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Introduction

Combinatorial algorithms have played a significant role in the solution of many
scientific computing problems for a long time. The impact of these algorithms
does not only include the application of graph algorithms in sparse matrix com-
putations, but also mesh generation, optimization, computational biology, chem-
istry, physics, parallelization, and others. Although researchers working in these
disciplines might be far apart in traditional scientific taxonomy, they acknowledge
the importance of discrete algorithms and share common intellectual aesthetics,
techniques, and interests. Therefore, they have recently been brought under
common roof known as Combinatorial Scientific Computing (CSC). CSC is an
interdisciplinary field which involves discrete mathematics in scientific computing
and refers to the development, analysis, and application of combinatorial algo-
rithms to solve problems in computational science and engineering. In this thesis,
we present new results on various research problems in CSC, many of which are
related to parallel computing.

This chapter is organized as follows. Section 1 presents an overview of CSC.
Section 2 describes parallel computing and its importance in CSC. Section 3
discusses some of the graph problems in CSC along with those studied in this
thesis. Finally, Section 4 presents a summary of our contributions and also list
some open problems. Following this we present the research papers.

1 Combinatorial Scientific Computing

Scientific computing is traditionally considered to be a field of applied and nu-
merical mathematics. But there are many combinatorial problems that arise
naturally in scientific computing. Research on such problems has been pursued
since the 1960s [29, 34, 103] and it has recently been recognized as a field of
its own known as Combinatorial Scientific Computing [68, 88]. This formal la-
beling has increased the awareness of CSC among researchers and has lead to
many conferences and workshops being organized over the last few years with
broad international participation from academia, government laboratories, and
industry.

CSC is contributing significantly in various fields of scientific computing, for
example, partitioning, coloring and matching in graphs [57, 66, 112], decomposi-
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tion in mesh generation [125], factorizations in numerical linear algebra [103, 115],
non-linear optimization problems [34, 111], cellular automata in statistical physics
[140], molecular analysis in computational chemistry [121], DNA and RNA align-
ment in bioinformatics [45], and information retrieval from complex networks in
information processing [81, 102]. Many of these problems are also studied in the
context of parallel computing [66, 68].

Many scientific applications can be modeled using combinatorial problems
[57, 133] and for several of these problems, researchers have developed soft-
ware packages. These packages can run on sequential computers, but, since
most combinatorial problems consist of large data sets, many such packages have
been adapted to run on parallel computers [38, 76]. These packages have seen
widespread use and have had a significant impact in the scientific community.
To understand this significance, consider the following. The problem of schedul-
ing computational tasks so as to minimize computational dependencies arises in a
number of areas, including derivative computation, frequency assignment in radio
and wireless networks, scheduling, and concurrency discovery and data movement
operations in parallel and distributed computing [55, 58]. The problem is often
modeled using a graph where the vertices represent computational tasks and the
edges represent dependencies. A coloring of this graph can in many instances be
used as a routine to identify the independent subtasks that can be accomplished
concurrently. The coloring assigns positive integers (colors) to the vertices of the
graph such that adjacent vertices have different colors. Tasks (vertices) with the
same color can then be performed concurrently. The number of colors used is
equivalent to the required computational steps and is therefore expected to be
as small as possible. Obtaining such a graph coloring is a pure combinatorial
problem and researchers have developed several software packages to solve both
the pure coloring problem [38, 57], as well as several variations of it [74, 75, 129].
Another such example is the problem of multiplying a sparse matrix by a vector.
This operation is the most computationally expensive part of iterative methods of
linear systems and eigensystems. When this problem is carried out on a parallel
computer, one need to partition the matrix in such a way that each processor
gets an almost equal share of data elements while at the same time minimizing
the required communication. Obtaining such a partitioning is also a pure combi-
natorial problem and several software packages have been developed to solve this
problem [38, 74, 75, 129]. Such packages, whether for coloring or partitioning, are
sophisticated and complex, still they are easy to use, runs fast, and produce high
quality solutions in many cases. The best way to observe their impact is how
they are referenced in scientific publications where researchers would previously
develop and explain their own software in great detail, while now they will just
use such a package and cite it.

As stated in [68], research in CSC typically comprises of the following three
steps. The first step consists of finding an appropriate combinatorial model for
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a problem in scientific computing to make the computation feasible, fast, and
efficient. This is the most time consuming step, as developing the right combi-
natorial model is often critical to the computation of an efficient solution. The
second step involves the design, analysis, and implementation of algorithms to
solve the combinatorial subproblem. The emphasis is always on practical and ef-
ficient algorithms since an algorithm with quadratic time complexity in the input
size could be too slow to be useful compared to the other computational steps.
The algorithm could either be an exact, approximate, or heuristic solution to the
problem. The third and last component involves the development of software,
evaluating its performance on a collection of large test sets, making it publicly
available, and integrating with a larger software library if possible.

Since CSC typically involves time consuming computations on large data sets,
it is only natural that one employs parallel computers and algorithms for faster
processing.

2 Parallel Computing

Parallel computing has a long history within scientific computing. The hardware
used for this has mainly been large, expensive, and specially built computers that
could only be acquired by larger organizations. However, with the fairly recent
appearance of multicore computers in the mass market, parallel computing is
now becoming mainstream technology. All projections indicate that this trend
will continue and escalate in the foreseeable future. It is estimated that the num-
ber of cores per chip will be doubling almost every two years while the production
cost remains fixed [8]. Combining these chips into larger multi-processor systems
is also becoming increasingly affordable [118]. But, being able to exploit the
performance gain from these computers depends very much on algorithms and
software. Therefore, there is an essential need to develop parallel algorithms that
can take advantage of the parallelism that is now becoming available. As stated,
scientific computing often uses parallel computers and algorithms for faster pro-
cessing. To avoid that the combinatorial parts become bottlenecks, these have to
be parallelized as well. In the following we give a brief overview of the different
types of parallel computers and their related programming models.

Parallel computers are typically classified as either shared memory or dis-
tributed memory computers, depending on how the memory is organized. We
start by presenting shared memory computers.

2.1 Shared Memory Parallel Computers

With the proliferation of multicore chips, shared memory computers are today
by far the most common type of parallel computers. They range from laptops
to high speed supercomputers. Although these computers vary widely, what
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they have in common is that multiple processors share the same memory as a
global address space. The processors operate independently and any change in
a memory location made by one processor is immediately visible to all other
processors. This makes the task of sharing data fast and uniform and provides a
user friendly programming environment. Although the typical number of cores is
relatively modest, for example dual-core and quad-core, this number is expected
to increase rapidly.

Along with the hardware development, programming models are also needed
to obtain high performance from these computers. As there is no universally
accepted parallel programming language, the main choice has been to develop
APIs to extend existing programming languages in order to express parallelism.

OpenMP [26] and POSIX Threads [64, 139] are two such widely used APIs
for programming shared memory computers. OpenMP is available for C/C++
and Fortran and is based on compiler directives using pragma statements in the
code. This enables the programmer to explicitly define parallelism in an existing
sequential program. In particular, loop based parallelism can easily be exploited
[79]. We now discuss briefly how to use OpenMP.

OpenMP programs execute serially until they encounter the parallel direc-
tive. This directive creates a group of threads that executes in parallel with
the original sequential thread as the master thread. The threads then execute a
structured block of code in parallel and once finished all the threads except the
master are killed automatically and the program continues sequential execution.

There are several directives that specify how iterations and tasks are executed
in parallel [26, 100]. Loop based directives are used to split an iteration space
among multiple threads. How the iteration space is partitioned can be controlled
using the schedule directive. An example is static scheduling which splits the
iteration space into equal size chunks and assign them to threads in a round-robin
fashion. But, different iterations might have widely varying execution times. For
this reason, OpenMP gives the dynamic scheduling method where chunks of the
iteration space are dynamically assigned to idle threads. Common to all loop
based directives is that all threads perform the same kind of operations, but on
different data sets. OpenMP also supports non-iterative parallel task assignment
using the sections directive. With this, different code blocks are assigned to
different threads. There are also ways to declare variables as private to each
thread or shared among all threads. However, one must be careful when using
shared variables as multiple threads might try to write to the same variable at the
same time, resulting in inconsistencies. However, there are directives that help
with this task. The critical directive allows one thread at a time to execute
a critical region (a block of code) and the atomic directive allows a thread to
update a memory location at a time. OpenMP also supports a number of library
functions for controlling and monitoring the threads, such as, for setting the
default number of threads to be created in a parallel region or for getting the
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thread ID. It is worthwhile to note that in OpenMP, the programmer does not
need to create, join, or kill threads by explicit commands.

On the other hand, POSIX Threads, also known as Pthreads, is a library
based model and requires explicit parallel coding. This provides flexibility but
the programmer has to deal with communication, threads, and synchronization
himself. Therefore, this model is not so popular with application programmers
who typically do not want to deal with low level primitives [64]. We omit the
details of Pthreads as we will be using OpenMP in this thesis when dealing with
shared memory computers.

Threading Building Block (TBB) is another parallel programming approach
for shared memory computers, which was recently introduced by Intel [114]. TBB
is a task-based abstraction for parallel programming that at runtime maps tasks
to threads. Tasks are relatively light-weight compared to threads and no context
switching is needed. However, a recent study [79] indicates that TBB requires a
considerable program redesign compared to OpenMP. Therefore, this approach
might be less appropriate for parallelizing existing sequential codes.

So far, we have only talked about the features of multicore computers and
how these are programmed. But, it is also useful to have a theoretical model
so that one can analyze the performance of a parallel program as one can for a
sequential program. The Parallel Random Access Machine (PRAM) is one such
computational model for shared memory computers [80]. In its standard form,
the model assumes an unbounded number of processors and a shared memory of
unbounded size. However, it is typically assumed that the number of processors is
polynomial in the input size. Still, this should be compared to real applications
where the number of processors is typically several orders of magnitude lower
than the input size. Despite this serious deviation from the nature of real parallel
computers, the PRAM model can be useful for theoretical runtime analysis in
order to get an idea about the parallelism inherent in an algorithm, leaving the
communication and synchronization costs aside.

2.2 Distributed Memory Parallel Computers

In this type of architecture, processors are connected through a common com-
munication channel and each processor has its own local memory. Conceptually,
one can view this as if several desktop computers have been connected through a
network to operate as one parallel computer. Therefore, memory scales well with
the number of processors. These computers are traditionally large, consisting of
up to thousands of processors and having terabytes of memory. One advantage
of such systems is that they are less complex to build and also, more scalable.
Today, systems executing many teraflops/second are not uncommon [5, 134].
Currently, the worlds fastest computer, the Chinese Tianhe-1A system at the
National Supercomputer Center in Tianjin is such a system and can execute 2.57
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petaflops/second with 229,376 gigabytes of memory [127]. However, the largest
systems are very expensive and therefore, they are only used in national labs and
large companies to conduct complex tasks such as nuclear weapons simulations,
pharmaceutical drug modeling, mining of large data sets, weather forecasting, or
geological analysis to find oil deposits [134].

In distributed memory systems, each processor operates independently and
changes that one processor makes to its own local memory has no effect on the
memory of other processors. When data has to be relayed between processors, the
programmer has to specify explicitly how and when the data is communicated
between the processors. An extra challenge with distributed memory comput-
ers is that it might be difficult to map an existing sequential data structure to
the different processors. Therefore, designing parallel algorithms for distributed
memory computers is typically more challenging than it is for shared memory
computers. Similar to shared memory computers, APIs are used for program-
ming these computers. In the following we outline some of the programming
approaches.

Interaction between processors is usually accomplished using messages, hence
the name message passing computers. The exchange of messages is used to trans-
fer data, tasks, or to synchronize actions among the processors. The basic opera-
tions, the sending and receiving of messages are performed by send and receive

operations (the corresponding call may differ across APIs). In addition, since the
send and receive operations must specify target addresses, there must be a mecha-
nism to assign a unique identification (ID) to each processor executing a parallel
program. The ID is typically made available to the program using a whoami

function. The final function needed to complete the basic set of message passing
operations is numprocs, which specify the number of processors participating in
the ensemble. The Message Passing Interface (MPI) [65] is the de facto stan-
dard message passing library used to develop portable message passing programs
using either C/C++ or Fortran. MPI supports all the basic operations as well
as a variety of higher level functionality. In total, the MPI library contains over
125 routines, but it is possible to write fully functional message passing programs
using only six routines.

As communication is the main obstacle to obtaining efficient parallel code,
we now discuss how this can be done. The two main ways of doing this is either
as synchronous and asynchronous operations. Synchronous message passing re-
quires the sender and receiver to wait for each other at a synchronization point
to transfer the complete message. In this way there is no need for buffer stor-
age. Synchronous message passing is also known as blocking message passing as
it blocks computation until the message passing has been completed. On the
other hand, asynchronous message passing delivers a message from the sender
to the receiver, without waiting for the receiver to be ready. The advantage in
this case is that both the sender and the receiver can overlap the time spent on
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communication with computation. Therefore, this is also known as nonblocking
message passing since communication does not block further computations. The
objective of this is to reduce the overall execution time. Buffers are used inter-
nally to perform this technique and therefore, at a later point in the program,
a processor that has started a nonblocking send or receive operation must make
sure that this operation has completed before it proceeds with its computations.
In this thesis, we have mainly used asynchronous message passing when using
distributed memory computers.

So far, we have discussed the features of distributed memory computers and
how to program these using message passing. We now explore a model, known
as the Bulk Synchronous Parallel (BSP) model, to design parallel algorithms for
these computers [16, 132]. BSP serves a similar purpose as the PRAM model for
shared memory computers, but differs from PRAM by not taking communication
and synchronization for granted. A BSP algorithm consists of a sequence of su-
persteps. Each superstep contains first a computation step which is then followed
by a communication step. Finally, there is a global barrier synchronization. In
the computation step, each processor performs a sequence of operations on local
data whereas in the communication step, each processor sends and receives a
number of messages. At the end of a superstep, each processor synchronizes by
checking whether it has finished all its obligations in the current superstep before
proceeding to the next one.

One advantage of the BSP model is that the execution time of an algorithm
can be predicted by theoretically analyzing the cost of the algorithm and inde-
pendently measuring performance parameters of the computer when using a fixed
number of processors. These parameters are the single-processor computing rate,
the time taken by one processor to send or receive one data word, and the time
taken to synchronize all processors. The predicted time will then give an upper
bound on the measured time. We refer to [16] for more details about the BSP
model.

There are currently three libraries, the Oxford BSP Toolset [69], the Pader-
born University BSP library [18, 19], and recently introduced BSPonMPI [120],
that implements the BSP model [70] (also known as BSPlib). These libraries
take some of the tediousness away from message passing. Moreover, much of the
communication optimization is left to the system; for instance, different messages
to the same destination are automatically detected and combined. However, the
BSP model is not that widely used and most established libraries that implement
it are not platform independent. Another issue is that the BSP model, as stated,
does not take advantage of overlapping computation and communication.

In this thesis we have used both pure BSP type programming and also a hybrid
approach. In the pure BSP type programming, we have used BSPonMPI which
is platform independent and developed on top of MPI. In the hybrid approach
we have combined elements from the pure asynchronous communication model
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with the programming style of BSP. Thus we are able to overlap communication
with computation while at the same time taking advantage of the structured
BSP style of programming. The main difference from pure BSP is that we use
asynchronous MPI send and receive operations and that we start these operations
as soon as possible during the computation step. In this way we are able to overlap
communication with computation and as soon as a processor reaches the end of
the computation step, all data that the processor expects to receive should ideally
already have arrived. The processors receive and process all incoming messages
in any order, unlike the BSP model where all messages are received before being
processed. The processors do not explicitly synchronize with each other and move
on to the next superstep once they are done with the communication. However,
since we typically use an all-to-all communication pattern, there is an implicit
synchronization between the processors. In this setting, a processor could be one
superstep ahead of the other processors, but not more. Thus, one can view our
algorithms as following a relaxed BSP style.

2.3 Other Types of Parallel Computers

We note that there exists other types of parallel computers than the pure shared
memory and distributed memory computers discussed so far. For instance the
Hybrid Distributed-Shared Memory Computers connect several shared memory
computers under a common message passing communication network and there-
fore, have both shared memory and distributed memory functionalities. We omit
the details of these types of machines as they are not considered in this thesis.

Besides the use of traditional processors or cores in parallel computing, re-
searchers have over the past few years started using Graphic Processing Units
(GPUs) to do general purpose scientific and engineering computing. This branch
of computing is recognized as GPU computing or GPGPU. The model for GPU
computing is to use one CPU and several GPUs together in a heterogeneous
computing model where the sequential part of the application runs on the CPU
whereas the computationally intensive part is accelerated by the GPUs. As ex-
pected, GPU functionality has traditionally been very limited, and therefore, they
can only be used efficiently to solve problems where similar computations are per-
formed for each computing element. But there is an ongoing effort, for example
by NVIDIA [98], to make these chips fully usable for scientific applications and
also to add support for high level languages.

2.4 Performance Metrics

We now present a few performance metrics that are typically used to analyze the
performance of parallel programs.
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Speedup: While evaluating a parallel program, we are often interested in
knowing how much performance gain is achieved by parallelizing a given appli-
cation over a sequential implementation. Speedup is one such measure. Speedup
using p processors is defined by Sp = Ts/Tp, where Ts and Tp are the execution
times of the best sequential algorithm and the parallel algorithm, respectively.
The ideal case, Sp = p, is known as linear speedup. However, in practice it is
possible to get Sp > p (known as superlinear speedup). One reason why this can
appear is that the accumulated size of the caches from the p processors can fit
more of the data set compared to what one processor can. Thus, the memory
access time reduces drastically giving extra speedup in addition to the linear
speedup.

Efficiency: Efficiency is a measure of the fraction of time for which a proces-
sor is performing actual computation. This is defined by Ep = Sp/p = Ts/(pTp).
This value is typically between zero and one. It is used to estimate how well the
processors are utilized in solving a problem, compared to how much performance
is lost due to communication and synchronization.

Scalability: The scalability of a parallel program is a measure of its capacity
to increase speedup in proportion to the number of processors. Thus it reflects
a parallel programs ability to utilize increasing processing resources effectively.
Typically we use two types of scalability. Strong scalability measures speedup
when the number of processors varies, while the problem size remains fixed. To
measure weak scalability, we vary the number of processors but now we also
change the problem size so that the amount of work per processor is kept fixed.

3 Graph Problems in CSC

A graph is an abstract representation used to model many scientific computing
problems. The vertices of a graph often represent computational tasks whereas
the edges between the vertices reflect interdependencies between the tasks.

Graph algorithms have for a long time been a key aspect in a wide variety
of areas in scientific computing. For example, graph partitioning has been used
in sparse linear algebra since the 1960s [103]. Graph coloring algorithms have
been used for computing Jacobian and Hessian matrices in optimization since
the 1970s [29, 34]. Various types of matching problems in graphs are found in the
solution of sparse linear systems, for instance in numerical preprocessing, block
triangular decomposition, and also in the coarsening phase of multilevel methods
for graph partitioning [43, 61, 109]. Graph and hyper-graph based models can
capture the needs for reordering the nodes and elements within an unstructured
mesh to improve runtime performance [119, 125]. Graph algorithms also play
an important role in computational chemistry, biology, and in bioinformatics,
for example, characterizing molecules [113, 121], genomic and proteomic analysis
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[15, 40, 99], aligning DNA and RNA sequences and generating phylogenetic trees
[13, 45], and cellular automata in statistical physics [126, 140].

Since many graph problems in scientific computing consists of large data sets,
it is only natural that researchers have used parallel graph algorithms to solve
these problems. In the following we elaborate on some of the issues that arise
when these data sets are mapped to the memory of parallel computers.

As stated, in a shared memory parallel computer, multiple processors share
the same global memory, therefore, one does not need to partition the data set
before running a parallel algorithm. However, a parallel algorithm must specify
which processor should work on what data elements. A proper partitioning en-
hances the performance of the algorithm significantly as shown in [56]. There are
several ways of doing this, as discussed in Section 2.1. On the other hand, for
distributed memory computers, since each processor has its own limited memory
and since large data sets cannot fit in the memory of one processor, one needs to
partition the data among the processors. Partitioning should typically be done
in such a way that each processor gets an almost equal share of data elements,
while at the same time minimizing the required communication. Achieving such
a partitioning can typically be modeled as a graph problem and has been studied
since the 1960s [103]. A common approach to perform this task is to partition the
vertices and then assign each resulting part to a processor (while assigning the
edges in a corresponding manner). An important objective is then to minimize
the number of edges shared by multiple processors. This is often referred to as
graph partitioning (also known as vertex partitioning or one-dimensional parti-
tioning). There are several software packages such as Chaco [67] and Metis [75]
to do this. An alternative approach to vertex partitioning is edge partitioning
where the edges are partitioned instead of the vertices. This is often referred
to as a two-dimensional partitioning. Several software packages like Mondriaan
[133] and Zoltan [38] are available for edge partitioning. It has been shown that
in the case of sparse matrix vector multiplication in numerical algorithms, two-
dimensional partitioning can lead to lower communication volume compared to
one-dimensional partitioning [130, 133]. For graph algorithms, to our knowledge,
two-dimensional partitioning has not been employed yet. Thus, one of our inten-
tions in this thesis has been to investigate whether an edge partitioning approach
yields similar benefits as in the matrix vector multiplication case. For computing
the edge partitioning, we use the Mondriaan [133] software package.

More specifically, we have studied three graph problems motivated from CSC.
The first one is an advanced data structure used to model disjoint sets. In our
work we have developed parallel algorithms for this problem along with highly
tuned sequential algorithms. We have also studied parallelization of the matching
problem and of the graph coloring problem in this thesis. In the following we
present a brief overview of these problems.
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3.1 Disjoint Sets

A minimum spanning tree (MST) for an edge weighted connected graph is a tree
that contains all the vertices of the graph and where the sum of the weights
of the edges in the tree is minimum. The problem of finding an MST is one of
the most studied combinatorial problems with a number of practical applications.
This includes areas such as VLSI layout, wireless communication, and distributed
networks [93, 128, 143], recent problems in biology and medicine such as cancer
detection [23, 77, 78, 91] and medical imaging [4, 40, 99], and national security
and bioterrorism such as detecting the spread of toxins through populations in
the case of biological/chemical warfare [27]. The computation of an MST is often
a key step in other graph problems [90, 95, 124, 135]. Note that if the graph is
not connected, then the MST problem finds a minimum spanning forest which
consists of an MST for each component of the graph.

Kruskals algorithm is one of several ways to solve the MST problem [31]. In
order to solve the problem efficiently, this algorithm uses a special kind of data
structure known as a disjoint-set data structure.

A disjoint-set data structure maintains a dynamic collection of disjoint sets
that together cover all the elements of a finite universe. Each set is typically
represented by a rooted tree where the root is used as the representative of the
set. Each node (each element of the universe) has a parent pointer which can
be used to reach the root of the tree. The two main operations on this data
structure are to Find which set a given element belongs to and to replace two
existing sets with their Union. In addition, there is a Makeset operation to
create a singleton set from an element. This set of algorithms is often referred to
as the Union-Find algorithm. The algorithm has been studied since the 1970s
[12, 122, 123], is taught in most algorithm courses and used in standard software
libraries such as Boost [36] and Leda [94].

Other than the computation of MSTs or connected components in graphs, the
Union-Find algorithm is also used in image processing. An important problem in
image processing is to capture the essential features of a scene [30, 138, 145]. One
way to do this is to extract significant regions from the image [97]. The technique
for extraction is known as region growing (also known as connected component la-
beling) which consists of starting with the smallest regions (i.e. pixels or points in
an image) and merging them until they are considered to be optimal. The region
growing problem is an important part of most applications in pattern recognition
and computer vision, such as character recognition [3, 25]. In many cases, region
growing is one of the most time consuming tasks in pattern recognition algorithms
[2]. However, it has been shown that the region growing problem leads naturally
to the disjoint set problem [39] and therefore, Union-Find algorithms have been
used in image processing for a long time [9, 47, 141].

Another application of the Union-Find algorithm is the computation of an
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elimination tree from a sparse, symmetric, and positive definite matrix in numer-
ical linear algebra [86, 144]. The elimination tree provides structural information
relevant to the sparse factorization process [87, 110]. The use of the elimination
tree includes, among others, finding equivalent matrix reorderings [108], various
sparse storage schemes [86], and symbolic factorization [60]. The elimination tree
is usually defined through the Cholesky factor (in which, nonzero elements above
the diagonal have been transformed to be equal to zero) [59]. However, to con-
struct the elimination tree directly from the sparse matrix efficiently, different
variations of Union-Find algorithms have been tried and found to be efficient
[62, 86, 87, 144].

As stated, the Union-Find algorithm is used as a basic building block of
many applications, therefore, it is of interest to have an efficient implementation.
There are several well established ways to implement the Union-Find algorithm
efficiently [31]. But, because of the broad use of the algorithm in numerous ap-
plications, researchers from different disciplines have suggested different simple
enhancements suitable for their own specific applications [62, 87, 101]. Although
it is possible to combine several of these enhancements together giving more than
50 different variations of the Union-Find algorithm, most of the comparative
studies on the Union-Find algorithm consider only a few algorithms in their
context. For example, [87] and [62] compared only two and six algorithms, respec-
tively, in sparse matrix factorization and [136] and [141] compared eight and three
algorithms, respectively, in image processing. The most extensive such study was
[71] which compared the performance of 18 variations of the Union-Find algo-
rithm for computing connected components in graphs. However, there has been
no study showing that these techniques work well in all settings. Therefore, it
is of interest to study and compare all of these algorithms and suggests a best
way of implementing the Union-Find algorithm in general. Note that such a
study must be experimental since the theoretical complexity of all these suggested
variations is more or less the same.

In this thesis we present such a study where we consider the Union-Find

algorithm for finding connected components of a simple undirected graph G =
(V,E) where V and E are the set of vertices and edges, respectively. In this case,
the Union-Find algorithm computes a minimal subset S ⊆ E such that S is a
spanning forest of G. If G is weighted and the edges are processed in order of
increasing weight then the Union-Find algorithm gives Kruskals algorithm [31]
for computing a minimum weight spanning forest.

In our work we performed a large set of experiments comparing over 63 differ-
ent variations of the Union-Find algorithms using both real world and synthetic
data as input. The difference between the algorithms goes typically to how the
trees are constructed and traversed. Details on these can be found in [105].
Our main conclusion was that the standard implementation using the techniques
known as Path Compression and Union by Rank (PCUR) is not the method
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of choice [106]. It was consistently outperformed by a somewhat forgotten sim-
ple method known as rem’s algorithm. This is an interesting observation as the
PCUR algorithm is taught in most standard algorithm courses and implemen-
tations of it is also found in major algorithmic software libraries such as Boost
[36] and Leda [94]. Thus, we expect our results to have an impact beyond the
scientific community.

We also present a framework for parallelizing the Union-Find algorithm on a
distributed memory computer. Although the algorithm is inherently sequential,
there has been some previous efforts at constructing parallel implementations
[7, 11, 35]. These have mainly been focused on shared memory computers. As far
as we know, our algorithm is the first such effort for distributed memory parallel
computers. To partition the graph among processors, we use the edge based
partitioning software Mondriaan [133]. Our algorithm operates in two stages. In
the first stage, each processor computes a spanning forest based only on local
edges. This stage can be performed without any communication. We do this to
reduce the number of edges to be considered in the final stage. In the second stage,
we run a parallel algorithm to pick a subset of edges from these spanning forests
to obtain the global spanning forest. We have tested several variations of the
algorithm using both real world and synthetic graphs and found the framework
to be scalable with reasonable speedup. Details can be found in [89].

3.2 Matching

A matching in a graph is a pairing of adjacent vertices such that each vertex
is matched with at most one of its neighbouring vertices. An important task
in many scientific computing problems is to compute a matching that is largest
according to some objective function. One such objective is to find a matching
with a maximum number of edges, known as the maximum cardinality matching.
A variant known as themaximum weighted matching problem asks for the heaviest
matching in an edge weighted graph, where the weight of a matching is the sum
of the weights of the matched edges. Another variant is vertex weighted matching
where weights are assigned to vertices instead of edges and therefore, the problem
is to find a matching such that the weight of the endpoints of the matched edges
is maximum.

Our interest in studying matching problems stems from their broad use in
scientific computing. One example application is in numerical pivoting in the
direct solution of a linear system of equations [43]. It has been shown in [43, 44]
that the greedy strategy which is typically used for choosing pivots could lead to
suboptimal results. It has been demonstrated that a better result can be achieved
by viewing the matrix as a bipartite graph and finding a matching in the graph.
The vertices in the bipartite graph correspond to rows and columns of the matrix,
edges between row vertices and column vertices represent nonzero elements in the
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matrix, and the magnitudes of the nonzero elements become the weights of the
edges. Then, a matching of maximum cardinality with the maximum weight can
be used to permute the rows and columns of the matrix so as to place large
elements on the diagonal and thus, reduce the need for pivoting.

Another application of matchings is in the iterative solution of linear systems
of equations where one would like to have the dominant elements on the diagonal
in order to ensure rapid convergence. This problem can also be modeled as a
matching problem [116]. Other applications include the use of matchings in the
development of multi level graph and hyper-graph partitioning software [37, 38],
aligning RNA sequences [13], and studying magnetism [14].

Although many applications consider weighted matching, cardinality match-
ing is often used as the first step towards the computation of a weighted matching
[43, 44]. Moreover, there are applications where cardinality matching is needed,
for example, in computing the block triangular form (BTF) of a sparse matrix.
BTF leads to savings in computational work and intermediate storage for many
sparse matrix algorithms, including algorithms for solving linear systems of equa-
tions and partitioning sparse matrices in parallel computations [109].

There exists several algorithms for computing a maximum cardinality match-
ing. Common to most of these is that they are iterative in nature. Among these,
the Push-Relabel algorithm [63] has proven to be fast and robust in practice
[28]. However, recent studies have shown that many matching algorithms can be
accelerated significantly by using strong initialization heuristics [42, 83], such as
the Karp–Sipser algorithm [73]. Infact, new results indicate that the fastest
matching codes use the Karp–Sipser algorithm and the Push-Relabel algo-
rithm [41].

The Karp–Sipser algorithm has been shown in practice to yield high-
quality matchings quickly [96]. The idea of the algorithm is as follows. It re-
peatedly picks a singleton vertex (degree one vertex) if there is any and if there is
no such vertex it picks an edge randomly from the current graph. The algorithm
then matches the two vertices (in case of a singleton vertex, the neighbour is
the adjacent vertex) and removes them from the graph along with their adjacent
edges. This removal might generate new singleton vertices. This process is then
repeated until there is no edge left in the graph.

