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Abstract

The selectivity of PCB adsorption from fish oil onto activated carbon (AC)
was investigated by means of molecular dynamics to determine the impor-
tance of molecular planarity. PCB congeners 77 and 118 were selected
for comparison purposes due to pronounced differences in mean adsorption
efficiency and molecular geometry; triolein, a triacylglycerol of oleic acid
(C18:1), was used as the representative fish oil component. Graphitic car-
bon structure was set up to serve as activated carbon model. Molecular force
fields employed in the simulations combined short-range parameters from the
OPLS with partial atomic charges obtained via quantum chemical calcula-
tions using DFT/B3LYP/6-31**G+ and Solvation Model 6. We modified
the dihedral angle potential between the PCB aromatic rings and applied
Schrödinger’s Jaguar package to evaluate the required force field constants.
Our complete system comprised a number of PCB molecules dissolved in
triacylglycerol that overlaid and filled the pores of an AC structure. The
production run of 4 ns provided strong indications that smaller pores will be
conductive to better selectivity though also resulted in certain doubts con-
cerning the the estimation and assignment of partial atomic charges on the
activated carbon. The majority of PCB molecules trapped in pores were at-
tached via cl–AC ”bonding”, leaving the main part of the PCB molecule free
to interact with triolein. The cl–AC adsorption energy was found to surpass
the energy criteria conventionally used for hydrogen bonds. Planar orienta-
tion assumed by a PCB molecule in a very energetically favored position on
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top of the graphite sheet clearly supported the π-cloud overlap hypothesis.

Keywords: Molecular dynamics, activated carbon, PCB, adsorption

1. Introduction

Polychlorinated polychlorinated biphenyls (PCB) together with dibenzo-
p-dioxins and dibenzofurans (PCDD/F) are classified as persistent organic
pollutants (POPs), known to bioaccumulate in the food chain [1]. Fish oil
produced from pelagic fish and their by-products is used as polyunsaturated
ω-3 fatty acid source in compounded feeds. High inclusion levels make it the
main POP contributor in Atlantic salmon feed [1–3]. The level of POPs in
North European fish stocks are generally higher than in the South Pacific
ones, putting the fish-processing industry in the region at a distinct disad-
vantage since parts of their fish oil and fishmeal products need to be purified
to comply with the maximum permitted levels [1, 4]. The POPs level in
produced fish oil will depend on the pollution status in the respective fishing
areas and seasonal variation in the fat content of the fish [1, 4]. POPs are
lipophilic compounds and accumulate in the fatty tissue of living organisms.
The lowest level of fat, i.e. the highest concentration of POPs in the extracted
fish oil, occurs right after the spawning period. To remain competitive, North
European fish oil and fish meal industry needs a cost-effective way to reduce
the PCB levels to comply with requirements set by the European legislation.

It has been shown in previous research [1] that adsorption onto activated
carbon is a viable option for PCDD/F removal, but is much less effective when
it comes to PCB reduction. A wide variation in the efficiency of the activated
carbon adsorption process for different PCB congeners has also been observed
in a process optimization study by Oterhals et al. based on alkali-refined and
bleached fish oil. PCB congener 77 — 3,3’,4,4’-tetrachlorobiphenyl — had a
mean adsorption efficiency of 74.7%, while PCB congener 118 — 2,3’,4,4’,5-
pentachlorobiphenyl — only 10.1%. Both of these congeners are classified
as dioxin-like PCB (DL-PCB) pollutants but differ in a significant aspect.
PCB congener 118 is characterized by a mono-ortho substitution, while PCB
congener 77 has no substitutions in any ortho positions. This observation led
Oterhals et al. to suggest that adsorption of PCB onto activated carbon may
be dependent on the co-planar configuration of the molecule. The hypothesis
is supported by research findings from other groups [5–8].

