the different
scales on the two figures. (a) has data from 2008, (b) has data from 2009.

To investigate the effect of the wind direction, the theory in Section 2.3.3 must be

revisited. Two of the main wind directions are drawn in Figure 2.3. The Ekman

theory states that when the wind blows with the coast on the right hand side

(looking downwind), the transportation of water is directed towards the coast

(Figure 2.3b). The converse finds place when the wind blows with the coast

on the left hand side (Figure 2.3a). This suggests that northerly winds pack

the ice, while southerly winds will shed the ice further offshore. Wind directed

perpendicularly towards the ice edge will also have a packing effect, since the

wind force will lead the ice towards the coast. In the opposite directed wind will

contribute to shed the sea ice offshore. Some of the directions of the wind are

thus expected to have a destroying effect on the presence of eddies.

It is obvious from Table 4.5 and 4.6 in addition to Figure 5.3 that the wind

direction is not always destructive; the surface signature is evident in spite of non-

favoured wind direction. One explanation might be a shift in the wind direction

relatively recently. The method used to acquire the wind data does not include

the history of the wind field.

When it comes to the wind speed, eddy occurrence is clearly most frequent in

the low velocity area, but it is evident that a number of eddies exist at the high

velocity area as well. Figure 5.4 express the number of eddies observed during

different wind speeds. The favoured wind speed is around 6-7 m s−1.
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Figure 5.4: Number of eddy occurrences versus wind speed. (a) has data from
2008, (b) has data from 2009.

Intense wind forcing may destroy the expressions of upper ocean eddies relatively

rapidly. For a couple examples one can study Figure 5.1 simultaneously with

Figure 4.1. Strong wind in association with few eddy observations is evident in the

beginning of May and in the end of June in 2008, and in the beginning of March

and the end of April in 2009. The ice will respond to the wind during strong,

uniform winds, while the sea ice will reflect the underlying ocean circulation

during weaker winds.

The sea ice boundary might maintain the signature of an eddy while the drifting

ice floes are shed off in response to strong winds. The boundary signature is

regarded as an adequate eddy during data acquisition, in spite of erased clear

ice convergence. This may explain some of the evident eddies in spite of strong

winds. Another possible explanation may be that the wind has just recently

gained strength so that the sea ice in the eddy has not yet been shed off. This

is observed by McPhee et al. (1987), they study the ice movement in response to

wind. It was found that the drift of sea ice and the wind velocities were closely

correlated most of the time. However, in one occasion they observe a decline and

shift in the wind field without changes in the ice.

It should be noted that HIRLAM has limited coverage in Area 3, and NCEP data

are frequently missed. This makes the wind speed and -direction data incomplete

in this area, as evident in the two tables in Appendix B.
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5.3 Eddy cyclones versus anticyclones

The observed eddies are found to be predominantly cyclonic, 77% of the eddies

observed rotate in the counter clockwise direction. This applies to both years.

This distinction between cyclones and anticyclones is a direct consequence of

the barotropic shear that exists near the ice edge, as sketched in Figure 2.4 and

discussed by Johannessen et al. (1987a). The ice edge jet that is formed during

northerly wind (described in Section 2.2.1) will experience less friction further

off the ice edge. The resulting shear favours cyclonic eddies. The velocity shear

thus favours cyclonic eddies at the ice edge. Anticyclones are generated beneath

the ice, and will appear at the surface only if the ice edge moves north or the

eddy itself moves southward. Wind from the south favours anticyclonic eddies

at the ice edge for the same reason. The prevailing currents and jets at the

ice edge are directed towards the south-west. The wind data (Figure 5.3) also

indicates a predominance of occasions with wind from the north, thus explaining

the majority of cyclones.

In the Fram Strait region, the conservation of potential vorticity of the AW as

it moves westward favours cyclonic rotation. This comprises the vortex stretch-

ing that result from increasing bottom depths. The theory of Häkkinen (1986)

covering the ice-induced formation of eddies due to differential Ekman pumping

(Section 2.4) also supports the majority of cyclonic eddies.

Differential trapping

Early et al. (2011) show that quasi-geostrophic eddies can transport considerable

amounts of fluid over long distances. The fluid in the eddy core remains there

from the initialization region until the decay of the eddy. The outer ring does not

have the same property, it entrains and shed fluid off during its life time.

The trapping of sea ice in an eddy are considered to be due to the spiraling motion

described in Section 2.5.2 and figurative by Figure 2.6. The spiral structure

drags the sea ice towards the eddy center in both cyclones and anticyclones.

Other factors that contribute to the inward motion of sea ice are suggested to be

ageostrophic effect, the surface tilt due to the rotation, and the Coriolis force.

It is expected that anticyclones contain more sea ice than cyclones (cf. Sec-

tion Trapping. Examples of cyclones and anticyclones with both accumulation
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and dispersion can be seen in Figure 4.5 and 4.6. One explanation for this obvious

contradiction might be that the cyclone has been around longer and have had

the ability to collect sea ice for a long time. A similar explanation is that the

anticyclone has melted the ice in its centre efficiently. The temporal evolution of

the eddy formation, growth and decay is the clue. The stage of the evolution will

indeed manifest different amount of trapped ice.

A vortex pair consist of a cyclone and an anticyclone that are generated at the

same time. A vortex pair will thus reveal which of the rotations that collects

most sea ice in their centres. By taking a close inspection of the examples of

vortex pairs in Figure 5.5a or 5.5b, one can see that the cyclones do contain less

sea ice in the center compared to the anticyclonic part. The spiraling motion has

worked on both the rotations for the same time, thus the asymmetry must be

explained with reference to the ageostrophy.