In this thesis we investigate the parallelization of the Karp–Sipser algo-
rithm for distributed memory computers. We develop a new parallel algorithm
which works in rounds. During every round, each processor tries to match a fixed
number of vertices using the idea of the sequentialKarp–Sipser algorithm (pick
a singleton vertex if there is one, otherwise pick an edge randomly). This might
require tie breaking if several processors want to match the same vertex. Just
like the sequential algorithm, the parallel algorithm stops when there is no edge
left on any processor. We have performed experiments with our parallel algo-
rithm using both real-world and synthetic graphs, and found that the algorithm
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gave good speedup and matching quality on up to 64 processors. In this work,
we also performed a comparative study between the performance of edge based
partitioning and vertex based partitioning. Our results show that edge based
partitioning requires less communication compared to vertex based partitioning.
This is similar to parallel matrix vector multiplication in numerical algorithms.
Details of the algorithm can be found in [104].

We also present the first practical parallel algorithm for computing a maxi-
mum cardinality matching in a bipartite graph suitable for distributed memory
computers. The presented algorithm is based on the Push-Relabel algorithm.
Bipartite matching is a special case of the maximum flow problem [46] and paral-
lelizations of the Push-Relabel algorithm for maximum flow on shared memory
computers have previously been presented in [6, 10]. [6] has later been adapted
to bipartite matching and studied in [117]. The Push-Relabel algorithm tries
to push units of flow from the left sided vertices to the right sided ones in the
bipartite graph. If a push has been performed successfully between a pair of
vertices, they are considered to be matched. This indicates how to parallelize the
algorithm. Multiple processors could simultaneously try to push flow from left
sided vertices to the right sided ones. In our work we show that a straightforward
adaptation of the sequential Push-Relabel algorithm to a parallel version is not
scalable due to the amount of communication. We then modify this algorithm
in order to reduce communication and increase load balance. We then experi-
ment on this new algorithm using several large problem instances and observe
the scalability of the algorithm using up to 128 processors. To the best of our
knowledge, this algorithm is the first exact algorithm for this problem to achieve
speed up over the sequential algorithm. We note that having a parallel algorithm
makes it possible to solve instances that are too large to fit in the memory of one
processor. Details can be found in [84].

3.3 Graph Coloring

Coloring is an abstraction for partitioning a set of objects into independent sets
where the objects in each set receive the same color. The notion of independence
and the associated coloring rules vary from context to context. In the simplest
case, adjacent vertices in a graph are required to receive different colors. This is
known as distance-1 coloring. There are several other coloring variations depend-
ing on their applications in scientific computing. One such variation is distance-2
coloring where the colors of both adjacent vertices and distance-2 neighbours have
to be different. A star coloring is a distance-1 coloring where, in addition, every
path of four vertices uses at least three colors. An acyclic coloring is a distance-1
coloring in which every cycle uses at least three colors. The objective of most
graph coloring problems is to minimize the number of colors used.

Graph coloring problems arise in a number of applications in scientific comput-
ing. Examples include, among others, timetabling and scheduling [85], frequency
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assignment [48], register allocation [24], printed circuit testing [50], parallel nu-
merical computation [1], and optimization [29]. Unfortunately, coloring a general
graph with the minimum number of colors is known to be an NP-hard problem
[49] and also difficult to approximate [32]. Therefore, one often relies on heuristics
to obtain a reasonable solution. Among these, greedy algorithms have been found
to be quite effective [29]. A greedy algorithm incrementally colors the vertices
of a graph and once a vertex is colored, its color never changes [51]. There are
various strategies to assign colors to the vertices, for example, smallest legal color
or using a random color. However, the order in which the vertices are processed
in a greedy coloring algorithm has a large influence on the number of colors used
by the algorithm [82, 142]. Therefore, it is also of importance in greedy coloring
to choose the vertex ordering carefully. A number of different ordering techniques
can be found in [29, 57, 92, 137].

There has been several studies on parallelizing greedy coloring algorithms both
for distributed memory computers [17, 21, 22, 72] as well as for shared memory
computers [52, 53, 56]. As far as we know, there has not been any previous
studies on how to parallelize the ordering algorithms as these are sequential by
nature and thus challenging to parallelize. We also note that there has not been
any comprehensive study of how to choose permissible colors in greedy coloring
on shared memory computers. The only case that we are aware of is [54] which
presented a randomized variation of greedy coloring to reduce the number of color
conflicts. In this thesis, we propose a framework for parallelizing the ordering on
shared memory computers. The framework orders several vertices of the same
degree in parallel, instead of one by one as in sequential ordering. This relaxation
still shows similar performance compared to sequential ordering. Different order-
ing techniques have been investigated in this framework and experimental results
show that the ordering algorithms are scalable. Like ordering, coloring is also
inherently sequential. We also present a framework for parallelizing distance-k
coloring on shared memory computers. The framework is similar to [20, 22, 131],
but in addition, it employs a number of new ingredients. It works in rounds where
each round has two phases. In the first phase, we assign a speculative color in
parallel to the vertices. In the second phase, we identify any coloring conflicts
and proceed to the next round to recolor the set of conflicting vertices. Different
strategies in selecting a permissible color have been employed in this framework
and experimental results show that the coloring algorithms are scalable. We also
observe that using these frameworks, the number of colors used is fairly close to
the corresponding sequential algorithms. Details can be found in [107].

4 Conclusion

In this section we list the papers in this thesis and also point to possible directions
for how this work can be extended in the future.
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4.1 Our Contribution

This thesis consists of the following five publications [84, 89, 104, 105, 107].

I. Md. Mostofa Ali Patwary, Jean Blair, and Fredrik Manne, An Experimental
Evaluation of Union-Find Algorithms for the Disjoint-Set Data Structure,
Submitted to ACM Journal of Experimental Algorithmics, November, 2010.
A preliminary version has been published in [106].

II. Fredrik Manne and Md. Mostofa Ali Patwary, A Scalable Parallel Union-
Find Algorithm for Distributed Memory Computers, in proceedings of the
Eighth International Conference on Parallel Processing and Applied Math-
ematics (PPAM 2009), Springer LNCS 6067, pp. 186-195, 2009.

III. Md. Mostofa Ali Patwary, Rob H. Bisseling, and Fredrik Manne, Parallel
Greedy Graph Matching using an Edge Partitioning Approach, in proceed-
ings of the Fourth ACM SIGPLAN Workshop on High-level Parallel Pro-
gramming and Applications (HLPP 2010), pp. 45-54, September, 2010.

IV. Johannes Langguth, Md. Mostofa Ali Patwary, and Fredrik Manne, Par-
allel Algorithms for Bipartite Matching Problems on Distributed Memory
Computers, Submitted to Parallel Computing, October, 2010.

V. Md. Mostofa Ali Patwary, Assefaw H. Gebremedhin and Alex Pothen, New
Multithreaded Ordering and Coloring Algorithms for Multicore Architec-
tures, Submitted to the 17th International European Conference on Par-
allel and Distributed Computing (Euro-Par 2011), 2011. A presentation on
this has been given at ICCS Workshop on Manycore and Accelerator-based
High-performance Scientific Computing, 2011.

Besides the above mentioned papers, the author has co-authored the following
paper [57] during the work on this thesis.

VI. Assefaw H. Gebremedhin, Duc Nguyen and Alex Pothen, and Md. Mostofa
Ali Patwary, ColPack: Graph Coloring Software for Derivative Compu-
tation and Beyond, Submitted to ACM Transactions on Mathematical
Software, October, 2010.

Although this paper belongs in the area of CSC, it is not included in the
thesis. The reason for this is that it is part of a larger project which has been
ongoing for several years [33].



18

4.2 Open Problems

In this section, we present some of the different ways in which the work in this
thesis could be extended.

The experimental study on different techniques of the sequential Union-Find

algorithm is fairly complete. But one natural question arises here: which of the
algorithms are parallelizable and which are worthwhile to try and implement? In
our framework for parallelizing theUnion-Find algorithm, we only experimented
with a subset of the possible algorithms. In particular, it could be interesting to
try a few more techniques including the best one (rem’s algorithm).

Another way to extend this work could be to use the Union-Find algorithms
on shared memory computers. Even though there has been previous studies on
how to do this, these only considered the standard techniques. In particular, it
would be interesting to see how rem’s algorithm can be implemented on shared
memory computers. It could also be of interest to compare our algorithm with
other parallel algorithms for computing connected components.

In case of the matching problem this thesis only considered the maximum
cardinality problem. One natural extension would therefore be to look at how
our algorithms can be modified to deal with weighted matching. This is true both
for greedy matching in general graphs as well as for perfect matching in bipartite
graphs.

One more pending and interesting problem is to merge the parallel algorithms
for greedy and perfect matching together. In our current parallel code for perfect
bipartite matching, we compute an initialization locally on each processor and
then extend this partial matching using our parallel algorithm. The runtime of
this later step depends on the quality of the initial matching. Thus, since our
parallel greedy graph matching algorithm gives a good quality matching quickly, it
is likely that one could use it to speedup the computation of the perfect matching.

In case of the coloring problem, we have only considered general graphs. But
from an application point of view, distance-2 coloring is typically used on bipartite
graphs. Therefore, this would be a natural extension of this work. Moreover, it
could be of interest to see how the ideas of our ordering algorithms can used on
distributed memory computers.
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[96] R. H. Möhring and M. Müller-Hannemann, Cardinality matching:
Heuristic search for augmenting paths, Tech. Rep. 439, Fachbereich Math-
ematik, Technische Universität Berlin, 1995.

[97] J. Muerle and D. Allen, Experimental evaluation of techniques for
automatic segmentation of objects in a complex scene, Pictorial Pattern
Recognition, (1968), pp. 3–13.

[98] Nvidia, GPU computing. http://www.nvidia.com/.

[99] V. Olman, D. Xu, and Y. Xu, Identification of regulatory binding sites
using minimum spanning trees, in proceedings of the Eighth Pacific Sym-
posium on Biocomputing (PSB 2003), Hawaii, World Scientific, Singapore,
2003, pp. 327–338.

[100] OpenMP, The OpenMP API specification for parallel programming.
http://openmp.org/.



28

[101] V. Osipov, P. Sanders, and J. Singler, The filter-Kruskal minimum
spanning tree algorithm, in proceedings of the 10th Workshop on Algorithm
Engineering and Experiments (ALENEX 2009), 2009, pp. 52–61.

[102] L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank
citation ranking: Bringing order to the web, Tech. Rep. 1999-66, Stanford
InfoLab, November 1999.

[103] S. Parter, The use of linear graphs in Gauss elimination, SIAM Review,
3 (1961), pp. 119–130.

[104] M. M. A. Patwary, R. H. Bisseling, and F. Manne, Parallel greedy
graph matching using an edge partitioning approach, in proceedings of the
Fourth ACM SIGPLAN Workshop on High-level Parallel Programming and
Applications (HLPP 2010), 2010, pp. 45–54.

[105] M. M. A. Patwary, J. Blair, and F. Manne, An experimental evalu-
ation of union-find algorithms for the disjoint-set data structure, Submitted
to the ACM Journal of Experimental Algorithmics, (November, 2010).

[106] M. M. A. Patwary, J. R. S. Blair, and F. Manne, Experiments on
union-find algorithms for the disjoint-set data structure, in proceedings of
the 9th International Symposium on Experimental Algorithms (SEA 2010),
vol. 6049 of LNCS, Springer Verlag, 2010, pp. 411–423.

[107] M. M. A. Patwary, A. H. Gebremedhin, and A. Pothen, New mul-
tithreaded ordering and coloring algorithms for multicore architectures, in
the 17th International European Conference on Parallel Processing (Euro-
Par 2011), 2011. Submitted.

[108] F. J. Peters, Sparse matrices and substructures, Tech. Rep. Mathematical
Centre Tracts, 119, Mathematisch Centrum, Amsterdam, The Netherlands,
1980.

[109] A. Pothen and C.-J. Fan, Computing the block triangular form of a
sparse matrix, ACM Transactions on Mathematical Software, 16 (1990),
pp. 303–324.

[110] A. Pothen and S. Toledo, Elimination structures in scientific comput-
ing, CRC Press, Boca Raton, 2004.

[111] M. J. D. Powell and P. L. Toint, On the estimation of sparse hessian
matrices, SIAM Journal on Numerical Analysis, 16 (1979), pp. 1060–1074.



29

[112] R. Preis, Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs, in proceedings of the Symposium on Theoretical
Aspects of Computer Science in general graphs (STACS 99), vol. 1563 of
LNCS, Springer, 1999, pp. 259–269.

[113] M. Randic and J. Zupan, On interpretation of well-known topological
indices, Journal of Chemical Information and Computer Sciences, 41 (2001),
pp. 550–560.

[114] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
core Processor Parallelism, O’Reilly Media, 2007.

[115] D. Rose, A graph-theoretic study of the numerical solution of sparse pos-
itive definite systems of linear equations, Graph Theory and Computing,
(1972), pp. 183–217.

[116] Y. Saad, Multilevel ILU with reorderings for diagonal dominance, SIAM
Journal on Scientific Computing, 27 (2005), pp. 1032–1057.

[117] J. C. Setubal, New experimental results for bipartite matching, in pro-
ceedings of the Network Optimization, Theory and Practice (NETFLOW
1993), 1992.

[118] J. Shalf, The new landscape of parallel computer architecture, Journal of
Physics: Conference Series, 78 (2007), p. 012066.

[119] J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator, in Applied Computational Geometry: Towards Ge-
ometric Engineering, M. C. Lin and D. Manocha, eds., vol. 1148 of LNCS,
Springer-Verlag, 1996, pp. 203–222.

[120] W. J. Suijlen, BSPonMPI: An implementation of the BSPlib standard on
top of MPI, Version 0.3. http://bsponmpi.sourceforge.net/, 2010.

[121] J. J. Sylvester, On an application of the new atomic theory to the graph-
ical representation of the invariants and covariants of binary quantics, with
three appendices, American Journal of Mathematics, 1 (1878), pp. 64–104.

[122] R. E. Tarjan, Efficiency of a good but not linear set union algorithm,
Journal of the ACM, 22 (1975), pp. 215–225.

[123] , A class of algorithms which require nonlinear time to maintain disjoint
sets, Journal of Computer and System Sciences, 18 (1979), pp. 110–127.

[124] R. E. Tarjan and U. Vishkin, An efficient parallel biconnectivity algo-
rithm, SIAM Journal on Computing, 14 (1985), pp. 862–874.



30

[125] T. J. Tautges, T. Blacker, and S. A. Mitchell, The whisker weav-
ing algorithm: A connectivity-based method for constructing all.hexahedral
finite element meshes, International Journal for Numerical Methods in En-
gineering, 39 (1996), pp. 3327–3349.

[126] M. Thorpe, Continuous deformations in random networks, Journal of
Non-Crystalline Solids, 57 (1983), pp. 355–370.

[127] Top500, Top500 supercomputer sites. http://www.top500.org/.

[128] Y.-C. Tseng, T. T.-Y. Juang, and M.-C. Du, Building a multicasting
tree in a high-speed network, IEEE Concurrency, 6 (1998), pp. 57–67.
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An Experimental Evaluation of Union-Find

Algorithms for the Disjoint-Set Data Structure
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Abstract

The disjoint-set data structure is used to maintain a collection of non-
overlapping sets of elements from a finite universe. Algorithms that oper-
ate on this data structure are often referred to as Union-Find algorithms.
They are used in numerous practical applications and are also available in
several software libraries. This paper presents an extensive experimental
study comparing the time required to execute 63 variations of Union-Find

algorithms. The study includes all the classical algorithms, several recently
suggested enhancements, and also different combinations and optimizations
of these. Our results clearly show that a somewhat forgotten simple algo-
rithm that combines a novel Union technique developed by Rem in 1976
with a one-pass compression technique is the fastest, in spite of the fact
that its worst-case time complexity is inferior to that of the commonly
accepted “best” algorithms.

Keywords: Union-Find, Disjoint Set, Experimental Algorithms.

1 Introduction

Let U be a set of n distinct elements and let Si denote a subset of U . Two sets S1

and S2 are disjoint if S1 ∩ S2 = ∅. A disjoint-set data structure maintains a dy-
namic collection {S1, S2, . . . , Sk} of disjoint sets that together cover the universe
U . Each set is identified by a representative x, which is usually some member
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of the set. The two main operations are to Find which set a given element be-
longs to by locating its representative element and to replace two existing sets
with their Union. In addition, there is a Makeset operation which adds a new
element to U as a singleton set.

The underlying data structure of each set is typically a rooted tree represented
by a parent function p(x) ∈ Si for each x ∈ U ; the element in the root of a tree
satisfies p(x) = x and is the representative of the set [9]. Then Makeset(x) is
achieved by setting p(x) ← x and the output of Find(x) is the root of the tree
containing x. This is found by following x’s find-path, which is the path of parent
pointers from x up to the root of x’s tree. A set of algorithms that operate on
this data structure is often referred to as a Union-Find algorithm.

This disjoint-set data structure is frequently used in practice, including in
application areas such as image decomposition, clustering, sparse matrix com-
putations, and graph algorithms. It is also a standard subject taught in most
algorithms courses.

Early theoretical work established algorithms with worst-case time complexity
Θ(n+m ·α(m,n)) for any combination of m Makeset, Union, and Find oper-
ations on n elements [3, 4, 17, 18, 19, 20, 21], where α is the very slowly growing
inverse of Ackermann’s function [1]. These theoretically best classical algorithms
include a standard Union method using either Link-by-Rank or Link-by-Size
and a Find operation incorporating one of three standard compression tech-
niques: Path-Compression, Path-Splitting, orPath-Halving. Other early
algorithms either use a different compression technique like Collapsing, use a
more naive union technique or interleave the two Find operations embedded in
a Union operation, as was the case with Rem’s algorithm. The worst case time
complexity of these variations are not optimal [21].

The current work presents an extensive experimental study comparing the
time required to execute a sequence of Union operations, each with two em-
bedded Find operations. Altogether, we consider 63 variations; 36 of these had
been well studied in the theoretical literature by 1984. We call these the classical
algorithms. The remaining 27 variations implement a number of improvements.
Our results clearly show that a slight variation on a somewhat forgotten simple
algorithm developed by Rem in 1976 [7] is the fastest, in spite of the fact that
its worst-case complexity is inferior to that of the commonly accepted “best”
algorithms.

Related experimental studies have compared only a few Union-Find algo-
rithms, usually in the context of a specific software package. In particular, [12]
and [10] compared only two and six Union-Find algorithms, respectively, in the
context of sparse matrix factorization. The works in [23] and [24] compared eight
and three Union-Find algorithms, respectively, in the setting of image process-
ing. More recently, [15] compared a classic algorithm with a variation described
here in the ipc subsection of Section 2.2. The most extensive previous experi-
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mental study was Hynes’ masters thesis [11] where he compared the performance
of 18 Union-Find algorithms used to find the connected components of a set of
Erdös-Rényi style random graphs.

The remainder of this paper is organized as follows. In the next section we give
the specific setting for our sequences of Union and Find operations and briefly
review the classical algorithms that were studied from a theoretical perspective
in [21], along with several well-known and a few not-so-well known efficiency-
driven implementation techniques. Our experimental methodology and test set
details are described in Section 3, followed by discussion and results in Section 4.
Concluding remarks are given in Section 5.

2 Union-Find Algorithms

This section outlines the primary Union-Find algorithms. We also include a
number of suggested enhancements designed to speed up implementations of these
algorithms.

Algorithm 1. Use of Union-Find

1: S ← ∅
2: for each x ∈ V do
3: Makeset(x)
4: for each (x, y) ∈ E do
5: if Find(x) �= Find(y) then
6: Union(x, y)
7: S ← S ∪ {(x, y)}

Our presentation is from the viewpoint
of its use in finding connected components
of a simple undirected graph G(V,E) as
shown in Algorithm 1. In this case, the
Union-Find algorithm computes a mini-
mal subset S ⊆ E such that S is a span-
ning forest of G. Thus a set corresponds
to vertices in the same connected compo-
nent and the representative element is one
of the vertices in the set. Note that if G
is weighted and edges are processed in order of increasing weight then Algorithm
1 is Kruskal’s algorithm [4] for computing minimum weight spanning forests.

2.1 Classical Algorithms

Here we discuss the classical Union techniques and then present techniques for
compressing trees during a Find operation. Finally, we describe classical algo-
rithms that interleave the Find operations embedded in a Union along with a
compression technique that can only be used with this type of algorithm.

2.1.1 Union Techniques

The Union(x, y) operation merges the sets containing x and y, typically by find-
ing the roots of their respective trees and then linking them together by setting
the parent pointer of one root to point to the other.
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Clearly, storing the results of the two Find operations on line 5 and then using
these as input to the Union operation in line 6 will speed up Algorithm 1. This
replacement for lines 5–7 in Algorithm 1 is known as Quick-Union (Quick) in
[8]. Throughout the remainder of this paper we use Quick.

Four classic variations of the Union algorithm center around the method used
to Link the two roots. Let rx and ry be the roots of the two trees that are to be
merged. Then Union with Naive-Link (nl) arbitrarily chooses one of rx and
ry and sets it to point to the other. This can result in a tree of height O(n).

A similar approach is Union with Link-by-Index (li). Here it is assumed
that rx and ry are both originally stored in a table and thus each has a unique
index typically in the range 1 through n. When performing the Union operation
whichever of rx and ry that has the lowest index is set to point to the other. This
method can also result in a tree of height O(n). We note that one could replace
the use of the index of an element in li with any unique identifier (id) that can be
ordered. In our presentation of algorithms using li we do not distinguish between
an element and its original index.

In Union with Link-by-Size (ls) we set the root of the tree containing the
fewest nodes to point to the root of the other tree, arbitrarily breaking ties. To
implement ls efficiently we maintain the size of the tree in the root.

Algorithm 2. Quick-Union with lr(x, y)

1: rx ← x, ry ← y
2: while rx �= p(rx) do
3: rx ← p(rx)
4: while ry �= p(ry) do
5: ry ← p(ry)
6: if rx �= ry then
7: if rank(rx) ≤ rank(ry) then
8: p(rx) ← ry
9: if rank(rx) = rank(ry) then
10: rank(ry) ← rank(ry) + 1
11: else
12: p(ry) ← rx
13: S ← S ∪ {(x, y)}

For theUnion with Link-by-Rank

(lr) operation we associate a rank
value, initially set to 0, with each
node. If two sets are to be merged
and the roots have equal rank, then
the rank of the root of the com-
bined tree is increased by one. In all
other lr operations the root with
the lowest rank is set to point to
the root with higher rank and all
ranks remain unchanged. Note that
when using lr the parent of a node
x will always have higher rank than
x. This is known as the increas-
ing rank property. The union algo-
rithm presented in most textbooks
uses the Quick and lr enhancements to implement lines 5–7 of Algorithm 1.
Details are given in Algorithm 2.

Both ls and lr ensure that the find-path of an n vertex graph will never
be longer than log n. The alleged advantage of lr over ls is that a rank value
requires less storage than a size value, since the rank of a root in a set containing
n vertices will never be larger than log n [4]. Also, sizes must be updated with
every Union operation whereas ranks need only be updated when the two roots
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have equal rank. On the other hand lr requires an additional comparison before
each Link operation.

2.1.2 Compression Techniques

Altogether we describe six classical compression techniques used to compact the
tree, thereby speeding up subsequent Find operations. The term nf will repre-
sent a Find operation with no compression.

Using Path-Compression (pc) the find-path is traversed a second time
after the root is found, setting all parent pointers on the find-path to point to
the root. Two alternatives to pc are Path-Splitting (ps) and Path-Halving

(ph). With ps the parent pointer of every node on the find-path is set to point
to its grandparent. This has the effect of partitioning the find-path nodes into
two disjoint paths, both hanging off the root. In ph this process of pointing to a
grandparent is only applied to every other node on the find-path. The advantage
of ps and ph over pc is that they can be performed without traversing the find-
path a second time. On the other hand, pc compresses the tree more than either
of the other two.

Note that when using ranks pc, ps, and ph all maintain the increasing rank
property. Furthermore, any one of the three combined with either lr or ls has
the same asymptotic time bound of O(m · α(m,n)) for any combination of m
Makeset, Union, and Find operations on n elements [4, 18, 20, 21].

Another set of compression techniques is Reversal-of-Type-k. With this
the first node x on the find-path and the last k nodes are set to point to the root
while the remaining nodes are set to point to x. In a Reversal-of-Type-0

(r0) every node on the find-path from x, including the root, is set to point to
x and x becomes the new root, thus changing the representative element of the
set. Both r0 and Reversal-of-Type-1 (r1) can be implemented efficiently,
but for any values of k > 1 implementation is more elaborate and might require a
second pass over the find-path [21]. We limit k ≤ 1. Using either r0 or r1 with
any of nl, li, lr, or ls gives an asymptotic running time of O(n+m log n) [21].

In Collapsing (co) every node of a tree will point directly to the root so
that all find-paths are no more than two nodes long. When merging two trees in
a Union operation, nodes of one of the trees are changed to point to the root of
the other tree. To implement this efficiently the nodes are stored in a linked list
using a sibling pointer in addition to the parent pointer. The asymptotic running
time of co with either ls or lr is O(m+ n log n); co with nl or li is O(m+ n2)
[21].

It is possible to combine any of the four different Union methods with any
of the seven compression techniques (including nf), thus giving rise to a total
of 28 different algorithm combinations. We denote each of these algorithms by
combining the abbreviation of its Union method with the abbreviation of its
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compression technique (e.g., lrpc). The asymptotic running times of these clas-
sical algorithms are summarized in the tables on page 280 of [21].

2.1.3 Classical Interleaved Algorithms

Interleaved (Int) algorithms differ from the Union-Find algorithms men-
tioned so far in that the two Find operations in line 5 of Algorithm 1 are per-
formed as one interleaved operation. The main idea is to move two pointers rx
and ry alternatively along their respective find-paths so that if x and y are in
the same component then p(rx) = p(ry) when they reach their lowest common
ancestor and processing can stop. Also, if x and y are in different components,
then in certain cases the two components can be linked together as soon as one of
the pointers reaches a root. Thus, one root can be linked into a non-root node of
the other tree. The main advantage of the Int algorithms is that they can avoid
traversing portions of find-paths.

The first Int algorithm is Rem’s algorithm (rem) [7] which, like li, builds
trees based on increasing index values. Thus the constructed trees always have
the property that a node either points to a higher numbered node or to itself (if
it is a root).

Instead of performing Find(x) and Find(y) separately, these are executed
simultaneously by first setting rx ← x and ry ← y. Then whichever of rx and ry
has the smaller parent value is moved one step upward in its tree. In this way
it follows that if x and y are in the same component then at some stage of the
algorithm we will have p(rx) = p(ry) = the lowest common proper ancestor of x
and y. The algorithm tests for this condition in each iteration and can, in this
case immediately stop.

Algorithm 3. remsp(x, y)

1: rx ← x, ry ← y
2: while p(rx) �= p(ry) do
3: if p(rx) < p(ry) then
4: if rx = p(rx) then
5: p(rx) ← p(ry), break
6: z ← p(rx), p(rx) ← p(ry), rx ← z
7: else
8: if ry = p(ry) then
9: p(ry) ← p(rx), break
10: z ← p(ry), p(ry) ← p(rx), ry ← z

As originally presented, rem
integrates the Union operation
with a compression technique
known as Splicing (sp) which
works as follows: In the case when
rx is to be moved to p(rx), let
z = p(rx), then the value of p(rx) is
set to p(ry) before rx is set to point
to z. Thus, following the opera-
tion the subtree originally pointed
to by rx is now a sibling of ry. This
neither compromises the increas-
ing parent property (because p(rx) < p(ry)) nor invalidates the set structures
(because the two sets will have been merged when the operation ends.) This also
takes care of a possible final Union operation once rx (or ry) reaches the root of
its subtree. The effect of sp is that each new parent has a higher value than the
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value of the old parent, thus compressing the tree. The full algorithm is given
as Algorithm 3. The running time of rem with sp (remps) is O(m log(2+m/n) n)
[21].

Tarjan and van Leeuwen present a variant of rem that uses ranks rather
than identifiers. This algorithm is slightly more complicated than rem, as it
also checks if two roots of equal rank are being merged and if so updates the
rank values appropriately. Details are given on page 279 of [21]. We label this
algorithm as tvl. The running time of tvl with sp (tvlsp) is O(m · α(m,n)).

Note that sp can easily be replaced in either rem or tvl with nf, pc, or ps.
However, it does not make sense to use ph with either because ph might move
one of rx and ry past the other without discovering that they are in fact in the
same tree. Also, since r0 and r1 would move a lower numbered (or ranked) node
above higher numbered (ranked) nodes, thus breaking the increasing (rank or id)
property, we will not combine an Int algorithm with either r0 or r1.

2.2 Implementation Enhancements

We now consider three different ways that the classical algorithms can be made
to run faster by: i) making the algorithm terminate faster, ii) rewriting Int

algorithms so that the most likely case is checked first, and iii) reducing memory
requirements.

2.2.1 Immediate Parent Check (ipc)

This is a recent enhancement that checks before beginning Quick if x and y
already have the same parent. If they do, Quick is not executed, otherwise
execution continues normally. This idea is motivated by the fact that trees often
have height one, and hence it is likely that two nodes in the same tree will have the
same parent. The method was introduced by Osipov et al. [15] and used together
with lr and pc in an algorithm to compute minimum weight spanning trees.
ipc can be combined with any classical algorithm except rem, which already
implements the ipc test.

2.2.2 Better Interleaved Algorithms (Int)

The tvl algorithm, as presented in [21], can be combined with the ipc enhance-
ment. However, the tvl algorithm will already, in each iteration of the main
loop, check for p(rx) = p(ry) and break the current loop iteration if this is the
case. Still, three comparisons are needed before this condition is discovered. We
therefore move this test to the top of the main loop so that the loop is only
executed while p(rx) �= p(ry). (This is similar to the ipc test.)
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Algorithm 4. etvlsp(x, y)

1: rx ← x, ry ← y
2: while p(rx) �= p(ry) do
3: if rank(p(rx)) ≤ rank(p(ry)) then
4: if rx = p(rx) then
5: if rank(p(rx)) = rank(p(ry)) then
6: ry ← p(ry)
7: if ry = p(ry) then
8: rank(ry) ← rank(ry) + 1
9: p(rx) ← p(ry)

10: break
11: z ← rx, p(rx) ← p(ry), rx ← p(z)
12: else
13: if ry = p(ry) then
14: break
15: z ← ry, p(ry) ← p(rx), ry ← p(z)

In addition, it is possi-
ble to handle the case when
rank(p(rx)) = rank(p(ry))
together with the case when
rank(p(rx)) < rank(p(ry)).
This will, in most cases, ei-
ther reduce or at least not
increase the number of com-
parisons; the only excep-
tion is when rank(p(rx)) <
rank(p(ry)), which requires
either one or two more com-
parisons. The new algorithm
which we call etvl is given as
Algorithm 4 where sp is again
a part of the algorithm.