Activated carbon has slit pores dominated by micropores <2 nm [9]. The
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microstructure consists of a heterogenic network of defective hexagonal car-
bon layer planes of typically 5 nm width, cross-linked by aliphatic bridging
groups. Functional groups (e.g., C-OH, C=O) can be introduced during the
activation process by reaction with oxidizing gasses like H2O and CO2 [9].
Such functional groups have an important influence on adsorption properties
[10]. According to the hypothesis put forward by Oterhals et al., the PCB
congener 118 with its mono-ortho substitution will be unlikely to assume
a planar configuration and consequently have greater difficulties in entering
and becoming trapped in the micropores of the activated carbon. Another
hypothesis proposed that molecules with a planar conformation will create a
favorable π-cloud overlap between the aromatic rings in the PCB molecules
and the hexagonal structure in activated carbon and other carbonic materials
[7, 11]. However, Jonker and Koelmans were unable to verify such contribu-
tions based on their results. Jonker and Koelmans went on to suggest that
pore sorption will be the most important factor for PCB adsorption mecha-
nism. This work aimed to investigate this hypothesis by means of molecular
dynamics simulation and thus we focused on a structure that mimics the
pores of the activated carbon.

Graphite was chosen as the model for activated carbon, while triolein, a
triacylglycerol of oleic acid (C18:1), one of the major fatty acids in fish oil
[12], represented the solvent. Based on their large difference in adsorption
efficiencies, two PCB congeners 77 and 118 were selected from Oterhals et al.

2. Computational Methods

2.1. Force Field

Optimized Potential for Liquid Simulations (OPLS) force field by William
L. Jorgensen [13–21] was primarily used to parameterize the models. The
OPLS splits the energy contributions into two distinct classes, bonded and
non-bonded contributions. Bonded contributions consist of bond stretching,
angle bending and twisting of dihedral angles, while non-bonded contribu-
tions are van der Waals forces and electrostatic forces modeled by Lennard-
Jones 12-6 potential and Coulomb’s law, respectively.

The potential for bond stretching is a harmonic potential and given in
equation 1.

Ebond = ks × (R−Req)
2 (1)
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where Ebond is the energy; ks is the force constant; R is the bond length
and Req is the equilibrium bond length specified by the force field.

Any deviation from the bond length will give a positive energy contribu-
tion, and thus a force will try to counteract the stretching or compression of
the bond. The potential for bending of angles is also harmonic and shown in
equation 2.

Eangle = kb × (θ − θeq)
2 (2)

where θ and θeq is the current and equilibrium angles in degrees, respec-
tively. kb is the force constant. For the dihedral angles the potential is
described by a Fourier series in the following manner (eq. 3).

Edihedral =
V1

2
× [1 + cosφ] +
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2
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2
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2
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where V1, V2, V3 and V4 is the Fourier coefficient, analogue to the force
constants in equations 1 and 2; φ is the dihedral angle. The equilibrium
angle is given by the minimum value of the Fourier series. Furthermore, the
non-bonded contributions are given by (eq. 4):
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where a and b are different atoms; qi and qj are partial atomic charges for
atoms a and b; e is the elementary charge; rij is distance between a and b; εij
is the well depth; σij is a distance parameter and fij is a scaling parameter
which has the value of 0.5 if a and b are connected by bonds via 2 other
atoms (1,4) or 1.0 if they are further separated.

2.2. Fitting of torsional potential for PCB

The dihedral angle between the benzene rings in PCB congeners will be
of significant importance for the hypothesis under investigation since it de-
termines the planar configuration of the molecule. We believed this dihedral
warranted a more thorough analysis via a rigid coordinate scan carried out by
Schrödingers Jaguar package [22]. We used density functional theory (DFT)
with B3LYP functional [23, 24] and a Pople style 6–31**g+ basis set. The
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relative coordinates of all other atoms were kept constant while the dihedral
angle around C1−C ′1 varied within the 0–360 degree range. The scan yielded
the energy profile as a function of dihedral angle. This profile was then zero-
shifted and compared to energies predicted by the OPLS-style dihedral angle
that used biphenyl parameters.
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Figure 1: Dihedral energies for PCB congener 77 (left) and congener 118 (right). Solid
green lines for energies obtained from quantum chemical methods, dashed blue lines are
energy from potential used in simulation by fitting parameters in equation 5 to the QC
energies.