(a) (b)

Figure 5.5: Two examples showing the difference of the amount of sea ice in
the cyclonic and the anticyclonic part of a vortex pair. Both vortex pairs have a
horizontal size of approximately 20 × 50 km.

5.4 The eddy induced melting

It is found that the sea ice in an eddy melts away in about 4 days. This calculation

is based on a fixed bottom ablation and an assumed ice thickness. The eddy in

Figure 4.8 does not by far melt all its ice in 4 days, it seems like it needs more

than 20 days. This departure can be explained by the fact that eddies continue

to accumulate sea ice continually during their operating time. The melting and

trapping of sea ice happens simultaneously. The unimportance of the horizontal

scale of the ice floe was mentioned previously. As long as the diameter of the ice

floe is larger than the thickness of the ice, the period of time it takes to melt the
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ice depends only on the thickness, due to the dominating bottom ablation. For

an eddy containing ice floes with diameters above 3 m the complete melting will

always take 4 days.

The calculation of the zonal retreat is based on considerations made around the

five parameters of Equation 2.8, and is found to be 3.5 km d−1 per 100 km of

ice edge. This correspond relatively well with the findings of (Johannessen et al.,

1987a), who report a value of 1 to 2 km d−1, per 50 km ice edge. The calculated

retreat is about the twice of their findings, the explanation is that they used a

mean eddy radius of 15 km, while the radius used here is 30 km.

Finally, the yearly melt of sea ice due to eddies is calculated to be 0.7×106 km2.

When including the sea ice extent of 1000 km, the mean retreat of the ice edge

becomes 700 km. By dividing this yearly loss of sea ice with the number of days

during a year, one get ∼2 km d−1, just as reported by Johannessen et al. (1987a).

The deviation from previous work can be explained by a number of factors. First

of all, it should be noted that the values used for calculating the retreat (cf.

Table 4.7) are based on in situ data retrieved in a confined area during the

summer months, but are assumed to be representative for the whole year and the

whole area. As already taken into consideration, the total number of 1000 eddies

during a year must be viewed as an overestimation. By assuming that each eddy

on average has been counted twice, the number of 500 is with certainty used in

the calculations.

The size and the appurtenant amount of sea ice contained in an eddy does also

imply some uncertainty. The volume of sea ice an eddy is capable of containing

is calculated to be ∼1.4 to 3 km3. As already mentioned, this is based on an

estimated thickness and a fixed mean radius, and is thus a relative coarse calcu-

lation. The difference in cyclones and anticyclones is not included. Moreover, it

is worth to consider if the final quantity of sea ice is achieved, or if the eddy still

intercepts ice.

In the calculations it is assumed that the ice floes have a diameter of approxi-

mately 200 m, thus the conclusion that the bottom ablation is the main mech-

anism that contributes to the melting can be made. When the bottom ablation

is the only mechanism that melts the sea ice, the effect of varying fraction of sea

ice in an eddy can be omitted. The ocean heats the sea ice from below with an

amount capable of melting 0.38 m d−1. This emission of heat is independent of

the sea ice above. This emphasize that it is the ice thickness that decide the time
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period it takes to melt away the sea ice and not the horizontal scale, as briefly

touched earlier in this section. This is not adequately addressed by Johannessen

et al. (1987a). By assuming smaller ice floes, which is more realistic, the relation

between the area of the bottom and the area of the sides shows that the ablation

is dominated by lateral melting. The ice in an eddy is composed of ice floes with

different sizes, so the lateral ablation should not be written off. The effect of the

possible frictional force between ice floes in the eddy is not considered. Other

factors that influence the melting in an eddy are the the rotational speed of the

eddy, how efficient the eddy can accumulate sea ice in its centre, and the length

of the time period the eddy are present, and with that the wind conditions in

relation to the wind field.

Other estimations of the ice edge retreat has been made in the area as well. The

assumptions already discussed are assumed to also explain the deviation from the

following results; Quadfasel et al. (1987) reports an enhanced zonal melt rate of

5 km d−1 due to the advection of warm AW in the Fram Strait (north of 80° N).

It is worth mentioning that this is when the available heat is used on melting

only. Vinje & Finnek̊asa (1986) reports of a melt rate of 0.5 km d−1, based on

observations of four eddies in May 1976. According to Chiu et al. (1987, and

references therein) the retreat of the ice edge could be reduced by a factor of ten

without the presence of eddies. Energy considerations made by Manley (1987)

indicate an ice edge retreat of 0.2-0.6 km d−1. He assumed that all the available

energy stored in the surface layer could be used to melt the ice, and that two

eddies are present every 100 km. Foldvik et al. (1988) are sceptical to give eddies

an important role regarding the melting of sea ice. They state that eddies do not

contribute to the heat flux in the EGC with their small temperature anomalies.

This paper is based on observations in the northern part of the EGC.
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Conclusion

In this thesis, eddies in the marginal ice zone in the Fram Strait, the Greenland

Sea and the northern Denmark Stait have been studied using spaceborne Syn-

thetic Aperture Radar (SAR) observations from the Envisat satellite operated by

the European Space Agency (ESA). A total of 4000 SAR images collected from

2008 and 2009 have been investigated. The eddy characteristics have been ar-

ranged according to the spatial dimensions, rotational expressions, and frequency

of existence versus wind field conditions. Following this, the importance of eddies

for melting of sea ice and associated ice edge retreat has been investigated. The

satellite SAR observations alone cannot be used to determine eddy formation

mechanisms explicitly. Following previous work it is therefore assumed that they

are formed by a mixture of generation mechanisms (baroclinic, barotropic and

topographic) for eddies in the marginal ice zone area.

