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Preface

This thesis is submitted for the Philosophiae Doctor degree in Petroleum
Geosciences at the Department of Earth Science, University of Bergen. Financial
support for this study has been provided by the Research Council of Norway and
Statoil through the PETROMAKS (Programme for the Optimal Management of
Petroleum Resources) as a contribution to the project titled “Quantifying the
Effects of Sediment Deposition, Compaction and Pore Fluid on Rock Properties
and Seismic Signatures”. This is a large project resulting from a meeting hosted
by the Research Council of Norway in Washing DC on November 2, 2005. It has
been a joint project between the University of Oslo, Norwegian Geotechnical
Institute, Stanford University, Colorado School of Mines, Statoil and the
University of Bergen.

The work presented in this thesis was initiated during the summary 2007
under a four year PhD contract with the University of Bergen. The majority of it
was conducted in Bergen and during a six months stay as a visiting researcher at
Stanford University in California. Furthermore, I have had occasional visits to the
University of Oslo and participated in a laboratory experiment at the Norwegian
Geotechnical Institute. In parallel, I have joined international conferences and
seminars.

My principal supervisor for this study was Professor Tor Arne Johansen at
the University of Bergen and my co-supervisor was Professor Leiv-]. Gelius at the
University of Oslo.

The thesis is organised as follows. The overall objective of the study is
stated before giving a general introduction to the field. The introduction contains
a brief review of the most relevant parameters and rock physics models for this
study. Afterwards follows a brief presentation of the inverse rock physics
modelling philosophy and examples of possible ways of implementing it. Finally,
a summary and the main conclusions of the papers and overall conclusion of the
thesis are presented. The five research papers constitute the main scientific
contributions and they can be found in their entirety in the appendix.

Erling Hugo Jensen

Bergen, July 21, 2011
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“If a man will begin with certainties, he shall end in doubts;
but if he will be content to begin with doubts he shall end in certainties.”

Sir Francis Bacon

English author, courtier, & philosopher (1561 - 1626)



1 Objectives

The main objective of this study has been to develop strategies and methods for
improved prediction of reservoir properties, e.g. porosity, lithology and fluid saturation
from seismic and electromagnetic data. This should be achieved by:

- Improving methods for estimating the effective rock properties based on
existing theories, e.g. by doing consistent joint elastic-electrical modelling.

- Improving methods for more direct, robust and precise reservoir
characterization, e.g. through developing the inverse rock physics modelling
approach.

Both synthetic and real data should be used to demonstrate the methods and to show that
they have a practical application.



"Basic research is what I am doing when I don't know what I am doing.”
Wernher von Braun

US (German-born) rocket engineer (1912 - 1977)



2 Introduction

Improved methods for reservoir characterization are crucial for both locating new
hydrocarbon resources and maximizing the exploitation of discovered fields. The reservoir
conditions are a result of geochemical and geological changes taking place over millions of
years. However, during production the reservoir conditions may change rapidly on a
geological timescale, and these changes affect the elastic and electrical properties of the
rock. Well logging and various remote sensing tools provide us with a vast amount of data.
Proper processing and analyses of this data allows us to create a detailed image of the
subsurface. However, it is challenging to efficiently combine all the available information in
an optimal way to e.g. give accurate and quantitative characterization of a reservoir. This
requires a geological and geophysical understanding of processes in the upper regions of
the Earth’s crust. Also, we need to acquire knowledge about data processing and
geophysical modelling. Following is a brief explanation of some basic terminology,
properties and theories which are relevant for this study.

2.1 Hydrocarbon reservoirs

When animals and plants die, their organic materials are deposited on the Earth’s
surface and eventually buried under layers upon layers of sediments. With time, these
sediments are exposed to high pressures and temperatures as they are buried deeper, and
over a process of millions of years the organic materials are transformed into
hydrocarbons. With time, these hydrocarbons migrate towards the surface through tiny
cracks and pores in the rock. Rocks with high porosity and connected pore space permit
easier flow of hydrocarbons than rocks with lower porosity and permeability. Hence, we
can list three main requirements for successfully creating a hydrocarbon reservoir:

1. Asource of organic materials which when exposed to the proper conditions over a
longer period of time is transformed into hydrocarbons - a source rock.

2. A porous rock which can hold the hydrocarbons - the reservoir.

3. A ceiling rock with low porosity and permeability trapping the hydrocarbons - the cap
rock.

When these three conditions are met there is a chance of accumulating enough oil and gas
to create a hydrocarbon reservoir.



2.2 Reservoir parameters

Several parameters are used to characterize a reservoir. The most important are the
fluid saturation, porosity, permeability, lithology, pressure and temperature.

Fluid saturation denotes the type and relative amount of fluid in a rock, i.e. potential
of hydrocarbon resources. This can typically be quantified as a volume fraction satisfying
the equation

N
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where S, is the volume fraction of the n-th out of a total of N fluids. We have three main
fluid types, namely brine, gas and oil.

Porosity describes the volume fraction of the rock which fluids may occupy, i.e. total

reservoir volume. It is the space in a rock not occupied by solid materials. Porosity ¢ is
quantified as
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where Vpore and Vsolia are the total volume of the pore space and the solid part of the rock,
respectively.

Permeability describes how easily fluid flows through a rock, i.e. potential for
extracting the hydrocarbons. Darcy’s law (Darcy 1856) is an experimental relation for fluid
flow in a porous media given by

Q=4 50 223
where Qx is the volumetric fluid flow rate in the x direction, A is the area of the cross section
normal to the pressure gradient, x'is the permeability, 77is the dynamic viscosity of the fluid
and P is the pressure.

Lithology describes the types of minerals forming the rock. It can have an impact on
reservoir quality, e.g. in siliciclastic rocks clay can result in reduced permeability. Similar to
the fluid saturation, the lithology can be quantified as a volume fraction V, of the n-th
mineral. For a rock composed of N different minerals we have that
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Pressure and temperature are important for the effective properties of the rock and
can induce geochemical processes in the reservoir. The effective pressure Pe is given by
F.=F =nk, 225
where P. and P, are the confining and pore pressure, respectively, and n is the effective-
stress coefficient taking into account structural effects. Typically, temperature increases
with depth according to the geothermal gradient, which is approximately 20-30°C per
kilometre (Turcotte and Schubert 2002, p.133). However, it can be higher, i.e. close to
tectonic plate boundaries.

The reservoir properties change during production. For example, pressure and fluid
saturation may change as hydrocarbon is replaced with other fluids. Also, temperature can
change in this process if steam injection is used.

2.3 Elastic and electrical rock properties

The effective elastic and electrical rock properties are a result of the individual
constituent properties, composition and the physical conditions imposed on it from its
surroundings. That is, the pressure, temperature, porosity, lithology and fluid saturation
have direct implications on the effective properties of the rock. We often study the average
density, bulk and shear moduli, P- and S-wave velocities, Poisson’s ratio and conductivity
(or resistivity) to characterize a rock.

Average density is defined as the amount of mass within a volume segment. The
mass of a rock is the summed mass of each of its constituents. Hence, the average density p
for N constituents can be expressed as the volume weighted sum of density p, for each
constituent

N
p= Z:l:ann ' 231

where V, is the volume fraction of the n-th constituent.

Bulk modulus K is a measure of a medium'’s resistance to change in volume due to a
change in pressure. For an isotropic medium it is defined as
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where AP is the pressure change resulting in the total volume V being increased or
decreased with the value AV.

Shear modulus u expresses the resistance to a shear type deformation, and for an
isotropic medium it is given by

_F
#= Atan 7 233

where F is the shear force applied to an area 4 resulting in a shear deformation with angle y

The speed with which a wave travels through a medium is for a pressure and shear
wave given by the P- (V;,) and S-wave (V) velocities, respectively. For an isotropic medium
they can be calculated from the density, bulk and shear moduli according to

K+4/3u
V, = P 2.3.4
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Poisson’s ratio for a medium exposed to uniaxial stress is the ratio of the transverse
strain to the axial strain. For an isotropic material the Poisson’s ratio vis given by

= 3K-2u
26K +u) 2.3.6

Electric conductivity o is a measure of how well a material conducts electricity. It
is the reciprocal of electric resistivity. For materials behaving according to Ohm'’s law, we
have that

J =0k, 2.3.7

where J and E are the current density and electric field, respectively.

2.4 Remote sensing of hydrocarbon reservoirs

Hydrocarbon reservoirs are typically found a couple of kilometres under the Earth’s
surface which in turn can be several hundred meters under the sea surface. Drilling a well is



the only sure way to learn if the reservoir contains hydrocarbons. However, drilling wells
are very expensive and we have several remote sensing tools, modelling and processing
techniques available to reduce the risk of drilling a so-called dry well (Kearey, Brooks and
Hill 2002). The work presented here is associated with two types of remote sensing
techniques, namely seismic and marine controlled-source electromagnetic surveys.

In seismic survey a source e.g. an airgun, triggers pressure waves which travel
through the water column and down into the upper crust of the Earth (Kearey et al. 2002).
When the energy reaches an interface between layers in the Earth, parts of that energy
propagates down into the next layer as transmitted waves and parts of the energy is
reflected towards the surface (see Figure 2.1). In case of the wave hitting the interface at an
angle, both pressure and shear waves are reflected and transmitted (Figure 2.1b). However,
shear waves do not travel through the water column because water has no shear resistance.
Therefore, receivers which are towed as streamers just below the sea surface will only
record the energy from the reflected pressure waves. Alternatively, receivers can be placed
on the seabed to record information about both the shear and pressure waves. In addition
to the reflected energy from the subsurface the receivers record the direct wave from the
airgun and the water surface reflected signal. Also, multiple arrivals from the same interface
are recorded due to the signals being reflected back and forth between interfaces before
returning to the surface. Hence, the recorded signal is a superposition of wave-energy
containing information from several targets. We use various processing techniques to
isolate the part of the signal which we are interested in. Afterwards, velocity models, cross-
plotting and inversion can be utilized to estimate and evaluate the properties of the various
layers in the subsurface. Typically, the aim is to identify geological formations which are
associated with the presence of hydrocarbons. From seismic data it is easier to make
predictions of the layers in the subsurface, rather than identifying the actual hydrocarbon
resources.

a)

Figure 2.1 Reflected and transmitted waves at a layer interface for an incident wave arriving (a) at a normal angle
and (b) at an oblique angle to the interface surface.



Marine controlled-source electromagnetic (CSEM) surveys or seabed logging
(Eidesmo et al. 2002; Constable and Srnka 2007) is done in a similar way to seismic
acquisition. Several methods exist, but typically a several hundred meters long horizontal
electric dipole is towed behind a vessel generating an electric field which propagates down
into the Earth (see Figure 2.2). Receivers placed on the seabed record the electric field.
When the dipole is aligned with the receivers (inline configuration) refracted energy from a
high resistive hydrocarbon reservoir can be recorded. This signal is mixed with the direct
and surface-to-air refracted signals, which contains no information about the reservoir. At
near offset, contributions from the direct field will dominate, and at far offset it is the
surface-to-air refracted field which dominates. Because the electric field attenuates quickly
in water and if the water depth is large enough, e.g. larger than 3-400 meters, the response
from a hydrocarbon reservoir located at a sufficient depth will dominate at an intermediate
offset. Resistivity predictions of
the subsurface can be achieved
through processing and inverse
modelling of the CSEM data.
Because brine is conductive
and hydrocarbons are insu-
lating CSEM has the potential Source
of being an effective tool in
locating hydrocarbon resourc-
es. However, it is not equally
suited as seismic acquisition to
use for mapping the subsurface
layers. Hence, it works best

when using seismic data to

constrain the resistivity resp- Figure 2.2 Schematics of a marine controlled-source electromagnetic

i X survey (CSEM). (Adapted from Marine CSEM module in GeoCLASS,
onse to geological formations. UniGEO 2011).

Reservoir

2.5 Rock physics models

In rock physics modelling we apply a theory to predict the effective properties of
rocks, often referred to as forward rock physics modelling. Typical inputs to the
modelling are the constituent properties and respective volume fractions, e.g. porosity, and
details about lithology and fluid saturation. Many models also include other characteristics
of the rock, such as pore and grain geometries, composition, cementation and anisotropy.
Which theory is appropriate to use depends on the type of rock to be modelled. The first
two papers in this thesis present research done on forward rock physics modelling against
data from laboratory experiments. In paper 1 the effective elastic properties of mixed
porous clay are calculated using an alternative method compared to the typical approach



which relies on the constituent properties. In Paper 2 we demonstrate consistent joint
elastic-electrical modelling and we estimate porosity reduction from resistivity measure-
ments on compacting reservoir sandstone core plugs. Rock physics models are however
also vital for the remaining three papers, and in the following, a brief review of some of the
common models used in this research is presented.

Bounds are often used as a first approximation. The lower and upper bounds for the
elastic moduli of any isotropic or anisotropic media can be approximated with the Reuss
(1929) and Voigt (1928) models, respectively. For N inclusions they are given as

-1
- V’l

Cr {ZC} : 25.1
n=1

nn 2.5.2

where Cr and Cv are the effective elastic moduli according to Reuss and Voigt, respectively.
The elastic moduli and volume fraction of the n-th constituent is respectively C, and V. In
case of a vertically applied force, a physical interpretation of these bounds are a horizontal
or vertical layering of soft and stiff materials for the lower and upper bounds, respectively.
Modelling according to the Hill average (Hill 1963) gives the mean of the Reuss and Voigt
bounds, i.e. the effective elastic property Cu according to Hill is

C, +C

Co=—"7 2553

Another bounding model is the lower and upper Hashin-Shtrikman bounds
(Hashin and Shtrikman 1963). A physical interpretation of the lower bound for a two phase
composition is a spherical material with an inner stiffer core and an outer softer shell. The
upper bound can be described in the same way, but interchanging the stiffer and softer
constituents. The general version of these bounds is called the Hashin-Shtrikman-
Walpole bounds (HSW), also known as the modified Hashing-Shtrikman bounds. The
effective elastic moduli of the HSW bounds for a media with two components (Walpole
19664a,b) is

v

Kysw =K, +

’

] 4 Y
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where the indexes 1 and 2 refer to the two components, and V, K and u are the volume
fraction, bulk and shear moduli, respectively. The equations give the upper bound when the
largest bulk and shear moduli values of the two components are used for Km and tm,
respectively. The lower bound is found when the minimum moduli values are used for these
parameters.

Physical interpretations of the above theories can be linked to the composition of the
rock. Other theories integrate more details about the structure of the rock, such as grain
and pore shapes, number of contact points between grains, roughness of the grains,
cementation, etc. For example, the elastic moduli of unconsolidated dry random packing of
non-frictionless spherical grains can be calculated according to the Hertz-Mindlin theory
(Mindlin 1949)

5 1/3
_|:C§(l_¢0)2:u; P:|

M8z (1-v, ) 2.5.6
PRSI e () h
™MTs2-v) | 1823 (1-v ) | 257

where Kuwm, tnm, Us, Vs and P are the effective bulk and shear moduli, shear moduli and
Poisson’s ratio of the grains and hydrostatic confining pressure, respectively. The
coordination number Cp is the average number of contact points between the grains at the
critical porosity ¢.

For consolidated rocks, one can for example use the self consistent approximation
(SCA) theory (Berryman 1980a, b; Berryman 1995). This inclusion based model takes into
account interaction between the inclusions by considered them to be embedded into a host
material with yet unknown elastic properties. The elastic properties of the host medium are
perturbed until the net effects of all inclusions vanish. The bulk Ksca and shear moduli gsca
according to the self consistent approximation can be derived from solving the equations

0:

™=

M
;v,., (K, —Keer )P, 2.5.8

i 1
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where Kj and ; are the bulk and shear moduli of the j-th inclusion, respectively, Vj is the
volume fraction of the j-th inclusion with the i-th aspect ratio, and P; and Q; are geometrical
factors associated with the inclusion material.

The differential effective medium (DEM) theory (Bruggeman 1935) is another
inclusion based theory which takes into account higher order interactions. For a two phase
composition, one of the constituents is embedded into the other material, which acts as the
host medium. This is an asymmetric model because given the same volume fractions of the
constituents, interchanging the host with one of the embedding components results in
different elastic moduli. The elastic moduli can, according to the differential effective
medium theory, be solved from the coupled differential equations (Berryman 1992;
Berryman 1995)

(1- y)diy[K*(y)]= (k, -k (B (), 2.5.10

(1- y)diyLu*(y)]: (et — ' ()25 (v)- 2.5.11

Phase one acts as the host material with bulk moduli Ki = K*(y=0) and shear moduli
1 = w*(y=0), while the bulk and shear moduli of phase two is K> and z, respectively, and y
is the volume fraction of phase two. The geometrical factors P, (y) and Q,(y) are calculated

having phase two as the inclusion material in a host with effective moduli K* and z*.

Counterparts to the above theories exist for calculating the conductivity. However, in
this thesis we only make use of the differential effective medium model of Gelius and Wang
(2008) where the conductivity ois given by

O'(s, p,T,SW)Z [O-W(SO’TO)+A0-W] [Swo +ASw]m [¢(p0)+A¢]m :

B(S(VT())+IB(S7T)UC(5057;))/0(5’ p’T’Sw) ’ 2.5.12
B(SO’T)+ lB(S’T)O-c (SO’T() )/(O-w (SO’TO)+AGW)

where s, p, T, Sw, ¢, ow and o are the brine salinity, differential pressure, temperature, water
saturation, porosity, water and solid conductivity, respectively. These parameters are index
edwith a zero for the initial or reference value. The delta values reflect the variation from
the reference state. The ease of which cations move along the clay surface is given by the
equivalent electrical conductance parameter B. The geometrical parameters I, m and n are
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functions of the porosity, water saturation and clay volume fraction, as well as the grain
alignment factors.

2.6 Reservoir characterization with rock physics modelling

In forward rock physics modelling the characteristics of the reservoir are used as
input to make predictions of the effective elastic properties. When mapping the subsurface,
e.g. in search of hydrocarbon resources or CO; sequestration, it is the reservoir properties
which we are interested to determine. Hence, we have the unfavourable situation where
what we want to calculate is the input and what we measure is the output of the modelling.

A typical workflow in reservoir characterization using forward rock physics
modelling is first to make some initial assumptions about the reservoir. That is, to make a
qualified guess of the geology and reservoir properties in order to choose representative
rock physics theories to apply for predicting the effective elastic properties. The modelling
results are compared with the observations, and the initial parameters are modified to
create a better match between modelled and observed data. This process is repeated until a
adequate match is achieved. This can obviously be a tedious task, and a direct prediction of
the reservoir parameters from the rock physics properties is preferred. Such an approach is
referred to as inversion.

Inversion of reservoir parameters from seismic and electromagnetic properties is
challenging from a mathematical and physical point of view. Many theories for modelling
rocks and trying to capture their complexity exist. However, no matter how complex the
models are they are still only simplifications of the actual rock. Still, many of the theories
produce good predictions under given circumstances. However, because measurements are
uncertain we are not guaranteed that the inversion has a solution. The problem is typically
ill posed with non-unique solutions, making it practically impossible to find an analytical
inverse function.
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"There is nothing like returning to a place that remains unchanged
to find the ways in which you yourself have altered.”
Nelson Mandela, ‘A Long Walk to Freedom'

S. African black civil rights leader (1918 -)
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3 Inverse rock physics modelling

Inverse rock physics modelling (IRPM) is an approach to systematically test
observations against the results of forward modelled predictions from various rock physics
models. Hence, it allows capturing all possible solutions which exists within the tested
models, and it can also take into account uncertainties.

3.1 Constraint cubes

The IRPM approach relies on a library of forward rock physics model constraints
between the effective elastic and electrical rock properties and the reservoir or model
parameters. We denote these forward models constraint cubes.

Figure 3.1 gives an over-
view of how constraint cubes are
created. In each cube we perturb Theory
over up to three reservoir or \
model parameters, which are
related to the x-, y- and z-axis in
a 3D coordinate system. More Reservoir /

Constraint
Cubes

Forward
Solver

model parameters can be and
handled by creating multiple Model
Parameters

constraint cubes, e.g. introducing
several aspect ratios of the
inclusion material.

Figure 3.1 Flowchart for creating constraint cubes.

In the following examples we focus on porosity ¢ lithology C and fluid saturation S
(PLF), which we relate to the x-, y- and z-axis, respectively. Here, the lithology is quantified
as the volume fraction of clay in the solid phase, and the fluid saturation is the volume
fraction of brine in the fluid phase.

The minimum and maximum values of the reservoir parameters make up the
corners of the constraint cube; e.g. one corner for (@nin, Cmin, Smin) coincides with origin and
the corner diagonally to it is defined by (#nax, Cmax, Smax). The cube is divided into a grid
with NxNxN equidistant nodes. We calculate effective elastic and electrical property values
for each node according to the chosen theory and model specifications. For a rock property
d we have that the discretely sampled constraint cube R is
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Interpolation between the nodes in R gives the continuous scalar field function D
D(¢’ C’ S) = d’ v ¢€ [¢min ’¢max]/\ Ce [Cmin > Cmax ]/\ Se [Smin > Smax] . 3.1.2

Figure 3.2 shows an example of a density constraint cube for a rock made up of a
mixture of quartz and clay, and which is saturated with brine and gas. The colour gradient

corresponds to the density.

Where as one set of PLF values corre-
sponds to only one density value, one density
value typically corresponds to more than one

set of PLF values. All sets F, (dA) of PLF values

for a rock property d with value d can for
example be extracted using a marching cubes
algorithm (Lorensen and Cline 1987).
Connecting these sets leads to a surface in
the PLF domain (see Figure 3.3). We denote it
an isosurface because each point on the
surface has the same value of the inspected

property, and we denote F, (a?) the isosurface

relation of the elastic or electrical property d.

The topology of the isosurface relates
the constraints which that property value has
on the porosity, lithology and fluid satu-
ration. In the example in Figure 3.3, we can
see that this density value constrains the
porosity quite well, but not the lithology and
fluid saturation. An inspection of the density
constraint cube shows that this is a general
trend. This is also logical, because the
contrast in density between the two solid
components is small and the same applies to
the two fluid components. However, the
porosity reflects the large density contrast of
the solid and fluid.

Density
[g/cm3]
265

248

231

Clay

0.5

04 0

Litholo
Porosity Quartz &4

Figure 3.2 Density constraint cube.

™" Density

Brine 1

Saturation
o
[

075
Lithology

Porosity

Figure 3.3 Isosurface for a density = 2.4 g/cm®. The
colour gradient corresponds to the saturation.



3.2 Modelling strategy

Figure 3.4 gives an over-
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view of the inverse rock physics Models:

modelling strategy. The IRPM Constraint

solver can test the data against Cube \ Solutions:
several models. The solutions IRPM Theory,.
contain the possible sets of - Solver Reservoir
reservoir and model parameters, Date,l' and Model
e.g. porosity, lithology, fluid iq:g:::_e / Parameters
saturation, pore geometry, etc. St

The applied rock physics models Properties

can have a geological interpre-

tation which can be used when  Figure 3.4 Flowchart for the inverse rock physics modelling.

analyzing the solutions.

The solutions of an IRPM using only
one rock physics model and the
measurement of only one rock physics
property is the set of PLF values which
makes up the corresponding isosurface. As
shown in Figure 3.3, Fp(ﬁ) for an observed

density value p does not only give non-

unique PLF solutions, but the solutions span
over a wide range of values. The range can be
reduced by utilizing the observation from a
second property, e.g. the bulk modulus K

with an observed value K. The isosurfaces of
a bulk modulus and density value
corresponding to the same rock volume is
plotted in Figure 3.5. Now, the solution of the
IRPM is constrained to the intersecting line
between these two surfaces, ie.

F,(p)F(R).

™ Density
™ Bulk modulus

Saturation

0.25

0 0 Porosity

Quartz

Lithology

Figure 3.5 Isosurfaces for a density = 2.4 g/cm® and
bulk modulus = 22 GPa for the same rock volume.
The colour gradients correspond to saturation. The
IRPM solution highlighted with a yellow line is
constrained to the intersection between the two
surfaces.

In Figure 3.6, a third isosurface is plotted, namely for the shear modulus g with
observed value f. In this example, making use of all three observations of the same rock

volume gives a single PLF solution defined by the point where all three surfaces intersect,

ie. F, () F(R)n F, ().
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Because the rock physics models are  m Density
nonlinear using measurements from three T Bulkmodulus
) ] . ™ Shear modulus

properties does not necessarily give a :
unique solution; often we will find two
points where the three surfaces intersect.
But even when the surfaces intersect in

Brine 1

0.75

0.5

Saturation

only one point, it does not necessarily mean 025

that this is the only possible solution. In -

fact, here only one rock physics model has o 0}\ /03/0»4
been considered. It is likely that more than 0s . 02

one model will match the data, leading to
several possible PLF solutions. Finally,

uncertainties in the input parameters . . 5

. . Figure 3.6 Isosurfaces for a density = 2.4 g/cm’, bulk

increase the number of possible PLF solut- and shear modulus of respectively 22 and 15.5 GPa

ions even further. for the same rock volume. The colour gradients
correspond to the saturation. The IRPM solution

highlighted with a yellow circle is constrained to the
intersection between all three surfaces.

0 0 Porosity

Quartz

Lithology

For more details on the inverse rock
physics modelling strategy, the reader is
referred to Paper 3.

3.3 Solvers

The physics in the inverse rock physics modelling (IRPM) strategy is in analysing the
problem, generating new or selecting previously created constraint cubes and interpreting
the results of the modelling. Solving the stated problem according to the IRPM approach is a
mathematical exercise which in practice requires a computer science implementation. In
the research presented in this thesis, two complementing solvers are used, which we refer
to as the Newton-Raphson and the proximity detection solvers.

Results of IRPM using the two solvers with two and three input properties are shown
in Figure 3.7. The Newton-Raphson solver based on Newton-Raphson’s method (Kelley
2003) gives the coordinates of the intersecting points between two or three isosurfaces
within a certain amount of precision. The proximity detection solver identifies points on
each isosurface which are within a specified Euclidian distance in the PLF domain of points
on either the other two or three isosurfaces. Hence, solutions are not necessarily
constrained to where all surfaces intersect, but it also allows them to be within a maximum
distance of each other. To cover the PLF volume of possible solutions we create a spherical
cloud of points around the identified solutions.

An obvious difference between the two solvers is that the Newton-Raphson gives
“exact” solutions, while uncertainty is implicit in the proximity detection solver.
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Uncertainty can be handled in the Newton-Raphson solver by repeating the modelling over
perturbed input values. However, that is a more tedious task and requires an extra iteration
per perturbation.

™ Density ™ Density
™ Bulk modulus R ) ™ Bulk modulus
- ™ Shear modulus -

Brine | . - 4 Brine

0.75 0.75

054 - 0.5

Saturation
Saturation

0.25 0.25

Gas Gas

0

Clay

1 - " 04
Clay . . -
E . o3

0.2 0.2

Porosity Porosity

0
Quartz

0
Quartz

Lithology Lithology

™ Density ™ Density
™ Bulk modulus ™ Bulk modulus
2=°) e ™ Shear modulus -

Brine Brine |

Saturation
Saturation

0.2

0 0
Quartz

Porosity Porosity

0
Quartz

Lithology Lithology

Figure 3.7 Examples of IRPM solutions produced using the Netwon-Raphson based solver (top) and proximity
based solver (bottom), with two (left) or three input parameters (right). The identified solutions are marked in
yellow.

3.3.1 Workflow of Newton-Raphson solver

The Newton-Raphson solver consists of four main steps (see Figure 2.8).
1. Calculate gradient functions

In addition to the scalar field functions of the various elastic or electrical properties (eq.
3.1.2) the Newton-Raphson solver also requires the gradient of the scalar field. We calculate
the gradient of the discretely sampled property cubes (eq. 3.1.1) and interpolate the result
according to the same procedure as for the scalar field function (eq. 3.1.2) to acquire a con-
tinuous gradient function of the scalar field.
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2. Sub-cube segmentation

To create the discrete constraint cubes a grid with 26x26x26 nodes is defined. Each node
forms the corners of cells for a total of 25x25x25 sub-cubes. The number of sub-cubes must
be sufficiently large to capture the
topological variations of the elastic

. oo Models: Calculate
or electrical properties in the PLF o T
domain. Cube Functions
3. Discard sub-cubes \
A requirement for an intersection Sub-cube

inside a sub-cube between elastic Segmentatio

and/or electrical properties used in Data:

the inverse modelling is that the re- Effective

spective property values exist Elastic- .

o . Electrical Discard

inside that volume. Applying a . Sub-cubes
. o Properties

check for this allows us to eliminate

sub-cubes which do not contain
. e Qutput:
solutions before initiating the more Gt o
time-consuming Newton-Raphson Locatg Reservoir
. Intersections
algorithm. Hence, sub-cubes where and Model
the property value is outside the Parameters

range of the sub-cube’s minimum

. . Figure 2.8 Flowchart of the Netwon-Raphson solver.
and maximum values are discarded.