A different variation of the tvl algorithm, called the Zigzag (zz) algorithm,
was used in [13] for designing a parallel Union-Find algorithm where each tree
could span across several processors on a distributed memory parallel computer.
The main difference between the zz algorithm and etvl is that the zz algorithm
compares the ranks of rx and ry rather than the ranks of p(rx) and p(ry). Due to
this it does not make sense to combine the zz algorithm with sp.

2.2.3 Memory Smart Algorithms (ms)

We now look at ways to reduce the amount of memory used by each algorithm.
In the algorithms described so far each node has a parent pointer and, for some
algorithms, either a size or rank value. In addition, for the co algorithm each
node has a sibling pointer. It follows that we will have between one and three
fields in the record for each node. (Recall that we use the corresponding node’s
index into the array of records as its “name”).

It is well known, although as far as we know undocumented, that when the
parent pointer values are integers, one can eliminate one of the fields for most
Union-Find implementations. The idea capitalizes on the fact that usually only
the root of a tree needs to have a rank or size value. Moreover, for the root
the parent pointer is only used to signal that the current node is in fact a root.
Thus it is possible to save one field by coding the size or rank of the root into its
parent pointer, while still maintaining the “root property.” This can be achieved
by setting the parent pointer of any root equal to its negated rank (or size) value.

This Memory-Smart (ms) enhancement of combining the rank/size field
with the parent pointer can be incorporated into any of the classical algorithms
except those using an Int algorithm (because they require maintaining the rank
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at every node, not just the root) or ph (because ph changes parent pointers to
the grandparent value, which, if negative, will mess up the structure of the tree.)
ms can also be combined with the ipc enhancement. Because li and rem do not
use either size or rank, we will also classify these as ms algorithms.

3 Experimental Methodology

For the experiments we used a Dell PC with an Intel Core 2 Duo 2.4 GHz processor
with 2 GB of memory, 4MB of shared level 2 cache, and running Fedora 10. All
algorithms were implemented in C++ and compiled with GCC using the -O3
flag.

Table 1: Structural properties of the input graphs

Graph |V | |E| Comp Max Deg Avg Deg
# Edges

Processed

rw1 (m t1) 97,578 4,827,996 1 236 99 692,208
rw2 (crankseg 2) 63,838 7,042,510 1 3,422 221 803,719
rw3 (inline 1) 503,712 18,156,315 1 842 72 5,526,149
rw4 (ldoor) 952,203 22,785,136 1 76 48 7,442,413
rw5 (af shell10) 1,508,065 25,582,130 1 34 34 9,160,083
rw6 (boneS10) 914,898 27,276,762 1 80 60 11,393,426
rw7 (bone010) 986,703 35,339,811 2 80 72 35,339,811
rw8 (audikw 1) 943,695 38,354,076 1 344 81 10,816,880
rw9 (spal 004) 321,696 45,429,789 1 6,140 282 28,262,657

sw1 50,000 6,897,769 17,233 6,241 276 6,897,769
sw2 75,000 12,039,043 9,467 8,624 321 12,039,043
sw3 100,000 16,539,557 34,465 10,470 331 16,539,557
sw4 175,000 26,985,391 43,931 14,216 308 26,985,391
sw5 200,000 34,014,275 68,930 16,462 340 34,014,275

er1 100,000 453,803 24 25 9 453,803
er2 100,000 1,650,872 1 61 33 603,141
er3 500,000 2,904,660 8 30 12 2,904,660
er4 1,000,000 5,645,880 31 31 11 5,645,880
er5 500,000 9,468,353 1 70 38 3,476,740
er6 1,000,000 20,287,048 1 76 41 7,347,376

We used three test sets. The first consists of nine real world graphs (rw) of
varying sizes drawn from different application areas such as linear programming,
medical science, structural engineering, civil engineering, and the automotive
industry [5]. The second includes five random small world graphs (sw) and the
third contains six Erdös-Rényi style random graphs (er). For each synthetic
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graph (sw or er), we generated five different simple random graphs with the
same number of vertices and with edge probability varying slightly around a
given probability using the GTGraph package [2]. Statistics reported here about
these graphs are an average for the five different random graphs of that type and
size. For structural properties of the test sets see Table 1. The number of edges
reported in the table for the synthetic graphs is the average number of edges in
the corresponding five different random graphs. The first six columns are the
name, number of vertices, number of edges, number of components, maximum
degree, and average degree. The last column shows the number of edges (i.e.,
attempted Union operations) the algorithms processed before stopping.

To compute the run-time of an algorithm for a given rw graph, we execute the
algorithm five times using each of five different random orderings of the edges,
taking the average time as the result. The same “random orderings” of edges
are used for all algorithms. The same process is used for each of the sw and er
graphs. Hence we compute the average run-time of each graph in rw by taking
the average of 25 total runs and for sw and er by taking the average of 125 total
runs (5 runs for each of 5 orderings for each of 5 random graphs). Algorithms
stop if and when they find that the entire graph is a single connected component.
The time for all runs of reasonable algorithms (not including the extremely slow
algorithms nlnf and nlco) ranged from 0.007 seconds to 33 seconds.

4 Results

This section describes the results of experiments from 63 different algorithms. We
first compare the classical algorithms and then algorithms that use the various
enhancements presented in Section 2.2. Finally, we compare and discuss the 11
overall fastest algorithms. For each set of algorithms we give a table in which
each cell represents an algorithm that combines the row’s union method with
the column’s compression technique. The combinations for crossed out cells are
either not possible or non-sensical. The rows with gray background are repeated
from an earlier table.

Throughout we will say that an algorithm X dominates another algorithm Y if
X performs at least as well as Y (in terms of the calculated average run-time) on
every input graph. For illustrative purposes we will pick five specific dominating
algorithms numbered according to the order in which they are first applied. These
will be marked in the tables with their number inside a colored circle, as in �. If
algorithm X dominates algorithm Y, an abbreviation for X with its number as a
subscript will appear in Y’s cell of the table, as in lrpc1. Algorithms that are
not dominated by any other algorithm are marked as undominated. It turns out
that every undominated algorithm remains undominated even when compared
with the algorithms in subsequent subsections. In total eight algorithms are
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undominated.

Each subsection where we present run times will show one or more plots of the
performance of dominated algorithms relative to the performance of the algorithm
that dominates them. That is, the plots are based on run-time expressed as a
percent of the run-time of the dominating algorithm. The dominating algorithm
is also plotted, showing at the 100% line. Where appropriate, the last figure of a
subsection shows the performance of the undominated algorithms in that subsec-
tion relative to a fictitious algorithm (call it Min) that has, for each input graph,
a run-time that is equal to the best of any algorithm considered in the subsection.
Each subsection concludes with a short discussion and recommendations.

Following the presentation of results from the different types of algorithms
we compare the overall performance of all 63 algorithms. Here we use a different
metric to measure performance and using this show that eleven algorithms clearly
outperform the others. As will be seen, six of the eight undominated algorithms
are among the 11 overall best.

Finally, we present results on profiling these 11 best algorithms before making
our final recommendations.

4.1 Classical Algorithms

Table 2: Relative performance of the classical Union-Find algorithms

nf pc ph ps co r0 r1 sp

nl lrpc1 lrph2 remps4 remps4 lrpc1 lrpc1 lrpc1

lr lrpc1 � lrph2 � lrps3 � remps4 undom. lrpc1 lrpc1

ls lrpc1 lrph2 lrps3 lrps3 remps4 lrpc1 lrpc1

li lrpc1 remps4 lips5 � undom. undom. lrpc1 lrpc1

rem lrpc1 remps4 � undom. undom.

tvl lrpc1 lrpc1 remps4 lrph2

The two algorithms lrpc and lrph have generally been accepted as the best,
and so we begin by examining these. As indicated in Table 2, sixteen algorithms
are dominated by lrpc and four more are dominated by lrph. Furthermore,
since lrph dominates lrpc, lrph also dominates all 16 algorithms dominated
by lrpc. From this, we can infer that at least among this set of algorithms,
the one-pass compression technique Path-Halving is better than the two-pass
Path-Compression. Figures 1(a) and 1(b) show the performance of the domi-
nated algorithms relative to lrpc and lrph, respectively.
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Figure 1: Relative performance of classical Union-Find algorithms
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Switching to the less well known one-pass compression technique Path- Split-
ting, we see that three more algorithms are dominated by lrps, including lrph

(Figure 1(c)). We can infer from this that in practice Path-Splitting is a better
one-pass compression technique than is Path-Halving.

Using this dominates criteria, neither the Rank nor Size Union technique
consistently outperforms the other, although Rank does admit one undominated
algorithm, specifically lrco.

Interestingly, two asymptotically inferior algorithms, remps and lips, each
dominate lrps and further dominate seven additional algorithms. These two
algorithms, however, are incomparable using the dominates criteria since remps

does not dominate liph while lips does and lips does not dominate lsco while
remps does. Because remps performs better overall than lips, we show all the
algorithms it dominates in Figure 1(d) and only the one additional algorithm that
lips dominates in Figure 1(e).

The remaining five algorithms are undominated. Their performance relative
to Classical-Min is shown in Figure 1(f). As will be seen in Subsection 4.5,
only three of the undominated classical algorithms (lips, remps, and remsp) are
among the overall best 11 algorithms. In addition, liph from this classical set
algorithms is in the overall best.

In the remainder of the paper we do not report results for algorithms using
nf, r0, or r1 as these compression techniques consistently require several orders
of magnitude more time than the others.

4.2 IPC Algorithms

Table 3: ipc relative performance

pc ph ps sp

ipc-lr remps4 remps4 �remps4

ipc-ls remps4 remps4 �remps4

ipc-li remps4 undom. � undom.

rem remps4 � undom. undom.

ipc-tvl remps4 �remps4 remps4

Table 3 shows the rela-
tive performance of algo-
rithms enhanced with ipc.
remps, which is carried over
from the previous subsec-
tion, dominates all but four
ipc algorithms. Figure 2(a)
shows the relative perfor-
mance of the 10 newly dom-
inated algorithms relative to
remps and Figure 2(b) shows the performance of the remaining two undominated
algorithms relative to ipc-Min. Note that the undominated algorithms all use a
theoretically inferior Union technique, either li or rem.

Both new undominated ipc algorithms are among the overall best 11. In
addition, ipc-lipc from this ipc set of algorithms is in the overall best.

It is worthwhile to also consider here the impact of the ipc enhancement on a
given algorithm. Table 4 addresses this, showing the average and range of percent
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Figure 2: Relative performance of ipc Union-Find algorithms

improvement using the ipc version of each algorithm over its non-ipc counter-
part. For any algorithm where the minimum improvement is positive, using ipc

consistently (i.e., for all input graphs) performed better than the corresponding
non-ipc version. This is true for seven algorithms. Since rem is, by definition, an
ipc algorithm, there are no changes between its “ipc” and “non-ipc” versions.
Hence, it is not included in the table. Note that every ipc algorithm is on average
better than its corresponding non-ipc algorithm.

Table 4: Average (min, max) % improvement using ipc

pc ph ps sp

lr 29.92 (15.08, 47.48) 5.84 (-0.78, 15.53) 3.67 (-2.19, 12.53)

ls 33.06 (20.75, 52.65) 6.96 (0.66, 19.84) 9.49 (0.74, 32.03)

li 33.25 (21.12, 49.46) 2.37 (-8.39, 14.57) 0.87 (-6.35, 7.3)

tvl 38.46 (19.62, 60.65) 6.36 (-4.94, 23.97) 22.20 (8.68, 39.74)

4.3 Interleaved Algorithms

Recall that we included in our experiments two additional interleaved algorithms:
etvl, which uses the ipc test to control the main loop and zz, which has been
used effectively for a parallel Union-Find implementation. In our experiments
we see that both of these techniques are inferior to rem on sequential machines.
That is, remps dominates all five new Int algorithms. Table 5 demonstrates



15

this and Figure 3(a) shows the performance of the newly dominated algorithms
relative to remps.

Table 5: Int relative performance

pc ps sp

rem remps4 � undom. undom.

tvl lrpc1 remps4 lrph2

ipc-tvl remps4 remps4 remps4

etvl remps4 remps4 remps4

zz remps4 remps4

Comparing etvl and zz it is
clear that the compression tech-
nique is more important than
how the trees are traversed.
While there is little difference for
these algorithms between using
Splicing and Path-Splitting,
both of these compression tech-
niques are better than using
Path-Compression.

Interestingly, the only interleaved algorithms that make it into the 11 overall
best algorithms are Rem’s original algorithm, remsp, and the variation on it that
replaces Splicing with Path-Splitting.
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Figure 3: Relative performance of Int and ms Union-Find algorithms

4.4 Memory-Smart Algorithms

Table 6 shows the relative performance of algorithms using the Memory-Smart

enhancement. remps dominates all but one. Figure 3(b) shows the performance
of the newly dominated algorithms relative to remps.

In addition to the undominated ms-ipc-lrpc, three algorithms from this
subsection make it into the best 11 listed in the next subsection: ms-ipc-lrps,
ms-ipc-lspc, and ms-ipc-lsps. The performance of the undominated algorithm
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(ms-ipc-lrpc) is shown together with these other best algorithms in the next
subsection.

Table 6: ms relative performance

pc ps co

ms-lr remps4 � remps4 remps4

ms-ls remps4 � remps4 remps4

li remps4 � undom. undom.

ms-ipc-lr undom. � remps4

ms-ipc-ls remps4 � remps4

ipc-li remps4 undom.

rem remps4 � undom.

Table 7 addresses the im-
pact of the Memory-Smart

(ms) enhancement on a given
algorithm. Interestingly, all
algorithms usingPath-Com-

pression show consistent
improvement with the ms en-
hancement, while the perfor-
mance of ms implemented to-
gether with the other two
compression techniques is in-
consistent. No ms algorithm
is consistently worse than its
non-ms counterpart.

Table 7: Average (min, max) % improvement using ms

pc ps co

lr 15.17 (5.43, 27.21) -1.49 (-24.92, 13.65) 2.81 (-9.01, 20.76)

ls 15.54 (4.34, 28.35) 3.51 (-16.58, 25.86) 3.18 (-6.52, 15.58)

ipc-lr 19.68 (10.85, 29.33) 10.30 (-6.66, 22.31)

ipc-ls 16.01 (4.28, 26.57) 8.62 (-12.19, 22.49)

4.5 The Fastest Algorithms

We now compare all algorithms using a different metric than the “dominates”
technique used in the previous subsections. To compute the new metric we begin
by calculating, for each input graph and each algorithm, its average run-time
relative to the best average run-time for that graph (Global-Min). We then
average these percentages across each type of input graph (rw, sw, er). The
result is three measures of goodness for each algorithm. Smaller values imply
better algorithms for that type of input graph. An overall ranking and measure
of goodness is then computed by averaging the three values.

The results for the top 11 algorithms ranked using the overall average are
given in Table 8. Each cell in the table contains both the algorithm’s rank for the
given type of graph and its relative timing reported as a percent of Global-Min.
The last row is included to show how far the last ranked algorithm is from the
algorithms that are not in the top 11. Eleven was chosen as the cutoff rank



17

Table 8: Rank order(% ofGlobal-Min) of the fastest algorithms based on graph
type

All graphs Real-World Small-World Erdős-Rényi

remps 1 (101.17) 1 (100.41) 1 (100.06) 2 (103.05)

remsp 2 (103.16) 2 (103.10) 2 (100.37) 4 (106.01)

ipc-lips 3 (107.48) 4 (108.29) 5 (110.94) 3 (103.22)

lips 4 (108.65) 3 (106.48) 8 (117.72) 1 (101.77)

ipc-liph 5 (110.70) 5 (110.59) 4 (110.48) 7 (111.04)

ipc-lipc 6 (110.72) 8 (112.50) 3 (109.36) 6 (110.32)

liph 7 (114.02) 6 (110.62) 15 (125.13) 5 (106.31)

ms-ipc-lrps 8 (114.56) 7 (112.01) 10 (119.28) 8 (112.41)

ms-ipc-lrpc 9 (115.01) 9 (112.83) 6 (115.37) 11 (116.84)

ms-ipc-lspc 10 (116.08) 11 (115.63) 7 (115.84) 10 (116.76)

ms-ipc-lsps 11 (116.33) 10 (113.62) 13 (122.91) 9 (112.47)

Fastest not listed 12 (126.64) 12 (119.52) 9 (117.93) 12 (121.84)

for best algorithms because there is a significant jump in values between the
algorithms ranked 11 and 12; the values jump by 10.31% for all graphs, by 3.89%
for rw graphs and by 5.00% for er graphs.

The relative performance of the algorithms with ranks 1-4 on the overall aver-
age is plotted in Figure 4(a) and the performance of the remaining seven fastest
algorithms (those with ranks 5-11) is plotted in Figure 4(b). Both figures use
the same vertical scale for easy comparison. The figure clearly shows that remps
outperformed all other algorithms.
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Figure 4: The eleven fastest Union-Find algorithms
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The results show clearly that rem is the best Union technique, and that
it is best combined with either Path-Splitting or Splicing. The next best
Union technique is Link-by-Index, with Path-Splitting doing better than
any other compression technique. In this case, we see that ipc has a positive
influence on lips overall, but not for rw or er. Link-by-Index remains strong
even when combined with Path-Halving or Path-Compression. Only after
these seven algorithms do we see any variation of the generally-accepted-as-best
algorithms, combining either the Rank or Size Union technique with either
Path-Splitting or Path-Compression. Moreover, these generally-accepted-
as-best algorithms only do well when both the ipc and Memory-Smart en-
hancements are used.

In each of the following subsections we take a closer look at the results from a
particular perspective. First, we use the dominates metric from Subsections 4.1
– 4.4 to annotate the results of this section. Next, we highlight the differences
between the sw test set and the other two test sets. Last, we compare and contrast
our results with related experimental studies in the literature.

4.5.1 Dominates verses Ranked Metrics

The dominates metric establishes a partial order of the algorithms based on con-
sistent better performance. Using this metric, eight of the 63 algorithms were
undominated. Six of those eight have ranks 1 – 5, and 9 for overall graphs using
the average-of-averages metric of this section. This shows that generally the same
algorithms come out at the top using both metrics.

The two undominated algorithms that did not make it into the 11 overall
best are lrco and lico, which had ranks for all graphs (rw, sw, and er) of 22
(20, 29, and 29) and 34 (16, 46, and 33) respectively. This shows that while the
Collapsing compression technique performs well for some graphs, it cannot be
relied on to do well in general.

The dominates partial order of the best 11 algorithms is shown in Figure 5.
Three algorithms, remsp (rank 2), ipc-liph (rank 5) and ms-ipc-lrpc (rank 9),
are undominated and do not dominate any other of the best 11 algorithms.

4.5.2 Different Behavior for Small World Graphs

While the results of our study consistently show that remps is among the two
best algorithms for each test set (rw, sw, and er) and in general the same al-
gorithms tend to do better for the rw and er test sets, the algorithms perform
somewhat differently for the sw test set. This supports the general hypothesis
that small world graphs exhibit different characteristics (and hence algorithms
exhibit different behaviors on them) than might be seen in graphs that do not
have the relatively small diameter that is the defining characteristic of a small
world graph.
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Figure 5: Dominates relationships among the 11 best algorithms. Algorithms not
shown are undominated and do not dominate any other top 11 algorithm.

For the study here, this is due in part to the fact that the sw graphs had
multiple components, and hence processed all edges in the sw graphs whereas the
processing stopped for some of the other graphs once the algorithm determined
that all nodes were already in a single connected component. This does not,
however, account for all of the differences since one of the rw graphs and three of
the er graphs had multiple components.

The differences in performance for sw graphs show up both in the overall
ranking of algorithms and also in the plotted comparisons of algorithms using
the dominates metric. With respect to the overall ranking, the fastest algorithm
not in the table is faster than four of the algorithms in the table and only 0.21%
slower than the algorithm ranked 8 (lips). Furthermore, ipc-lips and lips,
although in the top four algorithms for rw and er, are not in the top four on the
sw graphs. There is also a larger jump between the algorithms ranked second
and third for sw (8.99% as compared to 4.32%, 3.38%, and 0.17%).

The different behavior for sw graphs is also highlighted using the dominates
metric. For instance, Figure 1(f) clearly shows that for some sw graphs lico

requires almost twice as much time as the worst rw or er graph relative to
Classical-Min. One can also see in the same figure that remsp and remps

dominate all other classical algorithms with respect to sw graphs. Also of note is
the performance of ms-lrpc and ms-lspc in Figure 3(b) where both algorithms
are clearly substantially worse (relative to remps) for sw graphs than they are
for rw and er graphs.

4.5.3 Comparison with Other Experimental Results in the Literature

In the following we compare our results and recommendations with other related
experimental investigations.

The first such study that we are aware of was conducted by Liu [12]. This
compared using lrnf with lrpc in an application from sparse matrix compu-
tations. The input consisted of grid graphs as well as real world matrices. The
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conclusion was that lrnf is about 50% better than lrpc.

Unlike the study by Liu we found that lrpc is about 50% better than lrnf.

In a similar study Gilbert et al. [10] compared a larger number of algorithms
also using an application from sparse matrix computations. They implemented
nlnf, nlpc, nlph, lrnf, lrpc, and lrph using sparse graphs as input. Their
conclusion was that nl was better than lr for the Union operation, and that
ph was a better compression technique than pc.

Unlike the study by Gilbert et al. we found that it it is always better to use
the Union technique lr instead of nl when using either of ph, pc, or nf. But
similarly to this study we got consistently better results when using ph over using
pc.

The most comprehensive study to date was presented by Hynes in his master
thesis [11]. This computed spanning trees on Erdős-Rényi graphs and compared
all combinations of the following Union techniques nl, li, lr, and ls with each
of the compression techniques co, pc, ps, and ph except for the combination
lrco. The study found that lico was the best, closely followed by lsco. Of the
remaining algorithms there was little difference between using li, lr, or ls. For
the compression techniques pc was found to be worse than ph and ps, both of
which gave similar results.

In our tests of the aforementioned algorithms lips and liph performed best
and even made it into the overall top seven algorithms. In fact, for er graphs
lips was the best algorithm. But li did not always outperform all other Union

methods, the exception being when using co where lrco and lsco both were
about 7% better than lico, contradicting the findings of Hynes. When comparing
the compression technique we also found that pc was inferior to both ps and ph.

We are aware of two comparative studies concerning the use of Union-Find

algorithms in image processing. In these studies the task is generally to extract
connected regions from a bit-mapped image. Thus the input has very regular
structure and the area that has to be searched for any pixel never exceeds the
eight adjacent pixels. In [23] Wassenberg et al. compared algorithms using the
following compression techniques: nf, pc, ps, ph, and co. The Union technique
is not clearly specified but we believe it to be lr. Their ranking of the different
Find techniques is the same as the order of listing, with co being between 1% and
7% faster than ph. In [24] Wu et al. compared lipc with lrpc and a version of
lrpc which periodically flattens all tree structures (i.e. making all trees of height
at most one). Their experiments concluded that that lipc was the method of
choice.

Our study also gave the same ranking as Wasseberg et al. except that ps and
ph has switched places, although they remain fairly similar (134% and 142% of
Global-Min, respectively). Our results also agree with those of Wu et al. show-
ing that lipc is better than lrpc.

The ipc technique was introduced by Osipov et al. in [15] where they compare
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lrpc with ipc-lrpc in an application to compute a minimum weight spanning
tree. Their conclusion is to use ipc-lrpc. Similarly, in our study we found that
using ipc improved lrpc by 31%.

In a preliminary version of the current paper [16], we also concluded that
RemPS and RemSP were the two best algorithms but with their order reversed.
This is not surprising considering how close they are in performance (1.99% dif-
ference). Also, the earlier study did not include the non-interleaved li algorithms,
which make up five of the seven best algorithms in the current study.

4.6 Profile of the Fastest Algorithms

We collected profile statistics for the top 11 algorithms using the cachegrind

profiler provided with the valgrind instrumentation framework [22].

For each algorithm and type of graph (rw, sw, er) we ran the algorithm on all
graphs of that type using all five orderings and recorded the number of instruction
reads (ir), the number of data reads (dr) and the number of data writes (dw)
performed. The sum of these (ir + dr + dw) then represents the measure of work
performed by that algorithm on that type of graph. Each of these numbers was
then normalized by taking its percentage relative to the minimum value for that
type of graph across all 11 algorithms (Profile-Min).

Note that Profile-Min is only relative to the top 11 algorithms, rather than
all 63 algorithms as was the case for Global-Min. The other main difference in
these profile computations from our overall fastest computations in the previous
subsection is that here we effectively sum the operations across all graphs of that
type before computing Profile-Min, whereas for Global-Min we computed
the minimum and normalized for each graph of that type and then computed the
average.

The result here is again three measures of goodness, one for each of rw, sw,
and er, where smaller values closer to 100% are better. As with the timing results,
we also average these for an overall measure of goodness. The resulting profile
ranks and percent of Profile-Min are reported in Table 9. The rows of the
table appear in the same order as they did in Table 8, i.e., in order of increasing
timing ranks.

Note that while the profile ranks are not exactly the same as the timing ranks,
they are still quite consistent. In particular, the top three profile ranked algo-
rithms are the same as the top three timing ranked algorithms. With profile ranks,
however, the jump between algorithms with rank 3 and 4 is more pronounced.

Figure 6 shows the profile rank of algorithms for each type of graph. The
algorithms are arranged across the horizontal axes by increasing overall timing
rank.
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Table 9: Profile rank order (% of Profile-Min) of the fastest algorithms based
on graph type

All graphs Real-World Small-World Erdős-Rényi

remps 2 (100.53) 1 (100.00) 2 (100.09) 3 (101.49)

remsp 1 (100.45) 2 (100.06) 1 (100.00) 2 (101.30)

ipc-lips 3 (105.12) 3 (105.06) 3 (110.29) 1 (100.00)

lips 6 (123.54) 6 (123.71) 7 (133.90) 4 (113.02)

ipc-liph 5 (121.15) 5 (121.07) 5 (126.58) 5 (115.82)

ipc-lipc 4 (118.56) 4 (118.09) 4 (117.03) 7 (120.56)

liph 11 (138.81) 11 (139.17) 11 (150.13) 9 (127.14)

ms-ipc-lrps 7 (127.49) 7 (127.39) 9 (136.34) 6 (118.74)

ms-ipc-lrpc 10 (133.64) 10 (133.00) 8 (134.32) 10 (133.59)

ms-ipc-lspc 9 (133.61) 8 (132.77) 6 (131.85) 11 (136.21)

ms-ipc-lsps 8 (132.97) 9 (132.81) 10 (141.74) 8 (124.38)

4.7 Recommendations

The clear winner in our study is remps. This was the fastest algorithm for all
graphs, rw and sw. On average it was 6.38% faster (with a range of −8.15%
to 14.61%) compared to the best non-rem algorithm and 2.06% faster (with a
range of −0.21% to 6.06%) than the second best rem algorithm. We believe
that this is due to several factors: it has low memory overhead; Int algorithms
perform less operations than other classical algorithms; it incorporates the ipc

enhancement at every step of traversal, not only for the two initial nodes; and even
when integrated with ps the algorithm is relatively simple with few conditional
statements.

Considering all results, our overall recommendations are as follows.

• If possible, use the rem Union technique.

• Link-by-Index is better than either Link-by-Rank or Link-by-Size.

• In general, Path-Splitting is the best compression technique.

• Path-Compression is more useful than Path-Halving.

• Both the Immediate-Parent-Check andMemory-Smart enhancements
are important and should always be included.

5 Concluding Remarks
This paper reports the findings of 1600 experiments on each of 63 different
Union-Find algorithms: 34 classical variations that were studied from a theoret-
ical perspective up through the 1980s, 12 ipc variations, five more Int variations,
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Figure 6: Profile rank by graph type of the eleven fastest algorithms

and 10 additional ms variations. In order to validate the results, we reran the
100,800 experiments on the same machine and ran it two more times on a similar
machine. While the absolute times varied somewhat, the same set of algorithms
had the top five ranks as did the set of algorithms with the top 10 ranks, and
remps remained the clear top performer. We have also constructed spanning
forests using both dfs and bfs, finding that use of the Union-Find algorithms
are substantially more efficient.

The most significant result is that remps substantially outperforms lrpc

even though remps is theoretically inferior to lrpc. This is even more surprising
because lrpc is both simple and elegant, is well studied in the literature, is
often implemented for real-world applications, and typically is taught as best
in standard algorithms courses. In spite of this remps improved over lrpc by
an average of 49.29%, with a range from 37.60% to 63.33%. Furthermore, it
improved over lrph (which others have argued uses the best one-pass compression
technique) by an average of 26.96%, with a range from 14.08% to 46.03%.

Even when incorporating the ms and ipc enhancements, remps still im-
proved over these other two classical algorithms on all inputs except two, where
ms-ipc-lrpc improved over remps by only 0.38% and 0.47%. On average, remps
improves over ms-ipc-lrpc by 11.60%, with a range from -0.47% to 19.90%. The
savings incurred over remps and ms-ipc-lrpc are illustrated in Figure 7 where
the times for the top two ranked algorithms are plotted relative to the times for
lrpc and ms-ipc-lrpc.

To verify that our results hold regardless of the cache size, we ran experiments
using twice, three times, and four times the memory for each node (simulating a
smaller cache). The relative times for the algorithms under each of these scenarios
were not significantly different than with the experiments reported here.
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Figure 7: Improvement of rem algorithms over lrpc algorithms

We believe that our results should have implications for developers of software
libraries like [6] and [14], which currently only implement lrpc and lrph in the
first case and lspc in the second.