� The eddy radius range from 20-40 km.

� There is a prevailing majority of cyclonic eddies present. The ratio between

cyclones to anticyclones is ∼3:1.

� The presence of eddies in relation to the wind field shows that relative

low wind speed and wind directed from the north favours the existence of

eddy expression on the surface. However, eddies were found both during

high wind speed and unfavourable wind direction. The history of the wind

field and particular rapid wind shifts connected with polar lows etc (not

examined here) is potentially a significant factor.
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� The presence of eddies versus region indicate that 39% of the eddies are

located in Area 1, 54% in Area 2, while only 7% is evident in Area 3. The

seasonal variation of the location of the sea ice extent and the formation

mechanisms were discussed as probable explanations.

� The presence of eddies versus season shows that summer and early fall are

the peak seasons for eddies. This can be referred to the wind field data,

which indicate corresponding seasonal variation. The formation mecha-

nisms are affected by seasonal variations, as well.

� Assuming a sea ice fraction of 50%, an eddy is capable of carrying 1413.7

km2 ice. Multiplying this with the assumed total of eddies during a year,

it amounts to 0.7×106 km2. The estimated volume of sea ice, based on a

mean thickness of the ice of 1.5 m, becomes 2 km3

� An eddy is capable of melting all its ice content in four days. During its

operating time it continually accumulates sea ice from the periphery and

toward its centre while the melting are proceeding.

� The retreat of the ice edge is calculated by accounting for the bottom abla-

tion (0.38 m d−1), the eddy separation distance (assumed 100 km), the ice

area calculated using a radius of 30 km and an assumed sea ice thickness of

1.5 m. On average, an eddy is able to melt 3.5 km d−1 of ice (per 100 km

ice edge). With an ice edge of 1000 km, this results in a total of 35 km d−1.

As the eddy expressions, number of eddies and the amount of ice trapped in

them are determined subjectively, the results might be somewhat biased due to

this. Some of the ASAR images have distinct and easy to classify eddy features

while others contain vaguer eddy signatures. The total number of eddies might

be underestimated due to this ambiguity. Furthermore, the possibility to count

the same eddy several times is likely. An eddy moves southward with a speed

of approximately 10 km d−1, a fact that should also be taken into consideration

when counting.

Moreover, the values and parameters used to quantify the retreat are retrieved

from the MIZEX’83-84, carried out during the summer months in the Fram Strait.

Their findings are assumed to be applicable for the entire year, and for the entire

area. In addition, as satellite remote sensing only acquires surface expressions

of the mesoscale eddies along the marginal ice zone, in situ measurements are

needed to provide subsurface information of the water masses and the melting

conditions along the MIZ.
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All in all it would therefore be highly needed and desirable to execute a dedicated

MIZ eddy field experiment. This in order to provide more reliable quantification

of the influence of eddies of melting and sea ice retreat.





APPENDIX A

Abbreviations

AMSR-E Advanced Microwave Scanning Radiometer

Area 1 The Fram Strait

Area 2 The Central and East Greenland Sea

Area 3 The Denmark Strait

ASAR Advanced Synthetic Aperture Radar

AW Atlantic Water

BB Boreas Basin

CMOD-4 Algorithm used to calculate wind speed

CTD Conductivity-Temperature-Depth

EGC East Greenland Current

EM Electromagnetic

ENVISAT Environmental Satellite

EOS Earth Observing System

ERS European Remote Sensing Satellites (1 and 2)

ESA European Space Agency

ECMWF European Centre for Medium-Range Weather Forecasts

FY First-Year

FZ Fracture Zone

GB Greenland Basin

GFS Global Forecast System

GS Greenland Sea

HIRLAM High Resolution Limited Area Model

IR Infra-Red
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JM Jan Mayen

MERIS Medium-Resolution Imaging Spectrometer

MIZ Marginal Ice Zone

MIZEX Marginal Ice Zone Experiments

MODE-1 Mid-Ocean Dynamics Experiment

MY Multi-Year

NASA National Aeronautics and Space Administration

NCEP National Centers for Environmental Predictions

NERSC Nansen Environmental and Remote Sensing Center

NH Northern Hemisphere

NwAC Norwegian Atlantic Current

POLYGON-70 The first exp. to establish the existence of mesoscale eddies

POLYMODE Polygon Mid-Ocean Dynamics Experiment

PW Polar Water

SAR Synthetic Aperture Radar

SB Svalbard

SEASAT First satellite observing Earth’s ocean using SAR

SH Southern Hemisphere

WSC West Spitsbergen Current

WSM Wide Swath Mode
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Data

B.1 The Data from 2008

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

1.1. 1 0 0 1 13 200

2.1. 0 2 0 2 6 270

4.1. 2 3 0 5 5 6 210 160

5.1. 2 4 0 6 4 5 340 140

7.1. 4 0 0 4 8 20

8.1. 3 0 0 3 NaN NaN

11.1. 0 2 0 2 5 350

13.1. 1 0 0 1 NaN NaN

14.1. 1 0 0 1 5 5

20.1. 1 1 0 2 4 7 70 350

21.1. 1 1 0 2 7 6 340 220

22.1. 2 0 0 2 6 60

23.1. 1 0 0 1 NaN NaN

24.1. 1 2 1 4 NaN 7 8 NaN 60 330

25.1. 0 2 0 2 6 10

27.1. 1 0 0 1 5 30

12.2. 0 1 0 1 7 340

13.2. 0 1 0 1 5 350

14.2. 1 1 0 2 10 10 220 220

15.2. 0 2 0 2 7 300

16.2. 0 1 0 1 4 330

19.2. 0 2 0 2 7 150

Continues on next page. . .
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Table B.1 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