The QC-derived dihedral energy profile deviated to a significant degree
from the OPLS one in case of both PCB congeners. Figure 1 make it obvious
that the two dihedral angles cannot, as they are in OPLS, be described by the
same parameter set. Achieving an agreement between the QC results and
the OPLS potential demanded some modifications to the functional form
of the dihedral potential itself. The new potential was least-squares fitted
to minimize the deviations from the energy profile. Due to the scanning
procedure potentially overestimating the effect of rotations, this approach
did not work very well for the PCB congener 118 which exhibited a very
high rotational barrier and led us to focus the fit on the region containing
the local and global minima instead of the whole plot. Though the fitted
potential failed to replicate the global maxima for PCB congener 118, this
did not appear to affect the accuracy of the potential to any significant degree
and the correct description of local and global minima was deemed to be of
greater importance. The new potential used for the C1 − C ′1 dihedral is
presented in 5:

Edihedral =
V1

2
× [1 + cos(2φ+ f1)] +

V2

2
× [1− cos(2φ+ f2)]
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Table 1: Force field parameters for phenyl-phenyl dihedral angle in PCB congener 77 and
congener 118. Fitted with method of least squares to QC energy calculations. V1, V2, V3

in kJ mol−1, f1, f2 and f3 in degrees.

PCB Congener V1 f1 V2 f2 V3 f3
3,3’,4,4’ 0.144 26.288 0.870 -51.255 4.359 4.305
2,3’,4,4’,5 9.009 -13.929 -4.961 -0.778 6.800 -11.720

+
V3

2
× [1 + cos(4φ+ f3)] (5)

where the only new parameters are fx, x = 1 . . . 3, phase angles deter-
mining the phase shift of the curve. This allows to shift the minima and
maxima towards correct positions. We should also note that the multipliers
within the cosines has been changed in comparison to those from equation 3
to allow for better fitting to the quantum chemical energies. The parameters
in equation 5 for PCB congener 77 and 118 are listed in table 1.

2.3. Obtaining partial atomic charges

To the best of our knowledge, all previous simulations involving activated
carbon employed zero partial atomic charges [25, 26]. This approach is quite
reasonable for a uniform surface such as the top layer of a graphite sheet, but
the influence of pore corners, sheet edges, and other irregularities may lead
to polarization and thus non-neutral carbons. Other reported studies that
also used zero partial atomic charges for the graphite, accounted for these
effects by including active sites like OH– and COOH– groups [27], with the
functional groups assigned charges taken from literature.

We deemed it inappropriate to utilize partial atomic charges obtained
from vacuum calculations for our particular system. This consideration, to-
gether with the lack of certain parameters, ruled out using the OPLS force
field charges. An approach utilizing continuum solvent models was chosen to
generate partial charges for the triacylglycerol, triolein, and both PCB con-
geners. We employed DFT with the B3LYP functional and a 6–31**g+ basis
set. Solvation Model 6 (SM6) was used as the continuum solvation model
[28]. The implementation of this model in Jaguar relies on Charge Model 4
(CM4) [29] to obtain Class IV partial atomic charges for use in the calcu-
lation. Mülliken and Löwdin charge models were rejected outright, due to
their sensitivity to large basis sets. CM4 utilizes the Redistributed Löwdin
Population Analyzes (RLPA) [30] in order to estimate its Class 4 charges
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which alleviates, to a certain degree, the problems with Löwdin population
analyzes when using large (mainly diffuse) basis sets.

The sheer size of the AC model made it unfeasible to run an all-atom
quantum chemical simulation to obtain the partial charges. A smaller model,
consisting of 3 layers and 162 carbon atoms in graphitic configuration was
used. Furthermore, all attempts to run simulations using SM6 proved to be
unsuccessful as the self consistent field failed to converge when continuum
medium was added. Consequently, the partial atomic charges had to be
obtained by performing a vacuum simulation and applying the electrostatic
potential scheme.

The resulting partial atomic charges exhibited a wide variance depending
on position. Atoms close to the edge of the model got assigned significant
charges, while atoms further away, almost-zero charges. A pattern emerged
upon the further study where the partial atomic charges appeared to al-
ternate in polarity and with magnitude of the charges decaying with the
distance from the edge. These findings were implemented for the AC model
by averaging the partial atomic charges in the same row. This was done for
carbon atoms up to the depth of four rows. The averaged charges were then
assigned to atoms close to the pore edges of the AC model. All the remain-
ing carbon atoms were assigned a random charge distribution ensuring the
electroneutrality of the whole model.