4. Locate intersections

Newton-Raphson’s method (Kelley 2003) is used on each remaining sub-cube to locate
possible intersecting solutions. The value in the centre of each sub-cube is used as the initial
value. In addition, when using only two input properties in the inverse modelling, each side
of the cube is tested for an intersection, with the value at the centre of the sides as the initial
values. This is because a solution between two properties will typically be an intersecting
line between the isosurfaces of the two properties. Testing each side allows connecting the
dots making up the line in addition to a denser sampling of the line. Figure 3.9 shows an
example where the Newton-Raphson solver successfully identifies the intersection between
two isosurfaces along two separate line segments.
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Figure 3.9 Intersection between the density and bulk modulus isosurfaces. The top right corner on the figure to the
left has been zoomed in and displayed in the figure to the right. The boxes are the sub-cubes with possible
solutions which were not discarded, and the red and black highlights those were a solution and no solution were
found, respectively. The yellow circles with stars are the identified solutions and a yellow line is drawn through the
solutions which are identified to be connected. Here two line segments have been identified.

3.3.2 Workflow of proximity detection solver

The proximity detection solver consists of four main steps (see Figure 3.10).

1. Resampling

Models:
The isosurface relation are used to Constraint
resample to a higher resolution than Cube Resampling
the one we have in the original
cubes; e.g. from cubes with a grid Resampled
made up of 26x26x26 nodes to a Constraint
grid made up of 50x50x50 nodes. Cubes Isosurface
Extraction
2. Isosurface extractions Data: /
. Effective
Isosurfaces are extracted, e.g. using .
a marching cubes algorithm Electrical Proximity
(Lorensen and Cline 1987) or in Properties DETEie

MATLAB we can use the native

. . Output:
ISOSURFACE. The points making up SiereE] Sets of
the resampled constraint cubes Cloud Reservoir
must have sufficiently high reso- Expansion and Model
lution to capture the varying non- Parameters

linear topology of the isosurfaces.

Figure 3.10 Flowchart of the proximity detection solver.
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3. Proximity detection

Points on each surface within a maximum pre-defined distance ¢ from each other are
identified as solutions. Hence, for three input properties, a point on one surface must be
within a distance dof a point on the other two surfaces and those points must also be within
a distance Jof each other.

4. Spherical cloud expansion

For each identified solution, a sphere of points within a radius &2 and a spacing J/4 are also
considered possible solutions.

The output is a list of discrete points with PLF coordinates, but the actual solutions
should be continuous regions. If the resolution is large enough in the resampled constraint
cubes the list of discrete points can be interpreted as continuous in those regions.

3.3.3 Run-time performances

The run-time performances of the two solvers can be expressed according to

T=m- (pt5 +pi, + dt, ), 231
where T is the total run-time, m, p and d are respectively the number of rock physics
models, number of input elastic and electrical properties and number of data samples, and
ts, tg and tq are the times it takes to create one isosurface relation and one gradient scalar
field function for one property and process one data sample, respectively. The gradient
scalar field functions are only required for the Newton-Raphson solver, therefore that term
is zero in case of the proximity detection solver.

On a Dell OptiPlex workstation with an Intel Core 2 Quad Q9400 2.66GHz and 4GB
ram running Windows Vista and MATLAB R2010A approximate values for ts and tg are

5seconds, and tq=5 seconds in case of Newton-Raphson when using only two input
properties, and tq= 0.5 seconds when using three input properties or in case of using the
proximity detection solver for two or three properties. However, these times depend on the
number of identified solutions.

The large difference in tq is because the Newton-Raphson method is very time
consuming and using two instead of three elastic and/or electrical properties as input to the
inverse modelling, results in more identified solutions. In all cases, once the isosurface
relation and gradient scalar field functions have been found the calculations for each model
m are independent as well as for each data parameter d. Hence, a parallel implementation
can be used to increase the efficiency of the algorithms.
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3.4 Applications

There are several applications for inverse rock physics modelling (IRPM). In paper 3
and 4 we use this strategy to do a quantitative calibration of rock physics models and
property values to fit a given data set. Because the strategy allows us to capture all possible
solutions for a given model, it gives us a quantitative basis to evaluate and compare the
performance of various rock physics models. Fine-tuning can be done by perturbing the
various unknown parameters after discarding the least promising models.

When we are finished calibrating models to various geological facies, e.g. using
information from well log data, the IRPM can be utilized in reservoir characterization, e.g.
between well locations. Using the IRPM to test the various models performance against e.g.
data derived from seismic acquisition, one can identify these formations. By testing
different realizations of the models for different fluid saturations the IRPM can be used in
reservoir monitoring.

In paper 5 we show how the constraint cubes, which are the basis for the IRPM can be
used in conditioning of elastic and electrical properties for use in reservoir
characterization. Such a sensitivity study can help us to identify the optimal parameter
combination to characterize a specific reservoir or indicate possible ambiguities associated
with solutions for particular parameter combinations.

As explained earlier, once a problem has been stated the physics of the IRPM is not in
solving it. This means that the IRPM strategy and solvers has a scope beyond rock physics.
It should be applicable to other multivariable problems which proves difficult to find the
inverse solution to, e.g. within meteorology, economics, physics, mathematics, etc.
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“The worthwhile problems are the ones you can really solve or help solve,

the ones you can really contribute something to.”
Richard Feynman, Letter to Koichi Mano, February 3, 1966

US educator & physicist (1918 - 1988)
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4 Main scientific contributions

The main scientific contributions of this thesis are presented in five research papers
which have either been published, are in review, submitted or in preparation of being
submitted to an international journal. Preliminary results of this research have been
presented at several international conferences during the time span of the work (Jensen
and Wang 2010; Moyano, Jensen and Johansen 2010; Andersen, Jensen and Johansen 2009;
Jensen and Johansen 2009; Johansen and Jensen 2008). In Paper 1 we present an
alternative to more typical methods for calculating the effective elastic properties of
clay composites tested on measurements from a laboratory experiment on mixtures of
smectite and kaolinite. In Paper 2 we demonstrate consistent modelling of elastic and
electrical properties compared with measurements on compacting reservoir sandstone
core plugs. A methodology for doing inverse rock physics modelling is presented in Paper
3 and it is tested both against synthetic data and a well log from the Glitne field in the North
Sea. The methodology from Paper 3 is used in Paper 4 as a tool to calibrate rock physics
models against real data. Finally, in Paper 5 the inverse rock physics modelling is
complemented with a method for confining elastic and electrical parameters for use in
reservoir characterization.

Following is a brief presentation of the objective and the main conclusions of each
research paper. The papers in their entirety can be found in the appendix.

4.1 Paper 1: Estimation of elastic moduli of mixed porous clay
composites

Erling Hugo Jensen, Charlotte Faust Andersen and Tor Arne Johansen.
Geophysics 76, E9-E20, 2011.

Calculating the effective elastic properties is vital in rock physics modelling. Normally,
rock physics models are applied to calculate the effective elastic properties from the
constituent properties with their respective volume fractions and possibly some
specifications of the texture and composition.

In this paper we test an alternative methodology for calculating the effective elastic
properties of mixtures of smectite and kaolinite. The elastic properties of clay are
ambiguous and any modelling based on these constituent properties is hefted with
uncertainty. We avoid introducing this uncertainty by using measured effective elastic
properties of pure clay samples to calculate the effective elastic properties of mixed clay
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samples. The modelling is tested against published laboratory data on six different samples
with various volume fractions of smectite and kaolinite, and at various confining pressures
between 1 MPa to 50 MPa. The main findings of this study are:

In the modelling, we assumed the mixed clay samples to be composed of spherical
clusters consisting of pure smectite and kaolinite grains and associated pore spaces.
In addition to achieving good results in our modelling, we found support for this
assumption in form of a heterogeneous mixture in the observed linear increase in
porosity for the same applied stress, between the pure kaolinite, through the
kaolinite-smectite mixtures to the pure smectite sample. A more homogeneous
mixture should have lead to a V-shaped drop in porosity due to the smaller smectite
grains filling the pore space associated with the larger kaolinite grains.

The difference in porosity for the two pure clay samples when exposed to the same
external stress means that the pore space associated with the two clays compact
differently. This has possible implications for our clustered based modelling, which is
why we also test a correction to the volume fractions of the clay clusters in the
presented modelling.

In the study we tested three different strategies for selecting the pure clay end-
members:

Iso-porosity: The pure clay end-members were assumed to have the same porosity.

Iso-pressure: The same confining pressure was assumed for the two pure clay end-
members.

Average: The end-members were assumed to be half-way between the previous two
(with respect to porosity).

The best predictions where achieved using the iso-pressure strategy for selecting the
end-members and applying the correction to the cluster volume fractions.

We found the various tested mixing models to have less impact on the modelling
compared to the choice of strategy for selecting the end-members. In fact, when
following the iso-pressure strategy all mixing models gave almost equally good
predictions, with the Hashin-Shtrikman upper bound giving slightly better results for
the shear modulus.

The study shows that the presented method can be a viable alternative to more
typical modelling approaches which relies on the constituent properties.
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4.2 Paper 2: Consistent joint elastic-electrical differential effective
medium modelling of compacting reservoir sandstones

Erling Hugo Jensen, Leiv-] Gelius, Tor Arne Johansen and Zhong Wang.
Submitted to Geophysical Prospecting, June 2011.

The development of coherent rock physics descriptions for elastic and electrical
properties is required to be able model on combined seismic and controlled-sourced
electromagnetic (CSEM) data. The information retrieved from CSEM is suitable for fluid
predictions, and the data from seismic exploration is better suited for predicting structure
and lithology. Therefore, the two types of data are complementing and using both has the
potential of achieving improved reservoir characterization and monitoring.

In this paper we demonstrate consistent joint elastic-electrical modelling using a
differential effective medium scheme. We test the modelled results against measurements
on eleven compacting reservoir sandstones. All samples were brine saturated and consisted
mainly of quartz and kaolinite. Our main findings of this study are:

e We did a sensitivity analysis to examine the effect of variance for the various
properties to be used in the modelling. We found that for the given samples, we can
safely assume the quartz grains to be spherical and the clay grains to have a
conductivity of 0.02 S/m.

e We used the measured resistivities to calibrate the aspect ratio of the oblate clay
grains for the various samples. In addition, they were used to estimate the porosity
reduction due to compaction of the samples.

e The calibrated clay aspect ratios and estimated porosities were used in modelling of
the effective elastic properties. Both the elastic and electrical modelling were done
according to a differential effective medium approach. Here, the high porosity end-
member constitutes the host material, while the solid minerals were gradually added
as inclusions.

e Due to the large variance in reported elastic moduli values for kaolinite, we decided
to treat them as unknowns. However, because all samples came from the same well
location we constrained the elastic moduli of kaolinite to be the same for all of them.
We used a constrained multivariable non-linear regression approach to calibrate
these moduli and to predict the critical porosity and corresponding elastic moduli for
the various samples.
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e We achieved an overall good fit between the modelled and corresponding
measurements supporting the basic idea of joint modelling of elastic and electrical
properties.

4.3 Paper 3: Inverse rock physics modelling

Tor Arne Johansen, Erling Hugo Jensen, Gary Mavko and Jack Dvorkin.
In preparation to be submitted to Geophysics, 2011.

Prediction of reservoir and model parameters from seismic data is essential in
reservoir characterization and monitoring. However, this task is challenging due to the
number of possible rock physics models with various geological and geophysical
interpretations, the number of unknown parameters and the non-linear dependency of the
parameters.

In this paper we propose a method based on a new philosophy for doing this type of
inverse rock physics modelling, where all possible solutions of the model and reservoir
parameters from seismic parameters are identified. The method permits systematic testing
of various rock physics models, giving geophysicists a robust basis for doing quantitative
reservoir characterization. The approach is tested both on a synthetic data set as well as on
well log data from the Glitne field. Our main findings of this study are:

e The rock physics model relations were reformulated in order for elastic and electrical
properties to be used as input, while the reservoir parameters are the output of the
modelling. Therefore, the approach permits efficient testing of observations against
various rock physics models in order to do reservoir characterization.

e The suggested approach is flexible with respect to the type and number of properties
to use as input and output as well as the applied theories. Furthermore, it is also able
to handle the nonlinear relations of the rock physics properties.

e The systematic testing of all selected models ensures the identification of all possible
solutions, and the modelling provides a simple way for displaying the non-unique
solutions.

e The suggested approach can incorporate uncertainties in a number of ways; 1)
perturbing the input data, 2) probability distribution estimations from error
distributions attached to the input parameters, 3) using the proximity detection
based solver which inherently accepts less constrained solutions.
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e We successfully predicted the porosity, lithology and fluid saturation of samples in a
synthetic data set using the proposed approach. We demonstrated the clear reduction
in the number of non-unique solutions, when using three instead of two elastic
properties as input to the modelling. Furthermore, we were able to obtain a
consistent rock physics model for the well log data from the Glitne field using the
inverse rock physics modelling.

4.4 Paper 4: Improved quantitative calibration of rock physics
models

Bernardo Moyano, Erling Hugo Jensen and Tor Arne Johansen.
Accepted for publication in Petroleum Geosciences, July 2011.

Reservoir characterization and monitoring can be an iterative process where models
are recalibrated based on newly acquired information. Initially, there might not be much
data to work with, but e.g. after a test well has been drilled, more detailed information
about the lithology, porosity, fluid saturations and other properties become available. This
can improve the accuracy in the rock physics modeling and allow the geophysicist to make
more correct predictions further away from the wells, e.g. from modelling on seismic data.

In this paper we use the inverse rock physics modelling approach as a tool to calibrate
rock physics models against real data. We compare the results with those found from more
traditional calibration techniques. The approach is tested on various models and data sets.
Our main findings of this study are:

e  We compared using the inverse rock physics modelling, presented in Paper 3, against
a traditional technique for calibrating rock physics models. When we applied the
traditional technique on data which previously has been used as an example to
illustrate the effect of pore-filling clay on porosity and velocity, we found no
contradiction to this perception. However, using the inverse rock physics modelling
revealed more robust predictions of both lithology and porosity when applying a
structural instead of a dispersed clay model.

e Also, the inverse rock physics modelling approach gives a more quantitative basis for
doing calibration, which allows us to evaluate the goodness of fit for the model
considering all the available data in a consistent manner.

e Furthermore, we demonstrate a more complete workflow using the quantitative
inverse rock physics modelling calibration technique on a larger data set. First, we do
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an initial screening of plausible models, before continuing more detailed calibration
on the most promising candidates.

e The study shows that using the inverse rock physics modelling approach gives a
quantitative basis for doing the calibration. This makes it possible to formulate more
robust models which give better fits to the observations.

4.5 Paper 5: Conditioning of elastic and electrical parameters for use
in reservoir characterization

Erling Hugo Jensen and Tor Arne Johansen.
In preparation to be submitted to Geophysical Prospecting, 2011.

In reservoir characterization, we typically have an imbalance in number of para-
meters derived from observations and the number of reservoir parameters to be estimated.
This imbalance as well as the many different rock physics models and the nonlinear
relations between the rock physics properties lead to non-unique solutions when
attempting to determine the reservoir quality.

In this paper we study the conditioning of elastic and electrical parameters to use in
prediction of the reservoir properties. We present a method which helps us identify the
combinations which gives the most precise and robust predictions. The method can also be
used to acquire an opinion about the expected performance of a particular parameter
combination. Our main findings of this study are:

e  We make use of the constraint cubes from the inverse rock physics modelling (see
Paper 3) to calculate an average sensitivity value for the elastic and electrical
parameters with respect to the various reservoir properties. We also calculated the
variance in the sensitivity values for the studied rock physics models and we
combined the reservoir property sensitivity values.

e Using this information we can identify elastic and electrical properties, which on
average are more sensitive to one reservoir property than the others. We can achieve
the most precise and robust prediction by using parameters which singles out a
respective reservoir property which they are sensitive to.

e We tested our analysis by doing an inverse rock physics modelling on various
combinations of elastic properties. Our predictions of which combinations would do
well and which would do badly were confirmed in this modelling on a controlled
synthetic data set.
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The method was also applied to eleven rock physics models which had been
calibrated against joint elastic-electrical measurements on compacting reservoir
sandstone core plugs. Our findings could be used in future modelling based on
seismic and controlled-source electromagnetic data acquired in the vicinity of the
well where the plugs had been retrieved from.

The method is flexible with respect to rock physics properties and models to be
tested. However, one must be careful to generalise the results as they depend on the
applied rock physics models.
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"People do not like to think. If one thinks, one must reach conclusions.
Conclusions are not always pleasant.”

Helen Keller

US blind & deaf educator (1880 - 1968)
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Conclusions

Improved reservoir characterization and monitoring can increase our understanding

of hydrocarbon reservoirs. This can allow us to locate new hydrocarbon resources as well

as extending the lifetime and increase the recovery from existing fields. The research

presented in this thesis demonstrates various methods for improving the modelling of rock

physics properties and estimating the reservoir quality from elastic and electrical data. The

main conclusions of this study are:

Estimation of effective elastic properties of mixed composites can be done based on
the effective elastic properties for rocks made up of the individual components. This
modelling approach is advantageous when the rocks are made up of minerals with
uncertain elastic properties, such as clay.

Consistent joint elastic-electrical modelling using a differential effective medium
scheme was successfully demonstrated on compaction measurements on eleven core
samples. Both the elastic and electrical modelling used the same property
specifications and treated the solid components as inclusion material and the high
porous end-member as the host medium.

An inverse rock physics modelling approach was demonstrated, giving a robust
platform for conducting reservoir characterization based on seismic and controlled-
source electromagnetic observations. The method handles the non-uniqueness of the
inverse problem, i.e. it can identify and present all possible solutions of the tested
models.

The inverse rock physics modelling approach provides a basis for doing quantitative
calibration of rock physics models. It is demonstrated on two different data sets, and
it shows improvements in the calibration compared with using more traditional
cross-plot based approaches.

The method for evaluating the conditioning of elastic and electrical parameters
allows us to predict the performance of parameter combinations to use in reservoir
characterization. It can be used to identify the combinations which on average will
give the most precise and robust solutions before inverting the reservoir properties
from our acquired data.
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"Our test of truth is a reference to either a present or
imagined future majority in favour of our view.”
Oliver Wendell Holmes Jr.

US jurist (1841 - 1935)
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"Doubt is not a pleasant condition, but certainty is absurd.”
Voltaire

French author, humanist, rationalist, & satirist (1694 - 1778)
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Estimation of elastic moduli of mixed porous clay composites

Erling Hugo Jensen', Charlotte Faust Andersen®, and Tor Arne Johansen®

ABSTRACT

We have developed a procedure for estimating the effec-
tive elastic properties of various mixtures of smectite and ka-
olinite over a range of confining pressures, based on the indi-
vidual effective elastic properties of pure porous smectite and
kaolinite. Experimental data for the pure samples are used as
input to various rock physics models, and the predictions are
compared with experimental data for the mixed samples. We
have evaluated three strategies for choosing the initial prop-
erties in various rock physics models: (1) input values have
the same porosity, (2) input values have the same pr
and (3) anaverage of (1) and (2). The best results are obtained
when the elastic moduli of the two porous constituents are de-
fined at the same pressure and when their volumetric frac-
tions are adjusted based on different compaction rates with
pressure. Furthermore, our strategy makes the modeling re-
sults less sensitive to the actual rock physics model. The
method can help obtain the elastic properties of mixed uncon-
solidated clays as a function of mechanical compaction. The
more common procedure for estimating effective elastic

ssure,

properties requires knowledge about volume fractions, elas-
tic properties of individual constituents, and geometric de-
tails of the composition. However, these data are often uncer-
tain, e.g., large variations in the mineral elastic properties of
clays have been reported in the literature, which makes our
procedure a viable alternative.

INTRODUCTION

Lithology prediction from seismically derived properties (such as
velocity, impedance, and velocity ratio) is important in seismic ex-
ploration and reservoir characterization. In siliciclastic rocks, forin-

stance, elastic properties and permeability are known to be strongly
influenced by the clay/sand ratio (Castagna et al., 1985; Best and
Katsube, 1995). Usually, we need to estimate the so-called effective
solid and fluid properties to calculate the impact of lithology and flu-
id variations on seismic properties. Knowing the effective properties
of the solid grains is necessary when. for instance. using the Gas-
smann equation (Gassmann, 1951) to study pore fluid effects. A
common strategy is to use the Hill average (Hill, 1963) to obtain the
effective solid properties before applying the Gassmann equation to
predict the fluid effects.

In this study, we investigate an alternative approach for modeling
the effective properties of mixed clay composites. The basis for the
study is a set of experimental data published by Mondol et al. (2007).
Here, dry and brine-saturated smectite and kaolinite have been
mixed and subsequently subjected to increasing (confining) pressure
while P- and S-wave velocities were measured. We consider the
mineral heterogeneity not to be on a mineral grain scale
la for illustration of mineral grain scale heterogeneity) but instead to

e Figure

be composed of clusters of each mineral, i.c.. as a mixture of porous
smectite and porous kaolinite (see Figure 1b). Therefore, we apply
the effective elastic properties of the pure samples to define end
members, which we then use to study the relevance of various rock
physics models without specifying the grain, fluid, or pore proper-
ties.

The elastic properties of smectite and kaolinite mineral clusters
differ, so we need to take into account the effects of different com-
paction of the two components, altering the relative volume frac-
tions as pressure is increased. We compare results obtained when the
end members are defined at isopressure, at isoporosity, or as an aver-
age between these two conditions.

Our approach is somewhat analogous to the one discussed by
Gurevich and Carcione (2000) for deriving the elasticity effects re-
sulting from pore fluid alterations in heterogeneous sand/clay mix-
tures. They propose a composite Gassmann model whereby fluid
substitution is performed for each constituent, subsequently using an
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appropriate mixing law to calculate the total effective properties. In
our case, we use the experimental data of the effective elastic proper-
ties of pure dry and saturated smectite and kaolinite clusters directly
in modeling the mixtures.

Our paper is organized as follows. We start by examining the data
set of the pure and mixed samples of smectite and kaolinite. Then we
define three strategies for selecting pairs of end members from data
characterizing the pure samples. For two of the strategies, we specify

a correction to the volume fractions of the constituents because of

their different compaction. Finally, we examine commonly used
rock physics models, with the end members and volume fractions as
input, to estimate the elastic properties of the mixed clay composites.
We make a statistical comparison between the predicted and mea-
sured data for the mixed samples.

DATA SET

We use data from a mechanical compaction experiment reported
by Mondol et al. (2007). Six dry and six brine-saturated samples
with mixtures of smectite and kaolinite, ranging from 100% smectite
to 100% kaolinite in steps of 20% matrix volume fractions, were pre-
pared in the laboratory and exposed to uniaxial (vertical) compres-
sion using an oedometer cell. The P- and S-wave velocities and
changes in sample heights were measured at pressure intervals of ap-
proximately 5 MPa, from I to 50 MPa, using the transmission tech-
nique (Birch, 1960). Changes in volume were deduced from the
measured decrease in the heights of the specimens and were used to
compute the porosities and densities. Dynamic bulk and shear mod-
uli were calculated from the velocities and density.
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grain

Smectite
Kaolinite ~ grain
grain

Pores

Mineral clusters

defining porous

smectite and kaolinite

Figure 1. Two ways of modeling the effects of mixed minerals. (a)
Homogeneous mixing can be modeled as a composite of single min-
erals, defining a set of effective (mixed) grain properties. (b) Hetero-
geneous mixing can be modeled as a composite of mineral clusters,
defining effective properties of porous clusters of each mineral.

Figure 2 shows the bulk and shear moduli of the various dry and
wet samples measured at 11 different pressures (and porosities),
plotted as circles. Because our modeling typically requires input for
other porosities or pressures than those which have been measured,
we find third-order polynomial fitted functions for these observa-
tions and use them to calculate the input values we need.

MODELING APPROACH

The use of effective medium models to obtain the elastic proper-
ties of porous composites typically requires knowledge of the corre-
sponding properties of the individual constituents. A general proce-
dure (e.g., Mavko et al., 1998) is first to model the two sets of effec-
tive parameters, one for the solid phase and one for the fluid phase,
and their respective volume fractions (Figure 1a). Subsequently, the
effect of porosity and pore texture is modeled. However, the elastic
properties of clay minerals are poorly known and may also depend
on the geochemical interaction with the pore fluid (Meade, 1966),
which makes the general procedure unsuitable.

We propose an alternative procedure wherein we consider the
smectite-kaolinite mixtures to have two phases: one cluster of po-
rous smectite and one cluster of porous kaolinite (Figure 1b). Thus,
the effects of mineral and fluid properties, grain geometries, pore
space, and structure are embedded implicitly in the effective elastic
properties of the two phases. For these properties, we use the mea-
sured data of the pure porous smectite and kaolinite samples as end
members and input to the effective medium models.

Figure 2 shows that the variation in elastic moduli versus porosity
and pressure differs for the pure smectite and kaolinite samples. We
will demonstrate how to use these curves to predict the properties of
any mixture of smectite and kaolinite.

The mixed samples initially are very loose. As confining pressure
increases, the porosity decreases and the bulk and shear moduli in-
crease. We assume that within the pressure range of this experiment
(pressure << 50 MPa), the reduction in sample volume is dominated
by areduction of the pore volume; we also assume that alteration of
the solid minerals is negligible. The porosity variations seen in Fig-
ure 2 should then be a result of mechanical compaction only. The
elastic properties of the various mineral mixtures are different, so

o TR d sor

their compaction rates and poros

sity reduction
in Figure 2c, the porosity in the wet samples reduces with confining
pressure from approximately 41% to 11% in the pure kaolinite sam-
ple. whereas the range for smectite is 57%—-36%. Figure 3 shows
schematically the compaction trends and the expected differences in
compaction of smectite and kaolinite mineral clusters.

A coen
nit.

L. AS SCCi

Strategies for selecting modeling end members

To base the modeling on observed data, we avoid using extrapo-
lated values, but we use best-fit values within a porosity range limit-
ed by the observations and the approach for selecting end members
for the modeling. We consider the following three strategies for de-
fining which end members to use as input to the effective medium
models.

Isoporosity

In this strategy, we assume an equal compaction of the pore vol-
umes of the smectite and kaolinite mineral clusters. Hence, both end
members and the mixed sample have the same porosity (Figure 4a):
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s = buix = bk (1)
where ¢s. ¢k, and ¢, are the porosities in the pure smectite, pure
kaolinite, and mixed samples. respectively. Then, in our modeling.
the pressures for the pure end members Pg and Py respectively, and
the mixture P,;,, are different:

Py# Pix# Py # Pg. 2

This limits our studied porosity interval to where we have obser-
vations for the pure smectite and kaolinite. The porosity values are
sampled with a 0.02 increment in the range [0.45, 0.59] for the dry
samples and [0.35, 0.41] for the wet samples.

IS()[)VL’XSIIVL’

Here. we assume that during compaction the same pressure is ap-
plied on the individual clusters in the mixed samples as we observe
for the pure samples. Hence, the end members and mixed sample
have the same pressure (Figure 4b):
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Pg= Py = Px. 3)
However, in our modeling, the porosities are now different:

b5 F buix F Pr F bs. 4)

The pressure range is nearly equal for all samples, which gives the
largest porosity range of the three approaches. The pressures are cal-
culated from the best-fit function of the pure kaolinite Py (), with a
0.02 increment in porosity sampling in the range [0.29, 0.59] for the
dry samples and [0.11,0.41] for the wet samples. These pressures are
in turn used in the porosity best-fit functions to calculate the porosi-
ties of the end members and the mixed samples.