TheseUnion-Find experiments were conducted under the guise of finding the
connected components of a graph. As such, the sequences of operations tested
were all Union operations as defined by the edges in graphs without multiedges.
It would be interesting to study the performances of these algorithms for arbitrary
sequences of intermixed Makeset, Union, and Find operations.
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A Scalable Parallel Union-Find Algorithm for
Distributed Memory Computers

Fredrik Manne Md. Mostofa Ali Patwary*

Abstract

The Union-Find algorithm is used for maintaining a number of non-
overlapping sets from a finite universe of elements. The algorithm has
applications in a number of areas including the computation of spanning
trees, sparse linear algebra, and in image processing.

Although the algorithm is inherently sequential there has been some
previous efforts at constructing parallel implementations. These have mainly
focused on shared memory computers. In this paper we present the first
scalable parallel implementation of the Union-Find algorithm suitable for
distributed memory computers. Our new parallel algorithm is based on
an observation of how the Find part of the sequential algorithm can be
executed more efficiently.

We show the efficiency of our implementation through a series of tests
to compute spanning forests of very large graphs.

Keywords: disjoint sets, parallel Union-Find, distributed memory.

1 Introduction

The disjoint-set data structure is used for maintaining a number of non-
overlapping sets consisting of elements from a finite universe. Its uses include
among other, image decompositions, the computation of connected components
and minimum spanning trees in graphs, and is also taught in most algorithm
courses. The algorithm for implementing this data structure is often referred to
as the Union-Find algorithm.

More formally, let U be a collection of n distinct elements and let Si denote a
set of elements from U . Two sets {S1, S2} are disjoint if S1 ∩ S2 = ∅. A disjoint
set data structure maintains a collection {S1, S2, . . . , Sk} of disjoint dynamic sets
selected from U . Each set is identified by a representative x, which is usually
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some member of the set. The two main operations are then to Find which set a
given element belongs to by locating its representative element and also to create
a new set from the Union of two existing sets.

The underlying data structure of each set is typically a rooted tree where
the element in the root vertex is the representative of the set. Using the two
techniques Link-by-Rank and Path-Compression the running time of any
combination of m Union and Find operations is O(mα(m,n)) where α is the
very slowly growing inverse Ackerman function [1].

From a theoretical point of view using the Union-Find algorithm is close to
optimal. However, for very large problem instances such as those that appear
in scientific computing this might still be too slow. This is especially true if the
Union-Find computation is applied multiple times and take up a significant
amount of the total time. It might also be that the underlying problem is too
large to fit in the memory of one processor. One recent application that makes
use of repeated applications of the Union-Find algorithm is a new algorithm
for computing Hessian matrices using substitution methods [7]. Hence, designing
parallel algorithms is necessary to keep up with the very large problem instances
that appear in scientific computing.

The first such effort was by Cybenko et al. [5] who presented an algorithm
using the Union-Find algorithm for computing the connected components of a
graph and gave implementations both for shared memory and distributed mem-
ory computers. The distributed memory algorithm duplicates the vertex set and
then partitions the edge set among the processors. Each processor then computes
a spanning forest using its local edges. In log p steps, where p is the number of
processors, these forests are then merged until one processor has the complete
solution. However, the experimental results from this algorithm were not promis-
ing and showed that for a fixed size problem the running time increased with the
number of processors used.

Anderson and Woll also presented a parallel Union-Find algorithm using
wait-free objects suitable for shared memory computers [2]. In doing so they
showed that parallel algorithms using concurrent Union-operations risk creating
unbalanced trees. However, they did not produce any experimental results for
their algorithm.

We note that there exists an extensive literature on designing parallel algo-
rithms for computing a spanning forest or the connected components of a graph.
However, up until the recent paper by Bader and Cong [4] such efforts had failed
to give speedup on arbitrary graphs. In [4] the authors present a novel scalable
parallel algorithm for computing spanning forests on a shared memory computer.

Focusing on distributed memory computers is of importance since these have
better scalability than shared memory computers and thus the largest systems
tend to be of this type. However, their higher latency makes distributed memory
computers more dependent on aggregating sequential work through the exploita-
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tion of locality.

The current work presents a new parallel Union-Find algorithm for dis-
tributed memory computers. The algorithm operates in two stages. In the first
stage each processor performs local computations in order to reduce the number
of edges that need to be considered for inclusion in the final spanning tree. This
is similar to the approach used in [5], however, we use a sequential Union-Find

algorithm for this stage instead of BFS. Thus when we start the second parallel
stage each processor has a Union-Find type forest structure that spans each
local component.

In the second stage we merge these structures across processors to obtain a
global solution. In both the sequential and the parallel stage we make use of a
novel observation on how the Union-Find algorithm can be implemented. This
allows both for a faster sequential algorithm and also to reduce the amount of
communication in the second stage.

To show the feasibility and efficiency of our algorithm we have implemented
several variations of it on a parallel computer using C++ and MPI and performed
tests to compute spanning trees of very large graphs using up to 40 processors.
Our results show that the algorithm scales well both for real world graphs and
also for small-world graphs.

The rest of the paper is organized as follows. In Section 2 we briefly explain
the sequential algorithm and also how this can be optimized. In Section 3 we
describe our new parallel algorithm, before giving experimental results in Section
4.

2 The Sequential Algorithm

In the following we first outline the standard sequential Union-Find algorithm.
We then point out how it is possible to speed up the algorithm by paying attention
to the rank values. This is something that we will make use of when designing
our parallel algorithm.

The standard data structure for implementing the Union-Find algorithm is
a forest where each tree represents a connected set. To implement the forest each
element x has a pointer p(x) initially set to x. Thus each x starts as a set by
itself. The two operations used on the sets are then Find(x) and Union(x, y)
where x and y are distinct elements. Find(x) returns the root of the tree that
x belongs to. This is done by following pointers starting from x. Union(x, y)
merges the two trees that x and y belong to. This is achieved by making one
of the roots of x and y point to the other. With these operations the connected
components of a graph G(V,E) can be computed as shown in Algorithm 1.

When the algorithm terminates the vertices of each tree will consist of a
connected component and the set of edges in S define a spanning forest on G.
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Algorithm 1 The sequential Union-Find algorithm

1: S ← ∅
2: for each x ∈ V do
3: p(x) ← x
4: for each (x, y) ∈ E do
5: if Find(x) �= Find(y) then
6: Union(x, y)
7: S ← S ∪ {(x, y)}

There are two standard techniques for speeding up the Union-Find algo-
rithm. The first is Link-by-Rank. Here each vertex is initially given a rank of
0. If two sets are to be merged where the root elements are of equal rank then
the rank of the root element of the combined set will be increased by one. In
all other Union operations the root with the lowest rank will be set to point to
the root with the higher rank while all ranks remain unchanged. Note that this
ensures that the parent of a vertex x will always have higher rank than the vertex
x itself.

The second technique is Path-Compression. In its simplest form, following
any Find operation, all traversed vertices will be set to point to the root. This has
the effect of compressing the path and making subsequent Find operations using
any of these vertices faster. Note that even when using Path-Compression the
rank values will still be strictly increasing when moving upwards in a tree.

Using the techniques of Link-by-Rank and Path-Compression the run-
ning time of any combination of m Union and Find operations is O(mα(m,n))
where α is the very slowly growing inverse Ackerman function [1].

We now consider how it is possible to implement the Union-Find algorithm
in a more efficient way. It is straight forward to see that one can speed up
Algorithm 1 by storing the results of the two Find operations and use these as
input to the ensuing Union operation which then only has to determine which
of the two root vertices should point to the other.

In the following we describe how it is possible in certain cases to terminate the
Find operation before reaching the root. Let the rank of a vertex z be denoted
by rank(z). Consider two vertices x and y belonging to different sets with roots
rx and ry respectively where rank(rx) < rank(ry). If we Find rx before ry then
it is possible to terminate the search for ry as soon as we reach an ancestor z
of y where rank(z) = rank(rx). This follows since the rank function is strictly
increasing and we must therefor have rank(ry) > rank(rx) implying that ry �= rx.
At this point it is possible to join the two sets by setting p(rx) ← p(z). Note that
this will neither violate the rank property nor will it increase the asymptotic time
bound of the algorithm. However, if we perform Find(y) before Find(x) we will
not be able to terminate early. To avoid this we perform the two Find operations
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in an interleaved fashion by always continuing the search from the vertex with
the lowest current rank. In this way the Find operation can terminate as soon as
one reaches the root with the smallest rank. We label this as the Zigzag Find

operation as opposed to the classical Find operation.

The Zigzag Find operation can also be used to terminate the search early
when the vertices x and y belong to the same set. Let z be their lowest common
ancestor. Then at some stage of the Zigzag Find operation the current ancestors
of x and y will both be equal to z. At this point it is clear that x and y belong
to the same set and the search can stop.

We note that the Zigzag Find operation is similar to the contingently unite
algorithm as presented in [9], only that we have extracted out the specifics of the
Path-Compression technique.

3 The Parallel Algorithm

In the following we outline our new parallel Union-Find algorithm. We as-
sume a partitioning of both the vertices and the edges of G into p sets each,
V = {V0, V1, . . . , Vp−1} and E = {E0, E1, . . . , Ep−1} with the pair (Vi, Ei) being
allocated to processor i, 0 ≤ i < p. If v ∈ Vi (or e ∈ Ei) processor i owns v (or e)
and v (or e) is local to processor i.

Any processor i that has a local edge (v, w) ∈ Ei such that it does not own
vertex v will create a ghost vertex v′ as a substitution for v. We denote the set
of ghost vertices of processor i by V ′

i . Thus an edge allocated to processor i can
either be between two vertices in Vi, between a vertex in Vi and a vertex in V ′

i , or
between two vertices in V ′

i . We denote the set of edges adjacent to at least one
ghost vertex by E ′

i.

The algorithm operates in two stages. In the first stage each processor per-
forms local computations without any communication in order to reduce the
number of edges that need to be considered for the second final parallel stage.

Stage 1. Reducing the input size

Initially in Stage 1 each processor i computes a spanning forest Ti for its
local vertices Vi using the local edges Ei − E ′

i. This is done using a sequential
Union-Find algorithm. It is then clear that Ti can be extended to a global
spanning forest for G.

Next, we compute a subset T ′
i of E

′
i such that Ti ∪ T ′

i form a spanning forest
for Vi ∪ V ′

i . Without going into the details we note that T ′
i can be computed

efficiently without destroying the structure of Ti. The remaining problem is now
to select a subset of the edges in T ′

i so as to compute a global spanning forest for
G.
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Stage 2. Calculating the final spanning forest

The underlying data structure for this part of the algorithm is the same as
for the sequential Union-Find algorithm, only that we now allow trees to span
across several processors. Thus a vertex v can set p(v) to point to a vertex on a
different processors other than its own. The pointer p(v) will in this case contain
information about which processor owns the vertex being pointed to, its local
index on that processor, and also have a lower bound on its rank. Each ghost
vertex v′ will initially set rank(v′) ← 0 and p(v′) ← v. Thus the connectivity of
v′ is initially handled through the processor that owns v. For the local vertices
the initial p() values are as given from the computation of Ti.

We define the local root l(v) as the last vertex on the find-path of v that is
stored on the same processor as v. If in addition l(v) has p(l(v)) = l(v) then l(v)
is also a global root.

In the second stage of the algorithm processor i iterates through each edge
(v, w) ∈ T ′

i to determine if this edge should be part of the final spanning forest
or not. This is done by issuing a Union-Find query (UF) for each edge. A
UF-query can either be resolved internally by the processor or it might have to
be sent to other processors before an answer is returned. To avoid a large number
of small messages a processor will process several of its edges before sending and
receiving queries. A computation phase will then consist of first generating new
UF-queries for a predefined number of edges in T ′

i and then to handle incoming
queries. Any new messages to be sent will be put in a queue and transmitted in
the ensuing communication phase. Note that a processor might have to continue
processing incoming queries after it has finished processing all edges in T ′

i .

In the following we describe how the UF-queries are handled. A UF-query
contains information about the edge (v, w) in question and also to which processor
it belongs. In addition the UF-query contains two vertices a and b such that a
and b are on the find-paths of v and w respectively. The query also contains
information about the rank of a and b and if either a or b is a global root.
Initially a = v and b = w.

When a processor receives (or initiates) a UF-query it is always the case that
it owns at least one of a and b. Assume that this is a, we then label a as the
current vertex. Then a is first replaced by p(l(a)). There are now three different
ways to determine if (v, w) should be part of the spanning forest or not: i) If
a = b then v and w have a common ancestor and the edge should be discarded.
ii) If a �= b, p(a) = a, and rank(a) < rank(b) then p(a) can be set to b and thus
including (v, w) in the spanning forest. iii) If a �= b, rank(a) = rank(b), p(a) = a,
while b is marked as also being a global root then p(a) can be set to b while a
message is sent to b to increase its rank by one.

To avoid that a and b concurrently sets each other as parents in Case iii) we
associate a unique random number r() with each vertex. Thus we must also have
r(a) < r(b) before we set p(a) ← b.
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If a processor i reaches a decision on the current edge (v, w), it will send a
message to the owner of the edge about the outcome. Otherwise processor i will
forward the updated UF-query to a processor j (where j �= i) such that j owns
at least one of a and b.

In the following we outline two different ways in which the UF-queries can
be handled. The difference lies mainly in the associated communication pattern
and reflects the classical as opposed to the Zigzag Union-Find operation as
outlined in Section 2.

In the classical parallel Union-Find algorithm a is initially set as the current
vertex. Then while a �= p(a) the query is forwarded to p(a). When the query
reaches a global root, in this case a, then if b is marked as also being a global
root, rules i) through iii) are applied. If these result in a decision such that the
edge is either discarded or p(a) is set to b then the query is terminated and a
message is sent back to the processor owning the edge in question. Otherwise,
the query is forwarded to b where the process is repeated (but now with b as the
current vertex).

In the parallel Zigzag algorithm a processor that initiates or receives a UF-
query will always check all three cases after first updating the current vertex z
with l(z). If none of these apply the query is forwarded to the processor j which
owns the one of a and b marked with the lowest rank and if rank(a) = rank(b)
the one with lowest r value. Note that if v and w are initially in the same set then
a query will always be answered as soon as it reaches the processor that owns the
lowest common ancestor of v and w. Similarly, if v and w are in different sets the
query will be answered as soon as the query reaches the global root with lowest
rank.

Since UF-queries are handled concurrently it is conceivable that a vertex z ∈
{a, b} has seized to be a global root when it receives a message to increase its
rank (if Case iii) has been applied). To ensure the monotonicity of ranks z then
checks, starting with w = p(z), that rank(w) is strictly greater than the updated
rank of z. If not we increase rank(w) by one and repeat this for p(w). Note that
this process can lead to extra communication.

Similarly as for the algorithm in [2] it is possible that unbalanced trees are
created with both parallel communication schemes. This can happen if more than
two trees with the same rank are merged concurrently such that one hangs of the
other.

When a processor i receives a message that one of its edges (v, w) is to be part
of the spanning forest it is possible to initiate a Path-Compression operation
between processors. On processor i this would entail to set l(v) (and l(w)) to
point to the new root which would then also have to be included in the return
message. Since there could be several such incoming messages for l(v) and these
could arrive in an arbitrary order we must first check that the rank of the new
root is larger than the rank that i has stored for p(l(v)) before performing the
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compression. If this is the case then it is possible to continue the compression
by sending a message to p(l(v)) about the new root. We label these schemes as
either 1-level or full Path-Compression.

4 Experiments

For our experiments we have used a Cray XT4 distributed memory parallel ma-
chine with AMD Opteron quad-core 2.3 GHz processors where each group of four
cores share 4 GB of memory. The algorithms have been implemented in C++
using the MPI message-passing library. We have performed experiments using
both graphs taken from real application as well as on different types of synthetic
graphs. In particular we have used application graphs from areas such as linear
programming, medical science, structural engineering, civil engineering, and au-
tomotive industry [6, 8]. We have also used small-world graphs as well as random
graphs generated by the GTGraph package [3].

Table 1 give properties of the graphs. The first nine rows contains information
about the application graphs while the final two rows give information about
the small-world graphs. The first 5 columns give structural properties about
the graphs while the last two columns show the time in seconds for computing
a spanning forest using Depth First Search (DFS) and the sequential Zigzag
algorithm (ZZ). We have also used two random graphs both containing one million
vertices and respectively, 50 and 100 million edges. Note that all of these graphs
only contains one component. Thus the spanning forest will always be a tree.

Name |V | |E| Max Deg Avg Deg DFS ZZ
m t1 97,578 4,827,996 236 98.95 0.12 0.06
cranksg2 63,838 7,042,510 3,422 220.64 0.15 0.03
inline 1 503,712 18,156,315 842 72.09 0.57 0.26
ldoor 952,203 22,785,136 76 47.86 0.71 0.47
af shell10 1,508,065 25,582,130 34 33.93 1.04 0.37
boneS10 914,898 27,276,762 80 59.63 0.86 0.38
bone010 986,703 35,339,811 80 71.63 1.05 0.47
audi 943,695 38,354,076 344 81.28 1.20 0.33
spal 004 321,696 45,429,789 6,140 282.44 1.33 0.66
rmat1 377,823 30,696,982 8,109 162.49 2.07 1.34
rmat2 504,817 40,870,608 10,468 161.92 2.71 1.81

Table 1: Properties of the graphs

Our first results concern the different sequential algorithms for computing a
spanning forest. As is evident from Table 1 the Zigzag algorithm outperformed
the DFS algorithm. A comparison of the different sequential Union-Find algo-
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Figure 1: Performance results: S - Sequential algorithm, P- Parallel algo-
rithm, CL - Classical Union-Find, ZZ - Zigzag Union-Find, W - With
Path-Compression, O - Without Path-Compression.

rithms on the real world graphs is shown in the upper left quadrant of Figure
1. All timings have been normalized relative to the slowest algorithm, the clas-
sical algorithm (CL) using Path-Compression (W). As can be seen, removing
the Path-Compression (O) decreases the running time. Also, switching to
the Zigzag algorithm (ZZ) improves the running time further, giving approxi-
mately a 50% decrease in the running time compared to the classical algorithm
with Path-Compression. To help explain these results we have tabulated the
number of “parent chasing” operations on the form z = p(z). These show that
the Zigzag algorithm only executes about 10% as many such operations as the
classical algorithm. However, this does not translate to an equivalent speed up
due to the added complexity of the Zigzag algorithm.
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The performance results for the synthetic graphs give an even more pro-
nounced improvement when using the Zigzag algorithms. For these graphs both
Zigzag algorithms outperforms both classical algorithms and the Zigzag al-
gorithm without Path-Compression gives an improvement in running time of
close to 60% compared to the classical algorithm with Path-Compression.

Next, we present the results for the parallel algorithms. For these experiments
we have used the Mondrian hypergraph partitioning tool [10] for partitioning
vertices and edges to processors. For most graphs this has the effect of increasing
locality and thus enabling to reduce the size of T ′

i in Stage 1. In our experiments
T ′ = ∪iT

′
i contained between 0.1% and 0.5 % of the total number of edges for the

application graphs, between 1 % and 6 % for the small-world graphs, and between
2 % and 36 % for the random graphs. As one would expect these numbers increase
with the number of processors.

In our experiments we have compared using either the classical or the Zigzag
algorithm, both for the sequential computation in Stage 1 and also for the parallel
computation in Stage 2. We note that in all experiments we have only used level-1
Path-Compression in the parallel algorithms as using full compression, without
exception, slowed down the algorithms.

How the improvements from the sequential Zigzag algorithm are carried into
the parallel algorithm can be seen in the upper right and lower left quadrant of
Figure 1. Here we show the result of combining different parallel algorithms with
different sequential ones when using 4 and 8 processors. All timings have again
been normalized to the slowest algorithm, the parallel classical algorithm (P-CL)
with the sequential classical algorithm (S-CL), and using Path-Compression

(W). Replacing the parallel classical algorithm with the parallel Zigzag algo-
rithm while keeping the sequential algorithm fixed gives an improvement of about
5% when using 4 processors. This increases to 14% when using 8 processors, and
to about 30% when using 40 processors. This reflects how the running time of
Stage 2 of the algorithms becomes more important for the total running time as
the number of processors are increased.

The total number of sent and forwarded UF-queries is reduced by between
50% and 60% when switching from the parallel classical to the parallel Zigzag
algorithm. Thus this gives an upper limit on the possible gain that one can obtain
from the parallel Zigzag algorithm over the parallel classical algorithm.

When keeping the parallel Zigzag algorithm fixed and replacing the sequen-
tial algorithm in Step 1 we get a similar effect as we did when comparing the
sequential algorithms, although this effect is dampened as the number of proces-
sors is increased and Step 1 takes less of the overall running time.

The figure in the lower right corner shows the speedup on three large matri-
ces when using the best combination of algorithms, the sequential and parallel
Zigzag algorithm. As can be seen the algorithm scales well up to 32 processors
at which point the communication in Stage 2 dominates the algorithm and causes
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a slowdown. Similar experiments for the small-world graphs showed a more mod-
erate speedup peaking at about a factor of four when using 16 processors. The
random graphs did not obtain speedup beyond 8 processors and even for this
configuration the running time was still slightly slower than for the best sequen-
tial algorithm. We expect that the speedup would continue beyond the current
numbers of processors for sufficiently large data sets.

To conclude we note that the Zigzag Union-Find algorithm achieves con-
siderable savings compared to the classical algorithm both for the sequential and
the parallel case. However, our parallel implementation did not achieve speedup
for the random graphs, as was the case for the shared memory implementation
in [4]. This is mainly due to the poor locality of such graphs.
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Parallel Greedy Graph Matching using an Edge
Partitioning Approach

Md. Mostofa Ali Patwary* Rob H. Bisseling**
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Abstract

We present a parallel version of the Karp–Sipser graph matching
heuristic for the maximum cardinality problem. It is bulk-synchronous,
separating computation and communication, and uses an edge-based par-
titioning of the graph, translated from a two-dimensional partitioning of
the corresponding adjacency matrix. It is shown that the communication
volume ofKarp–Sipser graph matching is proportional to that of parallel
sparse matrix–vector multiplication (SpMV), so that efficient partitioners
developed for SpMV can be used. The algorithm is presented using a small
basic set of 7 message types, which are discussed in detail. Experimental
results show that for most matrices, edge-based partitioning is superior to
vertex-based partitioning, in terms of both parallel speedup and matching
quality. Good speedups are obtained on up to 64 processors.

Keywords: Bulk-synchronous parallel, heuristics, matching, partitioning,
sparse matrix.

1 Introduction

Let G = (V,E) be a graph with vertex set V and edge set E. A matching
M ⊆ E is a pairing of adjacent vertices such that each vertex is matched with
at most one other vertex. The objective of maximum cardinality matching is
to match as many vertices as possible. In this paper, we investigate the par-
allelization of one particular algorithm for maximum cardinality matching, the
Karp–Sipser algorithm [9], which is a heuristic that has been shown in practice
to yield high-quality matchings quickly [15]. Heuristic matching algorithms are
often the common choice in practical applications as they are much faster for large
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Figure 1: cage3 matrix of size 5 × 5 [6]. (a) The graph representation, (b) the
corresponding adjacency matrix where each x represents a nonzero, and (c) the
rowcols {1, 2, . . . , 5}.

problem sizes than optimal algorithms, and because they are easier to implement
and parallelize. For bipartite graphs, it has been shown [12] that Karp–Sipser

outperforms other heuristic algorithms such as minimum-degree matching. This
motivates our choice to parallelize the Karp–Sipser algorithm.

We view the graph G = (V,E) as an adjacency matrix A of size n× n where
n = |V | and where for each edge (i, j) ∈ E, A has two nonzeros aij and aji
such that aij = aji. In matrix language, our problem then is to find a matching
of maximum cardinality among the rows. Since the problem is unweighted, we
assume that the numerical value aij = 1 for all nonzeros. The adjacency list of
a vertex i ∈ V is equivalent to row i of A and column i of A. We note that
A is symmetric and aii = 0 for all i = 1, 2, . . . , n. (We number vertices/rows
from 1 onwards.) In sparse matrix computations, it has been customary already
for many years to view matrices for certain purposes as graphs, see e.g. [7], but
in this paper we will exploit the reverse connection, by viewing a graph as a
matrix to benefit from sparse matrix partitioning methodology for the purpose
of parallelizing a graph algorithm.

Since row i is identical to column i, instead of mentioning row and column
i separately, we sometimes call them together rowcol i. We maintain only one
adjacency list for both of them. The list contains all entries {aij : 1 ≤ j ≤
n and aij �= 0}. We get the nonzeros of row i or column i by accessing the
entries in rowcol i. Figures 1(a) and 1(b) show the transformation of a graph to
an adjacency matrix and Figure 1(c) shows the corresponding rowcols, which can
also be seen as adjacency lists.

Our parallelization of the Karp–Sipser algorithm will be done in bulk-
synchronous parallel (BSP) style [19] (see also [3]), which is characterized by
alternating between computation phases and communication phases, each ended
by a global barrier synchronization; these phases are commonly called supersteps.
A computation phase uses only locally available data and can last as long as
there is something to compute locally, but it can also be terminated earlier, for
instance after a fixed amount of work. This enhances load balancing by detecting
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at an earlier stage that a processor has run out of work. The BSP style gives
a high-level framework for algorithmic development, which eases parallelization
of irregular algorithms such as graph algorithms. Examples where this style has
been employed are graph coloring [4], edge-weighted graph matching [14], and
single-source shortest paths [13].

An advantage of using BSP at a programming level is that the BSPlib com-
munication library [8] takes some of the tediousness away of message-passing
for irregular computations; in particular, the bulk-synchronous message passing
primitive bsp send is helpful, as it allows sending data to an arbitrary processor
without the need for a corresponding receive request. The data is sent to a remote
buffer, which can be emptied at the next superstep. BSPlib is available on al-
most all computer architectures, through a library called BSPonMPI [17], which
can be linked to the program, thus effectively turning it into an MPI program.
Another advantage of using BSP is that many communication optimizations can
be left to the system; for instance, different messages to the same destination are
automatically detected and combined. One goal of this paper is to demonstrate
how to parallelize a graph algorithm with a high level of irregularity by using
BSP.

Instead of using BSP, we could also use message passing, immediately sending
matching data once they become available. To make use of this, for instance to
improve the quality of the matching, these data must also be received as soon as
possible, requiring frequent polling for incoming messages (assuming communi-
cation is nonblocking). This would increase communication time and incur more
message latency costs, and it would remove the global notion of time that is given
by the supersteps of the BSP model.

A fundamental question when parallelizing an algorithm for a distributed-
memory computer is how to distribute the data among the processors. A common
approach for graph algorithms has been to partition the vertices and then assign
each resulting part to a processor (assigning the edges in a corresponding man-
ner). In matrix terms, this leads to a one-dimensional row distribution. Often,
the graph has been partitioned beforehand using software such as Metis [10] or
Scotch [16]. This has also been the approach taken in our previous work [14].

An alternative approach would be to partition the edges instead of the ver-
tices. In matrix terms, this leads to a general two-dimensional distribution, with
in principle a larger space of possible solutions. For parallel sparse matrix–vector
multiplication, this is known to lead to much lower communication volumes for
certain types of matrices such as web-link matrices, originating outside the tra-
ditional application area of Finite Element Methods, see [18, 20]. These matri-
ces from nontraditional areas often have rows and columns with widely varying
numbers of nonzeros. One-dimensional methods avoid communication in one
direction, but often pay a heavy price in the other direction, especially for rela-
tively dense rows or columns. Two-dimensional methods are able to handle these
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much better. For graph algorithms, as far as we know, two-dimensional methods
have not been employed yet. One of our goals is thus to investigate whether the
edge-partitioning approach yields similar benefits as in the matrix–vector case.

We now define some notations that we use throughout the paper. The number
of nonzeros in a row i of A is denoted by nzi. We call a row i a singleton if nzi = 1.
We let the matching algorithm use p processors denoted by P0, P1, . . . , Pp−1. We
use the two-dimensional partitioning approach of the Mondriaan package [20] to
distribute A symmetrically among p processors before the matching starts. This
means that aij and aji are assigned to the same processor. The nonzeros of a
row i could be distributed among several processors, say, qi processors. Let lci,s
denote the local number of nonzeros of row i in Ps. We choose one of the qi
processors as the owner of i, denoted by P (i), and the other qi − 1 processors
as the nonowners of i, given by the set nonOwners(i), where each nonowner is
denoted by P ′(i). Note that P (i) stores nonOwners(i) and nzi, whereas each
P ′(i) knows only about P (i). Both the owner and the nonowners maintain their
value of lci,s. We use isMatched(i) for the status of matching (either true or
false) and m(i) for the matching partner; both are stored at P (i).

The remainder of this paper is organized as follows. In Section 2, we present
the sequential and parallel Karp–Sipser algorithm and analyze the commu-
nication requirements of the parallel algorithm. In Section 3, we describe our
experimental methodology, test set details, and our results. We conclude in Sec-
tion 4.

2 Matching Algorithms

2.1 The Sequential Karp–Sipser Algorithm

Algorithm 1. Sequential Karp–Sipser (A)

1: M ← ∅
2: while A �= ∅ do
3: if A has singleton rows then
4: Pick a singleton row i uniformly at random
5: Let aij be the nonzero entry in row i
6: else
7: Pick a nonzero entry aij uniformly at random
8: M ← M ∪ {(i, j)}
9: A ← A \ ({ai∗} ∪ {a∗i} ∪ {aj∗} ∪ {a∗j})

10: return M

The Karp–Sipser

algorithm [9] is a sim-
ple greedy algorithm
for maximum cardinal-
ity graph matching. We
will express it in terms
of its adjacency matrix
formulation. The idea
of the algorithm is as
follows. Let A be a
symmetric matrix and
M the set of matches.
If the current matrix A
has singleton rows, then the algorithm randomly chooses one such row i and adds
(i, j) to the matching M , where aij is the unique nonzero entry in row i, and
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removes all the entries from rowcols i and j, and then continues. If the current
matrix has more than one entry in each row, hence has no singleton rows, then
it picks a random entry aij, adds (i, j) to the matching and deletes all the en-
tries from rowcols i and j, and then continues. The algorithm stops when A
has become empty. Algorithm 1 gives the formal description of the sequential
Karp–Sipser algorithm. Note that while executing the algorithm, the deletion
of rowcols generates new singleton rows.

There are two phases in the execution of the Karp–Sipser algorithm. The
first phase starts at the beginning of the whole algorithm and ends when the
current matrix has more than one entry in each row. Phase two is the remainder
of the algorithm. We note that if M1 is the set of entries chosen in phase one, then
there still exists some maximum cardinality matching that contains M1, see [1,
Fact 1]. Thus the algorithm may have reduced the number of optimal solutions
that it can find, but there still is at least one. Furthermore, it has been shown
that almost all the remaining rows are matched by the Karp–Sipser algorithm
in the special case where A is a random matrix [1, 5].