3. Simulation Setup and Software

We used molecular dynamics package MDynaMix version 5.1 by [31]. This
package is available as source code at the MDynaMix home page [32]. It has
been widely used by our research group. In order to visualize the simula-
tion, as well as generate snapshots of interesting details, Visual Molecular
Dynamics (VMD) [33] was used.

The complete simulation system consisted of an activated carbon block
and a liquid system containing two PCB congeners, 77 and 118, dissolved in
a triacylglycerol, triolein. The system setup was divided into three stages.
First, the activated carbon model was inserted into a simulation box, and
centered to replicate seamlessly in the x and y directions. Subsequently, a
liquid system was put together with x- and y- cell dimensions identical to
those of the activated carbon model. The height of the simulation box was,
however, significantly higher than required to obtain the target density of
915 kg m−3. Also, only one third of the molecules for each constituent was
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used. This was done to reduce the simulation time needed to compress the
system to the target density. As well as to avoid overlaps that can arise
when assembling the system and potentially leading to nonphysical lockups
and tremendous forces. Only the z distances were scaled between the runs.
The system was ran at 2000 K for 20.000 steps (of 0.1 femtoseconds) between
the scalings to allow it to settle into a reasonable configuration. During this
phase, simple velocity scaling was used to control the temperature. The
initial dimensions of the system was (80.814 x 78.580 x 1100.000)Å.

Predominantly, the system was scaled in the z dimension by about 10%
each time. In the early stages, it was scaled by 100Å each run until the
height reached 700Å, afterwards the scaling was kept at 10% between each
run. When the height reached 50Å, it was reduced by 5Å every run until
25Å and then scaled to the target value of 24.260Å to yield the density of
915 kg m−3. The primary cell was then replicated twice in the z dimension
to obtain the desired the volume and number of molecules. This system
was simulated for an extended time in order to reduce the memory of initial
state. The temperature was then scaled down to 330K, to reproduce the
mean experimental temperature used in Oterhals et al. [1].

To complete the system setup, the liquid solution box was placed on top
of the activated carbon model, with a 5Å gap to avoid overlaps. A constant
external electrostatic potential was applied to force the liquid solution into
the pores of the activated carbon. This potential was gradually scaled down
to avoid a rapid rebound expansion due to Newton’s 3rd law. The activated
carbon block was fixed both during system setup and the main simulation
run.

The composite system consisted of an activated carbon block with 31.232
carbon atoms, 252 triolein molecules of 167 atoms, and 51 molecules of both
77 and 118 PCB congeners, each comprising 22 atoms. The total number
of atoms amounted to 75,560. The time step was set to 1.0 femtoseconds,
temperature to 330K. Initially, simple velocity scaling was used to control
temperature, Nosé-Hoover thermostat [34–36] with a relaxation time of 50
femtoseconds was switched on as the system stabilized. Periodic boundary
conditions in x, y and z dimensions were set to (80.814×78.580×220.000)Å.
During the entire simulation, from early setup to end of production run,
the activated carbon was fixed with no translational or rotational degrees
of freedom. Simulations were run in parallel on 256 cores on the Hexagon
supercomputer Cray XT4 at the Bergen Center for Computational Sciences.
The total run time for the system amounted to 5 months, with the simulation
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extending to just over 4 nanosecond.

4. Results and Discussion

4.1. Visual Inspection

At the start of the production run — after the initial setup, compression
and down-scaling runs — there were only seven PCB molecules within the
pores of the activated carbon. Four of those molecules were PCB congener
77 and the remaining three, PCB congener 118. At the end of the run, the
same seven PCB molecules remained in the pores. No new PCB molecules
entered the pores, nor did any of the initial seven molecules leave. Given
that the total number of PCB molecules amounted to 102, this means that
PCB 77 and 118 congeners exhibited quite similar pore trapping efficiency
in our simulated system, in stark contrast with their significant experimental
selectivity. However, it is hard to draw rigorous conclusions concerning the
selectivity from the limited number of trapped PCB molecules due to little
statistical significance.