Average

The two previous strategies form extreme bounds in our model-
ing. The average strategy examines the use of average properties be-
tween these two bounds (Figure 4c). In this case, neither the pressure
nor the porosity is the same for the end members and the mixed sam-
ple:

©OObservations with grayscale for pressure, P (MPa)
0 10 20 30 40 50

25 30 35 40 45 50 55 60 65 70 10 20 30 40 50 60
Porosity ¢ (%) Porosity ¢ (%)

Figure 2. Measured bulk and shear moduli versus porosity for (a, b) dry and (¢, d) wet samples. Circles denote moduli calculated from measured
P- and S-wave velocities and density. Increased pressure P decreases porosity, as indicated by the gray gradient applied on the circles. Lines are
best-fit curves for various smectite-kaolinite mixtures, where S is smectite and K is kaolinite: black solid line (smectite — S100/K0); black
dashed line (S80/K20); black x’s (S60/K40): gray plus signs (S40/K60): gray dashed line (S20/K80): gray solid line (kaolinite — S0/K100).
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Ps# P # P # Ps, (5)

s F buixF Px F Ps. (6)

Porosities in the range [0.37, 0.59] for the dry samples and [0.26,
0.42] for the wet samples are utilized to identify the kaolinite end
members and to calculate the corresponding pressure-porosity rela-
tion P (). Then the average of these porosities and the calculated
porosities ¢(P = Py) for the pure smectite and mixed samples are
inputinto the model.

For the three strategies, the modeling end members are calculated
using the obtained porosities as input in the bulk and shear moduli
best-fit functions K(¢) and u( ), respectively. The porosities and
corresponding moduli of the end members can be found in Appendix
A.

Volume fraction correction from varying pressure

The initial volume fractions of smectite Vs and kaolinite Vi in the
mixed samples refer to the relative matrix fractions. Because we
model mixtures of porous smectite and kaolinite, the volume frac-
tions must also capture the relative pore volumes of the constituents.
Hence, the volume fraction for smectite Lg is given by

Lg

(smectite mineral volume) + (smectite pore volume)

total volume
(7)

Assimilar relation can be written for the volume fraction of kaolinite
Lg: these fractions must satisfy the equation

L+ Lg=1. (8)

For the isoporosity strategy, we consider the volume fractions of the
porous constituents to remain constant and thus resemble the initial
volume fractions. For smectite, this means that

Smectite

Initial samples

S60/K40

Compacted samples

\, Elastic modulus

v

1.
@s«s‘z/f”ig\ e
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isopressure

Kaolinite

Porosity Kaolinite

Figure 3. Ilustration of how elastic modulus and porosity of pure
smectite (black) and kaolinite (light gray) samples with a 60% smec-
tite (S60) and 40% kaolinite (K40) mixture (dark gray) are con-
trolled by confining pressure. The mixture of smectite and kaolinite
is illustrated to take place as clusters of the constituents. The pore
space of the mineral clusters reduces with increasing compaction,
from initial conditions on the right side to final ones on the left side.
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Figure 4. Schematics of the various strategies to model the mixed
smectite-kaolinite composites. End members of elastic properties,
marked with X, are defined at (a) the same porosity, (b) the same
pressure, or {c) the average between (a) and (b). Associated pres-
sures to the measured seismic property are represented in the legend.
Black solid line is smectite, dotted line is S40/K40 mixture, and gray
line is kaolinite.
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Lg=Vs. 9) given by equation 10 for the isopressure and average strategies,

For the isopressure and the average strategies, we perform one set of
modeling whereby the volume fractions remain constant, as ex-
plained above, and another where the volume fractions change as a
resultof the relative difference in compaction of the smectite and ka-
olinite pore space. Then the smectite volume fraction is adjusted by

Ls= Vs, (10)

where ¢ and ¢ are the porosities that depend on the selected end

members of the mixed and pure smectite samples, respectively. (See

Appendix B for details about the volume fraction correction.)
Figure 5 shows the predicted porosity effects from compaction
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Figure 5. Effect of lithology correction on smectite fraction as a
function of porosity when following (a) the isopressure and (b} the
average strategy. For the observed porosities the circles denote un-
corrected data as given by equation 9 and the crosses denote the cor-
rected data as given by equation 10. The gray gradient refers to the
different smectite and kaolinite fractions.

compared with constant volume fractions (equation 9). The largest
corrections are clearly seen subsequent to initial compaction: the po-
rosity correction vanishes as the pore space becomes relatively small
compared to the total volume.

Models used in calculating effective moduli

Eight models are used and compared for predicting the observed
elastic moduli of the various mixtures. Reuss (1929), Voigt (1928),
Hill (1963), and Hashin-Shtrikman upper and lower bounds (HSUB,
HSLB) (Hashin and Shtrikman, 1963) are multipurpose models used
for deriving the elastic moduli for any mixture of minerals from the
elastic moduli of the individual constituents. Differential effective
medium (DEM) modeling (Sheng, 1990) and self-consistent ap-
proximation (SCA) (Berryman, 1980a, 1980b) are inclusion-based
models that consider the shapes of the inclusions and their respective
concentration. Normally, these shapes relate to the shape of the
grains or the pore space. But because we model mixing porous clus-
ters of pure smectite and kaolinite, the inclusions in our modeling are
not bound by these dependencies. So the spherical inclusions we use
do not denote the shape of the individual minerals but the shape of
the aggregate of minerals, representing the porous clay constituents.

In the case of DEM, we consider two versions: one where the ka-
olinite is the host medium (DEMy) and another where smectite is the
host medium (DEMs). More details of the various models can be
found in Appendix C. Predicted bulk modulus versus porosity for
these models are shown in Figure 6. The two end members used as
input in the modeling are the buik moduius of the porous material
and of the mineral. This is equivalent to considering a plot between
two porous materials — one being relatively soft and the other being
relatively stiff, where the x-axis denotes volume fractions of the two.

= = Reues
Hill
== = Voigt
. . HSLB
oo HSUB
SCA
N, = =+ DEM soft
S, = = : DEM stiff

Bulk modulus K (GPa)

Porosity ¢ (%)

Figure 6. Examples of the estimated bulk modulus as a function of
mineral fractions when the difference in bulk modulus of the two
constituents (end members) is large. Models: Reuss (dotted-dashed
gray curve), Hill (solid gray curve), Voigt (dotted-dashed black
curve), Hashin-Shtrikman lower bound (dotted gray curve), Hashin-
Shtrikman upper bound (dotted black curve), self-consistent ap-
proximation (solid black curve), differential effective medium with
the soft material as the host medium (dashed gray curve), and differ-
ential effective medium with the stiff material as the host medium
(dashed black line).
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MODELING RESULTS

To evaluate the results of the modeled versus observed data, we
use the rms deviation normalized to the mean of the observed values.
This is also referred to as the coefficient of variation of the rms devia-
tion (CVRMSD).

Figure 7 shows the CVRMSD for the bulk and shear moduli,
based on isoporosity, isopressure, and average approaches and sub-
sequently used in the eight prediction models. We see that the match
between modeled and observed data for the wet samples is better
than for the dry samples. The best results for the dry samples have a
CVRMSD smaller than 10%. whereas for the wet samples it is less
than 5%.

The modeling results generally are more sensitive to the choice of
strategy for defining the elastic properties of the end members than
the particular rock physics model being used. Thus, isopressure
gives a better prediction of the effective elastic properties of the
mixed samples than does isoporosity. Of the three approaches, iso-

porosity implies the largest difference between the elastic properties
of the two end members, leading to a stronger rock physics model
dependency than for the other two approaches, as revealed in Figure
6. The average gives results almost as good as when considering iso-
pressure.

In general, the volume correction clearly improves the predictions
for the isopressure approach. The two exceptions are for modeling
the bulk modulus of the dry samples and when applying the Voigt
model to calculate the shear modulus of the wet samples. But for the
average strategy, this correction only improves the results when the
Voigt model is used to calculate the bulk modulus of the dry samples.

Individually, the best results for the bulk and shear moduli of the
dry samples are obtained with the Voigt model with end members
from the isopressure or average strategy, respectively, both without
applying correction to the bulk volume fraction. Overall, the best
model to predict both moduli is the HSUB, defining end members by
the average strategy and with no volume fraction correction.

The bulk and shear moduli of the wet samples are best predicted
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Figure 7. The mean and standard deviation of the coefficient of variation of the rms deviation versus model for the (a) dry bulk modulus, (b) dry
shear modulus, (c) wet bulk modulus, and (d) wet shear modulus. The results are grouped for each model: Reuss, Hill, Voigt, Hashin-Shtrikman
lower bounds (HSLB), Hashin-Shtrikman upper bounds (HSUB), self-consistent approximation (SCA), differential effective medium with ka-
olinite as host medium (DEMy), and differential effective medium with smectite as host medium (DEMs). The mean values for the various mod-
eling are black asterisk (isoporosity), red dot (isopressure without volume correction), red circle (isopressure with volume correction), blue
cross (average strategy without volume correction), and blue asterisk (average strategy with volume correction). The error bars show the stan-

dard deviation.
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using the isopressure model combined with the volume fraction cor-
rection. For the bulk modulus, all effective medium models are al-
most equally good, but there are some variations in the quality of the
shear modulus prediction. Hence, the result for the shear modulus
constrains the number of models best suited for a combined model-
ing of both moduli. Then, all models except for Reuss and Voigt are
good candidates, with HSBU being slightly better than the rest.

Examples of effective property predictions

For the wet samples, the HSUB with end members defined as a re-
sult of the isopressure strategy gives the best overall modeling pre-
dictions for bulk and shear moduli over the entire porosity range and
for all lithologies. The modeled data (using HSUB) and measured
data of the wet samples are shown in Figure 8. The results are im-
proved when using the volume fraction correction (Figure 8¢ and d).
Ignoring this correction (Figure 8a and b) leads to increasing devia-
tions between modeled and observed data with increasing pressure
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(i.c., decreasing porosity). In particular, for 20% smectite and 80%
kaolinite, HSUB gives a very good prediction when applying the
volume correction for the whole porosity range. The prediction of
the bulk modulus is improved when one of the clays has a dominant
volume fraction; for the shear modulus, the result improves with in-
creasing amount of kaolinite.

DISCUSSION

Poisson’s ratio of the wet samples range from 0.40 to 0.49; for the
dry samples, there is a large spread between — 0.11 and 0.42. In fact,
18 of the 54 values for the dry samples are negative. Auxetic materi-
als, which have negative Poisson’s ratios, become thinner perpen-
dicular to the applied force when being compressed. This is not the
expected behavior of clay and can be the result of the samples being
dried too much — losing some of their chemically bounded water in
addition to the pore fluid and thus changing their mineral properties.

©)

13p

0.0k s L L L s
10 15 20 25 30 35 40 45 50 55,

Porosity (%)

Figure 8. Estimated (a, ¢) bulk and (b, d) shear moduli for the wet samples using end members of equal pressure. The modeling is done using
HSUBs without (a, b) and with (¢, d) correction of the bulk volume fraction. Modeled data are plotted as crosses on top of the best-fit curves of
the observed data for the various smectite-kaolinite mixtures using the color code: green (S80/K20), red (S60/K40), blue (S40/K60), and purple
(S20/K80).
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It is unlikely that overdried and wet clay minerals have the same
properties. To confirm this, we performed a Gassmann fluid substitu-
tion using the observed data from the wet and dry samples of pure
smectite and kaolinite to estimate the mineral properties of these two
clays; negative bulk moduli values were found for both minerals.
Another explanation for the large spread in Poisson’s ratio of the dry
samples is that there could be some erroneous measurements or spe-
cific problems with these samples. Either way, the measurements for
the dry samples seem dubious and might be the reason why we have
better predictions for the wet samples than the dry ones. This, com-
bined with the fact that most natural clay rocks are water saturated,
implies that most attention should be paid to our results for the wet
samples.

The strategy for choosing the elastic end members seems to be the
most significant factor for the quality of our predictions of the over-
all elastic moduli. Of the three tested strategies, isopressure and iso-
porosity are the least and most sensitive to the choice of rock physics
models, respectively. This is because the differences in the elastic
properties of the end members are smallest when following the iso-
pressure approach and largest for the isoporosity approach. The dif-
ference in predicting the bulk modulus for the various models is
shown in Figure 6. In the general case, however, the contrast in elas-
tic properties of the mixing minerals might be larger than between
smectite and kaolinite. Thus, in those cases, the choice of rock phys-
ics model becomes more important for the predicted elastic moduli
than in the case of the isopressure approach. But smectite and kaolin-
ite are end members with respect to grain size, surface area, and cat-
ion exchange rate (Mondol et al., 2008), and the difference in the
clastic moduli of these minerals is expected to be significant —
something the measured elastic properties of the two clays at equal
porosity supports.
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Figure 9. Porosity of mixed smectite-kaolinite sample as a function
of volume fraction of porous smectite. A heterogeneous mixed com-
posite (dotted line) will have a linear trend given by the weighted av-
erage of the constituents. In the dispersed model (dashed line), the
pore space of the large grain-sized mineral (c.g., kaolinite) is filled
initially by the small-grain-size mineral (e.g., smectite) (Marion,
1990; Yin, 1992; Dvorkin and Gutierrez, 2002). Plot of the porosity
versus volume fraction for the wet sample at confining pressure of
5 MPa (solid line) does not follow the V-shaped trend of the dis-
persed model.

The isopressure model gives the best result, which is significantly
improved when the volume fraction correction is applied. To study
pore fluid substitution effects for various pressures, constituents,
and rock structure, this correction can be linked to the porosity-dis-
tribution parameter of Gurevich and Carcione (2000).

An important assumption in our modeling is that we consider the
mixed samples to be composed of clusters of the pure smectite and
kaolinite minerals, as illustrated in Figure Ib. If the mixture were
more homogeneous, as illustrated in Figure la, and because there is
such a large difference in volume size of the two clay constituents, it
should be possible to observe a V-shaped drop in porosity versus li-
thology because of the smaller grains filling the pore space of the
larger grains (Marion, 1990; Yin, 1992: Dvorkin and Gutierrez,
2002). The trend of a heterogencous composite mix and the
V-shaped trend of a dispersed model are plotted in Figure 9 along
with the porosity observations of the wet samples measured at
5 MPa. The observations follow the mixed model and show no
V-shaped drop. This supports our assumption that the mixing is not
taking place at the grain scale.

The axial (vertical) confining stress will usually cause mineral
compaction and some mineral alignment in the horizontal direction,
leading to elastic anisotropy. We do not consider this to affect our re-
sults seriously, however. because we have limited our analysis to
vertical velocities.

CONCLUSIONS

We have demonstrated a procedure for estimating the elastic prop-
erties of mixtures of porous smectite and kaolinite from data obser-
vations of pure smectite and kaolinite for pressure values between |
and 50 MPa. We have assumed the mixture constituents to be clus-
ters of pure porous smectite and pure porous kaolinite. Hence, we do
not rely the modeling on uncertain estimates of mineral values or
pore geometries. Following this procedure, the various rock physics
models we have tested show few variations and give almost equally
good predictions of the elastic properties. Instead, the dominating
factoris the choice of input values (end members) in the modeling.

We have tested three strategies for choosing the pure smectite and
pure kaolinite end members: one where they have the same porosity,
another where they have the same pressure, and a third that is an av-
erage between the other two. We find the best predictions when
choosing end members having the same pressure. Furthermore, cor-
recting the volume fractions of the constituents improves the results
significantly, showing the importance of taking into account the ef-
fect of different compactions of the smectite and kaolinite domains.

The HSUB gives slightly better predictions of the shear modulus
for the entire pressure range compared to the other rock physics
models. It is therefore the best model to use for these samples of
smectite and kaolinite mixtures because the bulk modulus is equally
well predicted by all the tested rock physics models.
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APPENDIX A

END MEMBERS USED IN THE MODELING

Tables 1-3 list the porosity, bulk moduli, and shear moduli end
members for the various modeling strategies.

APPENDIX B

DERIVATION OF CORRECTION TO THE BULK
VOLUME FRACTION

We consider a heterogeneous mixture consisting of clusters of
pure porous smectite and kaolinite minerals. One fraction of the pore
space can therefore be associated with the smectite and the other
with the kaolinite, as observed in Figure 1b. Furthermore, for this ex-
periment, we assume the mineral volume to remain constant during
compaction.

The initial smectite volume fraction Vs in the mixed samples only
considers the solid phase and is given by

smectite mineral volume
V=M ™ . (B-1)
total mineral volume

1l to the total volume in the mixed

samples Vs e €an be expressed as

Vs minerat = Vs(1 = &), (B-2)
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where ¢ is the total porosity. The smectite volume fraction Ls used in
our modeling must also consider the pore space:

Lg

(smectite mineral volume) + (smectite pore volume)
total volume '
(B-3)

If we define ¢ e as the porosity in the smectite mineral clusters,

(/)S.clus[m\

smectite pore volume

(smectite mineral volume) + (smectite pore volume)’

(B-4)
then we can also express Vs pinera 4
Vs mineral = Ls(1 = s clusters) - (B-5)
Inserting equation B-2 into B-5 and solving for Ls gives
1-4¢
Ls=Vs (B-6)

1 - ¢.\,c|\|\'!en‘

For the correction of the bulk volume fraction, we assume that the

compaction of the pore space in the mixed samples is the same as for
the

Cebs = Prciusens e
porosity in the pure sample and equation B-6 becomes
equation 10. Observe thatif ¢ = ¢s. which is always the case for the
isoporosity strategy, then equation 10 can be simplified to become
equation 9.

Table 1. Porosity, bulk and shear modulus end-member values for the dry and wet samples used in the modeling following the

isoporosity approach.

Smectite end member

Kaolinite end member

Bulk Shear Bulk
Porosity modulus modulus Porosity modulus Shear modulus
Sample (%) (GPa) (GPa) (%) (GPa) (GPa)
Dry 45.00 2.268 2.108 45.00 0.3377 0.7005
47.00 2.007 1.794 47.00 0.2890 0.5713
49.00 1.761 1.506 49.00 0.2542 0.4600
51.00 1.528 1.244 51.00 0.2291 0.3638
53.00 1310 1.007 53.00 0.2095 02800
55.00 1.106 0.7941 55.00 0.1911 0.2055
57.00 0.9147 0.6038 57.00 0.1696 0.1377
59.00 0.7368 0.4356 59.00 0.1409 0.07366
Wet 35.00 8.726 1.238 35.00 5.114 0.4095
37.00 8.025 1.005 37.00 4713 0.3490
39.00 7.387 0.8111 39.00 4.284 0.2978
41.00 6.809 0.6508 41.00 3.817 0.2539
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APPENDIX C

THEORETICAL MIXING MODELS
Voigt, Hill, and Reuss

Voigt (1928) and Reuss (1929) define the upper and lower bounds
for the elastic moduli of any isotropic or anisotropic composite. The
effective elastic modulus C for a mixture of two constituents with
elastic parameters C, and C, and volume fractions V, and V, are giv-
en by Voigt,

Cy=V,C| + V5Cs, (C-1)
and by Reuss,
1 V Vs,
— =t (c-2)
Gk C G

The Hill model (Hill, 1963) is the arithmetic average of the Reuss
and Voigt methods, i.c., the elastic modulus is given by

Ch=—=. (C-3)

Table 2. Porosity, bulk, and shear modulus end-member values for the dry and wet samples used in the modeling following the

isopressure approach.

Smectite end member

Kaolinite end member

Bulk Shear
Porosity modulus Shear modulus Porosity Bulk modulus modulus
Sample (%) (GPa) (GPa) (%) (GPa) (GPa)
Dry 45.46 2.207 2.034 29.21 1.703 2.681
47.47 1.948 1.725 31.55 1.347 2.250
49.05 1.754 1.499 32.99 1.161 2.013
50.56 1.579 1.300 34.44 0.9963 1.795
52.11 1.405 1.109 36.25 0.8205 1.548
53.73 1.234 0.9268 38.46 0.6464 1.283
55.35 1.071 0.7587 40.94 0.4969 1.030
56.92 0.9218 0.6107 4353 0.385 0.8088
58.38 0.7907 0.4857 46.05 0.3102 0.6303
59.68 0.6795 0.3836 48.38 0.2637 0.4925
60.80 0.5875 0.3021 50.46 0.2352 0.3885
61.76 0.5122 0.2379 52.26 0.2164 0.3097
62.58 0.4505 0.1868 53.81 0.2021 0.2487
63.29 0.3983 0.1448 55.18 0.1893 0.1991
63.95 0.3513 0.1081 56.46 0.1759 0.1554
64.62 0.3051 0.07298 57.77 0.1596 0.1127
Wet 34.92 8.755 1.248 10.23 12.93 2778
37.41 7.888 0.9622 13.58 11.12 2.208
38.31 7.600 0.8742 15.25 10.35 1.960
38.91 7.415 0.8195 16.62 9.774 1.774
39.78 7.155 0.7448 18.29 9.141 1.567
41.08 6.787 0.6451 20.39 8.435 1.335
42.73 6.355 0.5362 22.82 7.725 1.104
44.59 5.916 0.4358 25.40 7.073 0.8976
46.48 5.517 0.3538 27.94 6.507 0.7296
48.27 5.181 0.2920 30.29 6.027 0.6011
49.89 4.911 0.2473 32.39 5.619 0.5062
51.30 4.701 0.2150 34.20 5.270 0.4368
52.52 4.538 0.1911 35.77 4.963 0.3851
53.62 4.405 0.1721 37.15 4.681 0.3447
54.67 4.291 0.1554 38.48 4.399 0.3104
55.78 4.183 0.1388 39.87 4.086 0.2779
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Hashin-Shtrikman bounds

The Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963) are
theoretical upper and lower limits of effective moduli of an isotropic
mixture. An interpretation of these two bounds is that one of the con-
stituents forms a shell around the other constituent. The upper limit
yields a composition where a stiff shell surrounds a soft core, and the
lower limit is where a soft shell surrounds a stiff core. For a mixture
of two constituents, the upper bound (HSUB) is given by

Vs

Kysup = K + 7 PRGN
(K, —K)~ '+ VI(KI +§M1)

(c4
Musus = M
Vs
+ - ~I
. 4
(2 — )~ 2Vi(K, +2#J){5#|<K\ + ;M)J
(C-5)

where V, K, and g are the volume fraction, bulk modulus, and shear
modulus, respectively, and where indices 1 and 2 refer to the stiffer

and softer materials, respectively. The lower bound (HSLB) is found
using the same equations but with index 1 referring to the softer ma-
terial and index 2 to the stiffer material.

Differential effective medium

In differential effective medium model (Sheng, 1990), one of the
constituents acts as the host medium forming the initial background
material the other constituents are treated as inclusions. The inclu-
sions of known shape are gradually added into the background mate-
rial, forming a new background material with new effective elastic
properties. This can be realized mathematically using a recursive
equation with L iterations; the effective elastic properties of one iter-
ation become input to the next iteration. The total number of itera-
tions must be large enough so that an additional iteration does not
change the calculated effective bulk and shear moduli significantly.

We model spherical inclusions and mix only two constituents, so
we can use the simplified version of the recursive coupled equations:

K

n—1

LYY

K —K,_
g e (C-6)
3“:1 4/”‘/1 =1

UK, A

Mn — /i‘u—1 _ V/,VZM”71 _ /l:z‘ (€-7)
P+ Fy -1+ F>

Table 3. Porosity, bulk, and shear modulus end-member values for the dry and wet samples used in the modeling following the

average approach.

Smectite end member

Kaoiinite end member

Bulk Bulk
Porosity modulus Shear modulus Porosity modulus Shear modulus
Sample (%) (GPa) (GPa) (%) (GPa) (GPa)
Dry 44.56 2.328 2.182 36.25 0.8205 1.548
46.36 2.088 1.891 38.46 0.6464 1.283
48.18 1.860 1.621 40.94 0.4969 1.030
49.96 1.647 1.377 43.53 0.3850 0.8088
51.69 1.452 1.160 46.05 0.3102 0.6303
53.34 1.275 0.9696 48.38 0.2637 0.4925
54.90 1.116 0.804 50.46 0.2352 0.3885
56.38 0.9724 0.6603 52.26 0.2164 0.3097
57.79 0.8430 0.5350 53.81 0.2021 0.2487
59.14 0.7244 0.4243 55.18 0.1893 0.1991
60.47 0.6139 0.3252 56.46 0.1759 0.1554
61.81 0.5086 0.2348 57.77 0.1596 0.1127
Wet 35.77 8.449 1.144 26.68 6.779 0.8085
37.70 7.796 0.9337 29.14 6.257 0.6607
39.55 7.222 0.7637 31.38 5.815 0.5499
41.31 6.725 0.6289 33.33 5.438 0.4688
42.97 6.298 0.5225 35.01 5.112 0.4092
44.54 5.927 0.4381 36.48 4.820 0.3639
46.07 5.599 0.3698 37.82 4.542 0.3271
47.6 5.301 0.3133 39.16 4.249 0.2941
49.20 5.022 0.2652 40.64 3.904 0.2613
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y= (C-8)

<M2>9Kz+ 8o
6 ) Kot 2p

where K, is the bulk modulus of the background material, K, is the
effective bulk modulus after adding a volume fraction of V,, of the in-
clusion material, and g,_, and g, are the background material and
effective shear moduli, respectively. The value V,is the volume frac-
tion of the inclusion material. The iteration parameter 7 is given by
n=(2,3,...,L + 1)and results in index values (1,2,...,L). The host
medium acts as the initial background material, identified with index
1 for the first iteration, i.e., n = 2. The second constituent acts as the
inclusion material and is identified with index 2. The value V, can be
computed from

V,
v 2

_ _ 0
" L—(n— 1)V, ©9

Differential effective medium is an asymmetric model because in-
terchanging the constituents for the host and inclusions will lead to
differentresults.

Self-consistent approximation

In self-consistent approximation (Berryman, 1980a, 1980b), none
of the constituents defines a background medium. Instead, inclu-
sions of both constituents are added into a host medium of unknown
properties. These unknown properties are perturbed until the effects
of the inclusions vanish, at which point these properties represent a
unique solution for the effective elastic properties of the mixed ma-
terial. In practice, this can be done by perturbing the effective elastic
properties K5 and g5 until equations C-10 and C-11 are satisfied:

> (K, — KMV, =0, (C-10)
i=1
(C-11)

where V;, K;, and u; are the volume fraction, bulk modulus, and
shear modulus of inclusion material j, respectively. The values P and
Q are geometric factors, which for spherical inclusions are given by

4
KS(/\ + ;:MS(A
p=—" (C-12)

0= ©13)

where parameter F is given by equation C-8 (when replacing K> and
o with K54 and uSC*).
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“When one admits that nothing is certain one must, I think, also admit

that some things are much more nearly certain than others.”
Bertrand Russell, "Am [ An Atheist Or An Agnostic?", 1947

British author, mathematician, & philosopher (1872 - 1970)
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Consistent joint elastic-electrical
differential effective medium modelling of
compacting reservoir sandstones

Erling Hugo Jensen!, Leiv-]. Gelius2, Tor Arne Johansen'3 and Zhong Wang*.

ABSTRACT

Improved reservoir characterization and monitoring can be achieved by combining
seismic and controlled-source electromagnetic techniques. This requires developing
coherent rock physics descriptions. In this paper we demonstrate consistent joint elastic-
electrical modelling according to the differential effective medium theory. We test our
modelling against data from a compaction experiment on a set of eleven reservoir
sandstone core samples from the same well location. The mineralogy consists mainly of
quartz, which we assume in our modelling to be spherical, and kaolinite. The aspect ratio of
the clay grains and porosity reduction due to compaction we calibrate using the differential
electrical effective medium modelling. These values are in turn used in the elastic
differential effective medium modelling, resulting in a consistent joint elastic-electrical
modelling scheme giving good fit with the laboratory measurements.

INTRODUCTION

Reservoir characterization and monitoring give vital information about a hydrocarbon
reservoir that can be used to possibly improve its production history and life. Seismic is the
primary tool for mapping the underground structure and identify potential hydrocarbon
traps, but it does not perform equally well as the controlled-source electromagnetic (CSEM)
method when it comes to fluid discrimination (Johansen et al. 2005). The information
content obtained from using these two geophysical techniques often complement each
other, therefore a large potential improvement exists if they can be combined in a clever
way. To ensure an optimal data combination, there is a need to investigate how well the
elastic and electric properties of a medium can be represented by the same type of rock-
physics description. The overall goal should be to develop a consistent and coherent joint

1 Department of Earth Science, University of Bergen, Bergen, Norway.
2 Department of Geosciences, University of Oslo.

3 NORSAR, Bergen, Norway.

4 Bitswave Inc., Houston, TX77074, USA.
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elastic-electrical modelling approach which can be used as an optimal constraint in the
inversion of seismic and CSEM data.