2.2 The Parallel Karp–Sipser Algorithm

In the remainder, we present our parallel implementation of the Karp–Sipser

algorithm. As stated, the algorithm starts with the non-zero entries distributed
among the processors and for each row i there is one dedicated owner of that
row. Each processor then operates in synchronized rounds where it first performs
a local version of the sequential algorithm followed by communication. Here,
the match for a singleton row is performed at the processor that has the only
(remaining) entry of that row.

In the sequential part, a processor Ps will try to match a predefined number,
TpR, of its remaining unmatched rows. Priority is given to singleton rows but if Ps

runs out of them before having performed TpR matching attempts, it will try to
match some of its remaining rows with random neighbors. This is continued until
TpR matching attempts have been reached or until Ps has run out of available
rows. In our program texts, Ps will always denote the current processor which
will execute the statements of the text.

To see how the algorithm differs from the sequential one, consider when Ps

wants to match row i (which it owns) with row j. If Ps also owns row j it
can immediately perform the match, but if another processor Pz owns it, then
Ps must send a matching request to Pz. Depending on the outcome of this
request the match will succeed or fail. Note that the only reason why a matching
request could fail is if there were multiple requests to match with the same row
in the same or the previous round. For termination, the algorithm relies on
some random requests succeeding, which works well in practice. We could also
have implemented a stricter mechanism to guarantee termination (e.g. by only
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requesting matches with higher numbered rows).

Algorithm 2. Parallel Karp–Sipser ()

1: while A �= ∅ do
2: Process-Messages()
3: StpR ← 0, RdpR ← 0
4: while StpR+RdpR < TpR and A �= ∅ do
5: if Qs �= ∅ then
6: Pick-Singleton-Row()
7: else
8: Pick-Random-Row()
9: BSP-Sync()

In addition to attempt-
ing to match its own rows,
a processor must also pro-
cess and answer incoming
requests following the com-
munication stage. The over-
all structure is outlined in
Algorithm 2. In the algo-
rithm, Qs is a queue con-
taining all singleton rows on
processor Ps, while StpR
and RpR denote the num-
ber of attempts per round to perform singleton and random matches.

2.2.1 The Different Message Types

Our algorithm relies on different types of messages to exchange information be-
tween the processors. The different types are summarized in Table 1 and ex-
plained in this subsection.

Table 1: Summary of message types used.

Type Call Meaning

Singleton request smr(i, j, Pz) Matches singleton row i to j
Random request rmr(i, j, Pz) Matches random row i to j
Confirmation cf (i, Pz) Confirms success of matching i
Unavailability u(i) Removes all nonzeros in rowcol i
Handover h(i) Hands over row i to a nonowner
Give-up g(i, Pz) Removes Pz from nonOwners(i)
Criticality ct(i, Pz)) Local count of row i became 1

The first type of message is a singleton match request. Suppose processor Ps

wants a singleton row i to match with row j, but P (j) �= Ps. Therefore, Ps must
send a message to P (j) requesting to match j with i. We use smr to denote such
a match request. Since P (j) could receive several match requests from several
processors and P (j) can match j only with one i, P (j) sends back reply messages,
called confirmation message (denoted by cf ), to update the requesters about the
success of the match request. (If a requester does not receive a confirmation back
within two rounds, this means that the request has failed.) The third type of
message is the unavailability message (denoted by u). When a row i is matched
with a row j, we need to remove all the entries from row i, column i, row j, and
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column j. Since we have only one adjacency list called rowcol i for each row i
and column i, to remove all entries from both of them, it is sufficient to remove
the entries from rowcol i. Therefore, we remove rowcol i and j. We first remove
the entries in rowcol i and j from Ps, and then send unavailability messages to
the other qi − 1 and qj − 1 processors holding row i and row j, respectively, to
remove the entries in rowcol i and j from them. There is another type of match
request, called random match request (denoted by rmr), used to match a row i
with row j, given that P (i) = Ps. This type of message is only initiated when Ps

can perform more work in the current round but Qs = ∅, where Qs denotes the
queue of singleton rows in Ps.

We now discuss the remaining three types of messages. Consider a situation
where i is a singleton row and the local count for row i in P (i) is 0. Then, P (i)
must send a message to P ′(i), the only nonowner of i, to insert i into its singleton
queue. We call this message a handover message, denoted by h. The next type
of message is called give-up message, denoted by g, which is always sent from a
nonowner, P ′(i) of i, to P (i) to remove P ′(i) from nonOwners(i). Processor P ′(i)
sends such a message when its local count for row i reduces to 0. The last type
of message, criticality message (denoted by ct), is sent from a nonowner P ′(i) to
P (i). We use this message to update P (i) that the local count for row i in P ′(i)
has been reduced to 1. This message enables the owner P (i) to verify whether
i has become a singleton row. The criticality message(s) for row i together with
the knowledge of nzi enable the owner of row i at the earliest possible moment
to detect that a locally empty row has become singleton and thus to insert it
into the appropriate queue on the only nonempty processor by using a handover
message. We could have decided not to use criticality messages. Then, we would
need a mechanism for transferring ownership, which is more complicated and
would involve extra communication.

2.2.2 The Functions

Process-Messages function: This function processes all the incoming mes-
sages. We do the following, based on the message type. For each singleton match
request smr(i, j, Pz) received from processor Pz, we call Match-Rowcol(i, j,
Pz, singleton) to match i with j. For each unavailability message u(i), we call
Remove-RowCol(i) to remove i from Ps. For each handover message h(i),
we check whether i is singleton. If so, we push i into the singleton queue, Qs.
For a criticality message ct(i, Pz), we reduce the nonzero count of row i, nzi, by
lci,z−1. We also check whether this reduction makes i a singleton. If so, we send a
handover message h(i) to Pz to push i into its singleton queue. For each confirma-
tion message cf (i, Pz), we call Confirm(i, Pz) to remove row i. For each random
match request rmr(i, j, Pz), we call Match-Rowcol(i, j, Pz, random) to match
j with i. For each give-up message g(i, Pz), we remove Pz from nonOwners(i).
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Since processor Pz sends the give-up message only when it removes its last local
entry in row i, we reduce the nonzero count of row i, nzi, by 1 and if relevant,
insert row i into the singleton queue. We do this by calling Decrement(i).

In our implementation, all messages types have the same priority, and they
are processed in the order they were entered into the receive buffer of the BSP
system. It is possible, however, to sort them by type first, e.g., to give preference
to singleton match requests over random match requests.

Algorithm 3. Pick-Singleton-Row()

1: i ← Qs.pop()
2: if lci,s = 1 then
3: lci,s ← 0
4: Let aij be the entry in row i
5: Remove-RowCol(j)
6: if P (j) = Ps then
7: Match-Rowcol(i, j, Ps, singleton)
8: else
9: send a singleton match request smr(i, j, Ps) to P (j)
10: StpR ← StpR+ 1

Pick-Singleton-Row

function (given by
Algorithm 3): The
goal here is to pick
and match a sin-
gleton row. The
function first pops
a row i from Qs

and then verifies
whether i is still
a singleton row by
checking if lci,s =
1. (This check is
necessary because unavailable rows are not removed from queues.) If not, it con-
tinues to the next singleton row in Qs. If the answer is yes, it does as follows.
Let aij be the unique entry in row i. Although j is the only option for i to match
with, j could have several such singleton candidates and it can match only with
one of them. Now, irrespective of which singleton row it is matching with, all
entries from row j must be removed, because j will match with this i or one
of the other candidate singleton rows, which eventually leads to the removal of
rowcols i and j. So we can safely remove all entries from row j in Ps by calling
Remove-RowCol(j). We also remove the only entry aij in row i, by setting
lci,s ← 0. The next step is to check where the owner of j, P (j) is. If P (j) = Ps,
we call Match-Rowcol(i, j, Ps, singleton) immediately to match j with i. Oth-
erwise, we send a singleton match request smr(i, j, Ps) to P (j). The parameters
Ps and singleton of Match-Rowcol mean that Ps has invoked the function and
the matching request is of singleton type.

Pick-Random-Row function: This is similar to Pick-Singleton-Row

except that it picks a random row i owned by this processor to match with a
random neighbor j. If there are multiple choices for j then priority is first given
to local neighbors. If no local neighbor exists, a random match request is sent to
P (j).
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Algorithm 4. Match-Rowcol(i, j, Pz, type)

1: if isMatched(j) = false then
2: m(j) ← i, isMatched(j) ← true, nzj ← 0
3: if type = random then
4: if Pz = Ps then
5: Confirm(i, Ps)
6: else
7: Remove-RowCol(i)
8: send a confirmation message cf (i, Ps) to Pz

9: if Pz �= Ps then
10: Remove-RowCol(j)
11: send unavailability u(j) to each P ′(j) ∈ nonOwners(j)

Match-Rowcol

function (given
by Algorithm 4):
The goal here is
to match row j
with row i if
possible and take
necessary actions
if the matching is
successful. We
first verify whether
j has already been
matched by check-
ing isMatched(j). The next step is to check the type of the matching. If the type
is singleton, we do not need to give any confirmation back to the owner P (i) = Pz,
because its only remaining job was to remove the unique entry aij in row i, which
has already been done. If the type is random, we need to send a confirmation
back to P (i) to let it remove row i. If Pz = Ps, we call Confirm(i, Ps) to remove
row i from Pz and nonOwners(i). If Pz �= Ps, we first remove row i from Ps and
then send a confirmation message cf(i, Ps). The next step is to remove rowcol j
from Ps = P (j) and nonOwners(j). Note that j has been removed from proces-
sor Pz in case of a singleton match request, and it will be removed following the
confirmation in case of a random match request. If Pz �= Ps, we remove rowcol j
from Ps locally. We then send unavailability messages u(j) to all the other qj − 1
or qj − 2 nonowners. We set m(j) = i, as this can be done locally by P (j), but
we do not set m(i) = j as this would require communication with P (i), which
would be unnecessary since rowcol i will be removed immediately afterwards and
hence cannot be matched anymore. No redundant matching information is thus
communicated or stored.

Algorithm 5. Remove-RowCol(i)

1: while lci,s > 0 do
2: Let aij be the last entry in rowcol i
3: swap aji with the last entry in rowcol j
4: lcj,s ← lcj,s − 1
5: if P (j) = Ps then
6: Decrement(j)
7: else if lcj,s = 1 then
8: send a criticality message ct(j, Ps) to P (j)
9: else if lcj,s = 0 then
10: send a give-up message g(j, Ps) to P (j)
11: lci,s ← lci,s − 1

Remove-RowCol func-
tion (given by Algorithm
5): This function removes
all entries from rowcol i in
Ps. At every iteration of
the while-loop, it picks the
last entry aij from the ad-
jacency list of row i. We
remove aij from the adja-
cency list of rowcol i by re-
ducing the local count lci,s
by 1. Since the matrix is
symmetric, we also have to
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remove aji from rowcol j. We do this by swapping aji with the last entry of the
adjacency list of rowcol j and reducing the local count lcj,s by 1. The swap and
reduction operations make the removal efficient. Since j has not been matched
yet, we consider whether the removal of aji creates any of the following three
cases. The first case is where Ps owns j, so that we can safely reduce the nonzero
count of row j by 1 and insert j into the singleton queue if possible. We do this
by calling Decrement(j). The second case is where the removal of aji reduces
the local count lcj,s to 1, so that we have to send a criticality message ct(j, Ps) to
P (j) to reduce the nonzero count nzj by lcj,s − 1, where lcj,s1 is the initial local
count. The third case is where lcj,s = 0, so that Ps does not have any entry in
row j anymore and we can send a give-up message g(j, Ps) to P (j) to remove Ps

from nonOwners(j).

Confirm function: The goal here is to remove all entries in row i from P (i)
and nonOwners(i). We remove row i from P (i) by calling Remove-RowCol(i)
and from the nonowners by sending unavailability messages u(i) to all of them,
except to a processor Pz that previously sent a confirmation message to P (i)
causing this function to be called.

Decrement function: This function first decrements the nonzero count nzi
of row i. It then checks whether this turns row i into a singleton row. If so, it
looks where the last remaining entry aij of row i is. If aij is local, that is, lci,s = 1,
we push i into the singleton queue Qs. Otherwise, we send a handover message
h(i) to the only nonowner of i, P ′(i), asking P ′(i) to push i into its singleton
queue.

2.3 Communication Requirements

Following the BSP model [3] for our parallel matching algorithm, we separate
computation and communication into distinct, rather than intermingled, stages.
The parallelism in the computation is obtained from the assumption that each
processor will have a large number of local matches to perform between the com-
munication supersteps. This allows us to analyse the computation and communi-
cation requirements separately. The computation part will be studied experimen-
tally in the next section. For the communication part, we can obtain theoretical
bounds on the total communication volume of the algorithm, as follows.

We analyse the communication requirements by considering a row i, with qi
processors. We assume that qi ≥ 1, because we can remove empty rows and
columns. Let j be the requested matching partner of i. We distinguish between
requests that succeed and those that fail. We will examine what the current
processor Ps needs to communicate for row i. We count each message as one data
word.

First, consider the case where i is a singleton row, i ∈ Qs, see Algorithm 3.
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It does not matter here whether or not Ps = P (i).

• Case Ps �= P (j): Ps sends one message (a matching request) to P (j). If
i succeeds to match with j, then P (j) sends qj − 2 messages asking for
removal of rowcol j to the nonowners of j, except Ps which initiated the
matching request and therefore already removed rowcol j. If i fails to match
with j, then P (j) does not send any message at all. The total number of
messages is qj − 1 for success and 1 for failure.

• Case Ps = P (j): as the previous case, but no matching request needs to be
sent, and the number of removal requests in case of success is qj − 1. The
total number of messages is qj − 1 for success and 0 for failure.

Therefore, for each singleton row i, the communication volume is at most qj − 1.
A similar analysis yields that for each randomly picked row, the volume is at
most qi + qj − 2.

For the other three types of messages summarized in Table 1, row i incurs
at most one handover message, and qi − 1 give-up messages during the whole
algorithm. But if P (i) sends a handover message to P ′(i), then P ′(i) will never
send a give-up message to P (i), and vice versa. Therefore for each row i we get
at most qi − 1 give-up and handover messages, and qi − 1 critical messages, with
a total upper bound of 2qi − 2.

We can now add all the communication bounds. Let s be the number of
matchings that involve at least one singleton row. Since the matrix A has n
rows, the number of matched rows picked randomly is at most n−2s

2
= n

2
− s.

Without loss of generality we renumber the rows, so that the matched singleton
rows come first, and the matched random rows second, so they are in the range
1 ≤ i ≤ n/2, and we also take care that their matches are in the second half,
n/2 + 1 ≤ m(i) ≤ n. Assume for a moment that all match requests succeed. An
upper bound for the total communication volume is then

Vol(Matching)

≤
n/2∑

i=1

qm(i) +

n/2∑

i=s+1

qi + 2
n∑

i=1

qi − 3n+ s

≤
n/2∑

i=1

qm(i) +

n/2∑

i=1

qi + 2
n∑

i=1

qi − 3n

= 3
n∑

i=1

(qi − 1) =
3

2
· Vol(SpMV ).

Here, we express the upper bound in terms of sparse matrix–vector multipli-
cation, which has a volume of Vol(SpMV ) = 2

∑n
i=1 (qi − 1) for a symmetrically
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partitioned matrix. This is useful because the SpMV kernel is important and
many partitioning algorithms and software packages exist that minimize its vol-
ume.

Now we drop the non-failure assumption. For singleton rows, at most one data
word is sent and the row is removed and remains unmatched. The upper bound
then still holds. For randomly picked rows, the situation is more complicated.
If the request fails and P (i) �= P (j), this incurs one message. In principle, the
number of such failures is unbounded, since randomly picked rows can be tried
again, but in practice the volume will be limited as preference is given to local
matches (not causing communication in case of failure) and the penalty in the
non-local case is only one communication. This will add a number R of failed
random requests to the upper bound.

A lower bound on the communication can be obtained as follows. Assume the
best case, where all matches are local. For each row i, we need qi − 1 messages
to remove it. This leads to

Vol(Matching) ≥
n∑

i=1

(qi − 1) =
1

2
· Vol(SpMV )

3 Experimental Results

3.1 Experimental Setup

We performed experiments on Huygens, an IBM pSeries 575 supercomputer at
SARA in Amsterdam, consisting of 104 nodes, each with 16 processors and 128
GByte of memory. Each processor is an IBM Power6 dual-core 4.7 GHz processor
where each core has 128 kByte of L1 cache and 4 MByte of L2 cache. Each
processor has 32 MByte of L3 cache. The machine is running Linux (kernel
version 2.6.27.45-0.1.2-ppc64). All algorithms were implemented in C++ using
the BSPonMPI library (version 0.3) [17] and compiled with the IBM XL C/C++
compiler (version 10.01.0000.0002) using the -O3 optimization level.

We obtained the BSP parameters of the system by BSP benchmarking [3] for
a given number of processors p, as shown in Table 2. These parameters are r, the
single-processor computing rate in Gflop/s, g, the time taken by one processor to
send or receive one data word, and l, the time taken to synchronize all processors.

We use four test sets of matrices. Test sets 1 and 2 consist of 10 real-world sym-
metric matrices and four real-world unsymmetric square matrices, respectively,
of varying sizes drawn from different application areas such as medical science,
structural engineering, civil engineering, circuit simulation, electrical engineering,
DNA electrophoresis, information retrieval, and the automotive industry [6, 11].
Test set 3 includes three synthetic small-world matrices and test set 4 contains
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Table 2: Benchmarked BSP parameters for the IBM pSeries 575.

p r (flop) (μs)
(Gflop/s) g l g l

1 1.343 355 3,926 0.26 2.92
2 1.336 358 15,681 0.27 11.73
4 1.338 384 27,543 0.29 20.58
8 1.340 384 56,875 0.29 42.44
16 1.334 366 124,430 0.27 93.30
32 1.329 417 268,559 0.31 202.10
64 1.339 408 717,400 0.30 535.74

Table 3: Structural properties of the input matrices.
n nz nz/n n nz nz/n

avg max avg max

rw1 999,999 3,995,992 3 4 rw11 281,903 3,985,272 14 38,625
rw2 1,585,478 6,075,348 3 5 rw12 16,783 9,306,644 554 14,671
rw3 52,804 10,561,406 200 2,702 rw13 683,446 13,269,352 19 83,470
rw4 2,063,494 12,964,640 6 95 rw14 343,791 26,493,322 77 434
rw5 63,838 14,085,020 220 3,422 sw1 50,000 14,112,206 282 5,096
rw6 504,855 17,084,020 33 39 sw2 75,000 24,466,808 326 6,273
rw7 503,712 36,312,630 72 842 sw3 100,000 33,727,170 337 7,989
rw8 952,203 45,570,272 47 76 er1 100,000 3,319,658 33 59
rw9 1,508,065 51,164,260 33 34 er2 150,000 6,753,302 45 76
rw10 914,898 54,553,524 59 80 er3 200,000 12,008,022 60 100

three synthetic Erdös-Rényi style random square matrices generated by the GT-
Graph package [2]. For convenience, we label the test sets rw, sw, and er, for
real-world, small-world, and Erdös-Rényi, respectively. The matrices from test
sets 2–4 were made symmetric by adding A and AT . All diagonal entries were
removed from the matrices.

The structural properties of the test matrices are given in Table 3. The
columns are the labels, number of rows, number of nonzeros, average and maxi-
mum number of nonzeros per row. The names of the matrices are given in Table
4. To obtain the runtime of an algorithm for a given matrix, we execute the al-
gorithms three times and then take the minimum time, based on the assumption
that this timing suffers the least from interference by other use of the hardware
resources. In all three runs, the actual computations and hence the quality of
the matching are the same (we start with the same random number seeds), so
that timing differences between the runs are not due to different amounts of work
performed.

3.2 Scalability Experiments

To check how well the edge partitioning approach works, we first compare it with
a vertex partitioning, where we can use the same Mondriaan framework. In the
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Table 4: Communication volume in 1000 words for p = 32.
SpMV Matching SpMV Matching

Name 1D 2D 1D 2D Name 1D 2D 1D 2D

rw1 (ecology2) 53 51 60 55 rw11 (Stanford) 340 141 479 234
rw2 (G3 circuit) 81 65 92 73 rw12 (gupta3) 710 44 1,305 61
rw3 (crankseg 1) 78 78 155 152 rw13 (St Berk.) 716 448 1,152 812
rw4 (kkt power) 118 120 106 107 rw14 (F1) 139 130 148 139
rw5 (crankseg 2) 92 90 181 171 sw1 1,007 417 2,111 303
rw6 (af shell8) 51 47 85 65 sw2 1,957 829 3,999 563
rw7 (inline 1) 104 105 115 118 sw3 2,017 832 4,255 528
rw8 (ldoor) 131 128 140 148 er1 1,856 1,133 1,788 1,157
rw9 (af shell10) 113 105 169 150 er2 3,451 1,841 3,721 1,635
rw10 (boneS10) 150 145 228 189 er3 5,476 2,569 6,350 1,990

vertex partitioning, we simply impose the extra constraint that all nonzeros in
a row up to the matrix diagonal are assigned to the same processor. This way,
we can view vertex partitioning as a special case of edge partitioning. Table 4
presents the communication volumes of sparse matrix–vector multiplication and
matching, both for a vertex (1D) partitioning and an edge (2D) partitioning on
32 processors. The SpMV volume is a direct outcome of the partitioning by the
Mondriaan package [20] (version 2.01) in symmetric mode, where the maximum
number of edges per processor is not allowed to exceed the average by more than
3%. The processor with most nonzeros in row i was chosen as the owner P (i),
because it is more likely to possess the last remaining nonzero of the row after the
other nonzeros have been removed, thus saving a handover message. The volume
for matching is the volume measured by counters in the program, which register
the number of (integer) data words sent.

Table 4 shows that on 32 processors, the volume for the matching is in a range
from 0.63 to 2.11 times the SpMV volume. We also observed a range between 0.63
and 2.18 for 2, 4, 8, 16, 32, and 64 processors. This shows that partitioning for
the SpMV objective is also a good optimizer for matching, and possibly for other
graph problems as well. The table shows a savings in communication volume of
a factor of 2 for small-world and Erdös-Rényi matrices when moving from 1D
to 2D, and even larger savings for the real-world matrices from test set 2. Note
the large 16-fold decrease for the linear programming matrix rw12 (gupta3). For
the symmetric real-world matrices (test set 1), only some modest gains can be
observed, but also a few cases with a small loss.

Table 5 gives the speedup of our parallel Karp–Sipser implementation on
32 processor cores compared to the time of our sequential implementation. We
examine the performance as a function of the input parameter TpR, which is the
total number of rows processed in a round and which represents the chosen gran-
ularity of the computation. Choosing a small value of TpR leads to many rounds
in the whole algorithm, and hence many supersteps and synchronizations. For
p = 32, one synchronization costs about l = 270, 000 flop time units, see Table 2,
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Table 5: Speedup as a function of TpR for p = 32. Boldface denotes the highest
speedup obtained.

TpR = 100 200 400 800 1600 100 200 400 800 1600

rw1 0.67 0.74 0.62 0.40 0.24 rw11 4.25 5.32 6.15 6.17 6.45
rw2 0.66 0.72 0.59 0.38 0.20 rw12 25.36 18.99 30.55 29.55 30.35
rw3 12.65 13.07 15.13 14.53 14.42 rw13 1.18 1.59 1.83 1.85 1.73
rw4 1.55 1.30 0.72 0.31 0.17 rw14 13.15 16.67 19.54 21.63 24.23
rw5 14.11 16.62 19.69 21.09 19.99 sw1 29.49 33.38 34.63 30.58 30.82
rw6 6.26 9.29 12.92 14.03 13.82 sw2 27.87 31.16 33.85 33.91 33.75
rw7 9.19 11.17 12.09 12.85 12.88 sw3 33.35 40.83 42.18 44.64 42.43
rw8 6.93 8.45 9.22 9.25 8.83 er1 5.20 6.02 7.64 8.60 9.51
rw9 6.44 9.66 12.19 13.08 11.50 er2 7.15 9.60 11.00 12.71 13.63
rw10 7.07 8.41 8.82 7.97 6.60 er3 14.31 15.97 18.14 19.72 21.55

Table 6: Matching quality (in %) for the experiments of Table 5. Boldface denotes
the highest quality obtained.

TpR = 100 200 400 800 1600 100 200 400 800 1600

rw1 98.15 98.14 98.13 98.08 98.12 rw11 71.75 71.61 71.48 71.32 71.11
rw2 96.71 96.69 96.61 96.52 96.45 rw12 98.31 98.00 97.35 97.35 97.35
rw3 99.21 99.15 99.13 99.16 99.19 rw13 66.19 66.15 66.09 65.99 65.87
rw4 88.55 88.58 88.58 88.57 88.57 rw14 99.54 99.52 99.53 99.51 99.49
rw5 99.26 99.24 99.24 99.20 99.18 sw1 79.81 78.07 77.06 75.66 75.59
rw6 99.93 99.93 99.92 99.93 99.93 sw2 90.74 88.87 86.25 84.09 81.89
rw7 99.56 99.55 99.55 99.54 99.53 sw3 81.87 80.13 78.47 77.29 76.01
rw8 98.58 98.58 98.58 98.58 98.57 er1 97.50 93.45 85.67 78.69 74.13
rw9 99.94 99.94 99.94 99.94 99.94 er2 98.43 95.63 89.12 82.54 76.07
rw10 99.58 99.56 99.55 99.55 99.55 er3 95.98 93.14 88.94 83.42 77.59

so the number of operations carried out per processor in a round should at least
be this number. As a rough estimate, for the matrix er3, this means handling
about 1500 rows of 60 nonzeros each, with (an estimated) three operations per
nonzero, where for simplicity we assume that every row is completely assigned
to one processor; in reality, some rows are partitioned. The advantage of a small
TpR is better load balance: when a processor runs out of work this will be de-
tected earlier, and communications are performed more frequently, thus enabling
processors to carry out work that otherwise would have to wait until later.

Finding the right value of TpR is important to get good speedups. Fortu-
nately, the parameter is not very sensitive, and a whole range of values gives the
highest obtainable speedup; e.g. for er3, this is the range 400–1600. The overall
highest speedup obtained (44.64 for sw3) is superlinear, which must be due to
beneficial cache-effects or to the fact that the sequential and parallel algorithms
do not perform exactly the same amount of work. (The parallel algorithm may
be forced to pick random rows more often than the sequential algorithm thus
performing less work and delivering lower quality.) Other problem instances may
have benefited from these effects as well.

The choice of TpR also influences the quality of the solution (defined as the
ratio between the number of matched rows and the total number of rows) for the
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matrices from test sets 3 and 4, see Table 6. Here, the quality decreases with
increasing TpR. For these matrices, which have high communication volumes due
to their random nature, few singleton rows can be processed in a round, forcing
the processing of random rows in many cases.

Tables 7 and 8 present the speedups for the vertex and edge partitioning
approaches. In all cases, the value of TpR was set at an optimal value based
on an empirical parameter search, choosing the value among 100, 200, 400, 800,
and 1600 that gave the highest speedup. In general, it can be observed that
vertex partitioning and edge partitioning do not differ much in time and quality
for test set 1, but that edge partitioning is much faster for test sets 2–4. The
matrix rw12 shows a much larger maximum speedup (30.55) for edge partitioning
than for vertex partitioning (5.78), and also a better quality. This holds for most
cases, but there are exceptions, cf. sw1–sw3 for p = 64. The higher speedups for
edge partitioning are primarily caused by the lower communication volume, see
Table 4 for p = 32, but other factors play a role as well. For instance, the smallest
problem rw1 shows no speedup at all, which is most likely caused by severe load
imbalance and a relatively large synchronization overhead.

4 Conclusion

In this work, we have demonstrated how a graph matching algorithm, the Karp-
Sipser algorithm, can be parallelized efficiently by viewing it as a sparse matrix
algorithm, and by making use of sparse matrix partitioning methodology. A
number of conclusions can be drawn:

• Edge-based partitioning gives for certain types of graphs, such as small-
world graphs, a large improvement compared to vertex-based partitioning.
For other types of matrices, a more modest improvement is obtained. In
the remaining few cases, the differences are small.

• Improvements obtained by better partitioning lead to better locality, thus
reducing the amount of communication required and hence making the par-
allel algorithm run faster. They also enable more computations to be done
locally within a superstep, keeping work queues filled longer and hence im-
proving the matching quality, i.e., the percentage of matched vertices.

• We have established a theoretical relation between the communication vol-
ume of parallel graph matching by theKarp–Sipser algorithm and sparse
matrix-vector multiplication,

1

2
· Vol(SpMV ) ≤ Vol(Matching) ≤ 3

2
· Vol(SpMV ) +R
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Table 7: Speedup (Su) and matching quality in % (Ql) using vertex (1D) parti-
tioning.