After system initiation described in section 3 and at the start of the
production run, a single PCB congener 118 was observed positioned right
alongside the pore wall with its aromatic rings flat against the wall. One
molecule of PCB congener 77 was also aligned with the pore walls, but located
in the middle of the pore and not adsorbed in the same manner as the
congener 118 molecule. The other five molecules were all attached to the
pore walls via either one or two of their chlorine substitutions. One of these
molecules, a PCB congener 77, later positioned itself directly adjacent to the
pore wall in a configuration similar to the one of initially adsorbed congener
118 molecule. None of the other PCB molecules was able to assume a similar
orientation, and no PCB molecule anchored by its chlorine atoms detached
from the pore wall. Nor did any but the already specified molecule come close
to aligning with the wall in a planar configuration, either. The PCB congener
77 molecule that remained parallel to the pore wall from the start was unable
to move any closer to the wall within the time frame of the simulation. Any
movement towards the pore wall was blocked by the hydrocarbon tails of the
triolein molecules separating it from the wall.

While apparently being unable unable to tear loose from the walls within
the simulation time, some the PCB molecules showed a tendency to diffuse
along the wall surface. Those molecules tended to remain at the same pore
depth, neither moving deeper nor leaving the pore. This observation does,
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however, raise the question of what will happen when the solvent molecules
are partially replaced by gas, for instance when the activated carbon is sepa-
rated from the fish oil in an experimental setting. Would the PCB molecules
attached via chlorine atoms remain loosely anchored, would they adsorb onto
the pore wall, or simply detach and leave the pore with the solvent?

The results of our simulation did not support any significant selectivity
for congener 77 over congener 118 as seen in experiments. Both pores in our
activated carbon model were slit pores in the meso-pore range with the width
slightly exceeding 20Å. Considering that the gyration radius of PCB congener
77 molecules — with the C1−C ′1 dihedral angle offsetting the aromatic rings
— amounts to just about ∼5.0–5.5Å, it is likely that any selectivity will
only reveal itself in much smaller pores. Our calculations indicate that PCB
congener 118 will assume a slightly larger conformation with a radius of
∼5.8–6.5Å. This estimate assumes that the dihedral is oscillating around its
global minimum and neglecting the fact that the local maximum is only 3–4
kJ mol−1 high, and this barrier might not be enough to stop the molecule
from switching back and forth between the global and local minimum of the
dihedral angle. Thus if a PCB congener 118 molecule enters a pore narrower
than ∼7.5Å, it will loose the ability to shift the dihedral angle between these
two minima. This loss of rotational freedom will result in entropy penalty. It
should be noted that Jonker and Koelmans [7] found indications in their work
that for PCB adsorption the average pore distribution had a strong positive
correlation with the distribution coefficients. For both PCB congener 77 and
118 activated carbon had the largest distribution coefficient in their study,
and also the lowest average pore diameter with 3.0 nm. Activated carbon
also had the largest total pore volume and specific surface area. This, along
with the discussion above, is in our opinion indicative that smaller pores
should be more thoroughly investigated.

However, the large size of solvent molecules make even their tightest con-
formation experience significant interactions with the pore walls. Thus, in
contrast with true bulk solution, the solvent’s internal energy will be affected
by the activated carbon. One would expect, for instance, that their range of
molecular movement will be restricted compared to true bulk solution lead-
ing entropy decrease in comparison to bulk. From a thermodynamic point of
view, this could mean that chemical potential of molecules within the pores
will deviate from its bulk value, which will also impact the adsorption pro-
cess. In view of this, it is not only important to study smaller pores, but also
to attain a comparative study of larger pores. While the adsorption is onto
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the activated carbon, one should not neglect the impact and interactions of
and with the solvent.