If no structural information is assumed, both seismic and CSEM data can be modelled
using the basic Reuss (1929) and Voigt (1928) bounds or eventually the more advanced
Hashin-Shtrikman upper and lower bounds (Hashin and Shtrikman 1962). However, such a
joint elastic-electrical modelling will give very imprecise results due to lack of detailed
description of the actual medium. A better choice is to make use of the differential effective
medium (DEM) theory (Bruggeman 1935) which makes it possible to include the various
shapes of the different constituents in the actual modelling. Different DEM schemes exist for
calculating the effective elastic properties (Norris 1985; Zimmerman 1991; Berryman 1992;
Mukeriji et al. 1995) as well as the electrical properties of rocks (Hanai 1960a,b; Bussian
1983; Gelius and Wang 2008).

To evaluate the accuracy of such joint rock-physics modelling, combined
measurements of electric and elastic properties of core samples are needed. Wang, Gelius
and Kong (2009) and Wang and Gelius (2010) were the first to acquire combined data at
reservoir conditions employing a modified triaxial cell. Since the aim of these works was
mainly to investigate and establish possible cross-property relationships between electric
and elastic measurements, the number of core samples was quite limited. In a recent study,
Han et al. (2011a) presented a rather comprehensive study of combined measurements at
various differential stresses involving 63 brine saturated samples collected from various
well locations around the world. In an accompanying paper, Han et al. (2011b) also
presented results from a joint elastic-electrical effective-medium type of modelling. They
used a combined self-consistent approximation and differential effective medium model to
simulate both the elastic and electric properties. Based on these formulations joint elastic-
electric properties were simulated and compared with measurements. For all cores
considered, the differential effective stress was 8 MPa, and both the quartz and clay
particles were modelled using an aspect ratio of 1.

This paper can be regarded as a continuation of their work but with more emphasis
on the detailed structure in the samples. Therefore a subset of core samples from the
original data set of Han et al. (2011a) is used, represented by a total number of eleven cores
taken from the same well. They are all characterized by a fairly simple mineralogy mainly
consisting of quartz and kaolinite. For each core, measurements at six different differential
stresses, ranging from 8 MPa to 60 MPa, are available. A more detailed joint effective
medium modelling can now be carried out since multiple measurements exist for each of
the cores. To be able to handle variations in grain shapes and at the same time ensure a
consistent and coherent approach, DEM theory is employed to model the conductivity
(Gelius and Wang 2008) as well as the elastic moduli (Berryman 1992).
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The paper is organized as follows. First a short review is given of the DEM
formulations used to calculate the elastic and electrical properties. Then the core data set is
briefly introduced and described before a sensitivity analysis is presented which purpose is
to delimit the number of constituent properties important for the data calibrations. The
actual joint elastic-electric modelling is then carried out in two steps. In the first step,
estimation of the porosity reduction due to compaction as well as calibration of the clay
aspect ratio is done based on the measured resistivities. In the second step, the
corresponding elastic moduli are calculated for the same sets of cores. The feasibility of the
proposed approach is then discussed followed by a set of conclusions.

DIFFERENTIAL EFFECTIVE MEDIUM THEORY

Differential effective medium or DEM theory (Bruggeman 1935) is an inclusion based
technique, where one phase acts as a host medium and with the other phases being
gradually introduced in an incremental manner. It models the effects of the constituent
properties as well as the geometry of the inclusion materials. DEM represents an
asymmetric formulation because interchanging the host and inclusion material will
typically give a different result for the same volume fractions of the constituents.

The host material is here assumed to be connected, since in the electrical modelling
the conducting brine must serve as the host. The pore space is then gradually closed by
adding solid components. This choice poses a potential problem when doing joint elastic-
electrical modelling because of the non-existence of shear for the fluid phase, which again
results in unrealistic solutions for the elastic moduli of a solid rock. We mitigate this by
using the modified differential effective medium theory (Mukerji et al. 1995) for the elastic
DEM modelling where we redefine the porous end-member. The host now corresponds to
the rock at a critical porosity, which again represents the transition between whether the
fluid or the solid phase acts as the load-bearing component. Then, as in case of the electrical
modelling, the pore space is closed using solid minerals as the inclusion material.

Elastic modelling

The effective elastic moduli is calculated by solving the coupled differential equations
(Berryman 1992)

(1- y>diy[1<*<y)]= (Ko =K ()P + (K —K (v )Py (1)

(1- y)diy [ 0)]= (g — 2 (v )0 + (et — 1" ()0 2)



60

where the quartz and kaolinite inclusions have respectively bulk moduli Kq and Kk and
shear moduli z and ux The rock at critical porosity acts as the host material with bulk
moduli Kerit = K*(y=0) and shear moduli grit = #£*(y=0). The total volume fraction of the
inclusion materials is y =yq + yx (quartz respective kaolinite). The actual shape of the
inclusions is incorporated in the geometrical factors P and Q (Berryman, 1992). For

further details the reader is referred to Mukerji et al. (1995).

Electrical modelling

The effective conductivity ois calculated by solving (Gelius and Wang 2008)

3

o(16.5.5. )= 65" ¢,n[B(s,T)+lB(s,T)0'K (s.,7)/o(s,T, S, )J"'

v v B(s,T)+IB(s,T)oy (s.T)/o,
where T, ¢ s, Sw, Ow, Ok are the temperature, porosity, brine salinity, water saturation, water
and kaolinite conductivities, respectively. The ease of which cations move along the clay
surface is given by the equivalent electrical conductance parameter B. The geometrical
parameters I, m and n are functions of the porosity, water saturation and volume fraction of
kaolinite, as well as the quartz and clay grain alignment factors mq and mg, respectively. In
our modelling, mq is set to 1.5 because we assume spherical quartz grains. As in the work of
Han et al. (2011b), the clay grains are assumed to be dispersed in the pore space. However,
unlike Han et al. (2011b), we allow for an oblate or disc shape which is more realistic. It is
also assumed a polarization effect where the clay particles are aligned with their major axis
parallel with the electric field. If the depolarization factor of the major axis is A, this implies
that the clay alignment factor mg is set to 1/Aa.. More details can be found in Gelius and
Wang (2008).

DATA SET

We use data from a mechanical compaction experiment published recently by Han et
al. (2011a). They measured resistivity, P- and S-wave velocities at various differential
pressures on sixty three samples from various well locations spread around the world. In
this joint elastic-electric modelling study, a series of eleven core samples have been
selected. The cores are labelled SX1 through SX11 and originate from the same well
location. They are all characterized by a rather homogeneous mineralogy consisting of
mainly quartz and some kaolinite. In addition, a very small amount of other minerals
(mainly calcite) is present in some of the core samples (Han et al. 2011a). The mineralogy is
listed in Table 1 as well as the initial porosity, bulk and grain densities. The measured
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resistivities, P- and S-wave velocities for the various differential pressures can be found in
Han et al. (2011a).

The samples were dried at 40 °C for three days before being saturated with 35 g/1
brine. Ultrasonic velocity and electrical resistivity (at 2 Hz) were measured at differential
pressures of 60, 40, 26, 20, 15 and 8 MPa, while the pore pressure was kept constant at
5 MPa. Between each unloading the pressure was kept constant for at least one hour for the
samples to equilibrate before measurements were done. The temperature remained at
19 °C throughout the whole experiment (Han et al., 2011a).

Constituent properties

The initial constituent properties used in this study are listed in Table 2. For the
elastic properties of quartz we use the typical values found in Mavko, Mukerji and Dvorkin
(2009, p. 459). The elastic moduli of kaolinite are much more uncertain. A number of
different values have been reported in the literature spanning from 1.5 to 55 GPa for the
bulk modulus and 1.4 to 31.8 GPa for the shear modulus (Mondol, Jahren and Bjgrlykke
2008). Since no precise information about the elastic moduli of kaolinite is available for this

Table 1 Mineralogy and initial porosity, bulk and grain density of the studied samples.
Mineral solid volume fractions

Sample Bulk density Grain density Porosity Quartz Kaolinite  Other

g/cm? g/em® % % % %
SX1 2.333 2.638 11.573 83.18 16.56 0.26
SX2 2.367 2.648 10.605 81.88 16.22 1.90
SX3 2.329 2.637 11.682 79.46 20.54 0.00
SX4 2.313 2.637 12.282 84.75 15.06 0.19
SX5 2.312 2.637 12.304 80.46 19.54 0.00
SX6 2.343 2.639 11.212 70.77 29.23 0.00
SX7 2.314 2.640 12.368 72.95 27.05 0.00
SX8 2.320 2.640 12.107 85.35 14.37 0.28
SX9 2.303 2.642 12.835 82.30 17.68 0.02
SX10 2.336 2.643 11.620 80.76 17.79 1.45
SX11 2.324 2.639 11.946 79.45 20.55 0.00

Table 2 Constituent properties. (* We use the effective grain density for the solid phase,

see Table 1).

Constituent Bulk modulus Shear modulus Density Conductivity
GPa GPa g/cm? S/m

Quartz 37 44 * 0

Kaolinite 20 8 * 0.02

Other minerals 37 44 * 0

Brine 2.38 0 1.0235 4.6948
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data, the moduli are treated as unknown variables to be calibrated during the effective-
medium modelling. The remaining minerals are mainly calcite which is stiffer than quartz.
But for simplicity and because the volume fraction of them is so small, we will use the
elastic properties of quartz to characterize them.

The bulk modulus and density of brine depends on the salinity, fluid pressure and
temperature. We use the relations of Batzle and Wang (1992) to calculate their values. For
the density for the solid phase we use the effective grain densities measured by Han et al.
(from email correspondence with Angus I. Best) found in Table 1.

Considering the electric properties, the fluid represents the main conductive phase of
a brine saturated rock, while in case of a clean sandstone the solid phase has an insulating
effect. Quartz is regarded as non-conducting and its conductivity is set to zero in the DEM-
model used here (Gelius and Wang, 2008). The clay minerals are conductive but their actual
values are rather uncertain. In this study we adapted the same clay and brine conductivities
as used by Han et al. (2011b) in their modelling of the same samples.

SENSITIVITY ANALYSIS OF CLAY MINERALOGY

The differential effective medium based modelling which is the core of this study
considers many different parameters: composition, inclusion geometries, constituent
properties and volume fractions, as well as the rock properties at the critical porosity. It
follows from the discussion in the previous section that both the elastic and electric
properties of clay minerals are not very well known. It is therefore very useful to carry out a
sensitivity analysis of the clay mineralogy, so that feasible constraints can be put on the
relevant property parameters.

Electric properties of clay

In all simulations, a brine saturated rock sample is assumed with equivalent
characteristics as those in the studied cores. The property values shown in Table 2 are used
as the reference. In the first sensitivity study, the effect of varying the volume fraction and
conductivity of kaolinite is investigated as shown in Figure 1. Note that the most relevant
porosity interval is defined by the two vertical bars and follows from the expected range of
values of the cores being studied (e.g. porosities between 7% and 13%). The aspect ratios of
respectively clay and quartz were set to 0.1 and 1.0. The volume fraction of clay was
allowed to vary between 15% and 30% which represents the minimum and maximum
values found in the core samples of investigation. Since the clay is modelled as a dispersed
phase, the higher clay fraction the lower conductivity. This is due to the fact that the clay
minerals will fill the pore space and lower the effective conductivity compared to the
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saturated brine case. This trend can also be easily observed in Figure 1. Because the clay
fraction is fairly well known in this study (Han et al. 2011b), the apparently significant
sensitivity to this parameter is not so critical. The conductivity of kaolinite is a much more
important parameter due to the high uncertainty in its value. In the joint elastic-electric
modelling results to follow later, we have used the value of 0.02 S/m adapted from Han et
al. (2011b). However, in order to verify this choice the sensitivity to this parameter has
been also investigated (cf. Figure 1). The initial value of the clay conductivity was perturbed
by +100 % and it follows from Figure 1 that only a modest change in effective conductivity
can be observed (especially when only considering the most relevant porosity interval).
This makes the choice of 0.02 S/m a confident value.

The shape of the clay particles also contribute to the final effective conductivity.
Figure 2 shows the results obtained when varying the aspect ratio of the clay grains
assuming an oblate shape. Even in the low-porosity range relevant for this study, we see a
clear dependency on grain shape. The conductivity decreases significantly with increasing
aspect ratio. We observed no effect on the modelled elastic moduli for the same variation in
clay aspect ratio. The quartz grains are expected to be close to spherical. Reducing the
aspect ratio from 1 to 0.8 for oblate shaped non-aligned quartz grains have no measurable
effect on the effective conductivity or elastic moduli in the porosity interval of interest.

The high sensitivity in effective conductivity with respect to the shape of clay particles
is further elaborated on in the next section. A combined technique is then proposed to
estimate both the shape parameter of kaolinite and the porosity changes with compaction.
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Figure 2 Modelled effective conductivities versus
porosity with varying clay aspect ratios. The porosity
interval of interest in this study is within the two
vertical black lines.

Figure 1 Modelled effective conductivities versus
porosity for various clay conductivities. The porosity
interval of interest in this study is within the two vertical
black lines.
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Elastic properties of clay

The effective elastic moduli will increase with increasing values of the kaolinite
moduli. The same will happen for the effective modul, if the effective composite moduli at
critical porosity are increased. Increasing the critical porosity will also have a stiffening
effect on the rock. In the sensitivity simulations the bulk and shear moduli are both set to
5 GPa assuming a critical porosity of 45 %. Figure 3 shows how the effective elastic moduli
will vary when the kaolinite elastic moduli are perturbed plus/minus 10 % around the
reference values in Table 2. Two different volume fractions of clay are also considered:
15 % and 30 %, respectively. Inside the most relevant porosity interval only a small
increase with increasing elastic moduli can be observed (for a fixed volume fraction of
kaolinite).

ESTIMATION OF POROSITY AND CLAY GRAIN ASPECT RATIO

Han et al. (2011a) used a helium porosimeter to measure the porosity of each dry core
sample at room conditions. During the experiment the porosity was reduced as the samples
undergo mechanical compaction when the differential effective stresses were increased to
60 MPa, and then the porosity gradually increased again during the unloading cycle down
to a pressure of 8 MPa. In the original work of Han et al. (2011a) and their subsequent
modelling (Han et al. 2011b), this issue was not addressed. We propose here a technique to
estimate these porosity changes by constraining them using differential effective medium
(DEM) modelling of the conductivity. The quartz grains are expected to have a shape close
to spherical and our sensitivity analysis showed no significant variation with a 20 %
reduction in aspect ratio. Therefore the choice of an aspect ratio of one for the quartz
minerals seems feasible. The sensitivity analysis also revealed that the effective
conductivity is highly sensitive to the actual shape of the clay particles.

The procedure now goes as follows. First, the effective conductivity is calculated at the
initial porosity and with clay aspect ratios in the range from 0.01 to 0.155 (an increment of
0.001). The modelled conductivity giving the best fit to the measured conductivity at a
differential pressure of 8 MPa is used as a first approximation of the clay aspect ratio.
Because the clay grains are not expected to change shapes during the given loading and
unloading cycles the aspect ratio is therefore considered to remain constant during the
compaction experiment. Next, the estimated aspect ratio for the clay grains are used to
calculate a conductivity-porosity trend for each core sample so that the remaining porosity
values are constrained in a way that the modelled and measured conductivity values are the
same. Figure 4 shows an example of such a calibrated curve in case of core sample SX5.
Based on these calculations corresponding porosity-pressure trend curves can be easily
established. Figure 5 shows an example of such a curve, again in the case of core sample
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SX5. Each porosity-pressure curve is then fitted by a third-order polynomial which makes
an extrapolation back to a zero differential pressure possible. At this pressure value, the
corresponding porosity can be estimated. The difference between this porosity estimate
and the actual value measured by Han et al. (2011a) at room conditions is used to translate
the original trend curve so that the new trend has a porosity value equal to the measured

one at zero differential pressure.

We then recalibrate the clay aspect ratio using the updated porosity for the low-
compaction measurement (8 MPa) and use the corresponding conductivity-porosity trend
as a constraint to finally predict the porosity for the other compaction measurements.

a) 45
401
35
30
25

20

Bulk modulus [GPa]

—— 30% clay, kaolinite bulk modulus = 22 GPa
1wk 30% clay, kaolinite bulk modulus = 20 GPa

30% clay, kaolinite bulk modulus = 18 GPa
+ =% - - 15% clay, kaolinite bulk modulus = 22 GPa

b) 45 - T
—*— 30% clay, kaolinite shear modulus = 8.8 GPa
*— 30% clay, kaolinite shear modulus = 8 GPa
30% clay, kaolinite shear modulus = 7.2 GPa
15% clay, kaolinite shear modulus = 8.8 GPa
15% clay, kaolinite shear modulus = 8 GPa
15% clay, kaolinite shear modulus = 7.2 GPa

401

Shear modulus [GPa]

Sr % - 15% clay, kaolinite bulk modulus = 20 GPa 5t
15% clay, kaolinite bulk modulus = 18 GPa
0 n T n T L . 0 ; ; : ;
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Porosity Porosity
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Table 3 Calibrated aspect ratios of oblate clay grains in each sample and estimated porosities
for the various differential pressures.

Porosities at differential pressure
Sample Aspect ratio 8 MPa 15 MPa 20 MPa 26 MPa 40 MPa 60 MPa

% % % % % %
SX1 0.087 10.77 9.92 9.52 9.12 8.72 8.32
SX2 0.034 9.80 9.11 8.71 8.31 7.71 7.31
SX3 0.105 10.64 9.72 9.12 8.72 7.92 7.52
SX4 0.081 11.27 10.32 9.72 9.32 8.92 8.32
SX5 0.108 11.47 10.52 10.32 9.92 9.32 9.12
SX6 0.153 10.30 9.51 9.11 8.71 8.11 7.71
SX7 0.145 11.45 10.52 10.12 9.72 9.12 8.72
SX8 0.052 11.25 10.72 10.12 9.92 9.52 9.32
SX9 0.072 12.21 11.73 11.33 11.13 10.53 10.13
SX10 0.032 10.81 9.72 9.52 9.12 8.72 8.32
SX11 0.095 10.88 9.92 9.52 9.12 8.32 7.72

Repeating the procedure for all core samples shows that the lowest aspect ratio is
found to be 0.034 (sample SX2) and the highest 0.153 (sample SX6). The calibrated clay
aspect ratios for the various core samples together with the estimated porosities for the
various differential pressures are all listed in Table 3. These values are employed in the
subsequent DEM modelling of the elastic moduli.

Based on the estimated porosities for the compaction experiment we calculate the
effective density, bulk and shear moduli corresponding to the various differential pressures.
Cross plotting of these parameters versus porosity is shown in Figure 6. In the same figure,
cross plots of conductivity and velocities are shown as well. The two core samples SX2 and
SX10 are characterized by a lower conductivity than the other samples. These samples also
have the highest volume fraction of the unknown minerals. The bulk modulus of core
sample SX1 is significantly lower than in case of the other samples. Apparently, there is
nothing in the mineralogy or initial porosity which can explain this discrepancy. The bulk
modulus trends for samples SX1, SX4, SX6 and SX7, and the shear modulus trend for sample
SX7 show a less smooth behaviour then the others.

MODELLING OF EFFECTIVE ELASTIC MODULI

Initially, the effective elastic moduli of the dry rock are calculated using the
differential effective medium (DEM) model as described by Mukeriji et al. (1995). The dry
rock at critical porosity is assigned as the host medium and with the quartz and clay grains
acting as inclusions. Next, the effective properties of the brine saturated rock are computed
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from Gassmann type of fluid substitution (Gassmann, 1951). To make sure that the elastic
and electrical DEM modelling is consistent we use the calibrated aspect ratio of the oblate
clay grains and assume spherical non-clay grains.
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Figure 6 Derived porosity trends for a) conductivity, b) density, c) P-wave velocity, d) S-wave velocity, e) bulk
modulus and f) shear modulus.
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We have no certain knowledge about the elastic properties of kaolinite and the dry
rock at the critical porosity. The critical porosity itself is also an uncertain parameter. In the
following, we therefore treat these parameters as unknown during the DEM modelling.

Constrained multivariable nonlinear regression approach

The elastic moduli of kaolinite, the critical porosity and its corresponding elastic
moduli are calculated following the strategy of Draege (2009). A constrained multivariable
nonlinear regression analysis is used to seek and find a best fit in a least square sense
between the modelled data and the measurements from the different compaction
experiments. This is equivalent to finding the minimum of the cost-function

N

F(KK’/uK’¢cril’Kcrit’lucril ) = anRn 4 (4)

n=1

where N, K, t, @erit, Kerit and erie are respectively the total number of core samples, the
bulk and shear moduli of kaolinite, the critical porosity and the bulk and shear moduli at the
critical porosity. The factor wy, is a weight for the summed root mean square deviation R,
between the calculated effective elastic moduli and those derived from the actual
compaction measurements.

The following constraints are applied to the unknown parameters during the
nonlinear regression analysis:

1. Elastic moduli of kaolinite

Because all core samples are taken from the same well location it is reasonable to
assume that the elastic moduli of kaolinite are almost the same for all samples. Hence, a
constant value should be acceptable. Furthermore, we limit the shear modulus to be equal
or less than the bulk modulus, in accordance with the trend reported in the literature study
by Mondol et al. (2008). In the actual regression analysis we constrained the bulk and shear
moduli of kaolinite to be respectively in the range of 1 to 40 GPa and 1 to 15 GPa.

2. Properties at critical porosity

Even though the source material is probably the same for all samples, the conditions
at deposition might not be identical. This can lead to variations in critical porosity and
corresponding elastic moduli of the rock. Hence, we allow these properties to be inde-
pendent for the various samples. We constrain the critical porosity @i to be between 0.36
and 0.5, and the bulk modulus Keit and shear moduli gt to be in the range of 1 to 8 GPa.
Also here, we constrained the shear modulus to be equal or less than the bulk modulus.
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3. Deviation weight factors

From inspection of the various cross plots in Figure 6, it can easily be seen that for
some of the core samples the porosity trends look anomalous. To put less confidence on
these cores we use different weight factors for the various core samples. In this analysis the
following set of weights are applied:

1.0, ne (23,58 10, 11)
.8, 1,
v, = 08, ne (16) 5)
07, n=4
06, n=7
RESULTS

According to the regression analysis, the best fits for the bulk and shear moduli of
kaolinite were found to be 20.6 and 8.46 GPa, respectively. The calibrated properties of the
host medium at the critical porosity are listed in Table 4 for all core samples. It follows from
this table that the elastic moduli at the critical porosity varied significantly between the
various samples. In fact, in some cases the values obtained were close to those given as
boundary values.

Figure 7 shows modelled elastic moduli and conductivity versus porosity for all 11
core samples considered, superimposed the actual measurements. In case of conductivity,
the fitting between the modelled and experimental data are almost perfect due to the
constraints imposed earlier (cf. Section

‘Estimation of porosity and clay grain aspect Table 4 Calibrated properties for the host
medium at critical porosity.

ratio’). Critical Bulk Shear
For the elastic properties, error bars are given ~Sample porosity modulus  modulus
for each modelled value corresponding to a % GPa GPa
given porosity or compaction measurement. X1 36.0 3.086 3.086
These errors were calculated by assuming a SX2 36.0 4.450 4.450

] ) “ sx3 36.0 4.810 4.809
+5 % error in the estimated values for the elastic oxa 196 4.990 3483
end members and the critical porosity. Generally, ¢y 49.3 7888 2561
a good fit can be observed between the actual  ¢yg 36.2 5.698 5.689
data and the modelling for most of the core gx7 50.0 8.000 2.957
samples. The best results are achieved for most  sx8 50.0 8.000 3.446
of the core samples which we had the highest  SX9 45.2 7.061 5.517
confidence in, i.e. samples SX2, SX3, SX5 and SX8-  SX10 36.0 4,552 4,552

SX11. The results for the other cores are slightly —_SX11 36.0 6.548 6.548
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more incoherent. The reasons for that can be multiple, including both the possibilities of
measurement errors as well as the lack of the current differential effective medium
formulations to properly describe the data well enough.
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Figure 7 Modelled porosity trends for the bulk and shear moduli together with the derived moduli from the
compaction measurements for the various samples. The error bars are for modelled values with 5 % to the
kaolinite bulk and shear moduli, critical porosity and bulk and shear moduli at the critical porosity.
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DISCUSSIONS

The main objective of this paper is to present a unified joint elastic-electrical effective-
medium modelling approach to analyse laboratory measurements carried out on a series of
core samples under compaction (Han et al. 2011a). The joint modelling is based on
consistent differential effective medium theories for both elastic and electric properties. In
general, we achieved an overall good fit as shown in Figure 7. This is a very encouraging
result since this supports the basic idea that both electric and elastic properties can be
jointly modelled within the same type of rock-physics description. As far as the authors are
aware of, this is the first systematic evidence published in the open literature.

As always in rock physics modelling, several parameters need to be assigned proper
values. In many cases, this can be a challenging task. To minimize this issue, we carried out
a sensitivity analysis to identify those parameters having less impact on the final result.
Such parameters were given a fixed reasonable value with good confidence. The remaining
variables were calibrated using the actual measurements. In order to arrive at the final
results the following issues needed to be addressed and given a solution:

e Porosity: no porosity measurements exist for the various differential stress
regimes (only at room conditions). A possible approach was introduced in this
paper based on a combined update of aspect ratio of clay (through conduc-
tivity) and porosity. We found the lowest differential stress of 8 MPa to result
in a reduction of approximately 5 to 9 % from the initial porosity. This must be
considered as a first order approximation. Even though it represents a
significant reduction in porosity it is probably slightly underestimated. The
reason for this is that our calculations are based on an extrapolation of a
pressure-porosity trend curve. Such curves are characterized by an initial
gradient being normally the largest one in a compaction experiment (closing of
the compliant porosity part).

e Grain aspect ratios: in the simulations, spherical quartz grains have been
assumed. This must be considered as an average, and is not exactly true for
rocks in general. However, our sensitivity analysis revealed that reducing the
aspect ratio with 20 % gave an insignificant contribution to the final modelling
result. Regarding the clay grains, their shape was calibrated to the measure-
ments for each specific core sample. The aspect ratio was found to vary
between 0.03 and 0.15. These values must also be considered as average values
and as discussed before they all depend on our porosity estimates. In case of
underestimation of the actual porosity reductions the aspect ratios of the clay
minerals have been overestimated.
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e Accuracy of mineralogy: according to Han et al. (2011a) the accuracy is 5 %.
Our sensitivity analysis showed that the volume fraction of clay has an impact
on several of the properties we model in this study. However, the error is
relatively small within the band of porosities of most interest, and we do not
expect it to cause a large variance in the results. Density estimation of the
quartz grains based on the given mineralogy results in an under prediction
compared to an expected value of 2.65 g/cm3.

e Properties of kaolinite: we modelled the bulk and shear moduli of kaolinite to
be 20.6 and 8.46 GPa, respectively. Property values of clay minerals are
dubious and it is often difficult to evaluate the realism in them. In most cases
the best way to quality control them is by making sure that they give a good fit
between data and model and equally important that they fall within the range
of values reported in the literature (Mondol et al. 2008). The values obtained in
this study are also quite close to the values used by Han et al. (2011b) in their
joint modelling study. Following Han et al. (2011b) we also assumed that the
clay particles were dispersed. However, in the original work of Han and co-
workers the clay grains were assumed spherical due to limitations in their
effective-medium formulation. Here, we used a more feasible shape of
oblate/disc type and also allowed for polarization effects. This latter implies
that we assumed that the clay minerals aligned with their major axis parallel
with the electric field. For completeness, we also tried to see the effect of the
more non-physical situation where the clay grains aligned with their minor
axis. In this case the computations lead to solutions with non-spherical quartz
grains with unrealistic low aspect ratios.

Concerning the few core samples in Figure 7 where the modelled results did not fit so
well with the measurements: If one considers the estimated porosity compaction trends for
these core samples they indicate possible errors in the actual laboratory measurements.
The calibrated properties for a subset of them were also at the extreme limits of the bounds
set in the constrained multivariable nonlinear regression analysis. Extending the bounds
will probably result in a better fit, but maybe less realistic results. Though, the upper
boundary for the critical porosity could possibly be extended to some extent in some of the
cases. Also, our rigorous constraint on the shear modulus to be less or equal to the bulk
modulus for the critical porosity end member, could possible be loosened if one considers
the elastic properties of the quartz mineral. However, based on the available data it is
impossible to say what the actual critical porosity really is, and our predictions of them and
corresponding elastic moduli must not be taken literally.
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CONCLUSION

The combined use of seismic and controlled-source electromagnetic (CSEM) tech-
niques in connection with life-of-field managing is foreseen to develop in the near future. By
combining electric and elastic measurements a more reliable monitoring of a reservoir
under production can be obtained. Combined geophysical techniques may also play an
important role in connection with quality control of secondary and tertiary recovery
techniques. By placing permanent multi-component/multi-wave sensor arrays on the
seafloor both passive and active data can be recorded.