20.2. 1 0 0 1 8 250

21.2. 1 2 0 3 6 6 270 10

22.2. 0 5 0 5 8 30

23.2. 1 0 0 1 NaN NaN

25.2. 0 1 0 1 16 10

27.2. 1 3 0 4 NaN NaN 360 360

28.2. 2 0 0 2 8 150

2.3. 1 2 0 3 15 14 10 340

3.3. 1 0 0 1 6 10

4.3. 1 0 0 1 NaN NaN

6.3. 1 0 0 1 6 260

7.3. 1 2 0 3 12 12 330 330

8.3. 2 1 0 3 6 5 360 90

10.3. 1 0 0 1 8 100

11.3. 2 2 0 4 5 NaN 200 NaN

16.3. 0 2 0 2 6 360

17.3. 1 1 0 2 7 6 10 10

18.3. 2 0 0 2 7 20

19.3. 1 1 0 2 6 7 40 50

20.3. 1 1 0 2 10 10 10 10

21.3. 1 4 0 5 NaN NaN NaN NaN

22.3. 0 1 0 1 5 5

26.3. 1 0 0 1 8 360

29.3. 0 1 0 1 4 330

1.4. 1 1 0 2 6 10 10 10

2.4. 2 0 0 2 6 5

4.4. 1 0 0 1 8 80

5.4. 1 1 0 2 9 9 30 40

7.4. 0 2 0 2 8 360

8.4. 0 4 0 4 6 50

9.4. 3 0 0 3 NaN NaN

10.4. 1 2 0 3 6 5 30 20

11.4. 2 0 0 2 7 20

13.4. 1 1 0 2 5 6 360 150

14.4. 0 4 2 6 4 7 350 220

15.4. 4 0 0 4 NaN NaN

16.4. 2 6 0 8 7 8 360 180

17.4. 0 2 0 2 5 360

18.4. 4 0 0 4 5 NaN

20.4. 0 3 2 5 2 7 360 220

21.4. 0 4 0 4 5 40

22.4. 2 6 0 8 4 6 240 360

Continues on next page. . .
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Table B.1 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

23.4. 0 4 0 4 9 360

26.4. 0 5 0 5 7 140

28.4. 0 3 0 3 NaN NaN

29.4. 0 2 0 2 8 360

30.4. 2 0 0 2 8 360

1.5. 0 2 0 2 7 80

3.5. 1 0 0 1 5 350

4.5. 2 2 0 4 7 2 210 160

5.5. 1 2 0 3 10 6 190 350

6.5. 1 2 0 3 8 4 320 350

7.5. 1 2 0 3 NaN NaN NaN NaN

8.5. 3 1 0 4 16 12 30 20

9.5. 1 2 0 3 18 18 360 360

10.5. 0 0 1 1 10 40

11.5. 0 2 0 2 5 330

12.5. 0 2 2 4 8 5 350 90

13.5. 1 2 0 3 6 4 280 240

14.5. 0 4 0 4 NaN 10

15.5. 2 3 0 5 4 4 300 300

16.5. 2 0 0 2 6 10

17.5. 2 4 0 6 9 6 360 360

18.5. 1 2 0 3 6 7 10 340

19.5. 3 4 0 7 8 5 10 360

20.5. 2 0 0 2 6 350

21.5. 1 6 1 8 5 6 7 270 10 30

23.5. 3 0 0 3 6 270

25.5. 0 1 0 4 7 240

26.5. 2 0 0 2 10 350

27.5. 0 4 0 4 5 170

28.5. 1 3 0 4 3 6 350 250

29.5. 2 2 0 4 8 6 260 260

30.5. 0 3 0 3 10 6 200 180

31.5. 1 0 0 1 5 190

1.6. 2 4 0 6 8 6 200 260

2.6. 1 2 0 3 NaN NaN 270 240

3.6. 3 7 0 10 6 5 190 160

4.6. 2 4 0 6 5 6 5 350

5.6. 0 2 1 3 NaN NaN 360 360

6.6. 0 4 0 4 6 7

7.6. 2 5 0 7 6 5 100 100

9.6. 0 3 0 3 4 180

10.6. 2 0 0 2 12 20
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Table B.1 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