Another issue to consider is that a larger pore with a true bulk solution
in the middle might have a larger mass flow between the pore and the bulk
outside. The higher flux will facilitate transport of PCB molecules into the
pore, and thus provide more opportunities for pore adsorption. Additionally,
PCB congener 118 will be less constrained in a larger pore, but the entropy
penalty will arise again as it moves from the bulk in the middle into the
boundary layer close to activated carbon. An interesting model for such a
system would be a varying-width slit pore with the top diameter > 50Å that
narrows down to ∼ 5Å. Such a model is expected to shed some more light
on the effects discussed here.

4.2. Impact of partial atomic charges

The partial atomic charges of the activated carbon atoms were obtained
by averaging the electrostatic potential (ESP) from quantum chemical vac-
uum simulation. This approach to estimating charges, together with the fact
that they were not verified against experimental data, made us to put the
AC charges under additional scrutiny. This is especially relevant given that a
number of phenomena observed made during the simulation appeared to be
dominated by electrostatics, with the partial atomic on the activated carbon
contributing to the effect.

Due to the magnitude of partial atomic charges at the pore edge, the
triolein solvent molecules tended to orient their polar heads towards the
edges (figure 2). As shown in the right part of figure 2 the polar groups
in triolein is mainly concentrated over the charged regions of the activated
carbon. The more neutrally charged regions of activated carbon has a much
higher concentration of non-polar hydrocarbon tails. This orientation led
to a clear pattern in the positioning of the head groups. Furthermore, the
enhanced concentration of polar head groups has resulted in a surfactant
behavior of the solvent, so that the more polar groups were oriented towards
the pore edges both close to the pore and further away. This led to a micelle-
like formations, with the polar groups in the middle of the bulk solvent and
the non-polar hydrocarbon tails pointing outwards, however not quite as
structured as regular micelles.

Since PCBs are known to be lipophilic and mostly non-polar, it was no
surprise to find that the PCB molecules concentrated among the hydrocarbon
tails. The polar groups were attracted to the pore edges, leading to a visible
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Figure 2: Charge distribution on edges of pores in activated carbon model, blue color
indicated negatively charged atoms; red color indicate positively charges regions while
white indicate neutral. Note the concentration of polar heads in triolein close to the pores.
Also note the relative lack of polar groups in top left and top right corner of the leftmost
figure, above the pores themselves. On the figure to the right the high concentration of
polar groups over the charged pore edges are quite evident.

high concentration of hydrocarbon tails above the pores themselves and on
the outskirts of the liquid solution. A visually high concentration of PCB
molecules were observed in the outskirts of the liquid solution, but not so
much over the pores.

It also became evident when observing the system that the liquid solution,
which started out as a relatively evenly spread film, congregated to a drop-like
formation on top of the activated carbon block. This behavior together with
the enhanced concentration of the polar heads had a detrimental effect on
the simulation. The amount of molecules in the liquid phase was estimated
to fill the pores and add a layer extending 20Å above the activated carbon.
However, the liquid layer peak extended to more than 120Å above the AC
block at end of simulation. This fact may again to some degree be explained
by the high partial atomic charges. Another plausible explanation for this
phenomenon can be influence of surface roughness. Several studies have
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shown that thin films have a tendency to rupture or break up on chemically or
physically heterogenous surfaces [37, 38]. We are still not certain, at this time,
whether this truly reflects the real behavior or is an artefact of artificially
high partial charges on the activated carbon. Additional simulations on
a system with carbon surface roughness could shed light on the impact of
microscopic roughness on structuring and adsorption. However, the behavior
does emphasize the need for a more thorough investigation and likely a better
scheme for determination and assignment of partial charges for the activated
carbon.

4.3. Interaction Energies

Since the majority of PCB molecules in the pores did not adsorb, nor
showed any inclination to do so, a further look into the interaction energies
were deemed necessary. One of the hypotheses was that a flat orientation
towards the activated carbon would lead to a more favorable interaction
energy. According to this working hypothesis the PCB molecules should for
the majority, and given enough time, obtain this orientation. However, the
observations indicated otherwise.