In order to utilize the large potential inherent in such joint elastic/electric data
acquisitions, a coherent rock-physics description is in demand. The latter serves as a link or
bridge between the measurements and key reservoir parameters such as saturations,
pressure and temperature. Effective medium theories can also aid the understanding of
cross property relations between electrical and elastic data. Such relations can be used to
constrain joint inversion of seismic and CSEM data.

This paper proposes a DEM type of platform which can coherently and jointly model
both elastic and electric data. This formulation has been tested using a set of joint electric-
elastic laboratory measurements carried out on eleven core samples taken from the same
well. The results obtained show an overall good fit between the joint modelling and the
corresponding measurements.
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"Prediction is very difficult, especially about the future.”
Niels Bohr

Danish physicist (1885 - 1962)
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Inverse rock physics modelling

Tor Arne Johansen? 2, Erling Hugo Jensen?, Gary Mavko3 and Jack Dvorkin3.

ABSTRACT

Seismic reservoir characterization requires a transform of seismically derived
properties such as P and S wave velocities, acoustic impedances, elastic impedances or
other seismic attributes into parameters describing lithology and reservoir conditions. A
myriad of different rock physics models have been developed to obtain this link. Their
relevance is however regulated by the type of lithology, porosity range, textural complexity,
saturation conditions and the dynamics of the pore fluid. Since the number of rock physics
parameters is often higher than the number of seismic parameters, this is known to be an
underdetermined problem with non-unique solutions. In this paper, we discuss the
framework of inverse rock physics modeling which aims for direct quantitative prediction
of lithology and reservoir quality from seismic parameters, but where also non-uniqueness
and data error propagation are handled. The procedure is based on a numerical
reformulation of rock physics models so that the seismic parameters are input and the
reservoir quality data are output. The modeling procedure can be used to evaluate the
validity of various rock physics models for a given data set. Furthermore, it provides the
most robust data parameter combinations to use for either porosity, lithology and pore
fluid prediction, whenever a specific rock physics model has been selected for this cause.

INTRODUCTION

Robust methods for the estimation of lithology and reservoir quality of subsurface
rocks from acoustic or seismic data are important in both static and dynamic reservoir
characterization. Essentially this process requires a transform of the seismically derived
properties as P and S wave velocities, acoustic impedances, elastic impedances or other
seismic attributes into parameters describing the lithology and reservoir conditions, i.e.
porosity, fluid saturation, and fluid drainage potential. Furthermore, in reservoir
monitoring the surveillance of the temporal variations of the fluid pressure and fluid
saturation within a reservoir unit during production is key information for obtaining
increased oil recovery.

1 Department of Earth Science, University of Bergen, Bergen, Norway.
2 NORSAR, Bergen, Norway.
3 Department of Geophysics, Stanford University, California, USA.
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Due to the large variations in physical properties and geometrical distributions of the
constituents, the physical behavior of rocks accordingly covers a large span, e.g. from
behaving mechanically like a fluid to being nearly incompressible. Correspondingly a
myriad of different rock physics models have been developed, but usually their applications
are regulated by the type of rock, porosity range, textural complexity, saturation conditions
and/or dynamics of the pore fluid (frequency effects) et cetera. For instance, contact
theories (CT) (Walton, 1987; Digby, 1981; and Mindlin, 1949) and contact cement theory
(CCT) (Dvorkin and Nur, 1996) are combined with the Gassmann model (Gassmann, 1951)
to derive the elastic properties of fluid-filled high-porous unconsolidated or weakly
consolidated sediments. These theories have been demonstrated to predict quite
confidently the elastic properties of pure quartz sandstones to shaley sandstones (Avseth et
al,, 2005). Another set of models referred to as inclusion models relate to more consolidated
rocks as the textural descriptions to a larger degree pinpoint the shapes of pores and their
geometrical orientations (Jakobsen et al, 2003; Berryman, 1992; Sheng, 1990; Kuster
Toks6z, 1974). Such models have also been shown applicable for predicting elastic
properties of shales (Hornby, 1994) and carbonates (Agersborg et al.,, 2007), but also for
compacted sandstones (Draege et al., 2006). Yet several hybrid approaches are used to
model transitions of the elastic properties from one model domain to others using
bounding methods (Avseth et al,, 2010; Draege et al, 2006). Finally, a range of empirical
models have been suggested for the same cause (Mavko et al., 2008).

An ideal rock physics model should to a maximum degree capture the underlying
physics in the derivation of the overall physical properties as well as providing good
predictions of these when reservoir properties are perturbed. However, for model
verification and applications these demands are less ideal. The need for extracting
geometrical details of the small-scale rock texture in describing the dynamic stress
distribution (e.g. related to pore fluid flow) increases the number of required model
parameters, and, thus, complicates the ability to perform controlled laboratory
experiments.

The imbalance in the number of model parameters (often high) to the number of
available data parameters (usually low) counteracts a proper formulation of an inverse
rock physics model. Accordingly, the estimation of reservoir quality from seismic data
suffers from being a highly underdetermined problem; thus contributing to give non-unique
solutions. Furthermore, since we know that e.g. the P-wave velocity and bulk modulus vary
nonlinearly with e.g. gas-to-oil saturation, this also states that this is a nonlinear problem.

In spite of these problems, several approaches are however used to make predictions
of lithology and reservoir quality data from geophysical measurements. The simplest way is
by cross plotting the observational data along with modeled data using a suite of rock
physics theories, and by studying correlations within these plots one can make
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interpretations of the rock properties. This is basically the foundation of the Rock Physics
Templates (RPT) described by @degaard and Avseth (2004). Statistical methods can also be
used where the concept is to obtain statistical correlations based on data fitting of a
significant set of training data where both data and rock parameters are well described, and
which subsequently are used for lithology and reservoir characterization.

In this paper we propose another strategy referred to as inverse rock physics
modeling for estimation of lithology and other rock properties from seismic parameters.
The basic idea is to numerically restructure the rock physics model so that the typical
observational data are the input parameters and the corresponding rock physics
parameters are output. The approach is flexible with respect to both which data parameters
to use for the estimation and how they are combined. It also provides the possibility to
model error estimates of the reservoir properties whenever uncertainties are attached to
the input data. The paper is organized as follows. We first review the basic concepts of the
method and then discuss some possible areas of application. The focus is to review the
methodology itself, and less attention is paid on the numerical techniques used for solving
the various tasks. However, along with the examples we briefly discuss strategies for its
implementation.

MODELING ROCK PHYSICS CONSTRAINTS

In the following we use the term data parameter to refer to the kind of measurement
we consider. In rock physics analysis of isotropic rocks these are usually P-velocity (Vp,), S-
velocity (Vs), P and S acoustic impedances (pVp and pVs), Vp/Vs, bulk modulus (K), shear
modulus (), the Poisson ratio (o) or combinations of these. When Vp, Vs, and p are known,
the two elastic moduli are given from

K= p(vﬁ —;‘V;J, (1)
and
H= ,OVSZ. (2)

We use the term model parameter to represent quantities that describe lithology or
reservoir quality. For siliciclastic rocks usual parameters to consider are porosity (¢), pore
fluid saturation (S) (pore volume fractions of the pore fluids), and the clay-to-sand fraction
(€). Additional model parameters will be the elastic and density parameters of all the
minerals and fluids composing the rock, as well as parameters describing the pore space
properties. If higher frequency effects are to be studied, parameters describing pore fluid
dynamics (viscosity and permeability) are needed.
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Along with examining the concepts of the method, we will illustrate the basic
principles through simple numerical examples. In this we are elaborating on how to
estimate 3 model parameters with the use of 1, 2 or 3 data parameters. The data
parameters considered in this example are usually K, £ and p, but sometimes we will
compare results using Vp, Vs and p. The model parameters to be evaluated in the examples
are porosity, clay-to-sand fraction and gas-to-water saturation. The rock physics models
applied for the numerical examples are based on differential effective medium theories
(Berryman, 1992), contact theory (Walton, 1987), contact cement theory (Dvorkin and Nur,
1996) and bounding methods (Walpole, 1966a,b; Hashin and Shtrikman, 1963), and they
are briefly explained in Appendix A.

The model transform

A rock physics model provides a transform of the model parameters to the data
parameters. Thus, since essentially many rock physics models can be applied we can use an
index (k) to separate them. Using vector formalism, a forward rock physics modeling for M
model and N data parameters, may be given by

R,(77)=d, 3)

where m = (m,m,,...,m,)and gz(d],dQ,...,dN) are the model and data parameters
respectively, while R, =[R,,(/),R,,(i).....R,y ()], i.e. the component R,(7) is a rock
physics formulae providing the data parameter d, from m. An estimation of rock

properties from the data parameters thus formally requires an inverse rock physic model,
so that

R (d)=m. 4)

However, since often M > N and that there are no linear dependence of the model

parameters, and, furthermore, Ek may represent a nonlinear mapping of 7 onto d,

generally there exist no ﬁk". Thus, a parameter estimation procedure must be based on a set

of constraints relating model parameters to data parameters. In our case we use the
forward model to generate an M-dimensional space of data for each data parameterd,,

where each of the various model parameters m,(j=1,.,M) takes [, values, ie.

my=m; . +({-DAm; with Am, = (mj,max =M in )/(Lm_, —1) and where m; ., and m; are

the predefined minimum and maximum values of this parameter. We denote this as a
discrete forward rock physics model. Let ﬁ,.(nﬁ) denote such a discrete model, representing

a sampled scalar field of the data parameterd;, where the model parameters are
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coordinates and varied as described above. We hereafter denote ﬁi(rh), i=1,..,N, as a set of

rock physics constraints. Figures 1a, b, and ¢ show a 3D representation of modeled
constraints for the bulk modulus (K), shear modulus () and density (p) obtained from a
Differential Effective Model (DEM) (Berryman, 1992) with constituent parameters as
defined in Table 1 and pore geometry defined in Table 2, and using 26 equidistant values
for the model parameters where0<¢<0.4, 0<S<1.0 and 0<C<1.0.

a) Bulk modulus  b) Shear modulus
[GPa] [GPa]
Brine ] > i q 40
! 3 35
c k .
S
506 S 0. 30
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Fo4 . 25
02
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%
Gas
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0.4 Lithology - B
Porosity Quartz Porosity 04 guam Uil 5
Density
[g/cm?]
Figure 1 3-dimensional representations of model constr-
Clay aints for the data parameters (a) bulk modulus, (b) shear
modulus, and (c) density. The porosity, lithology and fluid
o= Lithology saturation model parameters span the axis and the colors
porosity > Quanz correspond to data parameter values.

Table 1 Constituent properties for the various examples until and including the synthetic modeling.

Constituent Density [g/cm’] Bulk moduli [GPa] Shear moduli [GPa]
Quartz 2.65 37 44
Clay 2.6 21 7
Brine 1.017 2.62 -
Gas 0.146 0.0417 -

Table 2 Pore model geometry for the various examples until and including the synthetic data case.
Aspect ratio spectrum 1.0000 0.5000 0.1000 0.0100 0.0010 0.0001
Concentration 0.9254 0.0579 0.0149 0.0015 0.0002 0.0001
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RESAMPLING ROCK PHYSICS CONSTRAINTS

We now perform a resampling of the discrete rock physics model 15,.(11"1) with the aim

to extract all the model parameter combinations corresponding to a set of fixed data
parameter values. In a 2D-model this corresponds to extracting contours, in a 3D model the
parameter combinations are often described by surfaces, and so forth. In Figures 2a and b
examples of resampling two values of the bulk modulus constraint cube of Figure 1a at
saturation S=0 and S=1 are illustrated, while the corresponding correlations of porosity ¢
and lithology C are shown in Figure 2c. In order to obtain relative simple topological
properties of the resampled data from the data parameters, it is favorable to organize the
forward rock physics model, so that, eventually, the data parameters are monotonically
varying functions of the model parameters. Hence, in the 3D example of Figure 1 we can
see, for instance, that bulk modulus K is monotonically changing with all the model
parameters. We will further debate this issue in the discussion part.

) and maximum (d, . ) values of ﬁ,.(nﬁ) are

i,max

Before resampling, the minimum (d,

retrieved. Subsequently, resampling is performed at data parameter values
D, =d, ., +(j—-DAd, with Ad, = (d,._max -d, . )/(Ld’ —1) and j=1,L, , where L, denotes a
predefined number of values of the particular data parameter to be extracted. The scalar Dj
annotates the j-th value of the data parameterd, .

Essentially, the extracted model parameter data for one specific data parameter value
represent an M-dimensional tabulation defining a correlation of the model parameters. We
therefore define the tabulated function obtained for data parameter D, as the model

correlation function ¢, (7). Figure 3 shows the two model correlation functions (in this

case 3D surfaces) obtained for two bulk moduli values Ki=17 GPa and K>=25 GPa by
resampling the bulk constraints of Figure 1a.

CONCEPT OF INVERSE ROCK PHYSICS MODELING

We can now use the model correlation functions ¢, () to obtain the rock physics

i, min S dA[ S d[,max by

solutions for any data parameter valued,, denoted ¢, (), whenever d,
performing a careful interpolation. The simplest way of locating a solution is by a linear

interpolation using only P, () and P, () where D, < c?[ <D, ., le.

i,j+17



@, (m)= @, (m)+

,

(d

ij+1

d,)

-d,)

o,

ij+1

(i) ~ @y, ().
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(5)

Say we believe in a specific rock physics model, and that it has been resampled as
described in the previous section. Now we want to find the rock physics parameters
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Figure 2 Example illustrating the resampling of two bulk
moduli values; In (a) and (b) the bulk moduli are plotted
versus porosity for various lithologies (volume fraction
of clay content C) and for pure gas and brine saturations,
respectively. The intersections between the two bulk
moduli values and the lithology curves are replotted in
(c) as lithology versus porosity.

Figure 3 The bulk modulus correlation function plotted
for two moduli values. They form surfaces in the
porosity, lithology and fluid saturation coordinate
svstem.
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consistent with one pair of data parameters ﬁi and ﬁk. The solution to this problem is

accordingly
(0{}, (m)— ¢Jk (m)=0, (6)

which is simply the intersection of the two model correlation functions. Let the solution
obtained using one pair of data parameters be denoted ¢, , (m), i.e. i#k. In Figure 4a the
i“k

intersection considering one bulk modulus and one shear modulus is shown. We clearly see
the nonlinearity of the problem as the intersection curve becomes strongly curved. A
combination of the bulk modulus and a density value is seen in Figure 4b. Now the
intersection curve becomes quite different, clearly pinpointing the consequence of facing an
underdetermined problem. However, the inverse modeling provides us with all
combinations of model parameters consistent to a given set of data parameters. Any
additional information about any of the three model parameters would directly gain in
defining a more constrained solution. Moreover, information about two or more of the
model parameters may furthermore help in rejecting or verifying the use of the applied
rock physics model itself.

When a third data parameter c?m is added, the solution is analogously found by

locating the intersections of the various solutions of equation 6, i.e. though three
intersections we may find P, (m), P (m), and Pi (m), but only two of these are

needed for obtaining the solution. Hence, it is given by

D 4 , (m)— (03,(.3"3 (m)=0, (7)

m%n;
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Figure 4 Plot of correlation functions and intersections between (a) bulk modulus K and shear modulus # and (b)
K and density p.
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i.e. i, k and m can be associated with any (but only one) of the indices nj, nz and ns. The

solution can furthermore be defined as [ (m). We can now build a hierarchic system

m%ny @y

for obtaining the solutions ¢, , , (m) in case N different data parameters are combined
=i g, i, 0, =0 (®)

Again, each of the indices i=1,...N can essentially be associated with ni, nz,...nn. In Figure 5a,
the solution of the three model-parameter exercise is defined at the intersection point of
the two contour lines. This is furthermore also illustrated in Figure 5b by the intersection
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point of all three model correlation functions. In this case the solution is unique, while in
Figure 5c two intersection points occur. This clearly demonstrates that there is not always a
unique solution also in the case when the number of model parameters is equal to the
number of data parameters. In this case a rock model where porosity ¢=0.19, saturation
§=0.21, and lithology C=0.52 will have the same elastic moduli and density as when
¢=0.28,5=0.97, and C = 0.34. This will be further demonstrated in following examples.

Numerically, the choice of parameter combination to use for obtaining stable
solutions depends on the local shape of the model correlation functions at the intersection
points. This is evident from studying Figure 6a and b where the intersection of the model
correlation functions using the density and P-velocity is more stable for small alterations of
the P-velocity, compared to when, for instance, combining the P and S velocities. In this
example, we can understand the stability - or a measure of the goodness of the solution - by
comparing the normal vectors of the model correlation functions (here surfaces) at the
intersection points. A well conditioned solution would occur whenever these are, or, close
to, orthogonal. Hence, a measure of the conditioning can be obtained by considering the

scalar product of the normal vectors. Let @(p& and @(oj denote the normalized gradient

vectors (here also normal vectors) numerically derived from lA),,(nﬁ) at (p(i,-(’ﬁ) and from
D;(m) at ¢<7/(m) at an intersection point, respectively. Then an appropriate condition of
local stability means that the scalar product of the normal vectors

€10, =V, Vi

) 9

is close to zero. We denote this quantity as the orthogonality factor.

Similarly, we can define a mean orthogonality factor £, , for a combination of the two
data parameters by integrating the scalar product along the intersection contour C= @i, (m)
and dividing by the length of the contour, i.e.

1
£ = @Cje%dc, (10)

which accordingly again should be as small as possible.

Figure 7 shows modeled orthogonality factors using equations 9 and 10 for three
dual data parameter combinations, e.g. K and g, Vp/Vs and pand V,/Vs and pV, for the
example discussed in Figure 5a. Figure 7a reveals that, in this case, the combination of V,,/ Vs
and pin general gives the most stable solutions, while a combination of K and g provide low
stability solutions. However, combining V,/Vs and pV, is only slightly poorer than using
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V»/Vs and p. This is further demonstrated in Figure 7b where the mean orthogonality factor
is plotted for 6 different data parameter combinations.
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Figure 6 Good (a) and bad (b) conditioned intersections of the constraints density (green), P-wave velocity (blue)
and S-wave velocity (red). The P-wave velocity constraint is plotted for two values, which are the same in both
figures. The difference in solution sensitivity can be inferred from the displacement of the yellow stippled lines
along the intersections of the surfaces.
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Figure 7 Orthogonality (a) and mean orthogonality factors (b) for various intersections between the bulk modulus
(K), shear modulus (4), density (p), P-wave velocity (V,), S-wave velocity (V;), P-wave acoustic impedance (oV;)
and V,/V; ratio.
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At a solution point 7, we may now also estimate the sensitivity of the various rock
parameters, i.e. Am, to a perturbation in any of the applied data parameters. Again we use

the estimated gradient vectors at the solution points, i.e. V(pé , i =L...,N. Now, say we alter
the data parameter d; with a value ddi. The intersection point between ¢, . and, for

instance, @. (see Appendix B) will then displace Am,. from m_ and alon Vo. as
o, ( pp p i s g Vo,

- oV, @go‘; —@(od cos@
Amj\i = - 01 e ’ (11
sin ‘V(pd: —V(ogj cosf
with
6’=arccos(@(p& qu‘} ). (12)

Thus, a weighted solution for the displaced solution 7, due to a perturbation &d; can

be written as

N
(&) = i, +L2\Am,‘i Wit (13)
M P J J
N
where M = z Anﬁj‘[ .
j=1

Figure 8 displays reservoir properties (i.e. ¢ C and S) obtained by inverse modeling
given the two sets of values for the bulk modulus, shear modulus, and density listed in
Table 3. The set of values in Figure 8a, which is equivalent to the high saturation point in
Figure 5c, represents a slightly softer material than in Figure 8b. Furthermore, the figures
show the displacements of the solutions (according to equation 11) due to +5% deviations
in each of the input parameters. We readily see the nonlinear nature of the problem as the
solutions for a perturbation in one data parameter do not become symmetric about the
initial solution point.

Using equation 13 we can furthermore also evaluate the partial derivatives of any

m;

model parameter with respect to any data parameter, i.e. which provides a simple way

i

of modeling data error propagation.

In case the inverse modeling is to be applied on a larger data set, the numerical
performance can be improved using a proximity search. In this case the solver allows a
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certain tolerance towards the intersection of the model correlation functions. Hence, in
addition to the solutions where the model correlation functions intersect, solutions up to a
certain distance (delta) in the model parameter domain are included. In the real data case
study to follow in next section, we use this latter implementation.
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Figure 8 Sensitivity analysis when perturbing the density, bulk and shear moduli for two sets of data parameters
values (see Table 2). The main value is plotted as a circle, and the perturbed solutions are plotted as arrows
identified with a plus and minus symbol for the higher and lower perturbed values, respectively.

Table 3 Data parameter values used in the inverse modeling shown in Figure 8.

Figure Data parameters Initial value — perturbed value + perturbed value
Bulk modulus [GPa] 16.5 15.88 17.13

S Shear modulus [GPa] 11 10.53 11.46
Density [g/cm?] 2.18 2.14 2.22

Bulk modulus [GPa] 18 17.62 18.38

'o% Shear modulus [GPa] 15 14.72 15.29
Density [g/cm?] 2.1 2.08 2.12
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AREAS OF APPLICATION

The main idea of the inverse rock physics modeling is to provide a flexible and
consistent framework for the evaluation of lithology and reservoir quality data from
geophysical (seismic) parameters. Flexible in the sense that one may consider different rock
physics models, use various combinations of input data parameters, and even obtain results
when only one data parameter is available. Estimation of rock physics parameters from
seismic parameters is in general a strongly underdetermined problem. Here, this problem is
handled by displaying all possible solutions corresponding to the selected set of data
parameters input. Furthermore, it provides a simple way to test for the sensitivity of the
obtained reservoir quality properties due to errors in the various input data parameters.
Hence, error bars may be modeled for the estimated reservoir quality data when error bars
of the measured data parameters are available. Also, it may be used as a diagnostic tool in
evaluation of which parameter combinations to use for a specific estimation problem by
considering the stability criteria in equations 9 and 10.

An alternative way of studying effects of data parameter errors is by a Monte Carlo
simulation. Now an ensemble of values following some probability distribution function
(PDF) is first established for each data parameter, which, subsequently, through inverse
rock physics modeling provides the distributions of the reservoir parameters. Figure 9
shows an example of modeled Gaussian PDFs of the data point (K, & and p) in Figure 5a,
with standard deviations of each data parameter set to 1 unit. Again, we see the complexity
of the estimation problem due to the non-symmetric signature of the solution distributions,
and, also, that there for some values are two solutions.

Figure 10 shows synthetic logs of V), Vs, p, K, and u for 27 different reservoir
conditions, where ¢, C and S have been varied systematically to cover a wide range of
reservoir parameters. We now use the synthetic data to reproduce these reservoir
conditions by inverse rock physics modeling using different data parameter combinations
of the log data. Figures 11a, b, and c show the true reservoir parameters and results
obtained, in case of considering an underdetermined problem, by applying various two data
parameter combinations, i.e. K and g K and p, and x4 and p. The solutions fluctuate
differently about the solution points indicating that the various parameter combinations
will result in different variances of the reservoir estimates, e.g. comparing Figures 11a and
¢, we see that most of the lithology estimates in Figure 11a are under-predicted, while in
Figure 11c they are over-predicted, and correspondingly, the opposite trend is seen for the

porosity.

In Figure 12 we use the three data parameters K, 4, and p to reproduce the reservoir
conditions, but now also various uncertainties in the input data are included. Four
situations are considered: a) Noise-free data, b) K (¥5%), £ (0%), and p (0%), ¢) K (0%), ¢
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(£5%), and p (0%), and d) K (0%), 1 (0%), and p (£5%). For noise-free data (Figure 12a) we
see that often two reservoir models occur. Particularly, we can see at for sample Id 3 the
two solutions indicate almost opposite fluid properties, with rather minor differences in
lithology and porosity. For the use of seismic parameters in pore fluid discrimination, this
example is worth noticing. It also pinpoints the necessity of doing this type of modeling
studies in order to explore the uniqueness of interpreted reservoir property data whenever
arock physics model has been selected for this cause.

Another problem for obtaining a trustworthy prediction of reservoir properties from
seismic parameters is to evaluate the validity of the rock physics model(s) considered for
the analysis of the data. In the following example we again use the inverse modeling to
screen a set of different rock physics models, to test their relevance. For simplicity we again
use the differential effective medium (DEM) model to produce the rock physics constraint
data, but aside from varying ¢, S, and C, also the pore structure is systematically altered. As
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such, we now consider the pore model as a fourth dimension in the inverse modeling
scheme. Twenty pore models are made, where all (except from one) have the same pore
geometries (spectrum of aspect ratios), while the individual volume concentrations of the
pore geometries vary from one model to another. We use a pore model index [ to define the
volume concentration according to

(N +1-0D)c,(@)/ N:i >1

¢ (e) = ’
T e @i,

(10)

where N, is the number of different pore geometries, i=1 denotes spherical pores (i.e.
aspect ratio a1=1), and the c10()’s are as defined for the rock physics model the synthetic
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data is generated from (see Table 2). An increasing pore model index now means increasing
pore model stiffness and I=N denotes spherical pores only. We now use Rj,...Ry to separate
the various rock physics models. Figure 13 shows the results of inverse modeling

sequentially considering Rj,...Ry using K, g, and p from the synthetic log of Figure 10 as
input. The reservoir properties obtained vary quite strongly with the selected pore model,
which is seen particularly to influence on the estimation of fluid properties. The example
pinpoints the importance of using a proper pore model when performing seismic pore fluid

prediction.

In the final example, we consider a
sequence of real well data from the Glitne
field in the North Sea (Avseth et al.,, 2005).
Again, our objective is to evaluate possible
rock physics models to use for characterizing
a reservoir unit. A rock physics study of the
reservoir has previously been reported in
Avseth et al,, (2005). The log data are shown
in Figure 144, and cover an oil saturated zone
with two facies identified IIb and Ilc. Facies
IIb is clean, massive sandstone with clay
coatings, but with some presence of pore-
filling clay. Facies llc is plane-laminated
sandstone with a higher content of pore-
filling clay and with a dominant grain size
generally smaller than in IIb. Table 4 shows
recommended constituent properties to use
for rock physics modeling of the reservoir
units (Avseth, 2005). First, we adopt the
procedure of Avseth et al. (2005) to define a
first set of rock physics constraint data (for
details, see Appendix A): The Hashin-
Shtrikman (1963) lower bounds are used to
calculate the effective moduli of the mixed
solid mineral components. Wood’s (1955)
equation is used to obtain the bulk modulus
of the mixed fluid phase. The elastic moduli
of the dry rock are modeled using the
Hashin-Shtrikman-Walpole (Walpole, 1966)
upper bounds with the effective mineral
elastic moduli as the zero porosity end-
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Figure 13 Inverse modeling for rock physics models
with various pore geometries, using bulk modulus,
shear modulus, and density as input data parameters.
The correct model parameters correspond to rock
physics (pore) model number ten and are plotted as
squares. The modeled solutions as dots where the
color code corresponds to the various rock physics
models, i.e. pore geometries. The dimmed zebra
stripes on the background separate the various data

samples.

Table 4 Constituent properties recommended

using in the Glitne data modeling.

Constituent Density Bulk  Shear
[g/cm?®] moduli  moduli

[GPa] [GPa]

Quartz 2.65 36.8 44
Clay 2.6 17.5 7.5
Brine 1.09 2.8 -
0il 0.78 1.005 -
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member. The high porosity end-member at ¢= 0.4, we calculate using Hertz-Mindlin theory
(Mindlin, 1949) using a coordination number of 8.3, which is in accordance with data
compiled by Murphy (1982). Finally, we perform a Gassmann (1951) fluid substitution to
calculate the effective moduli of the fluid saturated rock.
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The estimated reservoir properties from an inverse modeling using V,, Vs, and p are
shown in Figure 14b where black circles identify the measured reservoir parameters and
colored dots those modeled. The large number of identified solutions, even when using
three data parameters, is due to the solver we have used which identifies solutions in
regions where the isosurfaces are within certain proximity of each other. We see that
porosity is generally well predicted, while clay volume is over-predicted and oil-saturation
is under-predicted. Extending the library of rock physics constraint data by also perturbing
the coordination number, improved the results when using an unrealistic low coordination
number (~1) for the high porosity end-member. Also, improved results were obtained
using the Hashin-Shtrikman-Walpole lower bound, instead of the upper bound, but then an
unrealistic high coordination number (~14) for the high-porosity member was needed.