11.6. 0 1 2 3 4 5 340 250

12.6. 0 2 0 2 7 20

14.6. 0 0 2 2 5 160

15.6. 2 4 0 6 6 7 350 80

16.6. 0 4 1 5 8 7 30 80

17.6. 2 0 0 2 7 350

20.6. 1 0 1 2 6 8 290 200

21.6. 4 5 0 9 7 8 60 350

22.6. 1 7 0 8 8 9 10 350

23.6. 1 4 0 5 14 5 350 9

24.6. 2 5 0 7 6 8 40 30

25.6. 0 3 1 4 9 10 340 360

26.6. 1 2 0 3 12 12 360 360

27.6. 0 3 0 3 NaN 360

29.6. 0 3 0 3 6 5

1.7. 0 7 0 7 5 250

3.7. 0 2 0 2 4 190

5.7. 0 2 0 2 9 180

6.7. 3 1 0 4 8 5 5 290

7.7. 0 4 0 4 10 20

8.7. 0 4 0 4 7 350

9.7. 2 1 0 3 7 8 300 260

10.7. 0 1 0 1 5 350

11.7. 0 5 0 5 7 200

13.7. 1 2 0 3 8 5 160 210

14.7. 0 0 2 2 7 80

15.7. 0 4 0 4 5 40

16.7. 3 0 0 3 8 40

17.7. 3 2 0 5 7 8 60 360

18.7. 2 0 0 2 8 5

19.7. 2 1 0 3 5 NaN 5 340

20.7. 0 3 0 3 8 190

22.7. 0 2 0 2 6 350

23.7. 4 1 0 5 5 4 340 360

24.7. 0 3 0 3 5 180

25.7. 1 0 0 1 7 200

26.7. 2 4 0 6 6 5 260 180

27.7. 3 4 0 7 6 7 250 190

28.7. 3 2 0 5 8 9 180 200

29.7. 0 3 0 3 5 290

30.7. 1 1 0 2 4 6 350 240

31.7. 5 1 0 6 7 6 200 260
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Table B.1 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

3.8. 5 2 0 7 2 6 360 40

4.8. 5 2 0 7 8 7 360 20

5.8. 1 3 0 4 6 5 30 350

7.8. 1 1 0 2 6 4 280 360

8.8. 0 2 0 2 6 210

9.8. 4 0 0 4 9 30

12.8. 3 2 0 5 5 8 40 330

13.8. 1 0 0 1 14 280

14.8. 1 1 0 2 9 7 150 180

15.8. 0 2 0 2 6 90

16.8. 4 5 0 11 7 7 350 330

17.8. 6 0 0 6 6 230

18.8. 2 0 0 2 7 260

20.8. 3 1 0 4 140 180

21.8. 5 1 0 6 5 4 180 290

22.8. 4 0 0 4 7 170

23.8. 2 4 0 6 5 7 300 90

24.8. 0 2 0 2 6 80

25.8. 0 2 0 2 9 110

26.8. 3 0 0 3 8 120

27.8. 4 3 0 7 NaN NaN 180 140

28.8. 3 0 0 3 5 80

29.8. 3 2 0 5 6 7 10 40

30.8. 3 2 0 5 9 8 280 270

31.8. 0 1 0 1 5 300

2.9. 2 3 0 5 7 7 180 180

5.9. 1 2 0 3 7 6 10 180

7.9. 4 0 0 4 7 150

8.9. 4 6 0 10 7 6 160 180

9.9. 6 6 0 12 9 7 200 180

10.9. 4 0 0 4 7 230

11.9. 4 3 0 7 7 6 240 190

12.9. 1 3 0 4 12 11 160 160

13.9. 3 5 0 8 7 11 250 170

14.9. 3 3 0 6 8 7 190 200

15.9. 2 5 0 7 11 NaN 190 160

16.9. 7 4 0 11 11 13 170 180

17.9. 5 6 0 11 10 8 270 120

18.9. 1 6 0 7 9 8 160 110

19.9. 6 4 0 10 9 6 100 160

20.9. 5 3 0 8 6 8 160 70

21.9. 2 2 0 4 5 10 340 340
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Table B.1 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

22.9. 1 0 0 1 9 5

24.9. 1 0 0 1 6 5

25.9. 0 3 0 3 0 10 70

26.9. 1 4 0 5 8 6 230 250

27.9. 4 1 0 5 4 7 10 330

28.9. 3 0 0 3 6 60

29.9. 1 3 0 4 14 14 20 20

30.9. 1 1 0 2 7 9 30 20

2.10. 2 0 0 2 8 10

3.10. 0 3 0 3 5 200

4.10. 1 0 0 1 5 260

5.10. 3 5 0 8 8 6 270 350

7.10. 5 4 0 9 6 7 150 180

8.10. 1 3 0 4 7 8 270 210

9.10. 0 1 0 1 10 220

10.10. 3 1 0 4 8 6 260 50

11.10. 2 3 0 5 6 16 280 360

12.10. 2 1 0 3 10 14 340 360

13.10. 1 0 0 1 7 330

14.10. 0 4 0 4 7 280

15.10. 2 0 0 2 6 270

17.10. 0 3 0 3 9 20

18.10. 0 1 0 1 NaN 10

19.10. 4 0 0 4 9 40

20.10. 1 3 0 4 10 5 360 5

21.10. 1 0 0 1 8 5

24.10. 2 0 0 2 8 70

26.10. 1 0 0 1 6 30

27.10. 1 0 0 1 10 20

28.10. 1 2 0 3 7 6 40 80

29.10. 0 5 0 5 7 40

30.10. 1 6 0 7 6 7 260 150

31.10. 2 1 0 3 16 18 120 180

2.11. 1 5 0 6 10 14 40 330

3.11. 0 0 2 2 12 270

4.11. 1 2 4 7 7 4 5 30 340 360

5.11. 0 3 0 3 9 360

6.11. 0 1 0 1 NaN NaN

7.11. 1 0 0 1 8 5

8.11. 0 3 0 3 NaN 350

9.11. 2 0 0 2 7 40

10.11. 1 0 0 1 18 70
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Table B.1 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