When examining the chlorine-attached PCB molecules more closely and
more specifically estimating the interaction energy for the chlorine-AC in-
teraction for one of the molecules it is observed that the interaction energy
in this case was −14.70 kJ mol−1. The contribution from electrostatic in-
teraction was −9.24 kJ mol−1, while the contribution from Lennard-Jones
interaction was −5.46 kJ mol−1. In previous studies carried out by other
groups the energy criteria for hydrogen bonding were said to be−10 kJ mol−1

[39]. By this definition the sum of all chlorine-AC interactions within 10Å is
comparable to hydrogen bonding, energetically. Comparing the interaction
energy to that of the complete adsorbed PCB 77 molecule makes it evident
that under the given circumstances it is seemingly more favorable to only
have a chlorine-AC connection. The apparent reason for this is that a single
chlorine atom can position itself between three negatively charged activated
carbon atoms, and as such coming closer to the second row with positive
charged activated carbon atoms. Consequently, the chlorine atom moves
mainly along and in-between the graphite sheets. An adsorbed molecule
does not have this option due to its size. Hence more chlorine atoms, as
well as the mainly negatively charged carbon atoms in the aromatic rings,
come into close proximity of the negatively charged activated carbon atoms
in the outer row. In summary this results in strong electrostatic repulsion.
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Indeed, the electrostatic interaction with the activated carbon is so strong
that it leads to a positive interaction energy, thus overcoming the favorable
Lennard-Jones interactions. Table 2 show the interaction energies for five
PCB molecules of different congener and different positioning. In this table
the interaction energies displayed is a sum of the interaction energies between
the PCB molecule in question and both activated carbon and triolein. A ma-
jor point here is that the sum of electrostatic and Lennard-Jones interaction
energies from the aforementioned PCB congener 77 molecule with activated
carbon is positive. However, due to the favorable interaction with triolein
this is not evident in the tabulated data. For the attached PCB congener
77 molecule both the interaction with activated carbon and triolein is nega-
tive. Note that for the two PCB molecules adsorbed to the pore wall, PCB
congener 118 has the overall lowest interaction energy. While PCB congener
77 has a lower Lennard-Jones interaction energy with AC, the corresponding
electrostatic interactions with AC are almost 30 times stronger and more
favorable for PCB congener 118.

Table 2: Interaction energies in kJ mol−1 for PCB molecules. Pore indicates molecules
adsorbed to pore wall, top indicates molecule adsorbed to the top of a graphite sheet
and attached indicates molecules which only have one or two of their chlorine substitu-
tions pointing towards the pore wall. All values are time averages over the same 12.45
picoseconds and from the very end of simulation (4.1 nanoseconds)

PCB Placement Lennard-Jones Electrostatic Total
PCB 77 Pore -151.864 -1.169 -153.034
PCB 118 Pore -141.686 -30.706 -172.392
PCB 118 Top -187.834 24.186 -163.648
PCB 77 Attached -131.038 -64.204 -195.242
PCB 118 Attached -153.685 -102.873 -256.559

With this in mind, it is more understandable that the remaining PCB
molecules did not arrange themselves flat against the pore wall. It is our
belief that the regularity of the pore wall may be the deciding factor in making
this orientation quite unfavorable for the PCB molecules. Wall defects, with
some negative outer carbons removed and inner positive ones exposed, may
result in electrostatic interaction becoming more favorable for the planar
conformation. What is clear is that while we do have a small indication
that there are more PCB 77 molecules in the pore, the interaction energies
seems to directly contradict experimental results. Some of this, as mentioned
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above, may be due to the total lack of defects in the pore walls. However, we
also suspect that we overestimated the magnitude of partial atomic charges
and distributed them too uniformly.

As mentioned in the introduction, some published research suggest that
selectivity displayed by activated carbon does not really depend on the ex-
istence of pores but rather on planar molecules finding it easier to achieve
a beneficial orientation with the hexagonal structure of activated carbon.
Thus the selectivity will be more affected by the available specific surface
area [7, 11]. The course of our simulation saw only one molecule adsorbed
on the top of the activated carbon block. This was a congener 118 molecule
(figure 3) which had its aromatic ring with three chlorine substitutions flat
against the surface, and hydrogens in the other aromatic ring pointing down-
wards. This molecule adsorbed rather close to the edge of a pore, where the
partial atomic charges on the activated carbon model are dominant.