To possibly improve the results a wide range of rock physics models were used to
generate constraint data. We also defined a small perturbation of the clay mineral
properties to be allowed. Our final rock physics model differs from the initial one (Avseth et
al,, 2005) by the following: Instead of Hashin-Shtrikman-Walpole to interpolate between
the porosity end-members, we use a DEM model with a pore model as defined in Table 5
and where the inclusions are defined by the physical properties of the high-porous end
member. The elastic parameters of the high-porosity end-member were calculated using
the model of Walton (1987) and applying a mixed slip factor model (Duffaut, 2010;
Bachrach, 2008). A mixed slip-factor model implies a volume weighted averaging of the
elastic moduli obtained at rough and zero friction. The best match was obtained using a slip
factor of 0.4 for facies IIb and 0.6 for facies Ilc, and the mineral properties given in Table 6.
Our final results shown in Figure 14c fairly consistently reproduce all the parameters of the
reservoir zone. Still, we see that some of the reservoir data (at depths around 2167 m and
2178 m) are not captured. Thus, we have obtained a proper rock physics model, where all
the rock physics parameters are in the plausible range of such lithologies.

Table 5 Pore model geometry used in the improved inverse modeling on the Glitne data.
Aspect ratio spectrum 1.0000 0.5000 0.1000 0.0100 0.0010 0.0001
Concentration 0.6419 0.3205 0.0321 0.0050 0.0005 0.0001

Table 6 Constituent properties we found to give the most consistent results when modeling
the Glitne data. The highlighted values are the ones we have changed from the
recommended configuration in Table 4.

Constituent Density [g/cm?] Bulk moduli [GPa] Shear moduli [GPa]
Quartz 2.65 36.8 44
Clay 2.56 13 4
Brine 1.0 2.8 -

oil 0.78 1.005 -
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DISCUSSION

The basic idea of inverse rock physics modeling is by numerical means to reformulate
a rock physics model so we can use various seismic parameters as input and obtain
parameters describing lithology and reservoir quality as output. In early exploration only P-
wave interval velocities may be known, while subsequent Amplitude Versus Offset analysis
and seismic inversion may provide P-wave acoustic impedances and V,/Vs ratios
(alternatively Poisson’s ratios and elastic impedances (Connolly, 1999)). In some cases S
velocities may be available from pure S-wave reflections (land seismic), or from P-to-S
converted waves (long offset marine seismic data). Thus, in wells often both P and S
velocities and densities are extracted together with a suite of rock property data.
Consequently, a system for inverse rock physics modeling needs to be flexible to the
number of input parameters as well as the kind of seismic parameters considered, i.e. any
combination of Vp, Vs, and p should be possible to apply as often less than three seismic
parameters are known. Our examples have been limited to predict reservoir condition
based data on elastic moduli, velocities and density, but similar analyses could as well have
been based on acoustic and elastic impedances, as well as typical AVO derived attributes
(intercept and gradient parameters).

Cross plots of seismic parameters in combination with various rock physics templates
are frequently used to do both qualitative and quantitative predictions of lithology and
reservoir properties. Even more precise quantitative estimates can subsequently be
achieved applying statistical measures of the data points with reference to specific rock
physics templates. For details see Avseth et al. (2005). In this approach, there is no
particular consistency check of the applied rock physics model. The inverse rock physics
modeling automatically checks for this consistency since if no model parameters are found
for a specific set of data parameters, the considered rock physics model is rejected. In
principle, this approach can be used to sort out the most appropriate (and consistent) rock
physics models to be used for characterizing a specific set of data. Hence, if the various rock
physics models scrutinized are related to a geological framework (e.g. we usually associate
contact models with unconsolidated sediments), such a consistency check can be used to
clearly pinpoint the type of lithology, along with the estimated parameters.

The complexity of the numerical routines to be used in deriving resampled constraint
data, which is used in the inverse modeling, will depend on the topology of the functional
relationships between the data parameters and the various model parameters. To keep this
operation relative simple, the forward rock physics model should (if possible) be organized
so that the data parameters appear as monotone functions of the various model
parameters. In our case, where we mainly consider the data parameters bulk modulus,
shear modulus and density, we know that all these are generally constant or monotonically
increasing or decreasing with ¢, S and C. This is also the case when the varying pore model
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was inferred as a fourth variable because an increase in the pore model index implies
increasing bulk and shear moduli, while the density remains fixed. Similarly, fluid
patchiness can be introduced as a fifth variable, e.g. by using a fluid mixing index taking the
values j=1,..,Nn. A homogenous mixing is associated with j=1. Index j>2 annotates that a
fraction (j-1)/Nm of the pore volume (¢) contains the pore fluid defined at S=1, while the
remaining porosity contains the pore fluid defined at S=1. Increasing fluid mixing index
then causes the bulk modulus, shear modulus and density to increase, decrease or remain
constant. Among other conditions that can be easily included within the constraint data are
the effects of pore pressure, confining pressure and temperature.

For some parameters, as for instance the V,/Vs it might be difficult to get control of the
topology of the data parameters, and thus the numerical implementation of the resampling
may be more cumbersome. One solution here is to find the model correlation function for
various Vp/Vs-values via the resampled bulk and shear moduli constraints. Then, first by
defining an appropriate set of values of K and u corresponding to a fixed V,/V,-ratio,
retrieving the two model correlation functions for each pair and locating the intersection
between them, will finally provide a model correlation for this specific V,/Vs-ratio.

The various scales of earth heterogeneities are viewed as a major obstacle for the use
of rock physics models in quantitative seismic analysis, e.g. the earth usually occur layered,
while rock physics models predict the response of a homogeneous effective medium.
However, the rock physics constraint models can to some extent take this into account by
establishing a set of upscaled models. Upscaled models, e.g. using Backus averaging, can for
instance be made by composing various layering models, where the individual layers are
characterized by some rock physics constraints for the relevant (homogeneous) lithology.
Finally, the inverse modeling is performed on the basis of the upscaled rock physics models.

CONCLUSIONS

We have presented a framework for inverse rock physics modeling which can serve as
a tool in prediction of lithology and reservoir parameters from seismic parameters. The
basis of the method is numerical restructuring of rock physics models so that seismic
parameters are input and reservoir parameters are output. In general, this is a highly
underdetermined problem which has non-unique solutions.

The modeling provides a simple way to display this non-uniqueness, and also to
estimate probability distributions of the estimated parameters when error distribution
functions are attached to the input parameters. Furthermore, the inverse modeling can be
used to obtain a validity check of various rock physics models considering a given set of



101

data, and to provide the most robust parameter combinations to use for specific reservoir
parameter estimation problems.

Our approach was applied to predict reservoir properties from both synthetic and real
data. The synthetic data example revealed the severe non-uniqueness of this problem as
models with different reservoir properties provided the same set of seismic parameters.
For the real data case, inverse modeling were applied to obtain a consistent rock physics
model to be used as a transform from seismic parameters to reservoir data for a previously
published North Sea case study.
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APPENDIX A
ROCK PHYSICS MODELS

Differential effective medium

The differential effective medium (DEM) theory (Berryman 1992; Berryman 1995) is
an inclusion based theory taking into account higher order interaction. Here, one of the
constituents is considered the host medium while the remaining components are
embedded as inclusions. This is an asymmetric model because given the same volume
fractions of the constituents, interchanging the host with one of the embedding components
result in different elastic moduli. For a two phase composition the elastic moduli can,
according to the differential effective medium theory, be solved from the coupled
differential equations

(1—y>diy[1<*(y)]=(z<2—K*(y»zz*(y), (a-1)

(1—y>diyw(y)]=(yz—u*(y»Q;(y). (A-2)

Phase one acts as the host material with bulk moduli K1 = K*(y=0) and shear moduli
1 = 1*(y=0), while the bulk and shear moduli of phase two is Kz and g, respectively, and y
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is the volume fraction of phase two. The geometrical factors P (y) and Q,(y) are calculated

having phase two as the inclusion material in a host with effective moduli K* and g*.

Hashin-Shtrikman bounds

The Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963) are theoretical upper
and lower limits of effective moduli of an isotropic mixture. An interpretation of these two
bounds is that one of the constituents forms a shell around the other constituent. The upper
limit yields a composition where a stiff shell surrounds a soft core, and the lower limit is
where a soft shell surrounds a stiff core. For a mixture of two constituents, the upper bound
(HSUB) is given by

v,

Kysos = K, + ) (A-3)

=
(Kz - K, )71 +V1[K1 +:ﬂ1j

v,

-1
- 4
(/lz _ﬂl) 1 +2V1(K| +2u, )|:SIUI(K1 +3/u|j:|

Husup = My + ’ (A-4)

where V, K, and u are the volume fraction, bulk modulus, and shear modulus, respectively,
and where indices 1 and 2 refer to the stiffer and softer materials, respectively. The lower
bound is found using the same equations but with index 1 referring to the softer material
and index 2 to the stiffer material.

Hashin-Shtrikman-Walpole bounds

The Hashin-Shtrikman-Walpole bounds (Walpole, 1966a,b) is a more general form of
the Hashin-Shtrikman bounds, and the elastic moduli are given by

, (A-5)

(A-6)
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Index 1 and 2 refers to the two components, and now, the upper bound is found when Kn,
and m are the maximum bulk and shear moduli of the two components. The lower bound is
found when they are the minimum moduli of the two components.

Walton model and the no-slip factor

In the Walton model (Walton, 1987) the elastic moduli are calculated under the
assumption that the normal and shear deformations due to compaction of two grains occur
simultaneously. Typically, two variations of this model are considered; 1) rough grains: the
grains have an extremely high friction, and 2) smooth grains: the friction coefficient of the
grains is zero. The effective bulk modulus Kw is the same in both cases and given by

K, = I{W)ZCZP} , (A-7)
6 z*B?

where ¢, C, P are the porosity, coordination number, and pressure, respectively, and B is a
parameter given by

il .
dr\u u+A

where x# and A are the shear modulus and Lamé’s coefficient of the grain material,

respectively. The effective shear modulus for smooth grains uw-, is simply given by
3
Hy_ = ng’ (A-9)

while for rough grains it is given by

—EK S5—4v 5—4v
/UW+ 5 w 2—V IUW— 2—V

, (A-10)

where vis Poisson’s ratio of the grain material. Here we are assuming that the compacting
grains are two identical spheres, which is not the typical geometry of e.g. clay. But the
coordination number takes to some degree into account the shape of the grains and the
model have been found to work fairly well for shales as well as sandstones (Avseth et al,,
2005, p. 95).

The rough and smooth cases are extremes, therefore we consider a weighted average
between them to model intermediate scenarios, and we get
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5—-4v
2—v

f+(1—f)}=ﬂw[l+3g__vv)f] (A-11)

My = f/uw+ +(1- f)/lw, = :uw‘:

where fis a no-slip factor associated with the amount of friction between the grains; f= 1.0
implies only rough grains and f= 0 implies only smooth grains. This no-slip factor is the
same as the no-slip factor f; in the equation given by Bachrach and Avseth (2008) for the
effective shear moduli under hydrostatic loading, and the Mindlin friction term f{)
(Duffaut, 2010; Mindlin, 1949).

Contact cement theory

The contact cement theory (CCT) of Dvorkin and Nur’s (1996) is used for calculating
the effective dry rock elastic moduli of cemented granular rocks according to

Keer = CU=0)M.S, (A-12)

Hor =2 Ko + == Cl1= g, )15, (A-13)
5 20

M, =pV,, (A-14)

H.=pVe, (A-15)

where ¢ is porosity of the starting framework, pc, Vpc Vsc are the density, P- and S-wave
velocities of the cement material, respectively. The S, and S, parameters are proportional to
the normal and shear stiffnesses, respectively, and they depend on the cement and grain
properties as well as the amount of contact cement.

APPENDIX B
DISPLACEMENT OF INTERSECTION

Figure B-1 shows the displacement Mz‘\ of the intersection between ¢, and

@; when the data parameter d; is altered with a value &d;. From vector and trigonometric
relations it can be expressed as

0
Ay =

Jli

V(p‘;,
‘ sin @ H@(p{7 —@% cosf

6%, - @%, cosé

Am . =|Am .
jli Jli

(B-1)



where An%,.

i
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is the unit vector of Ar?z,.‘,.. The factor cosé@ comes from the projection of @(/)J ,

i.e. the unit gradient vector of data parameter d;, onto @(pj , i.e. the unit gradient vector for

data parameter d;.

Equation B-1 can be extended to the displacement of an intersection in three
dimensions between ¢, , ¢, ,and @, when the data parameter d; is altered with a value 3d;

according to

Am,,;, = Am,

klj‘i _]‘I

I e P

(B-2)

where ¥is the angle between A”A’,-\,- and @q)‘i , 1.e. the unit gradient vector of data parameter
k

d.
N
g0‘7’ Vq)d
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Figure B-1 Illustration of displacement Ar_r'tj‘i of intersection between

the model correlation (p‘j for data parameter value d,. , and (Dj for data
i 7

parameter value ¢ i when the data parameter d; is altered with a small

value 8d;. The corresponding gradients in the initial intersection is

V(DJ and VQ? with unit vectors @(pﬁ and @(00? , respectively.
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“We cannot direct the wind, but we can adjust the sails.
Bertha Calloway
African-American, community activist and historian (1925-)

Founder of the Great Plains Black History Museum
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Improved quantitative calibration of rock
physics models

Bernardo Moyano?, Erling Hugo Jensen?, Tor Arne Johansen1z2.

ABSTRACT

In reservoir characterization, rock-physics models provide the link between seismic
observables (density, compressional and shear wavespeeds) and reservoir parameters such
as porosity, lithology and fluid saturation. However, the accuracy of these predictions is
rarely explored. In fact, the validation of a model representing a dataset is often limited to
the analysis of a cross-plot of two arbitrary magnitudes. The objective of this paper is to
improve the calibration procedure through a quantitative assessment of the reservoir
property predictions using various rock-physics models. The analysis is based on an inverse
rock-physics modelling that organizes the rock-physics transforms into constraint data so
that the seismic variables are direct functions of the reservoir parameters. It is revealed
that the predictions of reservoir quality can assist in the diagnosis of the rock
microstructure itself, such as the location of clay particles in clay-rich sediments. In
addition, we found that a quantitative analysis is the only way to evaluate accurately the
performance of various models when studying heterogeneous datasets.

INTRODUCTION

Selecting and calibrating the most suitable rock-physics model for a given dataset is
an exercise with a non-unique solution. Rock-physics models capture one or a select few
factors that influence the elastic properties of the rocks. In addition, these models typically
are calibrated to a limited set of physical data (e.g. compressional (P) velocity data). One
group of models based on contact theory (Mindlin 1949) treats rocks as a collection of
grains and estimates their stiffnesses from the contact stress between two spheres of equal
size. On the other hand, inclusion models (Berryman 1980) treat the rock as an elastic solid
with cavities and accounts for the effects of shapes of multiple pores on elasticity. In
practice, general guidelines and additional observations help to constrain the model space
to a relatively small number of plausible options. For example, contact models have been
used successfully to study the pressure dependence of velocity of unconsolidated sediments
(Dvorkin & Nur 1996). Inclusion models are often preferable when analyzing well-

1 Department of Earth Science, University of Bergen, Bergen, Norway.
2 NORSAR, Bergen, Norway.
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consolidated rocks (Sheng 1990; Berge et al. 1993). However, after selecting a modelling
strategy, we are frequently left with several possible models that seem to represent
experimental data equally well.

In reservoir characterization, the ultimate goal of a rock-physics model is to assist in
the inversion of seismic data for porosity, lithology and pore fluid (PLF). These models
define the transforms between seismic observables and reservoir parameters. Selecting a
specific model implicitly defines the dominant parameters that control these relationships
and determines the accuracy of the predictions. Therefore, a crucial step is to calibrate and
to compare the predictions quantitatively when more than one model appears equivalently
valid for a given area.

Various models are used to account for the dependence of elastic properties on
different physical conditions. Pressure dependence has been captured by models based on
contact theory (Mindlin 1949; Digby 1981; Walton 1987). The stiffness effect due to cement
located at the grain contacts is often calculated using contact cement theory (Dvorkin & Nur
1996), whereas pore microstructure effects can be modelled by inclusion models (Kuster &
Toksoz 1974; Berryman 1980). Self-consistent approximations (O’Connell & Budiansky
1974; Hornby et al. 1994; Berryman 1995) and differential effective medium (DEM) models
(Berryman 1992) have been developed specifically to extend inclusion models to handle
higher concentrations of inclusions. Shales, due to their complex lithology and reduced pore
sizes have been idealized through inclusion models, (Hornby et al. 1994; Jakobsen et al.
2003; Johansen et al. 2004a; Draege et al. 2006). The equations of Gassmann (1951)
simulate the low-frequency effects of different pore fluids on seismic velocities. Avseth et al.
(2010) provide an overview of theoretical, empirical, heuristic and hybrid strategies to
model diagenetic and depositional trends in unconsolidated high-porosity sediments. Thus,
ambiguities can arise when we apply various models to estimate simultaneously reservoir
properties such as lithology, porosity and saturation. Little work has been done to evaluate
systematically PLF parameters obtained using different models. For a given dataset, the
selection of a rock-physics model is uncertain, in terms of providing the most suitable
relationship between the seismic and PLF parameters. The goal of this paper is to present a
way to select and calibrate the most suitable rock-physics model for a given dataset and
reduce the non-uniqueness of the reservoir characterization problem. We do this by
quantifying the accuracy of different rock-physics models in the prediction of reservoir
parameters when calibrated to experimental data. We use an approach (Johansen et al.
2004b) that organizes the rock-physics transforms into constraint data where the seismic
variables (e.g., velocity and density) are direct functions of the selected PLF parameters. We
start with a review of this strategy, and then we demonstrate the calibration procedure in
two cases using real data. In case 1 we use the procedure to illustrate the shortcoming of
the traditional cross-plot type of calibration. We do this by comparing the reservoir
property predictions made with a model for dispersed clay (Dvorkin & Gutierrez 2001)
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versus a model for structural clay (Avseth et al. 2005) on a set of laboratory measurements
of clay-sand composites (Yin 1992). In case 2 we explore the accuracy of various rock-
physics predictions of reservoir properties considering a more extensive dataset (Han et al.
1986). Subsequently, we select the most suitable models and then perturb individual
parameters to optimize the final predictions.

INVERSE ROCK PHYSICS MODELLING

A common practice in rock-physics analysis is to use cross plots to study trends and
property dependencies. For example, Figure 1a shows the predicted bulk modulus versus
porosity trends for a particular fluid saturation and different lithologies using a rock
physics model. In the strategy of Johansen et al. (2004b) such modelled dependencies are
resampled into a scalar field of the reservoir properties. Figure 1b illustrates the
resampling of two bulk moduli values into a lithology versus porosity cross plot. Repeating
this for the other moduli values and various fluid saturations gives us the 3D cube in Figure
2. The resampled bulk modulus can be thought as a scalar field K. In this case, K= K(¢, C, S),
where ¢ C and S denote the porosity, clay and fluid volume fractions, respectively for a
particular rock physics model. From K(¢ C,S), we calculate a numerical relationship
between ¢ C and S which corresponds to a specific bulk modulus value. For the 3D cube this
typically produces a surface that we denote an iso-surface because all points on this surface
correspond to the same modulus.
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Figure 1 Resampling of a rock-physics model from velocity-porosity to lithology-porosity space. C; are model
results for various clay contents.
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Estimating reservoir properties

An iso-surface can be used to study predicted reservoir property dependencies for a
particular seismic parameter value and a given rock physics model. Any combination of ¢ C
and S corresponding to a point on such a surface is a possible solution for the particular
seismic parameter value. Typically, we have data of more than one seismic parameter (com-
pressional and shear wavespeeds, Vp and Vs, and bulk density p), and by combining their
individual iso-surfaces we constrain the possible PLF solutions. A combination of two
seismic observables (e.g. V, and p) will normally lead to one or more curving lines in the
PLF domain. Furthermore, a combination of three observables leads to one or more point
solutions because we are dealing with a non-linear problem (see Figure 3). Another
possible outcome of the inversion is that no intersection is found, i.e.,, no combination of
reservoir properties is consistent with the set of observables. This means that the selected
rock physics model fails to reproduce the data and other possible model candidates should
be tested.

When working with real data, it is difficult to find a rock physics model that is able to
predict the correct reservoir properties for every data point unless uncertainty is included.
In case one, we include a few perturbed values of the input data in addition to the observed
data and perform the inverse modelling. In the second case, we handle the uncertainty by
using a so-called proximity based implementation of the inversion strategy. Here, the iso-
surfaces are made up of densely sampled points. Intersections are identified when the
points on one surface are within a maximum distance J from points on another surface.

Bulk modulus [5Pa]

Water saturation
o
=
Saturation

05

04 0 Lithalagy
Purasity Lithology 28 Porosity

Figure 2 Bulk modulus constraint cube in the porosity, Figure 3 Three observations (Vp, Vs and density iso-
lithology, fluid space (PLF). The vertical axis is water surfaces) intersecting in the PLF space. Solutions exist
saturation. The lithology axis varies from pure quartz at the two indicated points.

(zero) to pure clay (one).
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This maximum distance represents an
absolute tolerance interval for the model-
led ¢, C and S. A sensitivity analysis of the
applied models to the uncertainties in the
measured rock properties can be made to
derive a suitable tolerance interval for a
given dataset. These point solutions are

Saturation

expanded to spherical point clouds with a
radius &2. An example of the inversion in
Figure 3 using the proximity based imple-

Lithology o0 Porosity

mentation and a J=0.02, is shown in

Figure 4. Figure 4 Three observations (Vp, Vs and density) inter-

secting in the PLF space. Uncertainty is implicitly handled
by the proximity based implementation of the inverse
modelling, providing a cloud of solutions as opposed to
points as in Figure 3.

The calibration procedure

In the quantitative calibration of rock-physics models we compare predicted reservoir
properties, i.e. axis readings at the intersecting points, to measurements of these properties
from laboratory or well-log data. Through this analysis in the PLF space, we evaluate how
accurate a model predicts reservoir properties from seismic data. In addition, we compare
the predictions of reservoir properties from different models and discard those models that
provide less accurate predictions. During the calibration process we can also maximize the
tolerance in the intersections and quickly test the performance of several models, discard
the less effective ones, and continue with the most promising ones. As the number of
models is reduced to three or four, the uncertainty in the observations can be constrained
to perform a more rigorous analysis. Finally, when the most suitable model has been
identified, the same methodology can be repeated for various values of model parameters
(aspect ratio, pressure, etc.) to optimize the calibration and improve prediction results. We
applied this methodology to quantify the calibration of various rock-physics models to two
datasets of clay-rich sandstones.

CASE 1: EVALUATING CLAY DISTRIBUTION IN CLAY-SAND
COMPOSITES

We applied the methodology to a laboratory dataset of clay-sand composites prepared
by Yin (1992). The samples consist of mixtures of pure kaolinite and Ottawa sand with a
grain size ratio of 1/20, providing an ideal binary mixture. For low quantities of clay, the
small clay particles likely occupy part of the pore space of the larger sand particles (a pore-
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filling clay). This spatial distribution has a minimal effect on the structure of the composite.
The dataset for 50 MPa of effective pressure is shown in Figure 5 where a reduction in
porosity and increase in velocity are observed for increasing clay content. An overturned V-
shape trend produced by the transition between sand and shale has been noted in the
literature as an indicator of dispersed clay topology (Marion et al. 1992). In the context of
rock-physics modelling, we denote shale as a fine-grained rock (clay-sized and silt-sized) in
which clay minerals are the load-bearing phase. We calibrated a model for dispersed clay,
and a model that is suitable for both structural and laminated clay to the dataset.

The model for dispersed clay (Dvorkin & Gutierrez 2001) is a velocity-porosity
relationship that uses the Hashin-Shtrikman (HS) lower bound (Hashin & Shtrikman 1963)
as a mixing law between two end members. The high-porosity end member is clean sand
whose velocity is computed by contact theory (Mindlin 1949). The low-porosity end
member represents the same sand with its pore space completely filled by clay. The
porosity at this point is not zero because clay particles have intrinsic porosity. This is
sometimes referred to as sand at critical clay content (Yin 1992). Dvorkin & Gutierrez
(2001) computed this intermediate member by adding silt particles (quartz) to a pure shale
also using the HS lower bound. The model consists of two domains. In the first domain, clay
is the load-bearing phase (sandy-shale), whereas in the second domain, the sand pack is
load bearing (shaley-sand), as in Figure 6.

In our modelling we focused on the shaley-sand section in which clay particles fill the
pore space of the clean sand without significantly affecting its stiffness. Therefore, the
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velocity maximum) at about 30 % clay content.
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properties of the mixture can be computed from the lower HS bounds of the clean sand and
the sand at critical clay content. The elastic moduli of a shaley-sand with increasing clay
content (C) are expressed as:

KMD( — |: 1- C/¢n + C/¢n :| _ﬁ (1)

K, +@u, K +@pu, | 3%
-1
1-C/g,, = C/g,
7 :{ /9, 4 /9, } z .
U +Z, U +Z
_ M [ 9K, 84, .,
sS85 6 KSS + 2#;5 9

where, K and g _are computed from the sandy-shale model at critical clay content. Kss, pss

and ¢, are the effective moduli and porosity of the clean sandstone.

In contrast, the constant clay model assumes the clay particles are located in the frame
of the rock, reducing its overall stiffness. The model uses contact theory and the HS lower
bound to model sands with a constant clay-quartz ratio in the velocity-porosity space
(Avseth et al. 2005). This is suitable for sands with both structural and laminated clay. As
Yin’s dataset is composed of synthetic clay-sand aggregates we do not expect any
laminations to be present and we refer to this as the model for structural clay. It is
analogous to the unconsolidated sand model (Dvorkin & Nur 1996) but with a reduced
critical porosity because a clay rich sand has lower critical porosity than a clean sand. The
mineral point is computed by Hill's (1952) average of quartz and clay mineral moduli.

Conventional calibration

A conventional calibration consists of a qualitative fit of modelled curves for a given
cross-plot domain. We calibrated both models to the dataset in the velocity-porosity space
(Figure 7). The dispersed clay model matches well the clean sand and pure clay end
members, but it misses the intermediate values of clay content. The structural clay model
reproduces the variability of the P-wave velocity data, but its accuracy is difficult to
evaluate. Note that the shear velocity data show no sensitivity to clay content.

In Figure 6, the dispersed clay model reproduces the decrease of porosity for
increasing clay content shown by the data, and predicts a change in the load-bearing phase,
from grain to matrix supported, for a clay volume of approximately 32%. Both models can
be used to explain the data and to infer the internal organization of the clay particles in the
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samples. However, we cannot determine which model explains the data better, nor, from
these results, can we quantify how successfully either model represents the data.

Quantitative analysis in the PLF space

For the quantitative analysis, we used seven samples each with clay content <30%.
When considering the intersections between three iso-surfaces for density, P- and S-wave
velocities, we obtained a solution for only the pure sand sample, which constitutes a
calibration point. This is due to the anomalous behaviour of shear velocities that none of the
models could satisfactorily describe (Figure 7). Therefore, we continued using only P-wave
velocity and density, ignoring S-wave velocity measurements. A comparison of the results
can be seen in Figure 8, where the structural clay model produced solutions for the seven
samples, good estimates of the porosity and less accurate estimates for lithology. On the
contrary, the dispersed model found solutions for only four samples; three accurate in
porosity and two in lithology.

If we include +/- 5 percent uncertainty in the P-wave velocity, the inverse modelling
provides more solutions (see Figure 9). In this case the dispersed-clay model improves its
performance and produces solutions for all seven samples with varying accuracy. The
structural clay model also provides an increased number of solutions and shows a robust
set of porosity and lithology predictions. A quantitative comparison of the modelling is
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shown in Figure 10, with the percentage of correct predictions along the vertical axis, and
various tolerance ranges between observed and modelled porosities and lithologies
(+/-0.01, 0.02, 0.03, 0.04, 0.05) along the horizontal axis. Figure 10 shows that the two
models predict similarly well the lithology, whereas the porosity is more precisely
estimated by the dispersed clay model. However, Figures 8 and 9 show that the dispersed
clay model is more sensitive to the uncertainty of the P-wave velocity.