11.11. 0 3 0 3 12 350

15.11. 1 0 0 1 9 5

18.11. 1 1 1 3 8 NaN NaN 30 120 100

20.11. 0 1 2 3 8 5 350 360

21.11. 0 0 1 1 NaN 340

22.11. 1 0 0 1 5 190

23.11. 1 2 0 3 8 7 190 180

24.11. 0 2 2 4 6 14 170 200

25.11. 1 0 0 1 NaN NaN

27.11. 0 1 0 1 8 350

30.11. 2 0 0 2 6 10

1.12. 1 0 0 1 8 360

2.12. 3 0 0 3 7 40

3.12. 0 2 0 2 7 30

4.12. 1 0 0 1 8 320

6.12. 0 2 0 2 7 190

7.12. 3 0 0 3 8 50

8.12. 3 1 0 4 16 18 350 350

9.12. 0 1 0 1 13 360

10.12. 2 1 1 4 6 NaN NaN 170 180 180

11.12. 2 0 0 2 6 40

12.12. 3 0 0 3 8 110

13.12. 4 0 0 4 6 10

15.12. 1 0 0 1 10 150

16.12. 2 2 0 4 8 7 60 40

17.12. 4 2 0 6 6 8 90 70

18.12. 0 2 0 2 12 20

19.12. 2 2 0 4 18 12 360 350

20.12. 0 2 0 2 10 350

21.12. 3 0 0 3 9 350

22.12. 0 4 1 5 8 6 100 100

23.12. 3 4 1 7 10 NaN NaN 180 180 90

24.12. 1 1 0 2 10 10 180 220

25.12. 2 3 1 6 5 9 7 30 340 250

26.12. 0 2 0 2 4 260

27.12. 0 4 0 4 6 260

28.12. 2 2 0 4 10 8 5 20

29.12. 1 4 2 7 NaN 11 5 280 30 10

30.12. 1 2 0 3 12 12 350 350

31.12. 1 1 0 2 8 6 320 340
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B.2 The Data from 2009

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

1.1. 0 3 4 7 NaN NaN 170 230

2.1. 2 3 0 5 10 5 360 50

3.1. 2 3 0 5 12 7 360 250

4.1. 1 0 0 1 12 360

5.1. 0 2 0 2 10 330

7.1. 0 0 3 3 7 260

8.1. 1 1 1 3 8 7 6 340 350 30

9.1. 3 1 0 4 13 6 360 10

12.1. 0 1 0 1 8 340

13.1. 1 4 0 5 7 6 280 270

14.1. 2 2 0 4 6 6 210 220

15.1. 0 2 0 2 8 40

16.1. 0 1 0 1 12 90

17.1. 3 0 0 3 7 70

18.1. 3 3 0 6 6 5 150 90

19.1. 2 2 1 5 5 5 8 160 90 80

20.1. 2 3 0 5 5 4 160 14

21.1. 2 6 0 8 6 7 60 20

22.1. 2 0 0 2 11 5

23.1. 2 1 0 3 10 6 360 5

24.1. 1 1 0 2 8 7 30 10

26.1. 3 0 1 4 8 6 180 40

28.1. 3 1 0 4 10 9 170 180

29.1. 3 5 2 10 4 4 5 260 360 350

30.1. 0 3 0 3 3 270

31.1. 3 0 0 3 7 300

1.2. 0 4 2 6 7 7 280 360

2.2. 3 5 0 8 8 8 240 350

3.2. 0 2 0 2 20 360

4.2. 2 1 3 6 10 7 NaN 100 80 NaN

5.2. 3 4 1 8 8 9 8 120 150 350

6.2. 0 4 0 4 7 120

7.2. 5 0 0 5 6 160

9.2. 4 7 0 11 6 6 40 80

10.2. 3 3 0 6 18 16 360 10

13.2. 1 2 0 3 12 12 350 350

16.2. 0 3 0 3 10 160

17.2. 0 0 2 2 10 150

18.2. 0 6 2 8 7 9 360 180

19.2. 1 2 0 3 10 8 360 350
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Table B.2 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

20.2. 0 2 0 2 20 350

21.2. 0 0 1 1 7 14 30

28.2. 1 5 0 6 9 270 280

1.3. 2 0 0 2 8 40

2.3. 1 0 0 1 16 100

3.3. 1 2 0 3 5 NaN 40 5

4.3. 2 0 0 2 16 360

6.3. 0 2 0 2 NaN 360

7.3. 0 1 0 1 16 10

11.3. 1 0 0 1 10 350

12.3. 1 0 0 1 5 30

15.3. 1 2 0 3 6 5 330 70

16.3. 0 1 0 1 4 10

17.3. 1 2 0 3 NaN NaN NaN NaN

18.3. 2 1 0 3 16 4 360 90

19.3. 2 4 0 6 3 9 360 340

20.3. 1 3 0 4 9 5 350 10

22.3. 0 6 2 8 7 NaN 30 70

23.3. 2 4 0 6 12 14 360 350

24.3. 1 1 0 2 12 12 20 20

25.3. 1 3 0 4 4 10 350 340

26.3. 0 2 0 2 13 5

31.3. 1 0 0 1 5 340

1.4. 2 3 0 5 7 7 310 240

2.4. 2 2 0 4 8 7 290 270

3.4. 0 4 0 4 8 20

4.4. 1 5 0 6 4 7 50 30

6.4. 0 1 2 3 14 7 10 10

10.4. 0 1 0 1 13 360

12.4. 1 1 2 4 8 7 6 310 280 240

13.4. 2 3 2 7 5 7 6 5 360 330

14.4. 1 5 0 6 12 9 350 360

15.4. 2 0 2 14 20

16.4. 1 1 0 2 16 8 360 5

17.4. 0 2 0 2 14 330

18.4. 1 0 0 1 18 340

20.4. 2 3 3 8 8 9 8 350 320 160

21.4. 1 1 0 2 14 10 330 5

22.4. 0 3 1 4 4 5 360 360

23.4. 2 2 0 4 8 6 260 360

24.4. 3 4 0 7 7 9 330 5

25.4. 1 0 1 2 3 3 90 10
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Table B.2 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