Seq p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
Ql Su Ql Su Ql Su Ql Su Ql Su Ql Su Ql

rw1 100.00 0.17 99.84 0.15 98.02 0.29 98.11 0.45 97.88 0.70 97.92 0.84 98.09
rw2 99.93 0.12 96.95 0.18 96.62 0.28 96.51 0.44 96.45 0.71 96.40 0.86 96.18
rw3 99.59 1.60 99.57 3.49 99.48 5.82 99.46 12.62 99.39 20.35 99.16 13.01 99.42
rw4 91.54 0.49 88.09 0.62 88.44 0.79 88.35 1.37 88.48 1.47 88.45 1.29 88.42
rw5 99.60 1.78 99.61 3.68 99.56 6.92 99.50 13.56 99.36 22.90 99.07 17.58 99.36
rw6 99.99 1.58 99.97 2.80 99.97 4.80 99.96 8.11 99.94 13.28 99.92 17.29 99.90
rw7 99.62 1.32 99.58 2.00 99.56 2.98 99.58 6.05 99.57 14.07 99.52 28.95 99.48
rw8 98.53 1.30 98.72 2.11 98.74 3.24 98.73 5.38 98.72 9.39 98.73 13.99 98.73
rw9 99.99 1.71 99.99 2.90 99.98 5.04 99.97 8.16 99.96 13.99 99.95 19.73 99.93
rw10 99.70 1.37 99.67 2.26 99.65 3.56 99.64 5.65 99.62 8.27 99.60 11.34 99.58

rw11 74.26 1.00 72.09 1.66 72.02 2.38 71.57 3.98 71.20 5.46 70.81 4.61 70.26
rw12 99.06 1.91 73.18 3.07 57.98 4.83 64.03 5.13 82.40 5.78 86.68 3.59 97.78
rw13 68.56 0.62 66.19 0.81 66.29 0.89 66.16 1.37 65.94 1.81 66.03 1.92 65.08
rw14 99.65 1.49 99.61 2.65 99.60 4.81 99.57 10.54 99.55 20.93 99.49 33.30 99.42

sw1 82.77 2.28 82.56 4.64 82.53 8.46 82.39 14.39 82.32 17.33 82.04 14.51 79.89
sw2 93.68 2.22 93.33 4.65 93.28 8.73 93.16 15.27 92.87 21.43 92.93 20.94 90.27
sw3 82.76 2.28 82.65 5.41 82.47 9.28 82.44 17.19 82.42 26.75 82.37 27.97 81.35

er1 99.99 1.32 98.87 1.66 98.66 1.82 97.81 2.35 86.87 3.27 63.63 5.23 46.66
er2 99.99 1.48 99.16 2.26 99.18 2.60 99.17 2.90 96.63 3.75 71.99 5.31 53.75
er3 100.00 1.47 99.33 2.48 99.39 2.88 99.33 3.38 95.60 3.99 89.41 5.05 60.85

where R represents the number of random match requests that failed during
the algorithm. The range we encountered in practice for edge partitioning, is
between 0.63 to 1.95 times Vol(SpMV ) for 2, 4, 8, 16, 32, and 64 processors.

• We have obtained good speedups for many matrices without compromising
the quality of the matching. Up to 16 processors, the matching quality
stays constant, see Table 8. After that, for some matrices it decreases as
work queues become empty more quickly, thereby forcing random rows to
be matched.

For future work, we see the present algorithm as a representative of a whole
class for which an edge-based approach will be suitable and a relation with sparse
matrix–vector multiplication can be established. We intend to generalize our
approach in this direction.
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Parallel Algorithms for Bipartite Matching
Problems on Distributed Memory Computers

Johannes Langguth Md. Mostofa Ali Patwary
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Abstract

We present the first practical parallel algorithm for computing a max-
imum cardinality matching in a bipartite graph suitable for distributed
memory computers.

The presented algorithm is based on the Push-Relabel algorithm
which is known to be one of the fastest algorithm for the bipartite match-
ing problem. Previous attempts at developing parallel implementations of
it have focused on shared memory computers using a limited number of
processors.

We first present a straightforward adaptation of these shared memory
algorithms to distributed memory computers. However, this is not a viable
approach as it requires too much communication. We then present an
efficient algorithm by modifying the previous approach through a sequence
of steps with the main goal being to reduce the amount of communication
and to increase load balance. The first goal is achieved by changing the
algorithm so that many push and relabel operations can be performed
locally between communication rounds and also by selecting augmenting
paths that cross processor boundaries infrequently. To achieve good load
balance, we limit how fast global relabelings traverse the graph. Through
a number of experiments on large instances we show the scalability of our
algorithm using up to 128 processors.

Keywords: Bipartite graphs, parallel algorithms, matching.

1 Introduction

The bipartite cardinality matching problem is defined as follows:
Given an undirected, bipartite graph G = (V1, V2, E), E ⊆ V1 × V2, find a

maximum subset M∗ ⊆ E of pairwise nonadjacent edges. A set M∗ is called a
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perfect matching iff |V1| = |V2| = |M∗|. Clearly, not all bipartite graphs have a
perfect matching.

Bipartite matching is a classical topic in combinatorial optimization and has
been studied for almost a century. It has many applications, but it is especially
relevant for numerical computations due to the fact that it can be used to find
zero-free diagonals for linear solvers [8, 20], making it an important problem in
combinatorial scientific computing.

For a given m × n matrix A we define GA = (V1, V2, E) where |V1| = m,
|V2| = n, and E = {{i, j} ∈ V1 × V2 : ai,j �= 0} as the graph derived from A.
Assuming A belongs to a specified systems of linear equations, A is a square
matrix having full structural rank [5] and GA has a perfect matching. As any
edge included in a matching on GA corresponds to an entry of A being permuted
to the main diagonal, a perfect matching corresponds to a transversal for A.

Many sophisticated sequential implementations solving this problem, such as
MC21 [6, 7], are available, but for parallel linear solvers where A is typically
distributed among several processors, it is desirable to use a matching algorithm
that works directly on the distributed matrix to avoid the memory limitations of
a single node and that scales reasonably well with the number of processors.

Bipartite matching is a special case of the maximum flow problem, for which
sequential polynomial time algorithms have long been known [9], and many spe-
cialized algorithms for finding bipartite matchings have been proposed in the past
[1, 13]. Among these, the Push-Relabel algorithm [11] by Goldberg and Tar-
jan has proven to be one of the fastest sequential algorithms, and it also exhibits
a structure that makes it more amenable to parallelization than other matching
algorithms. Parallelizations of the Push-Relabel algorithm for maximum flow
on shared memory computers have been presented by Bader and Sachdeva [3]
and by Anderson and Setubal [2]. The latter work has been adapted to bipartite
matching and studied in [22]. Recently, in [21] an implementation of an auction
based algorithm for finding a perfect matching of maximum weight on a dis-
tributed parallel computer was presented. This algorithm is used as a subroutine
for the Pspike [18] hybrid linear solver.

In this paper we show how an efficient parallel algorithm suitable for dis-
tributed memory can be obtained from the parallel Push-Relabel algorithm
suggested in [11]. To do so, we first adapt ideas for shared memory computation
from [2] to the distributed memory model, thereby obtaining a simple parallel
bipartite matching algorithm labeled Algorithm 1. It is presented in Section 4.
Since analysis and preliminary experiments showed that the performance of Al-
gorithm 1 was not competitive, detailed experimental results are not presented.
Instead, in Section 5 we show how to modify Algorithm 1 in order to obtain the
competitive Algorithm 2. The improvement is achieved by relaxing the require-
ment for labels to constitute a global lower bound on the distance to a free vertex,
a central invariant of the Push-Relabel algorithm. This allows us to execute a
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large number of push and relabel operations that were previously locked in suc-
cessive communication phases outside of their standard order, thereby creating
large batches of operations that can be processed locally. To modify the commu-
nication to computation ratio, the size of these batches is adjusted depending on
the number of available processors. This allows us to control, and thereby opti-
mize load-balancing. In Section 5.4 we show that the algorithm remains correct
under this relaxation.

Section 6 describes the experimental setup and Section 7 the experimental
results for Algorithm 2. These results show that for reasonably large instances,
the algorithm shows very good scaling behaviour, but we do not consistently
obtain speedup compared to an efficient sequential implementation. However
the advantage of the sequential algorithm is small for large matrices. Thus, to
our best knowledge this paper describes the first efficient parallel algorithm for
bipartite matching on distributed memory computers.

2 Preliminaries

In the following, V1 is designated as the left side and V2 as the right side. A vertex
v ∈ V1 is a left vertex and u ∈ V2 is a right vertex. The matching is denoted by
the set of matched vertices M . In addition, if v ∈ M , M(v) is the vertex matched
to v. An unmatched vertex w /∈ M is called a free vertex with M(w) = ∅. In
general, we will refer to free left vertices as active vertices. If M(v) = u and
M(u) = v then the edge e = {u, v} is a matched edge. By the definition of a
matching, any other edge incident on either u or v cannot be a matched edge,
and is thus referred to as unmatched. A path P that alternates between matched
and unmatched edges is called an alternating path. If both endpoints of P are
free, it is also an augmenting path for M because switching all matched edges of
P to unmatched and vice versa results in a matching of cardinality |M |+ 1. For
a vertex v ∈ V1, let Γ(v) ⊆ V2 be the neighborhood of v, i.e., the set of all vertices
adjacent to v. For u ∈ V2, define Γ(u) ⊆ V1 analogously.

Edge-based partitioning
Both our algorithms assume that the input matrices are partitioned using

a 2-D partitioner, such as Mondriaan [24] or Zoltan [23]. They allow a more
fine-grained partitioning than 1-D, i.e., column or row-based partitioning and
have proven useful for reducing communication [19]. In graph terms, 2-D matrix
partitioning amounts to edge-based partitioning, which means that a single edge
is owned by only one processor, but a vertex v may be shared among multiple
processors. In this case, the processor on which v has maximum degree treats v
as an original vertex, while all other processors that have an instance of v treat
it as a ghost vertex. We will refer to such a split vertex, along with all its ghost
instances as a connector, denoted as C(v). For a connector that is split among
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k vertices, C0(v) will refer to the original vertex in the connector, i.e., v, while
C1(v), ..., Ck−1(v) refers to the k−1 ghost instances that are part of the connector.
Communication during the algorithms is performed only between processors that
share connectors. We will distinguish between left connectors, i.e., vertices v such
that C0(v) ∈ V1 and right connectors, i.e., vertices u such that C0(u) ∈ V2. To
simplify notation, for a vertex v that is not part of a connector, let C0(v) = v.
Such a vertex is designated as local. An edge {C0(v), Ci>0(u)} is called a crossing
edge, while an edge {C0(v), C0(u)} is called local.

3 The Push-Relabel Algorithm for Bipartite

Matching

The Push-Relabel algorithm by Goldberg and Tarjan [11] was originally de-
signed for the maximum flow problem. Since bipartite matching is a special case
of maximum flow, it can be solved using the Push-Relabel algorithm. In fact,
it is one of the fastest know algorithms for bipartite matching, as was shown in
[4]. The algorithm works by defining a distance labeling ψ : V1 ∪ V2 → N which
constitutes a lower bound on the length of an alternating path from a vertex v to
the next free right vertex. Note that if v is a free left vertex, such a path is also an
augmenting path. We initialize ψ(v) = 0 ∀v ∈ V1 ∪ V2. Now, as long as there are
free left vertices, we pick one of these v and search its neighbourhood for a vertex
u with minimum ψ(u). If ψ(u) = 0 then u must be unmatched, and matching it
to v increases the size of M by one. Otherwise, let u be matched to w. In that
case we match v and u, rendering w unmatched. Because now any augmenting
path from a free right vertex to u must contain v, we update the distance labels
by setting ψ(v) = ψ(u) + 1 and increasing ψ(u) by 2. If ψ(v) > 2n, we instead
mark v as unmatchable and cease to consider it any further.

In maximum flow terms, during this operation a unit of flow entering v from
the source has been transferred from v to u. If u was unmatched, it now has one
unit of incoming flow which is routed to the sink. Otherwise, u is left with one unit
of excess flow which has to be pushed back to a left vertex from which it currently
receives flow, i.e., v or w. Since the algorithm cannot progress by immediately
undoing the push from v to u, flow is pushed back from u to w, making w active
immediately. The entire operation is referred to as a double push if M(u) �= ∅,
otherwise it is called a single push. Since G is bipartite, this technique ensures
that matched right vertices can never become active again because excess flow will
immediately be transferred back due to the double push [4]. Therefore, imple-
mentation of the Push-Relabel algorithm for bipartite matching is significantly
easier and more efficient than using the standard Push-Relabel algorithm for
maximum flow.

In the bipartite matching context, a push from v to u means matching the
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edge {v, u}. If M(u) �= ∅ was true prior to the push, for M(u) = w we also
unmatch the edge {w, u}. Thus, u is added to M while w is removed. We also
set M(v) = u, M(u) = v, and M(w) = ∅ thereby making w active instead of v.
Updating ψ ensures that the now free vertex w does not push to u again unless
there is no better alternative.

The push operation is repeated until there are no further active vertices. It
is easy to show that in this case M is a maximum matching. As observed in
[11] pushes can be performed in arbitrary order, making the algorithm a prime
candidate for parallelization. In the sequential case the order of pushes seems
to influence performance strongly [4]. However, the algorithm can be initialized
by starting with a matching M of high cardinality which can be obtained easily
using various heuristics [16]. Doing so can level the difference between various
orders of operations.

Although not necessary for the algorithm, performance is enhanced greatly by
periodic updates of the distance labels. This is achieved by starting a breadth first
search along alternating paths from each unmatched right vertex to set the labels
ψ to the actual alternating path distance from the next free right vertex. This
operation is called a global relabeling. After performing such a global relabeling,
augmenting paths consisting of edges {u, w} with ψ(w) ≥ ψ(u) + 1 from the free
right to all reachable free left vertices exist. These edges are called admissible,
since they are correctly aligned with the distance labeling. Assuming ψ is a
valid distance labeling, ψ(w) > ψ(u)+1 cannot occur. In contrast to the original
Push-Relabel algorithm for the general maximum flow problem, the behaviour
of the above algorithm for bipartite matching does not depend on the labels of
left vertices since a push can only reach them through a matched edge which will
always be admissible.

Like other matching algorithms, the Push-Relabel algorithm with global
relabeling searches for augmenting paths. However, it does not augment the
matching immediately along paths so discovered. Instead, it uses the distance
labels to simultaneously guide the “flow”, i.e., the unmatchedness of all free left
vertices towards the unmatched right vertices, increasing the size of the matching
when a free left vertex and an adjacent free right vertex are matched.

4 Adaptation of the Push-Relabel Algorithm

for Distributed Memory

In [11] the framework for a synchronous parallel algorithm relying on repeated
application of a pulse operation was given. Such a pulse operation consists of each
active vertex v attempting to push to a neighbour u with minimum ψ(u). Due to
the distributed nature of the algorithm, this can result in multiple active vertices
pushing to the same right vertex. If this happens, only one of these pushes is
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considered successful, and all other pushes are considered to have failed. Thus
the active vertices that initiated the failed pushes remain active and must try to
push again during the next pulse, possibly to a different vertex. Similar to the
sequential Push-Relabel algorithm, the pulse operation is repeated until no
active vertices remain.

From this framework, we derive a simple parallel distributed memory algo-
rithm called Algorithm 1. In [11], following the PRAM model, one processor
per vertex is available. In the distributed memory setting, we instead assume
an edge based partitioning of G among p processors, where p is several orders of
magnitude smaller than n.

As was suggested in [11], Algorithm 1 works in rounds. During each round,
for each active vertex v, the algorithm queries for the lowest labeled neighbour u
of v, attempts to match v with u and, if successful, updates labels and matching
edges. Rounds are repeated until a maximum matching is found. We refer to
the two parallel operations in this algorithm as Query and Pulse. In shared
memory models such as PRAM, the procedure Query does not appear explicitly
since data access is trivial.

Algorithm 1 Procedure QUERY

1: for each active vertex v do
2: Find local neighbour u0(v) of minimum ψ(u0) where ω(u0) = ω(v)
3: Send Request signal to each ghost vertex Ck>0(v)
4: Exchange Request messages with other processors
5: for each ghost vertex Ck>0(v) receiving a Request signal do
6: Find local neighbour uk(v) of minimum ψ(uk) where ω(uk) = ω(v)
7: Send Response signal (uk(v), ψ(uk)(v)) to C0(v)
8: Exchange Response messages with other processors
9: for each active vertex v do
10: Set u∗(v) = argmin{ui|0≤i≤p} ψ(ui(v))

To find a neighbour of minimum label, every original left vertex in a left
connector needs to query all its neighbours, including those on other processors.
Only vertices in the same stage of a global relabeling can be considered as possi-
ble matching partners (See Global Relabeling below for more information on wave
numbers ω). Queries to other processors are initiated by sending request signals.
For efficient communication, procedure Query gathers all request signals that
refer to ghost vertices and thus require communication. It then transfers the re-
quest signals using point to point messages. Thus, in every round all signals from
processor pi to pj are bundled in one message for every pair of processors between
which communication takes place. Throughout this paper, all communication will
follow this paradigm. Conceptually, this resembles the BSP model (see [12] for
further details), although the implementation is geared towards higher flexibility
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in superimposing communication and computation.

Requests are answered by returning a local neighbour of minimum label. All
such responses are bundled and transferred in the same manner as the queries.
After receiving the responses, each active vertex v selects a neighbour u with
minimum ψ(u) among all the responses received. Clearly, u is a minimum labeled
neighbour of the entire connector C(v). Vertex u is then designated as the push
target u∗ for v.

For a left connector C(v), only the original vertex C0(v) carries a label ψ(v).
The ghost vertices Ck>0(v) in a left connector do not carry any information except
for a link to C0(v) and their respective adjacency lists. In a right connector C(u),
all vertices Ck≥0(u) carry a label ψ(Ck≥0(u)) which is updated along with other
information as described below. Thus, every vertex in a left connector can obtain
the minimum label in its local neighborhood without further communication.
Figure 1 illustrates this structure.

In procedure Pulse every active vertex v sends a match signal to its push
target u∗ with messages exchanged as described above. A push target u will
always accept the first push received, sending a success signal to the source and,
if necessary an unmatch signal to its previous matching partner. Following a
successful push, the processor owning vertex v sets ψ(v) = ψ(u∗)+1, where ψ(u∗)
is the local value of the minimum neighbouring label determined in procedure
Query. Furthermore, the owner of a push target u locally sets ψ(u) ← ψ(u) + 2
and, assuming u is part of a connector C(u), transfers the updated ψ(u) to all
vertices Ck(u) in the connector.

If further push requests for u∗ arrive during the same round, they are denied
and a reject signal is sent back to the source of the push. Again, all these signals
are gathered so that at most one message is exchanged between each pair of
processors.

In the next round, previously active vertices whose pushes were rejected,
along with vertices that received unmatch signals, become active, while those
that pushed successfully become inactive. If no active vertices remain on any
processor, the algorithm terminates, returning a perfect matching. To terminate
the algorithm in graphs without a perfect matching, we remove any left vertex v
where ψ(u) > 2n ∀u ∈ Γ(v), from the set of active vertices as there is no way to
increase the size of the matching using v [11]. Thus, the end result will always be
a maximum bipartite matching. This technicality is omitted in the pseudocode.

Assuming G is edge-partitioned and distributed among p processors, we ini-
tialize ψ(v) := 0 ∀ v ∈ V1 ∪ V2 and make all v ∈ V1 active. Repeatedly calling
the procedure Query and then Pulse on each processor until no processor has
any active vertices left yields a maximum matching. However, the performance
is weak. Even in the sequential case, the Push-Relabel algorithm requires
global relabelings in order to make it competitive with other sequential matching
algorithms,and the parallel case is no different.
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Figure 1: Sequential and Distributed Graph. In the sequential graph (a) each
vertex v carries its own label ψ(v). In the distributed graph (b), only the original
vertex v of a left connector carries a label. The ghost vertex v′ merely queries
its neighbours labels ψ(x) and ψ(y) and reports them to v. In a right connector,
both the original vertex y and the ghost vertex y′ carry the label ψ(y) which is
updated every time its value changes.

Global Relabeling

The application of parallel global relabelings is necessary in order to obtain
a scalable parallel algorithm as described in [2]. Performing such a relabeling
in parallel is relatively simple. We start from each free right vertex u and run
a parallel alternating breadth first search, i.e., a BFS which alternately uses un-
matched and matched edges, through the entire graph. Each time we follow an
edge {u, v} to an unvisited vertex, its label ψ(v) is set to ψ(u) + 1, the minimum
BFS distance from a free right vertex. Because the graph is distributed among
the processors, every time the search reaches a connector C(w), a signal carrying
the label ψ(w) is sent to other vertices in C(w). This communication is done in
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Algorithm 1 Procedure PULSE

1: for each active vertex v do
2: Send Match signal (v) to u∗(v)
3: Make v inactive
4: Exchange Match messages with other processors
5: for each vertex u receiving a Match signal do
6: if u has not received a push in the current round then
7: if M(u) �= ∅ then
8: Send Unmatch signal to M(u)
9: M(u) ← v
10: Send Accept signal to v
11: ψ(u) ← ψ(u) + 2
12: Set a flag indicating that u received a push in the current round
13: else
14: Send Reject signal to v
15: Exchange Response messages with other processors
16: for each vertex v receiving Accept signal do
17: M(v) ← u∗(v)
18: ψ(v) ← ψ(u∗(v)) + 1
19: for each vertex v receiving a Reject or an Unmatch signal do
20: Make v active
21: Remote update Ci>0(u) = C0(u) for all u ∈ V2

a manner similar to the communication in Query and Pulse. To ensure that
ψ(v) is actually a lower bound on the distance between v and the nearest free
right vertex, the relabeling must progress at constant speed in all directions in
the same way any BFS does.

While it is possible to mimic the sequential algorithm, i.e., stop the Query

and Pulse rounds, perform such a global relabeling and then resume, it was
pointed out in [2] that in order to obtain good scaling in the shared memory
model, global relabeling should be interleaved with pushes. In the distributed
memory model we face similar challenges. Stopping the Query and Pulse

rounds to perform a complete global relabeling yields only mediocre load bal-
ance and poor scaling. There are two main reasons for this. The first is due to
the fact that communication costs are likely to increase with the number of pro-
cessors. The other reason is that all processors that have relabeled their vertices,
as well as those that have not been reached by the relabeling yet, are necessarily
idle and no processor can resume Query and Pulse rounds until all vertices
have been relabeled. Thus, we implement global relabeling in such a way that
it can be processed interleaved with the local computation of the Query and
Pulse procedures.
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This strategy is implemented using two new procedures, RelabelWave and
Propagate. The procedure RelabelWave is called periodically. It increments
the current wave number ω(u) for each free right vertex u and puts these vertices
in a local propagate queue W . When starting the algorithm, all values of ω are
initialized to 0.

The procedurePropagate is called every round followingQuery andPulse.
For every vertex u in the relabeling queue it relabels each neighbour v ∈ Γ(u)
with ω(v) < ω(u), setting ψ(v) = ψ(u)+ 1. For matched left vertices v, ψ(M(v))
is set to ψ(u) + 2 and M(v) is put into a temporary queue. When the propagate
queue is empty, the current relabeling process stops and vertices in the tempo-
rary queue are transferred to the propagate queue for use in the next round. If
a left ghost vertex Cj(v) would be relabeled from some vertex u, a Propagate
signal with the wave number ω(u) and the new label ψ(v) is sent to its owner
C0(v) instead. If ω(u) > ω(v), C0(v) is relabeled and M(v), assuming it exists, is
relabeled as described above and enqueued in the propagate queue by the owner
of C0(v).

If a member of a right connector Cj(u) is relabeled, again a Propagate signal
with the new label ψ(Cj(u)) and wave number is sent to its owner C0(u), which,
assuming it has not been relabeled in the current wave, broadcasts the new label
to all ghost vertices Ck>0(u). Their labels ψ(Ck(u)) are updated, and they are
enqueued in the propagate queue. In both cases, relabeling from the remotely re-
labeled right vertices starts in the same manner as that from the locally relabeled
right vertices in the next round when Propagate is called again. In any case,
a vertex is never relabeled twice during the same relabeling wave. Correctness
of the algorithm is ensured by restricting pushes in Pulse to edges (v, u) where
ω(v) = ω(u). See [2] for a proof which also applies to Algorithm 1 since the push
and relabel strategies in both algorithms are essentially equivalent.

Algorithm 1 Procedure RelabelWave

1: Initialize local queue of vertices to relabel W ← ∅ when first called
2: for each free right vertex w do
3: ω(w) ← ω(w) + 1
4: push w onto W

The sequential algorithm executes a global relabeling after performing Θ(n)
local relabelings. This turns out to be inadequate for the parallel implementation.
Instead, RelabelWave is called after every r rounds of Query and Pulse to
start a new global relabeling wave while Propagate is called every round to
spread out existing waves. This allows the algorithm to interleave push opera-
tions with relabelings, although in any given round for some processors there will
not be any vertices to push or relabel. Combining procedures Query, Pulse,
RelabelWave, and Propagate we obtain Algorithm 1. Note that we do not
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Algorithm 1 Procedure Propagate

1: Initialize temporary local queue Q ← ∅
2: while W not empty do
3: w ← pop(W )
4: for each v in Γ(w) with ω(v) < ω(w) do
5: Send Left Propagate signal (v, ψ(w), ω(w)) to C0(v)
6: for each remote processor k where a Ci(w) exists do
7: Send a Right Propagate signal (w,ψ(Ci(w)), ω(Ci(w))) to k
8: Exchange Left Propagate messages with other processors
9: for each Left Propagate signal (v, ψ(w), ω(w)) received do
10: ψ(v) ← ψ(w) + 1
11: ψ(M(v)) ← ψ(v) + 1
12: ω(v) ← ω(w) + 1
13: ω(M(v)) ← ω(v) + 1
14: push M(v) onto Q
15: Exchange Right Propagate messages with other processors
16: for each Right Propagate signal (w,ψ(Ci(w)), ω(Ci(w))) received do
17: if ω(w) < ω(Ci(w)) then
18: push w onto Q
19: ψ(w) ← ψ(Ci(w))
20: ω(w) ← ω(Ci(w))
21: W ← Q

use the gap-relabeling heuristic described in [3], as this requires maintaining a
global structure which is unsuitable for distributed memory computations.

5 A New Algorithm

As described above, Algorithm 1 is a distributed memory version of the parallel
algorithm described in [2]. However, its performance is not competitive with
sequential or shared memory parallel code. The reason for this lies in the fact
that in most graphs, after matching the majority of vertices, the few remaining
unmatched vertices are connected by relatively long augmenting paths. Even
after suitable labels for such a path have been assigned, i.e., all edges on the
path are admissible, augmenting along this path still takes a large number of
consecutive pushes. On a sequential or shared memory machine, a single push can
be performed quickly, but in Algorithm 1 procedures Query and Pulse must be
called once per consecutive push. Since these procedures require communication,
they are significantly slower than a simple push operation. This, along with an
equally slow global relabeling routine, makes Algorithm 1 noncompetitive.

In this section we describe how some of these weaknesses of Algorithm 1 can be
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overcome by introducing the following three modifications. First by performing
many push and relabel operations locally between communication rounds, then
by routing augmenting paths in such a way that the number of processor jumps
is minimized, and finally by balancing the amount of work across processors. In
the remainder of this section, we show how to use these techniques in order to
derive a new Algorithm 2 from Algorithm 1.

5.1 Local Work

One of the main drawbacks of Algorithm 1 is the high number of pulse opera-
tions. However, assuming the input graph is well partitioned, almost all of these
pulses move a vertex on the same processor which suggests that communication
is not required. Thus, by processing these pushes locally, it should be possible to
speed up the algorithm significantly. However, in order to preserve correctness of
the algorithm in the Push-Relabel scheme, one must ensure that one always
pushes to a neighbour with a globally minimum label. To achieve this without
resorting to communication for querying all neighbours, we only perform local
push operations along admissible edges, i.e., edges {v, u} where ψ(v) ≥ ψ(u) + 1
(see Section 5.2). Thus, unlike in the Pulse procedure where an active vertex v
simply sets its label ψ(v) to ψ(u) + 1, we only push locally if ψ(v) ≥ ψ(u) + 1
was already the case before the push, thereby following an assumed alternating
path towards a free right vertex.

Assuming ψ is a valid distance labeling, we have ψ(v) ≤ ψ(u) + 1 ∀v ∈ V1,
u ∈ Γ(v) (see [15] for a complete proof). Thus, if an edge (v, u) is admissible, u is
always a neighbour of minimum ψ(u) for v. Therefore a push along an admissible
edge is always legal for the Push-Relabel algorithm. Since the Push-Relabel

algorithm remains correct for any ordering of legal pushes, it follows that we
preserve a correct Push-Relabel strategy by applying local pushes. However,
if such a push targets the original vertex in a right connector C0(u), ψ(C0(u))
is increased. Consequently, labels of the ghost vertices ψ(Ci>0(u)) need to be
updated. But since ghost vertices cannot be the target of a local push, it is not
necessary to perform these remote update until after all local pushes have been
executed.

Procedure Localwork implements this idea. It is called during each round
before Query and Pulse. Even though we will relax the notion of a valid
relabeling in the next section, Localwork will remain applicable.

5.2 Fast Relabeling

Performance can be increased by the addition of local work as described above,
but the global relabeling as described in Section 4 is still very slow because it
progresses by a single vertex per communication round. Also, it finds augmenting
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Algorithm 2 Procedure LOCALWORK

1: while ∃ an active vertex v that has an edge {v, C0(u)}
with ψ(C0(u)) < ψ(v) and ω(v) ≤ ω(C0(u)) do

2: if M(u) �= ∅ then
3: Make M(u) active
4: M(M(u)) ← ∅
5: M(u) ← v
6: M(v) ← u
7: Make v inactive
8: ψ(v) ← ψ(C0(u)) + 1
9: ψ(C0(u)) ← ψ(C0(u)) + 2
10: Remote update Ci>0(u) = C0(u) for all u ∈ V2

paths having a minimum number of edges, but with the introduction of Local-
work such paths are no longer necessarily optimal as it is now desirable to have
augmenting paths containing a minimum number of processor crossing edges. As
Localwork allows pushes along paths on a single processor to be performed
quickly, while pushes in Pulse that cross processors remain expensive, optimal
augmenting paths will cross processors as infrequently as possible to minimize
the number of communication rounds required for augmentation. Even on a
distributed memory machine with fast interconnects, we determined the actual
difference in cost between local and processor crossing pushes to be at least a
factor of 103. Thus, in the following we assume that an optimal augmenting path
has a minimum number of edges incident to at least one ghost vertex. We call
this number the processor distance of an augmenting path.

We now show how to modify the global relabeling presented in Section 4 to
deal with both of the above issues. We do this by changing the Propagate

procedure so that all right vertices that have been relabeled are immediately
enqueued in the local propagate queue W again which renders the temporary
queue Q obsolete. This allows relabeling of all reachable vertices on a given
processor in a single round without further communication. The transmission of
Propagate signals is performed as described in Section 4, but not until after all
local propagate queues are empty. Thus, in every round a global relabeling wave
can progress by one processor, while relabeling all vertices it can reach on that
processor that have not yet been relabeled in the current wave. As before, no
vertex is relabeled more than once by the same wave.

In effect, the global relabeling has now become a parallel BFS traversal of a
graph G′ consisting of metanodes of vertices from G. All vertices reachable by
local alternating paths from the unmatched right vertices on a processor form a
single metanode, and all vertices on one processor that are reachable via processor
crossing edges from an existing metanode V are assigned to a new metanode U .
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The metanodes V and U are connected by an edge in G′. There are no edges
between metanodes on the same processor. Once assigned to a metanode, a vertex
is not assigned again. Note that given G, G′ is not unique.