CASE 2: VALIDATING ROCK-PHYSICS MODELS FOR CLAY-RICH
SANDSTONES

In this case we assessed the calibration of various models to a larger dataset based on
80 sandstone samples with wide ranges of porosity, age and clay content (Han et al. 1986).
We started by exploring three models. One is a granular model based on contact theory
combined with HS bounds and the other two are inclusion models.

The first model is referred to as the modified Hashin-Shtrikman upper bound (MHS)
and uses Hertz-Mindlin (Mindlin 1949) theory to compute a clean, high-porosity sand and
an HS upper bound to estimate lower porosities towards the mineral point. This model has
been used to describe a mixture of sediment deposited at critical porosity with some
additional mineral. It mimics the steep diagenetic trend of clean sands in the velocity-
porosity space (Avseth et al. 2005). For clay-rich data, it connects a lower critical porosity
member with softer effective mineral moduli. We used quartz mineral properties, K; = 37
GPa, pq = 44 GPa for bulk and shear moduli, and clay properties computed for this dataset
K. = 25 GPa and uc = 9 GPa (Han et al. 1986). Effective pressure was 40 MPa, nine contact
points per grain on average (coordination number), and we assumed critical porosity to
decrease linearly between 0.4 for clean sand and 0.2 when clay content is 1.

Then, we applied the model of Xu & White (1995) for clay-sand mixtures, which
divides the pore space into sand related pores (stiff) and clay related pores (compliant),
assigning different aspect ratios to them. For implementation we used a non-interaction
approximation (Hudson & Knopoff 1989; Hornby et al. 1994) to compute the effective
compliance tensor $* from those of the host rock S° and the pore space as:

N
§=8"-Y,(s'C" -1) K", (4)

K" =[c°(t+6"(c -c))". (5)

In equations 4 and 5, S$* is the effective compliance tensor; S% the compliance tensor of
the isotropic host rock; v, is the volume concentration of the nth phase; and I is the identity
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tensor. The factor G" is a fourth-rank tensor that depends on the stiffness tensor of the host
rock (C%) and the shape/orientation of the nth inclusion type that characterizes the elastic
effect of individual inclusions. The excess compliance due to the pore space includes
contributions of sand related pores (asiff) and clay related pores (asoft). Aspect ratios of
astiff = 0.1 for sand and asore = 0.05 for clay related pores were initially applied. The effective
stiffness tensor is then obtained by inverting the effective compliance tensor. The effect of
the fluid is computed using Gassmann’s (1951) equations. Increasing clay content means
increasing number of compliant pores and results in a softening of the effective properties
of the rock.

The third model used differential effective medium (DEM) theory (Berryman 1992) to
introduce empty isolated pores with a constant aspect ratio (a = 0.25) into a mineral host
medium. This requires solving a coupled system of ordinary differential equations:

(1—y)diy[z<*<y)]= (k, -k )P(y) ©)

(1—y)diymy)]=(yz —i () @

where K* and p* are the effective bulk and shear moduli, K*(0) = K1 and p*(0) = p1 are the
effective elastic moduli at initial conditions (initial host material), K2, 2 and y denote the
moduli and concentration of the added inclusions. The terms P* and Q* are geometrical
factors associated with the inclusion material. The fluid effect was again introduced using
Gassmann'’s equations (Gassmann 1951).

All three models provided a satisfactory calibration in the velocity-porosity space for
P- and S-velocities (Figure 11), but a quantitative analysis is required to evaluate and
compare their successes further.

QUANTITATIVE ANALYSIS IN PLF SPACE

The quantitative analysis in the PLF space for the three models is summarized in
Figure 12. All three models show similar porosity predictions, but lithology estimations by
the DEM consistently under-performs. Hence, we discarded the DEM model and focused the
quantitative analysis on the other two models (MHS and XW). A comparison between their
results from the intersections of Vp, Vs and density iso-surfaces is shown in Figure 13. The
empty circles represent (laboratory) measurements, and the filled circles are our modelling
results. There is more than one prediction for each sample (vertical axis). Furthermore, for
every porosity prediction, a corresponding lithology prediction exists, indicated in the
figure by the size of the filled circles. The radius of the filled circles increases with
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decreasing clay content. An inspection of Figures 12 and 13 shows that both model
predictions are similar in number and accuracy, with a slight advantage for the MHS model.
Therefore, we performed a sensitivity analysis on one key parameter for each of the models.
We tested coordination numbers between 8 and 10 for the MHS model and various
combinations of aspect ratios in the XW model. The MHS model shows stable results in
terms of coordination number (C), but slightly favouring C = 8 over the other (Figure 14).
To analyze the XW model we used five different models (1 to 5) with aspect ratios of sand
and clay pores (0sand , Qclay ) as follows: M1 = (0.1, 0.035); M2 = (0.1, 0.06); M3 = (0.12,
0.035); M4 = (0.12, 0.05); M5 = (0.12, 0.06): see Figure 15. Porosity predictions of the XW
model were highly dependent on the aspect ratios of sand and clay pores, whereas lithology
estimations were less sensitive. This analysis demonstrated that the lithology results were
improved when using aspect ratios of sand = 0.12 and a@cay = 0.035 (model 3). However,
better porosity estimations were achieved with slightly stiffer clay pores (models 4 (acay =
0.05) and 5 (aclay = 0.06) in Figure 15).
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DISCUSSION

The comparison between two models in the PLF space requires a conventional
calibration of the models in a cross-plot domain, such as velocity-porosity space. This initial
calibration step, however, can influence the first quantitative results in the PLF space. This
ambiguity can be assessed by performing a (quantitative) sensitivity analysis (in the PLF
space) for key parameters of each model (e.g., aspect ratios, pressure, and effective mineral
properties), and selecting the combination of parameters that provides the higher number
of solutions for the dataset under examination. After the optimal parameters have been
found, further comparison with other models can be made.

The dataset used in the first case has been referenced in the literature to illustrate the
effect of pore-filling clay on porosity and velocities of clay-sand mixtures. Its bimodal grain-
size distribution and grain size ratio (1/20) suggest an ideal condition for a dispersed-clay
microstructure. However, the predictions for the dispersed clay model were very sensitive
to the uncertainty of the data. Overall, the structural-clay model produced a more robust set
of predictions for both lithology and porosity. This can be explained from Figure 6. Where
clay exceeds 10 % by volume, the dispersed model over-predicts P-velocity because
structural clay becomes important in reducing the stiffness of the samples. This suggests
that the effect of clay on the elasticity is predominantly inter-granular or structural, except
for those with clay volumes below 10 % at which both dispersed and structural clay have
similar impacts. This is likely related to the sample preparation procedures, and it is not a
general condition of clay-rich sandstones. The quantitative analysis revealed this condition
even though it was not evident from the conventional calibration process.

In the second case we used the quantitative calibration approach to select or discard
the most suitable rock-physics models to reproduce a dataset. We compared the overall
results of three models (MHS, XW and DEM) and were quickly able to discard the least
accurate model (DEM). Through a sensitivity analysis of the remaining models, we explored
the potential for optimizing the calibration in order to identify the model that provides the
most stable and robust predictions. However, in cases with high uncertainty, where wide
ranges of porosities and lithologies are expected, the model producing a wider range of
results would be preferred. The dataset used in case 2 (Han’s data) contains samples from
various origins (quarries, well cores) with a wide range of porosities and clay contents,
from clean tight sands to high porosity clay-rich sandstones. Therefore, dividing the dataset
into more homogeneous subsets, for example in terms of origin, degree of consolidation,
porosity or clay content, can improve the calibration and would allow inference of rock
microstructure details from the model’s success.

In both examples porosity predictions were more accurate than lithology predictions.
Most observations of natural rocks indicate that elastic properties are more sensitive to
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porosity than to lithology variations. Hence, higher correlations exist between velocity and
porosity than between velocity and clay content. Variations of elastic moduli are more
pronounced along porosity than lithology axes, which in turn produce less accurate
predictions of lithology than porosity.

Our investigation in the PLF space included solutions with high water saturation
(>90%) to simplify the analysis. In real cases, however, uncertainty in fluid saturation could
lead to less accurate porosity and lithology predictions.

In order to compare the predictions of the different rock-physics models, in our
examples we used only ultrasonic laboratory data, a procedure which provides maximum
control of the lithology, porosity and saturation. But in a reservoir characterization context
where predictions are evaluated in the scale of the field, a similar methodology could be
used, calibrating the rock-physics models to log data up-scaled to seismic frequencies.

CONCLUSIONS

We applied an inverse modelling strategy that assesses the ability of a rock-physics
model to predict porosity, lithology and saturation (PLF parameters) from seismic
parameters. By analyzing the performance of the models in the PLF domain, we were able
to select the model that provided the most robust estimations of reservoir properties.
Additionally, in the first case we also diagnosed the dominant factor that affected elasticity
of the samples.

We also illustrated how this quantitative approach can be used in a workflow to find a
model for a large and heterogeneous dataset, considering a wide range of options, quickly
discarding the less effective models and focusing on the most promising ones. Then, by
testing several model parameters, we assessed the sensitivity of the selected models in
terms of predictions of reservoir properties. This suggests that calibrating a rock-physics
model only by best fitting in a cross plot domain, to relate inverted seismic data and
reservoir parameters, can lead to inaccurate predictions of porosity and lithology.
Analyzing the models in the PLF domain has the advantage of evaluating up to three seismic
observables simultaneously and can point to inconsistencies in the model predictions
between bulk and shear moduli. In conclusion, this is an integrated and robust approach to
the inversion problem of finding the most appropriate rock physics model to explain
measured data.
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Conditioning of elastic and electrical
parameters for use in reservoir
characterization

Erling Hugo Jensen! and Tor Arne Johansent.2,

ABSTRACT

There exist many elastic and electrical parameters with various degree of sensitivity
to typical reservoir properties, e.g. porosity, lithology and fluid saturation. Some parameter
combinations give better descriptions of the reservoir compared with others. The
parameter sensitivities depend on lithological composition, texture and degree of
consolidation which are reflected in the various models chosen when doing rock physics
modelling. We present a method for obtaining a conditioned set of elastic and electrical
parameters to be used for prediction of reservoir parameters. The best parameter
combinations selected will on average give the most precise and robust predictions of
porosity, lithology and fluid saturation. The method can be used to evaluate any number of
parameters and rock physics models, and the results depend on the specific rock physics
models considered.

INTRODUCTION

Geophysical reservoir characterization implies estimation of the amount and
distribution of certain pore fluids within subsurface reservoirs. Furthermore, in reservoir
monitoring of gas and oil production or CO; sequestration, it is vital to make an image of
fluid flow due to injection and drainage of the various fluids. From a geophysical point of
view this task essentially means to obtain properties like porosity, pore fluid saturation and
lithology from seismic or electromagnetic data, or data obtained from other geophysical
measurements.

A severe problem in seismic reservoir characterization is the imbalance in number of
parameters retrieved from the seismic data and the number of reservoir parameters to be
estimated. This means that the problem is initially often underdetermined, typically
resulting in non-unique solutions. The functional relationships between reservoir data,

1 Department of Earth Science, University of Bergen, Bergen, Norway.
2 NORSAR, Bergen, Norway.
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other rock properties as composition and texture, and the seismic parameters, e.g. the rock
physics models, are neither unique. Models for unconsolidated, weakly consolidated and
consolidated rocks are not unified, and they are partly formulated on different physical
concepts.

The variation of the seismic properties due to variation in reservoir properties
(sensitivity) may also be different for various rocks, and, thus, also from one rock physics
model to another. For instance, it is well known that the sensitivity of seismic parameters to
fluid saturation is more exposed in high porous (unconsolidated) sediments than in low
porous consolidated rocks. However, in case the porosity contains a large fraction of
compliant pores (cracks) the sensitivity of fluid saturation may also be significant even in
low porosity rocks. The resistivity is also known to increase with increasing saturation of
hydrocarbons and to decrease with reducing porosity as the conductive brine is replaced
with insulating materials.

Studying the conditioning of elastic and electrical properties to use in reservoir
characterization can aid in making more precise predictions which are less sensitive to data
errors. Goodway, Chen and Downton (1997) suggested the potential use of pu and pA
inverted from amplitude versus offset data. The shear modulus u can be used in lithology
prediction as it is often insensitive to the fluid. Lamé’s modulus A is closely related to the
bulk modulus and can be used to distinguish gas and brine saturated sandstones (Gray and
Andersen 2000). The ambiguity introduced by the density p can be avoided following the
improved method proposed by Gray (2002) for extracting # and A based on the re-
expression of Lamé’s parameters (Gray, Goodway and Chen 1999) from Aki and Richards
(2002) approximation of the Zoeppritz equation. An even better parameter to characterize
the fluid is supposedly the resistivity (or its reciprocal, the conductivity) which Johansen et
al. (2005) showed can be a direct hydrocarbon indicator. Finally, A/ and Ap-up, have also
been proposed as good candidates for reservoir characterization (Liliana, Negchtin and
Vazquez 2004; Goodway et al. 1997).

@degaard and Avseth (2004) proposed a cross-plotting technique referred to as rock
physics templates (RPT) to do quantitative predictions of porosity, lithology and fluid
saturation. The typical parameter combination they use is the P- and S-wave velocity ratio
versus the P-wave acoustic impedance. However, combinations of other parameters can
also be considered. In the following, we study the conditioning of various elastic and
electrical parameters to use in reservoir characterization with the aim to provide the
parameter combination giving more precise solutions. Such information is important to
have when attempting to do more precise quantitative prediction of the reservoir quality,
e.g. using the inverse rock physics modelling of Johansen et al (2011). They identify
solutions by searching through a library of rock physics models relating the elastic and
electrical properties to the reservoir parameters.
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In this study we are not elaborating on the particular uncertainties of the studied
parameters. Our focus is on examining the sensitivity of various combinations of elastic and
electric parameters and how these influence on the stability of the solution, i.e. how
susceptible our predictions are to errors in the input parameters. We present a general
method for evaluating the conditioning of elastic and electrical properties to use in
reservoir characterization. It is not limited to a particular rock physics model or specific
parameters. The method provides a kind of sensitivity analysis which is useful when
presenting estimations of the reservoir quality.

The paper is organized as follows. We start with quantifying the reservoir parameters
and reviewing some geophysical relations. Then we explain the inverse rock physics
modelling which the conditioning method is based on, before explaining the method itself.
Finally, we apply the approach on two data examples; one based on a synthetic data and
another based on data from laboratory measurements.

RESERVOIR AND GEOPHYSICAL PROPERTIES

There are several reservoir properties which are used as input in rock physics models
to calculate the effective elastic and electrical properties. In the following, we will focus on
porosity ¢, lithology C and fluid saturation S, also referred to as the PLF parameters.
However, permeability, pore and confining pressure, temperature, mineral and pore fluid
composition, coordination number and cementation are examples of other properties
which are also important for reservoir characterization.

The porosity is the volume fraction of the rock which does not contain minerals. The
lithology can be attached as the volume fraction of certain minerals of the solid phase. In
siliciclastic rocks, the clay content is used to discriminate between e.g. clean sands, shaley
sands, sandy shales and shale. These various lithologies can have significant impact on the
reservoir quality, and, thus, lithology is simplified to the clay volume fraction of the solid
phase. In case of a rock composed of quartz and clay, we get

_ Vclay
C=—="—oy) (0
Vclay + unarlz

where Vaay and Vguartz are the volumes of the clay and quartz minerals, respectively.
Similarly, the fluid saturation is the volume fraction of the various fluids in the pore space.
For a mixture of gas and brine, the brine saturation is given by

V

S — brine , (2)
Vine Vs

brine
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where Virine and Vgas are the volumes of brine and gas, respectively.

Using these parameters, the density p of a siliciclastic rock is accordingly
p(¢’ C! S) = ¢[Spbrinc + (1 - S)pgas ]+ (1 - ¢)[Cpclay + (1 - C)pquanz ] ’ (3)

where Obrine, Ogas, Pclay and P quarz are the brine, gas, clay and quartz densities,
respectively. Applying a rock physics model, we can use the PLF parameters as input to
calculate the effective bulk modulus K(@ C, S) and shear modulus g(¢, C, S). Various models
exist for describing the physical properties of different types of rocks. The minimum and
maximum elastic moduli of any isotropic or anisotropic material are given by the Reuss
(1929) and Voigt (1928) bounds, respectively. Hashin-Shtrikman (Hashin and Shtrikman
1963) is another bounding model which can for example be used for modelling coated
minerals. We have contact theories (Walton 1987; Digby 1981; Mindlin 1949) suitable for
computing the elastic parameters of loose unconsolidated material, and shown to be
reliable for pure quartz sandstones and shaley sandstones (Avseth et al. 2005). For more
consolidated rocks inclusion based models (Berryman 1992; Sheng 1990; Kuster Toksoz
1974) are more appropriate. Those referred are only some of many rock physics models
presented in the literature.

From the density, bulk and shear moduli we can derive other elastic properties. The P
and S velocities (Vp and Vs) of homogeneous and isotropic materials are

K+§ﬂ
v, = —3— @)
P
v oo |t (5)

When the bulk and shear moduli are given in GPa and the density is given in g/cm3, the unit
of the P- and S-wave velocities are km/s. The Poisson’s ratio vis the ratio of the transverse
to the axial strain for a medium exposed to a uniaxial stress. For an isotropic material we
have

= 3K -2u

26K +u) ©)

The P-wave modulus M, Young’s modulus E and Lamé’s modulus A have the same unit as
the bulk and shear moduli, and are given by



137

M=K+§,u, ™)
9Ku

= ) 8

3K+ u ®

/I=K—§,u. 9)

Even though some of these elastic properties respond more to certain reservoir
parameters than others, we shall see that the actual sensitivity of the various physical
properties depend on the applied rock physics model.

INVERSE ROCK PHYSICS MODELLING

The inverse rock physics modelling of Johansen et al. (2011) make use of forward
modelled constraints of elastic and electrical properties from varying reservoir parameters.
When studying the sensitivity of the three reservoir properties porosity, lithology and fluid
saturation (PLF), these constraints can be presented as 3D cubes, which we denote
constraint cubes. Figure 1 shows an example of a density constraint cube with the PLF
parameters defining the coordinate axes. In the following we limit the PLF domain to the
most relevant range for porosity [0, 0.4] and from [0, 1.0] for lithology and fluid saturation.
Each point in the cube has a specific density value which is represented by a colour. In our
example one cube is created by defining a 26x26x26 grid of equidistant values for the PLF
parameters. For each node in the _
grid the density is calculated Fge/r;?\?i
according to equation 3. We .
interpolate to calculate the values
between the nodes. Similarly,
constraint cubes for the other
elastic and electrical properties
can be created. The constraint
cubes can be interpreted as a three
dimensional scalar field Di(¢C,S), Gas
where indices [ and i identify the
specific rock physics model and

Brine

= SN C
X o ®»

Saturation

o
)

02~ 05

the various elastic and electrical Porosity A

parameters, respectively.

Lithology

Figure 1 Density constraint cube for a mixture of quartz, clay, gas

and brine.
In the inverse rock physics
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modelling scheme, the scalar field of elastic or electrical parameters, i.e. the constraint

cubes, are numerically resampled into a set of correlation functionsF,(c?i). For a specific

value of parameter 3,. of the i-th parameter, F,(ﬁl) now defines all reservoir parameter

combinations associated with this value. In our 3D example, this set of values make up a
surface in the PLF domain, which we hereafter denote an isosurface because all points on

that surface have the same property value c?i . We denote F, (ﬁl) the isosurface relation, and

it can be found e.g. by using a marching cubes algorithm (Lorensen and Cline 1987) or in
MATLAB using the native isosurface function.

The isosurface relation provides the solution to an inverse rock physics modelling
considering only one elastic or electrical parameter as input (see Figure 2). Using only one
parameter thus only weakly constrains the possible PLF values, However, usually we have
two and sometimes three parameters which we can use. With two parameters, the possible
PLF solutions are constrained to the intersecting line between the two respective
isosurfaces (see Figure 3), i.e.

Fld)nFld,). 4

where dA_/. is the value of the j-th property. Using a measurement c?k of a third property

identified with the index k, reduces the domain for the PLF solutions even further to where
all three isosurfaces intersect (see Figure 4), i.e.

Fla)nEld)~Ed,). (5)

The inverse modelling results in either no solution, solutions forming one or more sub
volumes, surfaces, lines or individual points in the PLF domain, depending on the applied
rock physics model, the number of data parameters used as input in the modelling and their
respective values with or without taking uncertainties into consideration.

No solutions implies that the applied rock physics model is not consistent with the
data, while a solution means the model can relate reservoir properties to the input data.
Some models might give similar while others give different predictions of the model
parameters. Not all of them can be correct; hence, it is important to remember a particular
solution is probably not the only possible solution and might not be the correct solution.
Finally, finding several solutions does not necessarily mean that any of them are correct.

Uncertainty can be handled in the inverse rock physics modelling by perturbing the
elastic and electrical properties, i.e. not only considering the given data value, but repeating
the intersection seeking procedure for values close to it.
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CONDITIONING OF PARAMETER SET

The solutions of an inverse rock physics modelling are often non-unique because of
the imbalance between the number of parameters derived from measurements and the
number of reservoir parameters to be estimated, the number of possible rock physics
models and their non-linear relations between the various parameters. Our aim is to reduce
the ambiguity in the porosity, lithology and fluid saturation (PLF) estimations to acquire as
precise and robust predictions as possible. This can be achieved if we manage to reduce the
number of solutions, the range of PLF values in the solutions and the number of unstable
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solutions. The latter is important because we are dealing with uncertain observations, and
we want to avoid a situation where a small perturbation in the elastic or electrical
parameters results in a significant change in the estimated PLF values. We are limited by
the parameters at our disposal and their PLF sensitivities, but some parameter
combinations give more precise and robust solutions than others.

Compare the porosity solution range marked in orange on the porosity axis in Figure
5 with the one in Figure 3. Individually, the bulk and shear moduli in Figure 5 do practically
not constrain the porosity at all which in this case results in a wide range of possible
porosities. In Figure 3, we see that the imposed constraints of the density on the porosity
results in a smaller range of values for this reservoir parameter when combined with the
same bulk moduli as in Figure 5.

Figure 6 illustrates the problem with solution stability. The isosurfaces for two values
of the P-wave velocity V, is plotted together with the isosurface for a density value
(Figure 6a) and an S-wave velocity value (Figure 6b). The density isosurface intersects the
Vp isosurfaces at an angle closer to 90° than the Vs isosurface does. Hence, in Figure 6a the
small change of less than 3% in the V), value results in a very small change in the PLF
solution, while a significant deviation in predicted PLF values can be observed in Figure 6b.

Examining the topology of the isosurfaces in the constraint cubes confirms some of
our previous statements regarding sensitivity. Figure 7 shows the V,/Vs velocity ratio
constraint cubes for an inclusion based and an unconsolidated model. The unconsolidated
model displays a clear reduction in the velocity ratio with porosity due to the softening of
the rock and reduced P-wave velocity. The inclusion based model does not exhibit similar
sensitivity to the porosity. For a particular rock physics model, the sensitivity can change
within the PLF domain. This is illustrated for the inclusion based model in Figure 8 where
we have plotted the isosurfaces for two different values of the V,,/V;s velocity ratio.

We propose a method for evaluating the conditioning of the elastic and electrical
parameters to be used in estimating the PLF parameters. We start by extracting information
about the average topology of the isosurfaces in the constraint cubes, i.e. the sensitivity to
the PLF parameters, and imposed variances due to differences in the applied rock physics
models. Afterwards, we consider the average orientation of the isosurfaces to help choose
combinations of elastic and electrical properties which give the most stable solutions.

Reservoir property sensitivities

For each elastic and electrical parameter, denoted data parameter, we calculate an
average PLF sensitivity value. The values range from 0 to 1, where a more sensitive
parameter will have a higher value than a less sensitive parameter. Hence, a porosity
sensitivity value close to 1 means that the normal vectors of every point on the isosurfaces
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making up the porosity constraint cube, are close to parallel with the porosity axis. This
implies that the isosurfaces must exhibit quite flat topologies and form an angle close to 90°
with the porosity axis.

The sensitivity value &

mi

for a PLF parameter m of data parameter i is a measure of the

average PLF dispersion and we define it as
§u=1-0,, (6)

where &, is the mean normalised standard deviation for this PLF and data parameter,

averaged over the various rock physics models we are testing. Considering a total of Q
models, we have that

Me

almi ’ (7)

mi

Q=
T

where &

Imi

is the mean normalised standard deviation for rock physics model . We

calculate &,

i Dy sampling through a total of P equidistant values between the minimum
and maximum data parameter values of the corresponding scalar field D;i(¢C.,S), where the
PLF parameters ¢, C and S are the porosity, lithology and fluid saturation, respectively. Next,
we calculate the PLF parameter values correlating to the P data values using the isosurface
relation F,(c?i). From a geometrical perspective, this means we approximate the constraint
cubes to be made up of P isosurfaces, where P must be large enough to capture local
variations of the PLF and data parameter dependencies in the scalar field. In this paper we
use P = 76. We define the mean normalised standard deviation for rock physics model I to
be

_ 1<

O-[mi = 7zalmip ) (8)
P3

where o, is the normalised standard deviation for isosurface p. It is found by considering

the isosurface being made up of Ny discrete sets of data points and calculating the
dispersion of the PLF parameter values defining those points. It is given by

1|1 & _
Omip = 57 \/N Z (Mlmipq - Mlmip )z ’ (9)

m lip q=
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where Mimipg and M, . are the PLF parameter value in point g and the average of the PLF

Imip
parameter values of all the data points on surface p, respectively. The PLF parameter
normalising constant J, is given by

5 = O-full (mmux - mmin ) ’ (10)

m

where Mmax and Mmin are maximum and minimum values for that PLF parameter,
respectively. The factor om, is the standard deviation representing a case with full
dispersion, i.e. where the data points are evenly distributed between the minimum and
maximum values. It depends on the number of data points, but it rapidly converges towards
0.2887. We use o, =0.3, because for some calculations we have very few data points. By

including the minimum and maximum values in the normalising constant we can compare
the final results of the three PLF parameters even though they span different ranges.

We take the variance in sensitivity due to differences in the various rock physics
models, into consideration by calculating the standard deviation ¢,; for model parameter

m and data parameter i of 5, . It is given by

(11

Combining sensitivities

Choosing combinations of data parameters with isosurfaces which on average are
more parallel to a respective side in the constraint cubes will lead to the most stable
solutions because they will then intersect at a close to normal angle. We calculate what we
call a combined sensitivity, to help evaluate the average orientation of the isosurfaces in the
constraint cubes. For PLF parameter m and data parameter i, we define the combined
sensitivity value = ; as the sensitivity value for this PLF parameter subtracted the average

sensitivity value of the other PLF parameters, i.e.

- _ 1 (1 \& h
=~ mi [1+M 1J§mz [M_l)zgmi 4 (12)

- m=1

where M is the total number of PLF parameters and s is a summation index for the model
parameters.

If we attempt to estimate the three PLF parameters using only two data parameters as
input, we get an underdetermined problem. Because we will not be able to make precise
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predictions for all three parameters we focus on two of them. For estimating the combined
sensitivity value, we achieve this by excluding the sensitivity value in equation 12 for the
PLF parameter we are ignoring.

We can select the data parameters with isosurfaces which on average have the flattest
topology and are most normal to a respective PLF parameter axis, by choosing those with
combined sensitivity values closest to 1 for each of the PLF parameters. This will in general
lead to the smallest solution ranges and most stable solutions of the reservoir properties.

EXAMPLES

We demonstrate the conditioning evaluation method on two examples. In the first
example we use a synthetic data set so that we have full control over the various
parameters and to be able to test the performance of our evaluations. In the second
example, we evaluate the conditioning of elastic and electrical parameters for eleven rock
physics models. These models have been calibrated by Jensen et al. (2011) based on joint
elastic-electrical laboratory measurements on compacting reservoir sandstone core plugs
published by Han et al. (2011).

Example 1

The nine rock physics models we test in this study are summarised in Table 1. The
solid components are mixed using the Hill model (Hill 1963), and the fluid components
using Wood’s equation (Wood 1955). The constituent properties are presented in Table 2.
In the inclusion based models, we are testing three different pore geometries; 1) only
spherical pores, 2) 50-50 spherical and ellipsoidal pores and 3) pores with various aspect
ratios. (All non-spherical pores are oblate). The pore model details are listed in Table 3.

Models one through six are various realisations of the differential effective medium
(DEM) theory (Bruggeman 1935), where the pore space is gradually introduced as
inclusions into the solid host medium. The first three models are for the three chosen pore
geometries when the pore space is modelled as fluid saturated when using the DEM theory.
The next three are for the three pore geometries when we introduce vacuous pores using
the DEM model and then perform a Gassmann fluid substitution (Gassmann 1951) to
calculate the effective elastic properties of the saturated rock.