Figure 3: Surface adsorbed PCB congener 118 molecule on top of center pillar in acti-
vated carbon model. Note how the aromatic ring has oriented itself on top of the hexag-
onal structure of activated carbon. It is also interesting to note that on the left figure
the hydrogen atoms on the leftmost aromatic ring has oriented themselves over the two
negatively charged rows of carbon atoms.

As shown in table 2, the electrostatic interactions are adverse for this ori-
entation. It is, indeed, not making the adsorption more favorable. However,
the Lennard-Jones interactions are significantly higher for this orientation, so
if the surface had been electrostatic neutral it would certainly have been the
most favorable adsorption site. Note that the main contribution that makes
this spot favorable comes from the Lennard-Jones interaction with triolein.
But it should not be neglected that the Lennard-Jones interaction with the
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activated carbon is ∼ 20 kJ mol−1 lower (more negative) than for that of
both PCB congener 77 and 118 adsorbed to pore wall. This is, however, not
shown in the tabulated data. In terms of total interaction energies, this posi-
tioning is the second least favorable observed. The least favorable positioning
was for the pore adsorbed PCB 77 molecule. Interestingly enough, the two
most favorable configurations for the molecules are to only be attached to the
pore walls via one or two of their chlorine substitutions. Both PCB congeners
had in this configuration a significantly lower interaction energy. Basically,
they experience an overall favorable interaction with activated carbon and
at the same time has most of its surface available to interact with triolein.

5. Conclusions

As discussed above, no significant selectivity was observed during the 4
nanoseconds of our production run. These observations somewhat contradict
the experimental results, leading us to conclude that the models employed,
especially the activated carbon, need to be refined further. Several potential
model shortcomings have been discussed already. Predominantly, we believe
that partial atomic charges assigned to the activated carbon bear the main
responsibility for the findings. Nevertheless, the current work has succeeded
in clarifying some of the key assumptions proposed by the various hypotheses
as well as mapping out the future path.

The extent to which the lack of pore wall defects may have affected the
system evolution, as well as the impact of pore dimensions is definitely issues
that merit a more thorough investigation. As noted earlier, a more irregu-
lar structure may favor selective adsorption while being truer to the real-life
activated carbon. It might also be beneficial to introduce wedge-like pores
instead of plain slit ones. Observations discussed in Section 4.1 appear to in-
dicate that wedge-shaped pores that gradually infer larger steric constraints
might contribute to a greater selectivity between different PCB congeners.
Considering that the average pore diameter the study conducted by Jonker
and Koelmans is 3.0 nm, and that their study indicates a strong positive
correlation between the average pore distribution and the distribution coef-
ficient, it is quite possible that smaller pores combined with and a narrow
pore distribution might lead to more conclusive results.

We have also found that planar adsorption onto hexagonal activated car-
bon surface will be heavily favored by the short range interactions and hin-
dered by presence of electrostatic forces. Given that congener 77 is more suit-
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able for planar adsorption, its experimentally confirmed selective adsorption
would be promoted in case of carbon with neutral rather than substantial
partial charges like in our model. Further investigation of this hypothesis
may be carried out in a new simplified setup consisting of a single slit pore.
Comparing the behavior and selectivity of pores made of neutral graphite
sheets with those of pores made of charged carbon atoms, like the ones used
in this work, would provide an opportunity to test the basic assumptions of
hypotheses under evaluation.

Our preliminary findings led us to believe that the activate carbon se-
lectivity may stem from the combination of pore trapping and planar ad-
sorption. Pores sufficiently small in size will hinder PCB congener 118 from
entering due to purely geometric constraints. Their walls will also offer ad-
sorption sites preferentially selective for PCB congener 77 which favor planar
conformation and thus is capable of more vigorous short-range interactions.
This combination would result in a two-stage selectivity for the PCB con-
geners 118 and 77. However, since no PCB congener 77 adsorbed on top of
a graphite sheet during the production run, no interaction energies could be
calculated to either verify or disprove this hypothesis. A comparison from
a short, trivial, simulation with a graphite sheet and PCB congener 77 and
118 would shed more light on this and also provide comparable energies.
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