26.4. 5 3 3 11 6 5 7 340 60 10

27.4. 0 1 0 1 10 50

29.4. 4 5 3 12 8 9 6 200 170 80

30.4. 5 4 1 10 5 8 9 340 150 90

1.5. 1 0 0 1 2 190

2.5. 0 4 0 4 7 40

3.5. 3 6 0 9 NaN 7 NaN 100

4.5. 1 4 4 9 9 7 8 150 150 80

5.5. 0 6 3 9 6 7 5 5

6.5. 4 7 2 13 6 7 6 100 20 40

7.5. 0 2 0 2 9 90

8.5. 1 0 0 1 7 80

9.5. 2 3 0 5 5 10 80 20

10.5. 1 2 0 3 9 7 180 350

11.5. 2 1 0 3 10 8 200 190

12.5. 2 4 0 6 8 6 260 250

13.5. 3 3 0 6 14 7 260 250

14.5. 3 3 0 6 7 5 270 270

15.5. 0 5 0 5 7 230

16.5. 1 4 0 5 9 11 290 270

17.5. 5 3 0 8 7 3 190 200

18.5. 0 10 3 13 6 NaN 180 180

19.5. 3 6 0 9 6 11 180 190

20.5. 2 2 0 4 7 6 220 220

21.5. 1 3 3 7 7 6 250 190 180

22.5. 4 3 1 8 4 8 7 260 230 190

23.5. 1 3 0 4 NaN 9 NaN 20

24.5. 0 6 1 7 4 7 360 20

25.5. 0 7 2 8 5 12 20 5

26.5. 2 2 0 4 7 6 270 300

27.5. 0 9 0 9 4 260

28.5. 4 11 2 17 5 6 8 240 180 90

29.5. 5 8 0 13 5 6 NaN 270

30.5. 3 3 0 6 8 5 210 180

31.5. 3 14 3 20 4 5 10 360 270 190

1.6. 7 7 2 16 7 7 9 360 350 180

2.6. 1 0 2 3 3 6 5 210

3.6. 4 8 3 15 6 5 8 340 360 50

4.6. 2 6 1 9 10 10 6 350 360 100

5.6. 2 4 0 6 10 10 360 360

6.6. 1 5 1 7 8 4 5 360 360 250

7.6. 0 4 0 4 7 360
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Table B.2 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

8.6. 0 3 3 6 7 6 350 210

9.6. 0 4 2 6 5 4 180 190

10.6. 1 4 0 5 2 5 330 80

11.6. 0 5 0 5 4 330

12.6. 0 0 1 1 7 190

16.6. 3 4 0 7 4 7 5 350

17.6. 3 2 0 5 7 10 90 270

18.6. 2 3 0 5 6 7 100 170

19.6. 0 4 1 5 7 6 30 230

20.6. 1 5 0 6 4 6 30 100

21.6. 1 2 2 5 5 4 4 330 100 80

22.6. 2 3 0 5 6 8 150 60

23.6. 3 0 0 3 4 70

24.6. 2 0 0 2 6 120

25.6. 0 1 0 1 7 210

26.6. 3 1 0 4 6 6 270 240

27.6. 0 2 0 2 7 230

28.6. 2 2 1 5 4 2 5 270 180 240

30.6. 1 3 0 4 6 3 270 240

1.7. 2 2 0 4 7 5 360 180

2.7. 3 4 0 7 4 7 340 90

3.7. 0 2 0 2 5 150

4.7. 3 1 0 4 6 3 5 350

5.7. 1 5 0 6 4 5 340 150

6.7. 2 4 0 6 7 6 340 180

7.7. 2 2 1 5 5 3 6 340 350 230

8.7. 3 7 1 11 6 6 11 270 190 230

9.7. 3 4 0 7 7 5 270 110

10.7. 1 2 0 3 6 6 260 80

11.7. 4 4 0 8 3 6 190 180

12.7. 2 5 0 7 7 6 360 10

13.7. 1 2 0 3 4 6 70 70

14.7. 3 4 0 7 5 4 360 350

15.7. 1 1 0 2 6 4 350 350

16.7. 1 1 0 2 10 8 340 330

17.7. 1 1 0 2 10 4 360 350

18.7. 1 2 1 4 6 7 6 310 290 30

19.7. 0 1 0 1 6 360

20.7. 0 1 0 1 4 320

22.7. 1 0 0 1 10 40

23.7. 0 1 0 1 6 50

26.7. 1 0 0 1 2 180
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Table B.2 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