Clearly, such a traversal generates paths of minimum processor length, i.e.,
containing a minimum number of nonlocal edges. Since all vertices in a metan-
ode are relabeled during the same communication round, this relabeling can be
performed much faster as long as metanodes contain a large number of vertices.

As a side effect of this technique, we have to account for the possibility that
the relabeling may not be valid anymore, i.e., there could be unmatched edges
(v, u) with v ∈ V1 such that ψ(v) > ψ(u) + 1. These edges are treated as
admissible edges. We refer to a directed path from an active vertex consisting
entirely of edges that are admissible using the labels assigned by relabeling wave
k as a k−admissible path. Pulse and Localwork can push along such edges,
but labels of left vertices are never reduced as a result of such a push, since this
might cause cyclic behaviour in the algorithm. The existence of edges where
ψ(v) > ψ(u) + 1 implies that a push in Localwork might no longer target a
neighbour of minimum label. However, as we show in Section 5.4 we still retain
correctness of the algorithm.

As a further modification, we add the setting of backpointers in the global
relabeling. This means every time a vertex v is relabeled, we store the vertex
from which v was reached in the variable b(v). We refer to the edge (v, b(v))
as the back edge of v. In procedure Localwork, an active vertex v will now
always push to b(v) as long as ψ(v) > ψ(b(v)) and ω(v) ≤ ω(b(v)). Doing so
avoids the search for a neighbour of minimum label (See Section 5.3 for modified
wave restrictions). After a push from v, we set b(v) = ∅.

We now show that this modified relabeling procedure indeed finds augmenting
paths of minimum processor distance. To do so, let b(v, k) denote the vertex
from which relabeling wave k reached v and let f(v) be the free right vertex from
which v was relabeled. We then call a path P = (v0, v1, v2, ...., vl), where v0 = v,
vi+1 = b(vi, k), and vl = f(v), i.e., the path actually taken by wave k from f(v)
to v, a k-relabeling path.

Also, let |C| be the number of connectors in the partitioned graph G. Define
d(v, k) = ∞ for all vertices v that have not been relabeled by wave k. For a given
set of free right vertices, the minimum processor distance of v is the minimum
processor length of all alternating paths that connect v to some free right vertex.

Lemma 5.1. For each vertex v relabeled by global relabeling wave k, there is
no k−admissible path P ′(v, u) for any free right vertex u with lower processor
distance than the k-relabeling path.

Proof. The proof is by induction on the number of rounds l following the start of
wave k.
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If l = 0 then every vertex v of minimum processor distance 0 will be relabeled
during the first call to Propagate after the start of wave k, thus producing
an augmenting path P (v, f(v)) consisting entirely of local edges. It also follows
that no vertex w of minimum processor distance greater than 0 can be relabeled
during the current call to Propagate as this would require a Propagate signal
to be sent to the processor owning w.

Now assume that l > 0 and that each vertex w of processor distance below l
has been relabeled correctly by wave k while no vertex of processor distance at
least l has been relabeled so far. Let v be a vertex on processor a with a processor
distance of l. There must exist a connector C(u) on a minimum processor distance
path from v such that an instance Cb(u) of C(u) has minimum processor distance
l−1 on some processor b. In slight abuse of notation, let Ca(u) be the instance of
C(u) on processor a. By induction it then follows that Cb(u) has been relabeled
during round l− 1 and that prior to round l a Propagate signal is sent to Ca(u).

Thus since there exists an augmenting path from Ca(u) to v it follows that v
will be relabeled during the l’th round. Moreover, no vertex of processor length
greater than l can have received a Propagate signal from wave k during round
l as this would have required that wave k had already reached some vertex of
minimum processor distance at least l prior to round l.

Since a vertex is only relabeled once per wave, even if a new relabeling would
reduce its label, the global relabeling assigns an alternating path of minimum
processor length, but not necessarily of minimum edge length to each vertex. As
the relabeling is interleaved with pushes, the path so created might be interrupted
by pushes and their respective updates of ψ before it is complete.

5.3 Load Balance

The introduction of Localwork and the modified global relabeling increase
performance by performing as much work as possible locally and without com-
munication, but it might lead to poor load balance when only few processors are
able to perform local computations. However, the load balance of the interleaved
global relabeling presented in Section 5.2 can be improved by modifying the ratio
between communication and local relabeling work.

To do so, we introduce a relabeling propagation speed s. Again every r rounds,
a new wave is sent out from every free right vertex, but every processor relabels
only a 1

s
fraction of local vertices per round. It is easy to see that this strategy

allows far better load distribution. However, for values of s > 1, this might
require an increased number of communication rounds.

Also, the paths found by the global relabeling are no longer guaranteed to be
of minimum processor length because only part of a processor’s vertices can be
relabeled. Thus the algorithm faces a tradeoff here. Effects of various values of s
on performance are studied in Section 7.
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Algorithm 2 Procedure Propagate

1: while W not empty do
2: w ← pop(W )
3: for each v in Γ(w) with ω(v) < ω(w) do
4: if v is original vertex C0(v) then
5: ψ(v) ← ψ(w) + 1
6: ψ(M(v)) ← ψ(v) + 1
7: ω(v) ← ω(w) + 1
8: ω(M(v)) ← ω(v) + 1
9: push M(v) onto W
10: else
11: Send Left Propagate signal (v, ψ(w), ω(w)) to C0(v)
12: for each remote processor k where a Ci(w) exists do
13: Send a Right Propagate signal (w,ψ(Ci(w)), ω(Ci(w))) to k
14: Exchange Left Propagate messages with other processors
15: for each Left Propagate signal (v, ψ(w), ω(w)) received do
16: ψ(v) ← ψ(w) + 1
17: ψ(M(v)) ← ψ(v) + 1
18: ω(v) ← ω(w) + 1
19: ω(M(v)) ← ω(v) + 1
20: push M(v) onto W
21: Exchange Right Propagate messages with other processors
22: for each Right Propagate signal (w,ψ(Ci(w)), ω(Ci(w))) received do
23: if ω(w) < ω(Ci(w)) then
24: push w onto W
25: ψ(w) ← ψ(Ci(w))
26: ω(w) ← ω(Ci(w))

To prevent relabeling waves from locking out pushes towards the free right
vertices, we allow a push along an edge {v, u} if ω(v) ≤ ω(u). The reason for
this is that because wave ω(u) is more recent than ω(v), it follows that u and
M(u) are likely to be closer to a free right vertex because otherwise v would have
been relabeled by wave ω(u) already. In Section 5.4 we show that the algorithm
remains correct nonetheless.

Algorithm 2 implements the presented ideas. It calls Localwork, Query,
Pulse, and Propagate every round, and RelabelWave every r rounds. Pro-
cedure Query now allows pushes along edges {v, u} with ω(v) ≤ ω(u), and
Propagate was modified as described in Section 5.2. Just like in the sequential
Push-Relabel algorithm where finding a good relabeling frequency was crucial,
setting a correct propagation speed s and relabeling frequency r is paramount for
performance. See Section 7 for a detailed evaluation of the effects the parameters
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have on performance.

5.4 Correctness of Algorithm 2

It remains to show that Algorithm 2 remains correct, even though the main in-
variant of Push-Relabel algorithms, i.e., maintaining a valid relabeling, can
be violated. In the following we show that Algorithm 2 in fact terminates. The
worst case running time we obtain in this way is weak compared to other al-
gorithms because the proof only considers augmenting paths found directly by
global relabelings, not those found by labels alone. To show correctness, we first
consider the effect of pushes on augmenting paths. For simplicity, we assume
s = 1, i.e., no special load balancing. Our first step is to show that once we have
an augmenting path, pushes and relabels to the vertices on this path will always
result in a new and possibly shorter augmenting path. To count processor jumps,
let d(v, k) be the processor distance between v when it is relabeled by wave k
and the source of the relabeling in wave k, and let d(v) = d(v, k∗) for the latest
relabeling wave k∗ that relabeled v.

Lemma 5.2. Let v be an active vertex and let P (v, f(v)) be an augmenting path
connecting v to some free right vertex f(v). Then if u ∈ P , u �= f(v) is the target
of a successful push we obtain a suffix path P ′(v′, f(v)) ⊂ P where v′ is active.

Proof. Since P can span multiple processors, several such pushes can happen at
the same time. Given multiple possibilities, let u be the the vertex closest to
f(v) on P . Since u is the target of a push originating at some active vertex w,
u is a right vertex and because we assumed u �= f(v) by the definition of an
augmenting path, u is matched to some M(u) ∈ P . Let M(u) = v′. Since v′ is a
left vertex, the matching edge (u, v′) enters v′ when traversing P from v to f(v).
Since the push operation changes M(u) to w, it renders v′ unmatched. Now, as
the only edges affected by the push are (w, u) and (v′, u) all edges of the suffix
path P ′(v′, f(v)) remain unaffected by the push. Thus, since v′ is active and f(v)
is a free right vertex, P ′ is an augmenting path.

The next step is to show that for k−admissible paths, the suffix path cannot
increase in processor length.

Lemma 5.3. Let v be some active vertex, and let P (v, f(v)) be a k−relabeling
path connecting v to some free right vertex f(v), and let u ∈ P , u �= f(v) be the
target of a successful push. Then we obtain a suffix path P ′(v′, f(v)) ⊂ P with
d(v′, k) ≤ d(v, k) with a processor length smaller or equal to that of P .

Proof. Since the global relabeling progresses only along alternating paths, P (v, f(v))
must be an augmenting path and thus we invoke Lemma 5.2 to show existence.
From Lemma 5.1 it is clear that there is no shorter k−admissible path from v to
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f(v) w.r.t. processor distance than P . And as processor distance cannot increase
when following P from v to f(v), we obtain d(v′, k) ≤ d(v, k).

The third step establishes existence and minimality of such paths during the
algorithm:

Lemma 5.4. Let v be the first active vertex to be relabeled by relabeling wave k,
and let round R1 be the round in which v is so relabeled. Also, let R2 be the round
in which the first free right vertex has been matched after round R1. At any time
during the algorithm between rounds R1 and R2, there is an active vertex v′ of
minimum d(v′) in G that is the endpoint of an admissible augmenting path.

Proof. Consider a global relabeling wave k after it relabels v in round R1. It
has created a k−relabeling path that links the active vertex v to some free right
vertex f(v). Note that v has minimum d(v, k) among all active vertices.

Now, if the k−relabeling path to v is an augmenting path we only need to show
that it remains admissible. In that case, let v′ = v. Otherwise, by Lemma 5.3,
there is some v′ on an augmenting suffix path P ′(v′, f(v)) with d(v′, k) ≤ d(v, k).

To see that there is a P ′(v′, f(v)) which is admissible, remember that P ′ was a
part of the k−relabeling path to v′. Since no pushes can have affected vertices on
P ′(v′, f(v)) and it was marked by relabeling wave k with backpointers, it must be
admissible unless the backpointers were changed by some global relabeling wave
k′ > k. But if this has happened, v′ must be reachable via a k′−relabeling path
which again is admissible.

Since f(v) was not matched, d(v′, k′) ≤ d(v′, k) because otherwise the k′-
relabeling path to v′ would have started from f(v).

Now we need to bound the time between R1 and R2.

Lemma 5.5. Let v be the first active vertex to be relabeled by relabeling wave
k, and let round R1 be the round in which v is so relabeled. After round R1 +
d(v, k) + 1, at least one free right vertex must have been matched since the start
of relabeling wave k.

Proof. By Lemma 5.4, at any time between R1 and R2, there is some active vertex
v′ of minimum d(v′, k) that is the endpoint of an augmenting path consisting
entirely of admissible edges marked with backpointers.

During every round, procedure Localwork will perform a series of pushes
along such a path until it reaches a connector. Thus, after Localwork finishes,
there is some active vertex w that is a member of a left connector. It will either
be pushed along its backedge in procedure Pulse, or b(w) was the target of a
successful push after it was relabeled by wave k. In both cases, there must now
be some active vertex v′ ∈ P ′ with d(v′, k) < d(w, k).

Again v′ will be the endpoint of an augmenting path marked with backpoint-
ers. Thus, after at most d(v, k) rounds, there will be such a vertex v′ on an
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augmenting admissible path P ′(v′, f(v′)) with d(v′, k) = 0. The next time Lo-

calwork is called, augmentation along P ′ causes v′ and f(v′) to be matched.
Since f(v′) was a free right vertex, this concludes the proof of the lemma.

We call a round in which |M | has increased by at least one |M |-increasing.
Let k be the first global relabeling wave after some |M |-increasing round, and let
k′ > k be the first global relabeling wave following the first |M |-increasing round
after the start of k. We call the rounds between k and k′ a phase. Clearly, the
number of phases is bounded by n. Using Lemma 5.5, it is easy to show that
each phase terminates.

Lemma 5.6. A phase takes at most 2|C|+ 2 + r rounds.

Proof. Global relabel wave k takes at most |C|+1 rounds to relabel its first active
vertex v, since |C| is an upper bound on all finite processor distances. By Lemma
5.5, at most d(v, k)+1 < |C|+1 rounds later a free right vertex is matched, thus
increasing |M |. A new global relabel wave happens at most r rounds after |M |
is increased. Thus, a phase takes at most 2|C|+ 2 + r rounds.

Lemma 5.6 shows that the modified algorithm is guaranteed to terminate, and
since moving free vertices along paths of minimum processor-length maximizes
the opportunity for local work while minimizing the necessity for communication,
the modified wave based relabeling should improve performance. Note that the
relabeling might jump back to unreached vertices on a processor that was reached
by the same wave earlier, possibly resulting in paths of processor length up to |C|.
If a perfect matching does not exist, the algorithm terminates after a complete
wave failed to relabel any active vertex. Clearly, this cannot take more time than
a single phase.

For values of s > 1, the proof has to be modified slightly. Since it is not
specified which 1

s
fraction of the vertices of a given processor are relabeled each

round, a global relabeling can take up to s rounds to traverse one processor. Thus,
processor distance of the k−relabeling path P (v, f(v)) can be s times greater
than that of a minimum augmenting path from v to f(v). However, with slight
modification Lemma 5.4 still applies since an augmenting path exists. Lemma 5.5
can be extended to show that longer paths are also shortened by Localwork.
Thus, it is possible to derive a 2s(|C| + 1) + r time bound for each phase. Note
that Lemma 5.5 holds even if free vertices can decrease in processor distance due
to a new relabeling wave, which is likely to happen for s > 1.

6 Experimental Setup

In the following we describe the experiments that were used to test the perfor-
mance of Algorithm 2, to compare it to sequential performance, and to measure
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performance scaling for increasing number of processors.

All experiments were performed on a Cray XT4 equipped with AMD Opteron
quad-core 2.3 GHz processors. Codes are written in C++ with MPI using the
MPICH2 based xt-mpt module version 5.0.2 and the PathScale Compiler Suite
3.2.99. Tests were performed using configurations of 1, 2, 4, 8, 16, 32, 64, and 128
processors.

The test consists of a group of large square matrices from the University
of Florida Sparse Matrix Collection [5]. Matrices were partitioned using the
Mondriaan graph partitioning package version 2.0 [24]. The main program reads
the partitioned matrix as input and distributes it among the processors to build
the parallel data structures. When measuring running time, this part was not
included in the measurement since the algorithm is intended for inputs that are
distributed to begin with.

The graphs are derived from the matrices as follows: For a given square
matrix A of size n× n its bipartite graph G = (V1 ∪ V2, E) is obtained by setting
|V1| = |V2| = n and E = {{i, j} ∈ V1 × V2 : ai,j �= 0} .

The parallel computation starts by initializing the matching using a sequen-
tial Karp–Sipser style heuristic [14] locally on each processor. The heuristic
maintains a priority queue of local vertices, sorted by degree. Vertices of degree
one are matched immediately. Each time a vertex is matched, it is removed along
with its incident edges, thereby reducing the degrees of some remaining vertices
and thus changing their position in the priority queue. If no vertices of degree one
are available, the heuristic selects a random local edge and matches the incident
vertices. If no edge remains, the heuristic terminates. Ghost vertices and their
incident edges are not considered in the heuristic.

For sequential computations, this heuristic can speed up matching algorithms
greatly [16], usually producing a matching within 99.5% of the optimum. How-
ever, performing an equivalent parallel version of this heuristic would incur addi-
tional communication cost. Thus, in the parallel initialization, ghost vertices are
not considered, which means that the solution quality is necessarily lower than
for the sequential algorithm, and it also decreases with an increasing number
of processors. After the initialization, Algorithm 2 is executed as described in
Section 5.

Optimal values for the two relabeling parameters, i.e., the frequency of global
relabelings r and s, the fraction of local vertices that can be relabeled in each
round, are not known. In a first set of experiments we determine good values for
r and s and use the values so obtained in a second set of experiments to eval-
uate performance and scaling of Algorithm 2. For comparison with sequential
performance, we implemented a Push-Relabel algorithm as described in Sec-
tion 3. The implementation uses a FIFO order of pushes, and a Karp–Sipser

heuristic initialization as described above. We also ran Algorithm 2 using only
one processor. This is essentially a sequential computation, but our code is not
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designed to adapt to this. Therefore, it still calls all the normal communica-
tion routines, making it inferior to the purely sequential code. It does keep the
advantage derived from the sequential initialization though.

7 Experimental Results

Our first set of experiments aims to explore the effect relabeling frequency r and
relabeling speed s (see Section 5.3) have on the overall performance. To do so,
we selected the seven matrices hamrle3, cage14, ldoor, kkt power, parabolic fem,
av41092 and rajat31 from the University of Florida Sparse Matrix Collection [5].
The sizes of these matrices are listed in Table 3. We then ran the algorithm
on each matrix for all combinations (s, r) ∈ {1, 2, 4, 8, 16, 32, 64, 128}2 and all
configurations p ∈ {1, 2, 4, 8, 16, 32, 64, 128}, obtaining 7 ∗ 83 individual timings.
Since presenting 3, 584 numbers would yield little insight, we aggregate these
results in order to present our conclusions.

We first note that the matrix rajat31 behaved in a different way from the
other instances. Here the Karp–Sipser initialization matched either all or, for
values of p above 4 almost all vertices. Thus, running times were very low and
completely independent of the relabeling parameters. Therefore, rajat31 is not
considered in the analysis of parameter effects. When using a single processor,
ldoor and cage14 showed similar behaviour.

Since running times vary widely over instances and processor configurations,
they need to be normalized for comparison. For each of the 48 combinations
of the 6 remaining instances and the 8 different p values, we do this by divid-
ing the running time of each (r, s) combination by the best running time for
this (instance, p) combination. This gives the best settings of r and s in each
(instance, p) combination a performance of 1. For other (r, s) combinations, the
normalized performance is a number between 0 and 1. Experiments that failed
because of memory shortage were assigned a performance of 0.

To obtain parameter dependent performance over multiple test instances, we
averaged the performance values for each combination of r, s, and p over all
matrices except rajat31. The results are shown in Figure 2. Each chart in the
figure is a map of the effect of s and r for one processor configuration. We observe
that high performance, i.e., dark red areas can usually be found along and above
the s = r line, with optimal values of r decreasing with increasing processor
numbers. It is easy to see that setting s > r yields weak performance.

Thus, to obtain maximum performance when increasing p, r should be halved
for each doubling of p, and s should be modified accordingly. Doing so will
ensure that the relabel work per processor per round remains roughly constant,
since the partition of the input assigned to a single processor decreases. This
allows the algorithm to maintain a good computation to communication ratio.
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Figure 2: Relative performance for varying parameters and processor numbers.
High performance is shown in red. Colder colors indicate lower performance. r
is shown on the X−axis, s on the Y−axis. With increasing values of p, high
performance moves from high to low values of s and r. Figure continues on page
23. For all plots except p = 128 a sharp drop in performance below the s = r
line is visible.

Since relabeling become more frequent, the expected number of rounds decreases,
thereby allowing the algorithm some scaling performance with increasing p. This
also suggest a natural scaling limit which is reached at s = 1 and r = 1. For
some matrices this can clearly be observed. For example parabolic fem at p = 64
performs best for s = 1 and r = 1, and does not scale beyond this number of
processors.

From these results, we obtained good guidelines for setting parameter values,
but the actual optimal values for a given instance are not clear. For the second
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Figure 2: continued. Relative performance for 16, 32, 64, and 128 processors.

experiment, we used the estimated optimum values r and s for the average over
the instances and ran Algorithm 2 without further input parameters. The average
optimum values for (r, s) are shown in Table 1.

Table 1 also shows the optimal values of r and s for each individual (instance, p)
combination in Experiment 1, while Table 2 shows the timing for these (r, s) com-
binations compared to non-parameterized running times from experiment 2. On
average, the optimal running times are 83% of the non-parameterized running
times. From these values we computed the Parameter influence ratio which is
also shown in Table 1. It is the performance averaged over all (r, s) combinations
divided by the performance of the average optimum. It measures the inverse of
the influence parameter settings have on performance. For p = 1 the influence is
quite low, but it gradually grows and for p = 128 it is very high.
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Table 1: Optimum parameters by number of processors and instance. The table
shows the combinations of (r, s) at which performance in the individual exper-
iments was maximum. Average optimum shows the optimum (r, s) values for
normalized running that were averaged over the test instances. An entry of all
indicates that the parameter is irrelevant for performance. Parameter influence
ratio is the performance averaged over all (r, s) combinations divided by the per-
formance of the average optimum.

Matrix p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
Optimum (r, s) by instance
hamrle3 128,16 128,128 128,8 64,64 16,16 2,4 1,2 1,2
ldoor all,all 64,1 128,8 128,4 64,8 16,16 2,2 2,2
cage14 all,all 128,128 128,64 64,16 64,32 32,8 16,4 1,2
kkt power 4,128 128,64 128,32 64,32 1,64 16,8 1,16 1,2
parabolic fem 128,16 64,32 128,16 2,4 2,4 1,2 1,1 1,1
av41092 128,1 64,64 4,64 2,16 16,16 8,8 4,2 4,2
Average optimum (r, s) 128,64 128,128 64,64 32,32 16,16 8,8 4 ,4 2,2
Parameter influence ratio 0.867 0.540 0.533 0.552 0.509 0.441 0.361 0.270

Table 2: Best running times over all values of s and r in the parameterized
experiment compared to running times in the non-parameterized experiment with
fixed s and r for each instance and processor number. Times are in seconds.
Matrix p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
hamrle3 4.55 · 4.61 13.1 · 13.1 8.01 · 12.8 6.96 · 7.32 5.88 · 5.88 2.87 · 3.02 3.21 · 3.43 2.75 · 3.55
cage14 2.68 · 2.68 7.76 · 7.76 6.18 · 9.40 5.03 · 5.91 3.20 · 4.31 2.39 · 3.32 2.20 · 2.34 1.49 · 2.19
ldoor 1.98 · 1.98 8.09 · 8.99 4.75 · 5.97 2.82 · 3.68 1.96 · 2.39 1.33 · 1.33 1.13 · 1.13 1.17 · 1.35
kkt power 4.08 · 4.51 7.43 · 8.52 6.49 · 8.93 3.47 · 6.87 3.16 · 5.23 1.69 · 2.10 1.53 · 1.98 1.49 · 1.85
parabolic fem 0.59 · 0.59 3.26 · 3.73 1.72 · 2.30 1.04 · 1.48 0.84 · 1.14 0.38 · 0.74 0.25 · 0.59 0.37 · 0.52
av41092 0.25 · 0.25 0.47 · 0.62 0.46 · 0.56 0.34 · 0.43 0.41 · 0.41 0.57 · 0.57 0.90 · 0.92 1.50 · 1.76

For the second experiment the test set consisted of 22 matrices from the
University of Florida Sparse Matrix Collection [5]. Table 3 gives sequential and
parallel running times. The instances are grouped by scaling behaviour.

The first group consists mostly of smaller instances with up to 106 nonzeros.
The algorithm shows little or no scaling here. Matrix av41092, the largest in
this group, reacts poorly to increasing values of p. This is consistent with the
behaviour of other parallel algorithms [21], although it is far less drastic here.

The second group contains medium sized instances with more than 106 nonze-
ros. In this group most instances show reasonable scaling which usually peaks
at p = 16 or p = 32. Running times increase noticeably at p = 64. The largest
matrix in this group, Hamrle3, is a very difficult instance even for sequential al-
gorithms. Unlike other instances in this group, it shows very good scaling that
peaks at p = 32.

For the two remaining groups, scaling behaviour can clearly be observed. In
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the last group, running time drops by approximately 25% on average for each
doubling of p. From the size of these instances, we expect Algorithm 2 to scale
well on average matrices of at least 107 nonzeros. However, since scaling already
declines at p = 128 we believe that even larger matrices are necessary to continue
scaling beyond 512 processors. The largest matrix in the fourth group, Audikw 1,
could not be partitioned using Mondriaan due to lack of memory and is therefore
only block partitioned. Performance compared to the sequential algorithm would
most likely be better if it was properly partitioned.

We observe that the sequential algorithm is about three times faster than
Algorithm 2 using one processor. This difference is due to the far simpler struc-
ture of the sequential algorithm, and to the fact that the sequential algorithm can
automatically adapt the relabeling frequency. Also, using a single processor Algo-
rithm 2 is again approximately twice as fast as using two processors. The reason
for this lies in the fact that the sequential initialization is far superior. As shown
in [16], initialization has a strong effect on running time. Good initialization also
tends to make the FIFO order of pushes more competitive.

However, the difference in sequential and parallel performance decreases for
larger matrices, but, due to the inherent sequentiality of matching a small num-
ber of unmatched vertices, scaling will most likely be limited for any parallel
algorithm. For the test matrices ASIC 680ks, kkt power, and rajat31, the par-
allel algorithm delivers performance that is superior to that of the sequential
algorithm. For rajat31, this happens because even for the parallel case the ini-
tialization matches most vertices, and the remaining vertices are matched without
starting a global relabeling.

It is interesting to note that for difficult matrices such as Hamrle3, i.e., ma-
trices that require high running times relative to their size, the performance of
the sequential algorithm is only slightly better than that of Algorithm 2 using
at least 32 processors. This is most likely due to the fact that both algorithms
perform a large number of global relabelings here, but the parallel algorithm can
perform a single relabeling faster. Thus, Algorithm 2 becomes more competitive
for very easy and for very difficult instances.

From the results of the experiments, we can conclude that:

• To some degree, the algorithm scales for moderately sized instances (about
106 nonzeros). For larger instances, it continued to scale at p = 128.

• For low values of p, global relabels should be infrequent. Since the processor
length of augmenting paths will be low, the need for global relabelings is
likely to be lower compared to experiments with higher processor count.
Also, the number of operations per processor in a global relabeling is high,
thus making it costly. For high p, the opposite is the case, which explains
the better performance of low values of r there.
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Table 3: Results for the performance experiment. Instances are grouped by
scaling behaviour and ordered by number of nonzeros. Running times are in
seconds.
Matrix #Rows #Nonzeros Seq. p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128
No scaling
Zhao2 33,861 166,453 0.01 0.03 0.09 0.12 0.13 0.15 0.16 0.21 0.40
ncvxqp5 62,500 237,483 0.03 0.08 0.26 0.21 0.22 0.22 0.23 0.22 0.48
c-71 76,638 859,554 0.03 0.08 0.25 0.27 0.27 0.25 0.24 0.27 0.42
kim1 38,415 933,195 0.01 0.09 0.05 0.07 0.09 0.12 0.24 0.16 0.40
twotone 120,750 1,224,224 0.05 0.11 0.29 0.32 0.24 0.21 0.24 0.23 0.55
av41092 41,092 1,683,902 0.10 0.25 0.62 0.56 0.43 0.41 0.57 0.92 1.76
Scaling up to 32
scircuit 170,998 958,936 0.04 0.14 0.44 0.29 0.25 0.15 0.17 0.23 0.51
ibm matrix 2 51,448 1,056,610 0.02 0.06 0.38 0.33 0.33 0.25 0.27 0.46 0.53
crashbasis 160,000 1,750,416 0.04 0.16 0.31 0.14 0.1 0.04 0.05 0.23 0.17
matrix 9 103,430 2,121,550 0.03 0.13 1.13 0.38 0.41 0.33 0.30 0.41 0.61
ASIC 680ks 682,712 2,329,176 0.21 0.41 0.21 0.14 0.15 0.09 0.06 0.08 0.17
poisson3Db 85,623 2,374,949 0.09 0.27 0.36 0.37 0.26 0.19 0.19 0.26 0.48
barrier2-4 113,076 3,805,068 0.05 0.16 0.56 0.46 0.35 0.41 0.30 0.52 0.76
Hamrle3 1,347,360 5,514,242 2.56 4.61 13.12 12.81 7.32 5.88 3.02 3.43 3.55
Scaling up to 64
bone010 M 986,703 23,888,775 0.43 1.61 10.5 6.32 3.68 2.53 1.23 0.95 1.56
ldoor 952,202 42,493,817 0.73 1.98 9.38 5.97 3.68 2.39 1.33 1.13 1.35
Scaling at 128
parabolic fem 525,825 3,674,625 0.16 0.59 3.73 2.30 1.48 1.14 0.74 0.59 0.52
kkt power 2,063,494 12,771,361 1.95 4.51 8.52 8.93 6.87 5.23 2.10 1.98 1.85
af shell2 504,855 17,588,875 0.27 0.77 5.00 3.12 2.06 2.07 1.10 0.95 0.78
rajat31 4,690,002 20,316,253 1.06 2.96 1.54 0.85 0.99 0.57 0.30 0.18 0.12
cage14 1,505,785 27,130,349 0.69 2.68 7.76 9.40 5.91 4.31 3.32 2.34 2.19
Audikw 1 943,695 39,297,771 1.18 2.82 14.24 8.95 4.11 3.90 3.73 2.64 1.96

• Using low relabeling speeds, i.e., high values of s generally increases per-
formance by improving load balancing. However, setting s > r yields weak
performance. This is to be expected because in this case a relabeling wave
might not be able to relabel all vertices on a processor before a new wave
starts. For s = 128, running times were in many instances slower than the
best running times by three orders of magnitude.
Thus, setting s = r becomes optimal since this provides the strongest load
balance possible that avoids the above problem. However, this is somewhat
instance dependent. Often, lower values of s provide performance similar to
that for s = r, but the performance when setting s = r is rarely exceeded
significantly, which suggests using this relation for further experiments.

• The optimum number of global relabels depends to some degree on the in-
stance, but this cannot be analysed beforehand and thus Algorithm 2 cannot
take this into account. However, on difficult instances Algorithm 2 scales
well and shows performance competitive with the sequential algorithm.