27.7. 1 1 0 2 4 5 120 90

28.7. 2 1 0 3 4 5 30 20

29.7. 1 2 0 3 5 4 70 90

30.7. 1 3 0 4 4 3 NaN NaN

31.7. 2 2 0 4 7 5 NaN NaN

1.8. 4 1 0 5 5 4 190 90

2.8. 2 4 0 6 5 4 190

3.8. 3 3 0 6 3 4 5 360

4.8. 2 0 0 2 3 260

5.8. 1 2 0 3 5 3 270 150

6.8. 0 3 0 3 6 180

7.8. 4 0 0 4 6 140

8.8. 4 2 0 6 5 4 210 170

9.8. 2 5 0 7 3 4 180 160

10.8. 5 2 0 7 5 4 190 170

11.8. 4 3 0 7 6 6 100 70

12.8. 4 0 0 4 7 5

13.8. 2 6 0 8 7 9 340 320

14.8. 0 4 0 4 6 180

15.8. 3 2 0 5 6 5 160 5

16.8. 3 4 0 7 5 6 360 110

17.8. 3 1 0 4 8 6 360 350

18.8. 1 5 0 6 8 5 5 280

19.8. 1 3 0 4 7 9 350 200

20.8. 0 4 0 4 7 90

21.8. 2 2 0 4 7 6 110 5

22.8. 1 2 0 3 9 100

23.8. 0 4 0 4 4 230

24.8. 2 0 0 2 3 240

25.8. 3 2 0 5 4 7 140 150

26.8. 4 0 0 4 6 40

27.8. 2 0 0 2 7 80

28.8. 2 3 0 5 5 7 360 270

29.8. 2 0 0 2 6 90

30.8. 2 1 0 3 6 7 5 40

31.8. 2 2 0 4 10 9 350 340

1.9. 0 1 0 1 10 360

2.9. 0 1 0 1 7 20

3.9. 0 2 0 2 6 340

4.9. 0 2 0 2 7 330

5.9. 1 0 0 1 6 260

6.9. 1 1 0 2 7 7 210 180
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Table B.2 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

7.9. 1 3 0 4 5 9 330 10

8.9. 1 2 0 3 7 6 260 180

9.9. 2 2 0 4 6 5 350 30

10.9. 1 2 0 3 6 9 340 200

11.9. 3 0 0 3 7 150

12.9. 4 0 0 4 NaN NaN

13.9. 2 1 0 3 11 NaN 350 NaN

14.9. 2 2 0 4 10 14 230 360

15.9. 2 0 0 2 7 360

16.9. 0 1 0 1 16 330

17.9. 1 0 0 1 10 330

19.9. 0 2 0 2 7 10

25.9. 1 0 0 1 6 180

26.9. 2 1 0 1 10 15 20 360

29.9. 0 1 0 1 16 360

2.10. 0 3 0 3 NaN NaN

4.10. 0 5 0 5 5 310

5.10. 0 4 0 4 8 350

8.10. 0 3 0 3 8 300

13.10. 1 0 0 1 16 180

14.10. 0 4 1 5 6 4 190 90

15.10. 1 7 0 8 5 6 190 350

16.10. 1 2 0 3 7 8 360 220

17.10. 1 1 0 2 7 5 90 360

18.10. 2 1 1 4 6 8 16 360 360 350

20.10. 0 0 2 2 5 280

21.10. 0 1 4 5 9 NaN 260 NaN

22.10. 0 1 0 1 10 10

23.10. 2 0 0 2 4 260

24.10. 2 0 2 4 7 7 270 360

26.10. 2 0 2 4 7 6 360 40

27.10. 1 0 3 4 5 9 40 40

29.10. 1 0 0 1 10 360

30.10. 0 0 1 1 18 360

1.11. 1 0 0 1 6 340

2.11. 2 0 1 3 5 5 300 360

3.11. 2 1 0 3 5 4 320 10

5.11. 2 0 0 2 11 300

5.11. 1 0 0 1 5 280

6.11. 1 1 0 2 6 4 170 90

8.11. 3 0 1 4 6 3 10 360

9.11. 2 0 0 2 9 180
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Table B.2 – Continued

Date Area 1 Area 2 Area 3 Nr Vel 1 Vel 2 Vel 3 Dir 1 Dir 2 Dir 3

10.11. 2 1 0 3 11 15 150 150

11.11. 2 2 0 4 14 10 160 170

12.11. 3 1 0 4 5 4 340 300

13.11. 1 0 0 1 7 10

14.11. 1 1 0 2 9 360

16.11. 1 0 0 1 10 60

17.11. 0 1 0 1 12 360

18.11. 0 1 1 2 7 90

19.11. 3 0 0 3 5 180

20.11. 1 1 0 2 7 7 100 90

21.11. 1 1 0 2 4 7 90 50

22.11. 1 1 0 2 7 9 340 350

23.11. 1 0 0 1 7 360

24.11. 1 0 1 2 9 14 360 10

27.11. 0 0 1 1 16 360

28.11. 0 0 2 2 18 360

30.11. 0 0 1 1 18 360

1.12. 0 0 1 1 20 350

3.12. 1 0 0 1 7 150

4.12. 2 1 0 3 6 12 90 180

5.12. 0 1 0 1 4 90

6.12. 2 2 0 4 6 7 20 270

7.12. 0 3 0 3 6 180

8.12. 1 3 0 4 6 7 170 100

9.12. 3 1 0 4 9 8 160 140

10.12. 2 2 0 4 5 4 80 70

11.12. 1 1 0 2 7 4 10 360

13.12. 1 2 0 3 7 4 160 350

14.12. 1 2 1 4 6 5 4 140 260 180

15.12. 1 1 0 2 3 5 100 340

16.12. 1 0 2 3 8 6 200 240

17.12. 1 2 2 5 8 8 12 150 330 360

19.12. 1 0 1 2 16 6 7 350 10

22.12. 1 0 0 1 7 80

23.12. 1 0 0 1 6 70

26.12. 2 0 0 2 6 70

27.12. 1 1 0 2 10 12 360 330

28.12. 2 0 0 2 10 20

29.12. 1 0 0 1 12 10

30.12. 1 1 1 3 5 10 7 350 300 340
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