• As a rule of thumb, doubling the processor number halves the optimal values
of r and s.
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• With a larger number of processors the effect of parameters on performance
increases (see Table 1). For p = 128, average performance over all values of
s and r examined is only 27% of the optimum performance.

• Performance of the sequential algorithm is usually superior to performance
of Algorithm 2, unless instances are very large, very difficult or very easy.

• The performance of the algorithm could be improved by about 20% by au-
tomatically adapting s and r towards the optimum for the current instance.
The sequential algorithm does this by starting a global relabeling after O(n)
local relabels. Attempts to introduce a similar mechanism on the parallel
algorithm were not successful. (see Table 2) It is possible that varying s and
r during a run of the algorithm results in even larger performance gains.

8 Conclusions and Further Work

Although the execution time of Algorithm 2 in most cases does not improve
on the running time of the sequential Push-Relabel algorithm it is still the
first scalable parallel algorithm for the bipartite matching problem. The main
usefulness of the algorithm is in parallel applications where the data is already
partitioned and distributed on the processors. In this setting the alternative to a
parallel algorithm would be to gather the data on one processor before applying
a sequential algorithm and then again distributing the solution. This might be
too costly in terms of time and it might also not be possible because of memory
limitations on a single compute node.

When comparing experimental results for Algorithm 2 to those for the shared
memory maximum flow algorithms that Algorithm 2 is based on, we note that
relative to processor speed, memory access on the shared memory machines is
still faster than using the interconnects on a distributed memory supercomputer.
Furthermore, bipartite matching tends to exhibit a smaller amount of parallelism
than maximum flow [2]. Still, with the exception of the one processor case, the
scaling behaviour of Algorithm 2 compares favourably to the results presented
in [3]. However, Algorithm 2 was unable to provide a speedup comparable that
reported in [22], but this might be due to the fact that sequential algorithms
profit disproportionately from recent advances in processor technology.

If one is to improve further on the parallel running time of Algorithm 2 there
are different options that one could pursue. A fairly simple one would be to use
a parallel version of the Karp–Sipser algorithm for initialization [19]. This
would probably be most helpful for instances using a high number of processors.
However, the main problem with Algorithm 2 is that a significant amount of
the execution time is spent on the relabeling. A relabeling wave touches every
reachable vertex independent of whether it is on an alternating path to an active
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vertex or not. Also, a vertex will be continuously relabeled even if its path to
a free right vertex has not changed. One way to speed up global relabelings
might be to use local graph compression techniques such as those discussed in
[10, 16, 17].

We note that the ideas of local work leading up to Algorithm 2 might also be
applied in the shared memory model giving an algorithm where more work could
be performed by each processor in between synchronizations.

A closely related problem in combinatorial scientific computing is finding a
matching of maximum weight in addition to maximum cardinality. One way to
obtain an approximation for this problem would be to first apply Algorithm 2 to
compute a maximum matching without regards to the weights of the edges. Based
on this solution one can then search for weight augmenting cycles and augment
along these. Depending on the length of the longest cycle one searches for and
whether such cycles can span several processors or not one obtains algorithms
with different solution quality and timing properties. Exploring such strategies is
a topic for further study but we note that preliminary results indicate that this
is a promising approach.
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Abstract

We present new multithreaded vertex ordering and distance-k graph
coloring algorithms that are well-suited for the emerging and rapidly grow-
ing multicore platforms. The vertex ordering techniques rely on various
notions of “degree”, are known to be effective in reducing the number of
colors used by a greedy coloring algorithm, and are generic enough to be
applicable to contexts other than coloring. We employ approximate degree
computation in the ordering algorithms and speculation and iteration in
the coloring algorithms as our primary remedies for breaking sequentiality
and achieving effective parallelization. The algorithms have been imple-
mented using OpenMP, and experiments run on Intel Nehalem and other
multi-core machines using a set of carefully designed synthetic graphs and
real-world graphs attest that the algorithms provide scalable runtime per-
formance. The number of colors the algorithms use is nearly the same as
in the serial case, which in turn is often very close to optimal.

1 Introduction

Graph algorithms in general are challenging to parallelize, when high performance
and good scalability are primary design goals. Among the reasons causing the dif-
ficulty are: low available concurrency, poor data locality, irregular memory access
pattern, and high data access to computation ratio. For these reasons graph al-
gorithms are rather ill-suited for distributed memory machines. Shared-memory,
multi-core architectures supporting multithreading provide a better environment
for performance and ease of programming.

In this paper, we present new multithreaded vertex ordering and distance-k
coloring algorithms that are well-suited for the emerging and rapidly growing
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multicore platforms. Distance-1 coloring is used (among many others) in parallel
scientific computing to discover tasks that can be carried out concurrently or
data elements that can be updated concurrently [7, 8]. Distance-2 coloring is an
archetypal model used in the efficient computation of sparse Jacobian and Hessian
matrices using Automatic Differentiation [4]. To solve the coloring problems,
we rely on a greedy algorithm that incorporates a vertex ordering stage. The
vertex ordering techniques we consider are formulated in a manner independent
of a coloring algorithm using various notions of degrees. They are known to be
effective in reducing the number of colors used by a greedy coloring algorithm in
the serial setting, and are of interest in their own right [5].

The ordering and coloring algorithms we consider are extremely challenging to
parallelize as the computation involved in both is inherently sequential. We em-
ploy approximate degree computation in the ordering algorithms and speculation
and iteration in the coloring algorithm as our primary ingredients for overcoming
the hurdle and achieving good parallel performance. Additional techniques we ex-
plore to enhance concurrency include randomization and various conflict-reducing
color choice strategies. The algorithms have been implemented using OpenMP.
Experiments we have run on Intel Nehalem and other multi-core machines using
a set of carefully designed synthetic graphs as well as real-world graphs drawn
from various application areas attest that the algorithms provide scalable runtime
performance. The number of colors the algorithms use is nearly the same as in
the serial case, which in turn is often very close to optimal.

Preliminaries, Related Work, and Organization

A distance-k coloring of a graph G = (V,E) is an assignment of positive integers,
called colors, to vertices such that any two vertices connected by a path consisting
of at most k edges receive different colors. Thus, in a distance-1 coloring, every
pair of adjacent vertices receives two different colors, and in a distance-2 coloring,
every path on three vertices uses three different colors. The objective in the
distance-k coloring problem is to minimize the number of colors used, and the
problem is known to be NP-hard for every fixed integer k ≥ 1 [4].

Previous work has shown that a greedy coloring algorithm—an algorithm that
visits vertices sequentially in some order in each step assigning a vertex the small-
est permissible color—is quite effective in practice. The order in which vertices
are processed determines the number of colors used by the algorithm. In an ear-
lier work [5], we identified three ordering techniques, called Smallest Last (SL),
Dynamic Largest First (DLF), and Incidence Degree (ID) that are particularly
effective in reducing the number of colors used by a greedy coloring algorithm
and are generic enough to be useful in other contexts. In particular, the three
ordering techniques are characterized (as shown in [5]) purely in terms of relative
vertex degrees, in a manner decoupled from the coloring algorithm that could
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use them. This makes the ordering techniques of interest in their own right.
Examples of non-coloring applications in which, for instance, SL ordering is use-
ful are discussed in [4, 5]. In this paper, we present algorithms—which are the
first to the best of our knowledge—for parallelizing these ordering techniques on
multithreaded, shared-memory architectures. The algorithms are discussed in
Sect. 2.

For a given vertex ordering, a greedy algorithm for distance-k coloring can be
implemented such that its runtime is O(|V | · dk), where dk denotes the average
degree-k, the number of distinct paths of length at most k edges leaving a vertex
[4, 6]. Note that, in the distance-1 coloring case, d1 is simply the average number
of adjacent vertices a vertex has in the graph, and the complexity thus reduces
to (O|E|).

Using speculation and iteration as basic ingredients, a framework for effective
parallelization of greedy distance-1 coloring on distributed-memory architectures
was developed in [1]. The framework was extended to distance-2 coloring and
related problems in [2]. Recently, a multithreaded algorithm derived from the
framework in [1] and tailored for shared-memory architectures has been devel-
oped for the distance-1 coloring problem [9]. We present in this paper a similar
algorithm for distance-2 coloring that additionally employs a number of new in-
gredients. The algorithm—along with its variations—is described in Sect. 3. In
Sect. 4 we present experimental results on the parallel ordering and coloring al-
gorithms.

2 Vertex Ordering

2.1 The Serial Framework

We give in Algorithm 1 a succinct summary of a template for the ordering tech-
niques SL, DLF and ID in the serial setting. Table 1 shows how the template is
specialized in the three cases. The key idea in the definition (and computation) of
these orderings is the use of a dynamically changing quantity, the back or forward
degree of vertices. The back degree of a vertex v is the number of vertices that are
adjacent to v in G and appear before v in the ordering, and the forward degree
of v is the number of vertices that are adjacent to v in G and appear after v in
the ordering. The dynamic degree (back or forward) of a vertex v is denoted by
d(v) in Algorithm 1, while the static degree of the vertex in the input graph G is
denoted by d(v,G).

To arrive at an efficient implementation, a two-dimensional array B is used
in Algorithm 1 to maintain vertices that are not yet ordered in bins according
to their dynamic degrees. Specifically B [j] stores a set of vertices where each
member vertex u has a current dynamic degree d(u) equal to j. The output
of Algorithm 1 is given by the ordered list W of the vertices where W [i] stores
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Algorithm 1 Template for serial ordering (SL, DLF, ID). Input: graph G = (V,E).

Output: An ordered list W of the vertices in V . B is a two-dimensional array used for

maintaining unordered vertices binned according to their “degrees”.

1: procedure OrderingTemplate(G = (V,E))
2: for each vertex v ∈ V do
3: init d(v)
4: B [d (v)] ← B [d (v)] ∪ {v}
5: init i � i is position in W where next vertex in the order is placed
6: while check i do � there remain vertices to order
7: locate j∗, an appropriate extreme index j where B [j] is non-empty
8: Let v be a vertex drawn from B [j∗]
9: B [j∗] ← B [j∗] \{v}
10: for each vertex w ∈ adj (v) do
11: B [d (w)] ← B [d (w)] \{w}
12: update d (w)
13: B [d (w)] ← B [d (w)] ∪ {w}
14: W [i] ← v
15: update i

Table 1: Table accompanying the ordering template in Algorithm 1
SL DLF ID

L 3: init d(v) d(v) ← d(v,G) d(v) ← d(v,G) d(v) ← 0
L 5: init i i ← |V | − 1 i ← 0 i ← 0
L 6 check i i ≥ 0 i ≤ |V | − 1 i ≤ |V | − 1
L 7: locate j∗ j∗ = minj{B[j] �= ∅} j∗ = maxj{B[j] �= ∅} j∗ = maxj{B[j] �= ∅}
L 12:update d(w) d(w) ← d(w)− 1 d(w) ← d(w)− 1 d(w) ← d(w) + 1
L 15:update i i ← i− 1 i ← i+ 1 i ← i+ 1

the ith vertex in the ordering. In SL, the ordering W is computed right-to-left
(i = |V |−1 down to i = 0), whereas the ordering in DLF and ID is computed left-
to-right (i = 0 up to i = |V | − 1). The ith vertex in SL ordering is a vertex with
the smallest back degree among the vertices not yet ordered, in a DLF ordering it
is a vertex with the largest forward degree among the vertices not yet ordered, and
in an ID ordering it is a vertex with the largest back degree among the vertices
not yet ordered. The rationale behind each of these ordering techniques in the
context of a coloring algorithm is to bring vertices that are likely to be highly
constrained in choice of colors early in the ordering. In Algorithm 1, once the
ith vertex v in the ordering is determined (and removed from B), each vertex w
adjacent to v is moved from its current bin in B to an appropriate new bin. With
suitable pointer techniques the relocation can be performed in constant time [5].
Thus the work involved in the ith step of Algorithm 1 is proportional to d(v,G),
and the overall complexity of the algorithm is O(|E|).
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2.2 Parallel Ordering

We parallelized these three ordering techniques employing a common paradigm,
but we restrict the presentation here to only the SL ordering case.

We developed two different approaches for the parallelization. The first ap-
proach aims at parallelizing the ordering closely maintaining the serial behavior,
while the second approach settles for an approximate solution in favor of increased
concurrency. In both approaches, we assume p threads are available and utilized,
and we denote by t (v) the thread with which the vertex v is initially associated.

Algorithm 2 A parallel SL ordering algorithm using p threads (the Regular vari-

ant). Input: graph G = (V,E). Output: An ordered list W of the vertices in V . The

array B is as in Algorithm 1, and the arrays Bt, Rt, and At are thread-private arrays;

the latter two are used to remove or add vertices from or into the global array B.

1: procedure SmallestLastOrdering-Regular(G = (V,E))
2: for each vertex v ∈ V in parallel do
3: d(v) ← d(v,G)
4: Bt(v) [d (v)] ← Bt(v) [d (v)] ∪ {v}
5: for each bin j ∈ {δ (G) , . . . ,Δ(G)} in parallel do
6: for k = 1 to p do
7: for each vertex v ∈ Bk [j] do
8: B [j] ← B [j] ∪ {v} � note that j = d (v)

9: i ← |V |
10: while i ≥ 0 do
11: Let δ denote the smallest index j such that B [j] is non-empty
12: for each vertex v ∈ B [δ] in parallel do
13: for each vertex w ∈ adj (v) do
14: if w /∈ Rt(v) then
15: Rt(v) [d (w)] ← Rt(v) [d (w)] ∪ {w}
16: r (w) ← r (w) + 1 � atomic statement

17: W [i] ← v; i ← i− 1 � critical statements

18: for each bin j ∈ {δ, . . . ,Δ(G)} in parallel do
19: for k = 1 to p do
20: for each vertex v ∈ Rk [j] do
21: if r (v) > 0 then
22: B [j] ← B [j] \{v} � note that j = d (v)
23: d (v) ← d (v)− r (v); r (v) ← 0
24: At(v) [d (v)] ← At(v) [d (v)] ∪ {v}
25: for each bin j ∈ {δ, . . . ,Δ(G)} in parallel do
26: for k = 1 to p do
27: for each vertex v ∈ Ak [j] do
28: B [j] ← B [j] ∪ {v} � note that j = d (v)
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2.2.1 The First Approach—Regular

Algorithm 2 outlines the first approach. The first task Algorithm 2 parallelizes
is the population of the global bin array B. To achieve this, with each thread
Tk, 1 ≤ k ≤ p, a local two-dimensional array Bk is associated. The p local arrays
are first populated in parallel (the for-loop in Lines 2–4). Then, the contents
are gathered into the global array B, where the parallelization is now switched
to run over bins, as shown in the for-loop in Lines 5–8. There and elsewhere
in this paper, δ(G) and Δ(G) denote the minimum and maximum degree in G,
respectively.

The remainder of Algorithm 2 mimics the serial algorithm (Algorithm 1). In
the serial algorithm, in each step of the while loop, a single vertex—a vertex with
the smallest current dynamic degree δ—is ordered and its neighbors’ locations
updated in B. However, the bin B[δ] could contain multiple vertices. Algorithm 2
takes advantage of this opportunity and strives to order such vertices and update
their neighborhoods in parallel. There are a few potential problems associated
with such an attempt.

• Problem: A pair of vertices u and v in B[δ] are adjacent to each other.
In such a case, a thread processing one of the vertices, say u, could try to
move the vertex v to another bin while another thread at the same time
attempts to order v, making the result inconsistent.
Solution: while ordering the vertex u, we avoid updating the location of
the vertex v in B, and instead order v as well in the current step.

• Problem: Removal of multiple vertices from the same bin, say B[j]. Sup-
pose two vertices u and v from B[δ] have a common neighbor w in B[j].
In the serial case, u and v would be ordered one after another, d(w) would
be reduced by 2, and w would be relocated twice. In the parallel case,
two threads might try to remove w from B[j] at the same time and the re-
moval of w in constant time will make B[j] inconsistent. Similarly, suppose
two vertices u and v in B[δ] have respective neighbors w and x such that
d(w) = d(x) = j. In the parallel case, two threads might try to remove w
and x from B[j] at the same time while processing u and v in parallel and
and the removals of w and x in constant time will also make B[j] inconsis-
tent.
Solution: We let each thread Tk, 1 ≤ k ≤ p, maintain its own two-
dimensional removal array Rk, where it stores vertices to be removed from
B while the parallel ordering of B[δ] happens (see the for loop in Lines 13–
16). The removal from B takes place once the ordering of vertices in B[δ]
is completed. Since for any two bins B[j] and B[j′] the removal from B[j]
is independent of the removal from B[j′], these could be done in parallel,
as shown in Lines 18–24.
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Algorithm 3 A parallel SL ordering algorithm on p threads (the Relaxed variant).

Input: graph G = (V,E). Output: An ordered list W of the vertices in V .

1: procedure SmallestLastOrdering-Relaxed(G = (V,E))
2: for each vertex v ∈ V in parallel do
3: d(v) ← d(v,G)
4: Bt(v) [d (v)] ← Bt(v) [d (v)] ∪ {v}
5: i ← |V |
6: for k = 1 to p in parallel do
7: while i ≥ 0 do
8: Let δ be the smallest index j such that Bk [j] is non-empty
9: Let v be a vertex drawn from Bk [δ]

10: Bk [δ] ← Bk [δ] \{v}
11: for each vertex w ∈ adj (v) do
12: if w ∈ Bk then
13: Bk [d (w)] ← Bk [d (w)] \{w}
14: d (w) ← d (w)− 1
15: Bk [d (w)] ← Bk [d (w)] ∪ {w}
16: W [i] ← v; i ← i− 1 � critical statements

• Problem: Addition of multiple vertices to the same bin, say B[j].
Solution: we address this concern by using a similar technique as in the
second bullet item. We let each thread maintain its own two-dimensional
addition array Ak. Again, the addition of vertices to different bins in B can
be done in parallel, as shown in Lines 25–28.

2.2.2 The Second Approach—Relaxed

Our second approach for parallelizing the SL ordering algorithm abandons the
use of the global array B altogether, and works only with the local arrays Bk

associated with each thread Tk. In updating locations of neighbors of a vertex,
a thread Tk checks whether or not the vertex w desired to be relocated is in the
thread’s local array Bk. If w is indeed in Bk it is relocated by the same thread, if
not, it is simply ignored. In this manner, only approximate dynamic degrees are
used while computing the ordering. The approach is formalized in Algorithm 3.

3 Parallel Distance-2 Coloring

Algorithm 4 outlines the parallel distance-2 coloring we developed in this work.
The algorithm has two phases, both of which are performed in parallel, and runs
in an iterative fashion. In the first phase of each round of the iteration, threads
concurrently color their respective vertices in a speculative manner (paying atten-
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Algorithm 4 An iterative parallel algorithm for distance-2 coloring using p threads.

Input: graph G = (V,E). Output: a vertex-indexed array color[] indicating colors of

vertices. The vertex set V is assumed to be ordered.
1: procedure IterativeD2Coloring(G = (V,E))
2: U ← V
3: while U �= ∅ do
4: for each vertex v ∈ U in parallel do � Phase 1: tentative coloring
5: for each vertex w ∈ adj (v) do
6: mark color [w] as forbidden to vertex v
7: for each vertex x ∈ adj (w) and x �= v do
8: mark color [x] as forbidden to vertex v

9: Pick a permissible color c for vertex v using some strategy

10: R ← ∅ � R denotes the set of vertices to be recolored
11: for each vertex v ∈ U in parallel do � Phase 2: conflict detection
12: cont ← true
13: for each vertex w ∈ adj (v) and cont = true do
14: if color [v] = color [w] and f (v) > f (w) then
15: R ← R ∪ {v}; break
16: for each vertex x ∈ adj (w) and v �= x do
17: if color [v] = color [x] and f (v) > f (x) then
18: R ← R ∪ {v}; cont ← false; break

19: U ← R

tion to already available color information). In this phase, two vertices that are
distance-2 neighbors with each other and are handled by two different threads
may be colored concurrently and receive the same color, causing a conflict. In
the second phase, threads concurrently check the validity of colors assigned to
their respective vertices in the current round and identify a set of vertices that
needs to be re-colored in the next round to resolve any detected conflicts. The
algorithm terminates when every vertex has been colored correctly.

Although the two phases (tentative coloring and conflict detection) in each
round iterate over the same set U of vertices, the runtime of the second phase
is likely to be significantly lower than the first. This is because of the break
statements used in the conflict detection phase, where the search for conflict in
the distance-2 neighborhood of the current vertex v is stopped immediately the
moment a conflict impacting v is discovered—note that the cont boolean variable
in Line 12 is used to break out of the for-loop in Line 13 due to a condition in
the for-loop in Line 16. Due to the use of the early breaks, we observed that the
second phase typically takes roughly around 25% of the overall runtime of the
algorithm; without the breaks second phase would have taken the same time as
the first.

As written, Algorithm 4 is a template and can be specialized in a number
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of ways depending on the strategies employed in selecting a permissible color in
Line 9 and selecting a vertex to re-color in Lines 14 and 17 in the event of a
conflict.

For the color choice in Line 9 we investigated four alternatives: (i) First Fit
(FF), where each thread searches for a permissible color for the vertex v starting
from color 1; (ii) Staggered First Fit (SFF), where each thread searches for a
permissible color for the vertex v staring from a location staggered according to
the thread ID (and rolls back to another interval as needed); (iii) Least Used (LU),
where each thread choses the least used permissible color for v; and (iv) Random
(R), where each thread randomly chooses a color for v among all permissible colors
for v. Compared to FF, the strategies SFF, LU, and R reduce the likelihood of
conflicts, at the expense of increasing the number of colors used by the algorithm.
Experiments we conducted showed that FF offered a better trade-off and would
be used in the results we report in Sect. 4.

In the event of a conflict (two vertices u and v received the same color while
being distance-2 neighbors), it suffices to re-color one of the vertices to resolve the
conflict. We investigated two alternative strategies (the function f in Lines 14
and 17) in choosing the vertex to recolor. In the first strategy, we let f(u) = u
(the id of the vertex u), in the second, we let f(u) = rand(u) (a random number
associated with the vertex u). Compared to a function that uses vertex IDs, a
random function improves load balance among threads in re-coloring rounds, but
comes at the expense of runtime overhead in generating the random numbers.
Experiments we conducted (not reported here) indicated that vertex IDs provided
better trade-off and would be used in the results we report in Sect. 4.

4 Experimental Results

We present in this section results on experiments performed on an Intel Nehalem
machine equipped with Intel(R) Core(TM) i7 CPU 860 processors running at
2.8GHz. The system has 4 cores with 2 threads on each. The total memory
size is 16 GB, with 4 × 32 KB Instruction and 4 × 32 KB Data Level-1 cache,
4×256 KB Level-2 cache, and 8 MB shared Level-3 cache. The operating system
is GNU/Linux.

Our testbed consists of 20 graphs, 5 of which are real-world graphs drawn
from various scientific computing (sc) applications and are downloaded from the
University of Florida Sparse Matrix Collection, and the remaining 15 are synthet-
ically generated using the R-MAT algorithm [3]. By combining the four input
parameters of the R-MAT algorithm in various ways (the sum of the parameters
needs to be equal to one), it is possible to generate graphs with varying proper-
ties. We generated three types of R-MAT graphs: (i) Erdös-Renyi random (er)
graphs, using the set of parameters (0.25, 0.25, 0.25, 0.25); (ii) small-world type
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Table 2: Structural properties of the various graphs in the testbed: scientific
computing (sc), rmat-random (er), rmat-good (g), and rmat-bad (b).

Name |V | |E| Δ Name |V | |E| Δ
sc1 (bone010) 986,703 35,339,811 80 g1 262,144 2,093,552 558
sc2 (af shell10) 1,508,065 25,582,130 34 g2 524,288 4,190,376 618
sc3 (nlpkkt120) 3,542,400 46,651,696 27 g3 1,048,576 8,382,821 802
sc4 (er1) 16,777,216 134,217,651 138 g4 2,097,152 16,767,728 1,069
sc5 (nlpkkt160) 8,345,600 110,586,256 27 g5 4,194,304 33,541,979 1,251

er1 262,144 2,097,104 98 b1 262,144 2,067,860 4,493
er2 524,288 4,194,254 94 b2 524,288 4,153,043 6,342
er3 1,048,576 8,388,540 97 b3 1,048,576 8,318,004 9,453
er4 2,097,152 16,777,139 102 b4 2,097,152 16,645,183 14,066
er5 4,194,304 33,554,349 109 b5 4,194,304 33,340,584 20,607

Table 3: Runtime in seconds while using one thread. OT shows ordering time,
and CT shows distance-2 coloring time (Algorithm 4).

SL-Relaxed SL-Regular SL-Relaxed SL-Regular
Name OT CT OT CT Name OT CT OT CT
sc1 1.18 30.45 1.73 31.18 g1 0.18 3.82 0.32 3.84
sc2 0.87 10.13 0.91 10.25 g2 0.42 8.86 0.74 9.03
sc3 1.64 16.45 6.39 28.89 g3 1.07 23.25 1.74 23.69
sc4 31.19 452.76 51.68 479.81 g4 2.54 61.98 4.18 65.64
sc5 4.29 39.86 17.68 73.91 g5 6.01 168.64 9.59 171.84

er1 0.18 2.13 0.32 2.21 b1 0.16 12.68 0.44 12.63
er2 0.45 5.02 0.71 5.23 b2 0.37 32.11 0.95 32.36
er3 1.20 12.75 1.84 13.54 b3 0.87 94.30 2.09 95.60
er4 2.86 33.62 4.54 36.07 b4 2.00 280.00 4.48 281.39
er5 6.43 83.74 10.51 88.77 b5 4.85 785.80 9.87 797.86

1 (g) graphs, using the set of parameters (0.45, 0.15, 0.15, 0.25); and (iii) small-
world type 2 (b) graphs, using the set of parameters (0.55, 0.15, 0.15, 0.15). These
three R-MAT generated graph types vary widely in terms of degree distribution
of vertices and density of local subgraphs and represent a wide spectrum of input
types for the ordering and coloring algorithms. The er graphs have normal degree
distribution, whereas the g (for “good”) and b (for “bad”) graphs contain many
dense local subgraphs. The latter differ primarily in the magnitude of maximum
vertex degree they contain, the bad graphs have much larger maximum degree.
Table 2 provides structural information on all twenty test graphs.

Figure 1 shows scalability results on the two parallel Smallest Last ordering
algorithms, SL-Regular (Algorithm 2) and SL-Relaxed (Algorithm 3). The plots
show runtimes for various numbers of threads normalized by the runtime when 1
thread is used; the raw numbers for the 1 thread case are listed in Table 3. Clearly,
the algorithm SL-Regular scaled poorly especially for the sc and rmat-b graphs,
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Figure 1: Scalability results on the two parallel SL ordering algorithms. Left
column: Algorithm 2 (SL-Regular). Right column: Algorithm 3 (SL-Relaxed).
The plots show runtimes normalized by the runtime when 1 thread is used; the
raw numbers for the case of 1 thread are listed in Table 3.
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Figure 2: Scalability results on the parallel distance-2 coloring algorithm (Al-
gorithm 4) while employing the parallel ordering algorithm SL-Relaxed (Algo-
rithm 3). Left column: only distance-2 coloring time. Right column: ordering
plus distance-2 coloring time. The plots show runtimes normalized by the run-
time when 1 thread is used; the raw numbers for the case of 1 thread are listed
in Table 3.
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Figure 3: Number of colors used by the parallel distance-2 coloring algorithm
(Algorithm 4) while employing the SL-Relaxed ordering algorithm (Algorithm 3).
MD, the maximum degree in a graph, is a lower bound on the optimal number
of colors needed.

whereas SL-Relaxed scaled well across all the graph types tested. We therefore
present further results using the better performing algorithm SL-Relaxed.

Figure 2 shows scalability results for the parallel distance-2 coloring algorithm
(Algorithm 4) while using the SL-Relaxed algorithm for parallel ordering. The
left column shows runtime results considering only the coloring stage, whereas the
right column shows results on total (ordering plus coloring) time. Since distance-2
coloring takes substantially more time than the ordering, the scalability behavior
of just the coloring stage is nearly identical to that of the overall execution. It
can be seen that the coloring algorithm (including the ordering stage) scaled well
across all the graphs in the testbed.

Figure 3 shows the number of colors the parallel distance-2 coloring algorithm
(Algorithm 4) used while employing the SL-Relaxed ordering algorithm. In each
subfigure, a bar corresponding to the maximum degree (MD) in a graph, which is
a lower bound on the optimal number of colors needed to distance-2 color a graph,
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is included. It can be seen that the number of colors the parallel algorithm used
remained reasonably constant as the number of threads is increased. Further,
it can be seen that the number in each case is either optimal or very close to
optimal.

Because of its “closeness” to the serial SL ordering algorithm, the parallel algo-
rithm SL-Regular is expected to use fewer colors than SL-Relaxed. We observed
this to be the case in the experiments we conducted.

5 Conclusion

We presented new parallel ordering and coloring algorithms and demonstrated
scalable performance on a multicore machine supporting a modest number of
threads. The techniques used for computing the ordering and coloring in parallel
are applicable to other problems where there is an inherent serial ordering to
the computations that needs to be relaxed for increasing concurrency. In future
work, we plan to conduct studies on larger machines and present more empirical
results.
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• Introduction

1. Page 2: “Such packages. . . runs” should be “Such packages. . . run”.

• Paper II

1. Page 1: “in image processing” should be “image processing” and
“. . . graphs, and is. . . ” should be “. . . graphs. It is. . . ”.

2. Page 4, Algorithm 1: Title should be “The sequential Union-Find
algorithm for computing connected components of a graph”.

3. Page 4: “therefor” should be “therefore”.

4. Page 10: “. . . algorithms outperforms. . . ” should be “. . . algorithms
outperform. . . ” and “algorithms and” should be “algorithms, and”.

5. Page 11, Bibitem [4]: “D. J. Bader” should “D. A. Bader”.

• Paper III

1. Page 6, Table 1: The extra parenthesis in the “Call” column for “crit-
icality” should be removed.

2. Page 19, Bibitem [9]: Volume number 0 should be removed.

• Paper IV

1. Page 7: “algorithms,and” should be “algorithms, and”.

2. Page 17, Lemma 5.3: “. . . smaller or . . . ” should be “. . . smaller than
or . . . ”.

• Paper V

1. Page 3: “(O|E|)” should be “O(|E|)”.
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