In models seven and eight we calculate the bulk and shear moduli of the solid matrix
using the modified Hashin-Shtrikman upper- and lower-bounds, respectively; also known
as Hashin-Shtrikman-Walpole bounds (Walpole 1966a,b). We use the mineral value, when
the rock has no porosity, and the highest porosity point (@nax = 40%) as end members in the
modelling. We calculate the elastic moduli of the high porosity point using the Hertz-
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Mindlin model (Mindlin 1949). Again, we perform a Gassmann fluid substitution (Gassmann
1951) to calculate the effective elastic moduli of the saturated rock.

Model nine is based on Dvorkin and Nur’s (1996) contact cement model (CCT). This
theory is applicable for cemented granular rocks. We use CCT to calculate the effective dry
rock bulk and shear moduli from the high porosity point down to a porosity of 15.25%.

Table 1 Rock physics models applied in example 1.

Model number

Short description

1

2
3
4

Differential effective medium with spherical pores.

Differential effective medium with spherical and ellipsoidal pores.

Differential effective medium with pores having various aspect ratios.

Differential effective medium with spherical pores and introducing the fluid phase
through Gassmann fluid substitution.

Differential effective medium with spherical and ellipsoidal pores and introducing
the fluid phase through Gassmann fluid substitution.

Differential effective medium with pores having various aspect ratios and
introducing the fluid phase through Gassmann fluid substitution.
Hashin-Shtrikman-Walpole upper bound between mineral and Hertz-Mindlin
modelled end-members and introducing the fluid phase through Gassmann fluid
substitution.

Hashin-Shtrikman-Walpole lower bound between mineral and Hertz-Mindlin
modelled end-members and introducing the fluid phase through Gassmann fluid
substitution.

Hashin-Shtrikman-Walpole upper bound between mineral and contact cement
modelled end-members.

Table 2 Rock physics properties of the Table 3 Pore geometries we use in example 1.
constituents used in example 1. Pore Aspect Corresponding

Constituent

Density Bulk Shear geometries ratios aspect ratio
[g/cm®] modulus modulus concentrations

[GPa] [GPa] Spherical 1.0 1.0

Quartz
Clay
Brine
Gas

2.65 37 44 50-50 spherical 1.0 0.5
2.60 21 7 and 0.1 0.5
1.02 2.62 0 ellipsoidal

0.1466 0.042 0 1.0 0.6419

Various aspect 0.1 0.03205
ratios 0.01 0.005
0.001 0.0005

0.0001 0.00005
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Between this porosity and the mineral point we use the Hashin-Shtrikman-Walpole
(Walpole 1966a,b) lower bound to calculate the elastic moduli. We apply Gassmann fluid
substitution (Gassmann 1951) to find the effective elastic moduli of the saturated rock.

Models one through six and nine are appropriate for modelling consolidated rocks,
and model seven and eight are typically used for modelling unconsolidated rocks. See
Appendix A for more details about the various models.

We generate a synthetic data log by calculating elastic properties for 27 different
combinations of porosity, lithology and fluid saturation (PLF), using rock physics model
number 3. The PLF combinations are Synthetic data
shown in Figure 9.

vp e o .
After evaluating the conditioning of N sl H N . °.
the elastic properties we will use the : : . :
inverse rock physics modelling of Johansen E i g i . : i . ° :
etal. (2011) on various combinations of the £ | § |, : . . .
elastic parameters to test the performance , .: , : , ° : .
of our evaluation. Furthermore, in this o . . s . .
example we choose to only combine two 8 g sl : o C :.
elastic parameters to demonstrate the T O 5 36 i

Quartz Clay Gas

Porosity Lithology Saturation

consequence of having such an under-
determined problem. Figure 9 Porosity, lithology and fluid saturation for the
synthetic data set.

Example 2

Here we assume to be in a pre-inverse modelling phase. We evaluate various
combinations of elastic and electrical properties which can be suitable for doing reservoir
characterization based on data from a seismic and possibly controlled-source
electromagnetic survey. The rock physics models we test have been calibrated (Jensen et al.
2011) against joint elastic-electrical compaction measurements on reservoir sandstones
(Han et al. 2011). The measurements were done on brine saturated core plugs mainly
composed of quartz and kaolinite. We have no specific information about the reservoir
itself, but in the following we assume it to be at about 2 km depth. Furthermore, in
anticipation of locating oil, the fluid saturation S is now the volume fraction of brine versus
oil with § = 1 still meaning fully brine saturated. The constituent properties used in this
modelling are listed in Table 4.

We use differential effective medium theory (Mukerji et al. 1995; Gelius and Wang
2008) on eleven models. For consistency, the mineral constituents are used as inclusion
material in both the elastic and electric modelling (Jensen et al. 2011). The electric
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modelling has the fluid phase as the host material and the elastic modelling uses the bulk
and shear moduli for the rock at a critical porosity as host material. We use the calibrated
values of Jensen et al. (2011) for the critical porosity with corresponding elastic moduli and
the elastic moduli of the clay mineral (see Table 5).

Table 4 Rock physics properties of the constituents used in example 2.
Constituent Density  Bulk modulus Shear modulus  Conductivity

[g/cm’] [GPa] [GPa] [S/m]
Quartz 2.65 37 44 0
Clay 2.60 20.6 8.46 0.02
Brine 1.02 2.67 0 9.43
Oil 0.79 1.31 0 0

Table 5 Model properties used in example 2.

Properties at critical porosity

Model Clay aspect Porosity Bulk modulus  Shear modulus

ratio [%] [GPa] [GPa]

SX1 0.087 36.0 3.086 3.086

SX2 0.034 36.0 4.450 4.450

SX3 0.105 36.0 4.810 4.809

SX4 0.081 42.6 4.990 3.483

SX5 0.108 49.3 7.888 2.561

SX6 0.153 36.2 5.698 5.689

SX7 0.145 50.0 8.000 2.957

SX8 0.052 50.0 8.000 3.446

SX9 0.072 45.2 7.061 5.517

SX10 0.032 36.0 4.552 4.552

SX11 0.095 36.0 6.548 6.548
RESULTS
Example 1

Table 6 lists the results of the sensitivity analysis for the sixteen tested elastic
parameters. The entries are sorted in descending order according to the combined
sensitivity value for the porosity. Focusing on the porosity, the density pis clearly the most
and the Poisson’s ratio the least sensitive. Furthermore, as can be expected, there is no
variation in the sensitivity for the density, while the P- over S-wave velocity ratio (V,/Vs)
and Lamé’s modulus A divided with the shear modulus y are the parameters with largest
variation in sensitivity with respect to porosity. Considering the lithology, Ap-up is the



148

most and the density the least sensitive. Poisson’s ratio displays the largest variation in
sensitivity with respect to lithology.

The combined sensitivity values singles out the density to be best suited for
conditioning the porosity. It has a significantly higher value of 0.77 than the second best
parameter which is Ap with a value of 0.62. Considering the lithology, there are three
parameters which are almost equally good, namely Poisson’s ratio, A/u and the V,/Vs ratio
with combined sensitivity values of 0.40, 0.37 and 0.37, respectively. All of them exhibit
large variations in sensitivity.

Based on these results, we expect the density to be best for making porosity
predictions and Poisson’s ratio, A/x and V,/Vs are good candidates for lithology predictions.
But the S-wave velocity and Ap-up might be equally good as their combined sensitivity
value for the lithology are close to the same as for the other three when taking the variance
into consideration.

Table 7 shows the parameter combinations we choose to test in the inverse rock
physics modelling and a brief reasoning for each of them. For the uncertainty analysis,
perturbation is applied to the elastic parameter which is most sensitive to the lithology.

Figure 10a shows the normalised average dispersion of the model parameter predictions
for the various property combinations, considering all the rock physics models, data
samples and perturbations; i.e. solution ranges. We see low dispersions for the
combinations we expected to do well and high for those we expected to do badly. Figure
10b shows the average dispersion in mean model parameter prediction for the various
property perturbations, considering the tested rock physics models and data samples; i.e.
the stability of the solutions. The density versus the S-wave velocity and versus Ap -up give
the most stable solutions.
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Figure 10 Average (a) solution ranges and (b) solution stability for various combinations of the elastic properties,
based on the results of the inverse rock physics modelling.



149

Table 6 Results of sensitivity analysis for example 1. The parameters are the bulk modulus (K),
density (p), Lamé’s modulus (1), P-wave modulus (M), P-wave velocity (V,), Poisson’s ratio (1), shear
modulus (), S-wave velocity (V;), Young’s modulus (E). The sensitivity, model variance in sensitivity
and combined sensitivity values are respectively & ¢, = indexed by the porosity ¢and lithology C.

Parameters §¢ -_l—g(b & L =

[

[4 c
P 0.82£0.00 0.05£0.00 0.77 -0.77
Ap 0.73+0.03 0.11+0.01 0.62 -0.62
A 0.69 £ 0.05 0.13+£0.02 0.56 -0.56
K 0.65+0.03 0.33+0.03 0.32 -0.32
PV, 0.63+0.04 0.40+0.04 0.23 -0.23
M 0.61+0.05 0.51+0.03 0.10 -0.10
PV 0.58 £0.05 0.50£0.04 0.08 -0.08
Hup 0.63 £0.05 0.59£0.02 0.04 -0.04
E 0.58+0.06 0.57+0.03 0.01 -0.01
Ve 0.51+0.06 0.50+0.06 0.01 -0.01
Hu 0.57£0.06 0.61£0.03 -0.04 0.04
Vs 0.46 £0.07 0.59+0.06 -0.13 0.13
Ap— up 0.55+0.05 0.77£0.03 -0.22 0.22
Vy IV 0.29+0.12 0.66+0.10 -0.37 0.37
Au 0.32+0.13 0.69+0.08 -0.37 0.37
v 0.18 £0.03 0.58+0.14 -0.40 0.40

Table 7 Combination of properties we test in the inversion in example 1. The perturbations are
applied to the parameters we associate with the lithology prediction.

Label  Parameter for prediction of Reasoning for the various combinations

Porosity Lithology
1 PV, (V,/ Vs) Often used combination, e.g. in rock physics template.
Examples of combinations we expect to give good results.
2 P v Parameters with highest combined sensitivity values.
3 P (Mu) A has almost as high combined sensitivity value for

lithology as v, and lower dispersion.

4 P (Ap—up) Ap—up does not have as high combined sensitivity value
for lithology as vand A/x, but much lower dispersion.

5 P Vs Vi has even lower combined sensitivity value for
lithology as Ap—up, but close to the same dispersion.

Examples of combinations we expect to give bad results.

6 E V, Combined sensitivity values closest to zero.
7 A 4 Similar situation as £ combined with V.
8 M PV, Sensitivity values for porosity and lithology are almost

the same for M as they are for pV..
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Figure 11 shows the porosity, lithology and fluid saturation solutions for parameter
combination 1, 4, 5 and 8, and for the rock physics model which we used to generate the
synthetic data (i.e. the correct model). Combination 1, which is the often used combination,
has on average slightly larger solution ranges than combination 4 and 5, which our
parameter analysis favoured. Combination 8 was predicted to give bad results, and we can
see it clearly has the largest solution ranges for porosity and lithology. However, it does
have smaller solution ranges for saturation which we decided to ignore in our evaluation.
Also, this combination displays a larger difference in solution ranges between those for the
main and perturbed data values than the other combinations. Finally, note the stippled lines
for two of the perturbations, showing that no solution could be found for these ill-
conditioned elastic properties.

a) b)
27 27 i? 27 E © 27 27 271
24 24 24 24 2 24
21 21 F 21} 21 21 21,
18 18 18 | 18 18 18 ‘
° : ) L
@ 15 15 15 KB H 15 15)
Q i Q. h
g 12 12 12§ E 12 12 12}
%] b %] f -
9 9 ' 9 9 g 9!
6 6 6 6 £ 6,
3 3 3 3 g 3
RS € 122
0 02 04 O 05 10 05 1 0 02 04 0 05 10 05 1
Porosity  Quartz Lithology Clay  Gas Saturation Brine Porosity ~ Quartz Lithology Clay  Gas Saturation Beine
Q) d)

Sample id

goigasges
ghighighh
Y
(=)

l"j o =
by
t

0 02 04 O 05 10 05 1 0 02 04 O 05 10 05 1
Porosity Quartz Lithology Clay  Gas Saturation Brine Porosity Quartz Lithology Clay  Gas Saturation Brine

Figure 11 Porosity, lithology and fluid saturation solutions for using various combinations of the elastic properties
in the inverse modelling; (a) pV, versus V,/V, (b) p versus Ap—up, (c) p versus V, and (d) M versus pV,. The
correct model parameters are plotted as circles and the modelled solutions as dots where the gray gradient
corresponds to fluid saturation. The solutions from the perturbations are plotted above and below the main data

values for positive and negative perturbations, respectively. The dimmed zebra stripes on the background separate
the various data samples.
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Example 2

Table 8 lists the results of the evaluation procedure for the five best candidates for
each of the reservoir parameters, and sorted in descending order according to their
respective combined sensitivity values. Because the eleven tested models are very
homogeneous, the variance in the sensitivity values, i.e. average standard deviation over all
models, is zero or close to zero for all studied properties.

Table 8 Results of sensitivity analysis for example 2. The parameters are the conductivity (o), bulk
modulus (K), density (p), Lamé’s modulus (4), P-wave velocity (V,), Poisson’s ratio (V), shear
modulus (), and S-wave velocity (V;). The sensitivity, model variance in sensitivity and combined

sensitivity values are respectively & ¢, = indexed by the porosity ¢, lithology C and saturation S.

Parameters g S & Sc & g E, Ec Zy
P 092 0.00 0.07 0 0.09 0 084 -043 -0.4
< Ap 0.77 0.03 0.12 0 0.07 0 0.68 -0.3 -0.37
.‘;t K 0.78 0.02 034 001 0.04 0 059 -0.07 -0.52
o
E A 0.67 0.08 0.12 001 0.07 001 057 -0.25 -0.32
PVo 0.78 0.01 0.38 0.01 0.04 0 056 -0.02 -0.54
Ap— up 0.77 001 073 001 0.02 0O 039 034 -0.73
5 o 14 059 002 058 003 004 001 028 0.27 -0.55
g E‘;’ V, /V; 0.53 0.03 05 0.06 006 003 025 021 -0.45
= o)
E g U 0.76 002 058 0.01 001 0 0.47 0.19 -0.66
Au 053 003 049 007 007 003 024 0.19 -0.44
o 063 000 074 003 0.63 0 -006 0.11 -0.06
“ A 0.67 008 012 001 007 001 057 -025 -0.32
;_,§ Ap 0.77 0.03 0.12 0 0.07 0 0.68 -0.3 -0.37
g P 0.92 0.00 0.07 0 0.09 0 084 -043 -0.4

Au 0,53 003 049 007 0.07 003 024 019 -0.44
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Again the density p singles out as the best property for predicting the porosity. But
density estimates from seismic data are typically not very reliable. Therefore, Ap (4 being
Lamé’s modulus) is a more likely candidate.

The combined sensitivity values with respect to lithology are quite close for the listed
parameters in Table 8. But the sensitivity values display some differences. The two highest
ranked parameters seem to be the best choices, namely Ap— yp and v (where x is the shear
modulus and vis Poisson’s ratio).

For the fluid saturation the conductivity is the best candidate followed by Lamé’s
modulus. However, the combined sensitivity value for the conductivity is negative because
it is also very sensitive to the porosity and lithology.

Based on these results and a closer inspection of the relevant constraint cubes, we
determine the best combination for predicting the porosity, lithology and fluid saturation
under the assumed reservoir conditions, to be Ap, 4p —yp and o

If a controlled-source electromagnetic survey is not an option, then due to the
topology in the constraint cubes for the possible candidates, the bulk modulus K, vand A (or
Ap) seems to be the best choice.

DISCUSSION

It is important to remember that the porosity, lithology and fluid saturation (PLF)
sensitivity is modelled dependent. Hence, the results of the evaluation are not general
which can be confirmed by inspecting the variance in sensitivity in example 1. One might of
course see some general trends which can be applied in some qualitative studies, but will
not necessarily apply to all possible cases and which might not satisfy the level of precision
required in quantitative studies.

The combined sensitivity values can become negative due to the way we have defined
them in equation 12. A negative value means it is equally sensitive to the other PLF
parameter values as the one being studied. Alternatively, multiplication of sensitivity values
could be used to calculate the combined sensitivity value, e.g. in example 1 where we have
only two input elastic parameters, we could define it as

Epomsily (fpomsity ’ glithology ) = é:porosily (1 - glithology ) ’ (2 3)

where £ and £ are the sensitivity and combined sensitivity values, respectively. A

disadvantage with this definition is that we will not as easily be able to determine the
relative strength in sensitivity with respect to the two reservoir parameters. Also, the
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combined sensitivity value would then give some possibly undesired results; e.g.
g (0909 = £2_.(0.101)< 5__(0505), &__.(0906)= 5__(060.4)and

= =
=~ porosity =~ porosity ~ porosity =~ porosity =~ porosity
= sty (0220.1) = 2., (03,0.4)
2oy (020.1) = 2, (03,04).

Our parameter evaluation procedure can fail to identify good parameter
combinations. Consider for example two hypothetical properties insensitive to the fluid
saturation which gives completely vertical isosurfaces in the PLF domain (assuming the z-
axis is associated with the saturation). If these surfaces intersect at a normal angle the
solution would be a straight vertical line, i.e. one single porosity and lithology value. If in
addition they are normal to a respective porosity and lithology axis, the parameter
evaluation procedure would correctly identify them as a good combination for predicting
these two reservoir properties. If we rotate both isosurfaces 45 degrees in the porosity-
lithology plane about the intersecting line, we get a less trivial porosity and lithology
dependency for the data parameters. Now, the evaluation procedure would wrongly
identify this combination as badly conditioned. Hence, there is a chance of under predicting
the conditioning of some combinations. This can be addressed by manual inspection of the
respective constraint cubes or extending the procedure to find an average unit normal
vector for each of the constraint cubes and evaluate the dot product between them.

Because the sensitivity and combined sensitivity values are averages over several
models and the whole PLF domain, they might be misleading for specific solutions due to
possible large variance in the sensitivity as shown in Figure 8. Therefore, it is important to
consider the variance in sensitivity calculated in equation 11. We can see this in example 1
comparing the variation in sensitivity values for the four property combinations we
expected to give good results. Number 2 and 3 were looking most promising based on the
combined sensitivity values. But they displayed significantly higher variances than
combination 4 and 5, which in our inverse modelling produced significantly better results
than 2 and 3.

Another factor for the solution stability is the gradient of the data property in the PLF
domain; how much are solutions displaced due to a change in a data property value, i.e.
displacement of an isosurface. The evaluation procedure does not consider this factor; it
only considers displacement of solutions due to the angle at the intersection between the
respective isosurfaces. It is not included in the procedure because it is not so easy to give an
average value for this. But a small difference between the maximum and minimum data
parameter values in a constraint cube compared to uncertainties means this parameter is
not well suited for reliable quantitative predictions of the reservoir parameters. However,
most parameters have large enough difference between the minimum and maximum
values, making them possible candidates. Because the properties often exhibit local
variations in the gradient the stability of solutions is increased in certain parts, at the
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expense of other parts in the PLF domain. An average of the gradient would typically cancel
out these variations. Instead we suggest including information about the gradient as part of
the sensitivity analysis when presenting the solutions of a particular inverse rock physics
modelling.

In example 1 we confirmed the results of the elastic parameter conditioning
evaluation by doing an inverse rock physics modelling. We predicted combinations 2, 3, 4
and 5 to give the best results, 6, 7 and 8 to give the worst and combination 1, the often used
P-wave acoustic impedance versus V,/Vs ratio, to be somewhere in between (see Table 7).
Arranging these combinations with respect to having the narrowest PLF solution ranges
from the inverse modelling, gives the following order (from smallest to largest): 4, 5, 3, 2, 1,
7, 6 and 8 (Figure 10a). Arranging them according to smallest variation of average solutions
with respect to perturbing one of the properties, gives the following order (from smallest to
largest): 4,5, 3,1, 8, 7,2 and 6 (Figure 10b).

The ambiguity of an underdetermined problem is clearly illustrated in the synthetic
case study. Figure 11 shows the results of the inverse modelling using the correct rock
physics model. We are not only presented with non-unique solutions, but no sensible
prediction of fluid saturation can be done based on these results.

The lack of solutions for some of the perturbed values shown in Figure 11d illustrates
the pitfall in choosing a badly conditioned elastic parameter combination. Here, the P-wave
modulus combined with P-wave acoustic impedance could fail to identify the correct
solution if one did not take uncertainties into consideration in the inverse modelling.

In example 2 we found the conductivity to be almost equally sensitive to the porosity
and lithology as the fluid saturation. The reason for this is the applied rock physics model,
which reflects the properties of the studied reservoir rock. It is obvious that the
conductivity should exhibit comparable sensitivity to the porosity and fluid saturation;
replacing a conductive fluid with a non conductive material, being fluid or solid will have an
insulating effect on the rock. What might be less obvious is the large sensitivity towards
lithology. The reason for this is that the clay is here modelled to be pore filling, i.e. replacing
the fluid phase. And even though it is modelled with a conductivity of 0.02 S/m, it is much
less conductive than brine.

A very homogeneous set of models were considered in the real data case study, giving
rock physical descriptions of one of the expected facies in the reservoir. For a full analysis,
this study should be extended to include relevant models for other facies expected to be
found in the target reservoir and surrounding area. The presented parameter evaluation
procedure can then for example be used to help select which combination of elastic and
electrical parameters is best suited to identify the various facies.



155

CONCLUSIONS

We propose a procedure for evaluating the conditioning of elastic and electrical
parameters to use in reservoir characterization. We demonstrate a good correlation
between the results of the evaluation compared with the results from an inverse rock
physics modelling for various data parameter combinations and models. In particular, we
were able to identify which combinations give the most precise and robust predictions of
the reservoir parameters. Also, we illustrate the ambiguity when predicting reservoir
properties with respect to non-unique solutions, especially when dealing with uncertainties
and an underdetermined problem. The method was demonstrated on both a controlled
synthetic data set and on models calibrated against joint elastic-electrical laboratory
measurements on core plugs.

In the synthetic data case study we find the density p and Ap-up (where A and u are
the Lamé and shear modulus) to be the best combination for predicting the porosity and
lithology. In the real data case study we predict 40, 4p —p and the conductivity o to give
the most accurate predictions of the porosity, lithology and fluid saturation. Both results are
model dependent and must not blindly be used as general truths.

ACKNOWLEDGEMENT

We thank the Norwegian Research Council (Petromaks program) and Statoil for
financial support of the doctoral program of Erling Hugo Jensen.

APPENDIX A
ROCK PHYSICS MODELS

Hashin-Shtrikman-Walpole bounds

The Hashin-Shtrikman-Walpole bounds (Walpole, 1966a,b) is a more general form of
the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963), and the bulk (K) and shear
(#) moduli are given by

v,

-1
(Kz - K, )71 +V1[K1 +:ﬂzn}

K=K, + , (A-1)
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v,

0
_ 9K  +8u
— "4y +'u7m Z8m O,
(et = )" 4V +5 Ty

) (A-2)

H=H/+

where V is the volume fraction, index 1 and 2 refers to the two components, and the upper
bound is found when Kn and um are the maximum bulk and shear moduli of the two
components. The lower bound is found when they are the minimum moduli of the two
components.

Hertz-Mindlin model

In the Hertz-Mindlin (HM) model (Mindlin 1949) the effective elastic moduli of a dry,
random packing of spherical grains is given by

_[c-ofw ] i
K {187:2(1—1/)2 P} ’ (43)
3(5-4v)

=K., ———7, A-4
IuHM HM 5(2—V) ( )

where ¢ is the porosity, ¢ and v are the shear modulus and Poisson’s ratio for the mixed
mineral, respectively. In this study we used a confining pressure P =40 MPa, and the
coordination number C = 8.3147 we interpolated from data compiled by Murphy (1982).

Contact cement theory

The contact cement theory (CCT) of Dvorkin and Nur’s (1996) is used for calculating
the effective dry rock elastic moduli of cemented granular rocks according to

Keer = CU=0)M.S, (A-5)

for =2 Koy + - C(1- 9 )uS,, (A-6)
5 20

M =pVy, (A-7)

U, =pV., (A-8)

where ¢ is porosity of the starting framework, p, Vpc Vsc are the density, P- and S-wave
velocities of the cement material, respectively. The S, and S; parameters are proportional to
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the normal and shear stiffnesses, respectively, and they depend on the cement and grain
properties as well as the amount of contact cement.

Differential effective medium theory

The differential effective medium (DEM) theory (Bruggeman 1935) is an inclusion
based theory taking into account higher order interaction. Here, one of the constituents is
considered the host medium while the remaining components are embedded as inclusions.
This is an asymmetric model because given the same volume fractions of the constituents,
interchanging the host with one of the embedding components results in different elastic
moduli. For a two phase composition the elastic moduli can, according to the differential
effective medium theory, be solved from the coupled differential equations

(1-y>diy[z<*(y)]=(z<2—K*(y»P;(y), (A-9)

(1-y>diyw(y>]=caz—ﬂ*(y»Q;(y). (A-10)

Phase one acts as the host material with bulk moduli K; = K*(y=0) and shear moduli
= #*(y=0), while the bulk and shear moduli of phase two is Kz and g, respectively, and y
is the volume fraction of phase two. The geometrical factors P, (y) and Q,(y) are calculated

having phase two as the inclusion material in a host with effective moduli K* and g*.

In the real data case study where we have chosen the minerals as the inclusion
material, we use the modified differential effective medium theory (Mukerji et al. 1995)
where the high porous end member is redefined to a chosen critical porosity.

For the conductivity o, we use the differential effective medium of Gelius and Wang
(2008)

(A-11)

o(T.6.5.5. )= 6,5 ¢,H[B(s,T)+lB(s,T)O'K(s,T)/G(s,T,SW )J ’

B(s,T)+IB(s,T)o (s,T)/o,

where T, ¢, s, Sw, Ow, Ok are the temperature, porosity, brine salinity, water saturation, water
and kaolinite conductivities, respectively. The ease of which cations move along the clay
surface is given by the equivalent electrical conductance parameter B. The geometrical
parameters I, m and n are functions of the porosity, water saturation and volume fraction of
kaolinite, as well as the quartz and clay grain alignment factors mq and mg, respectively. In
our modelling, mq is set to 1.5 because we assume spherical quartz grains. The clay grains
are modelled as disperse in the pore space. It is also assumed a polarization effect where
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the clay particles are aligned with their major axis parallel with the electric field. If the
depolarization factor of the major axis is A, this implies that the clay alignment factor mx is
set to 1/Aa. More details can be found in Gelius and Wang (2008).
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” The major difference between a thing that might go wrong and a thing that
cannot possibly go wrong is that when a thing that cannot possibly go wrong
goes wrong it usually turns out to be impossible to get at or repair.”

Douglas Adams, ‘Mostly Harmless’

English humorist & science fiction novelist (1952 - 2001)
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APPENDIX VI: ERRATA

Below is a list of changes made in this final print compared to the thesis which was
submitted on July 22, 2011.

Table of Contents, page vii: The errata have been added to the table of contents.

Appendix II Paper 2, page 69, Equation 5: Two different weight factors were
assigned to n = 7. This has been corrected to only be one, namely 0.6.

Appendix II Paper 2, page 75, line 31: The word “united” has been replaced with
“unified” in the title of the reference by Wang and Gelius 2010.

Appendix I1I: Paper 3, page 92, line 20: “1 %” has been replaced with “1 unit”.

Appendix III: Paper 3, page 92, line 31: The word “results” has been replaced with
“result”.

Appendix III: Paper 3, page 93, Figure 9: Units have been added to the values in the
plot headings, and in Figure 9 a) the words “density modulus” has been replaced
with “density”.

Appendix III: Paper 3, page 94, Figure 10: The plotted bulk and shear moduli were in
fact the P-wave and bulk moduli. This has been corrected.

Appendix III: Paper 3, page 94: Figure 11: The title of a) should have been the one for
b) and vice versa. They have now been correctly interchanged and the caption has
been updated accordingly.

Appendix V: Paper 5, page 149, Table 6: The symbol “4” has been replaced with “&”.

Appendix V: Paper 5, page 151, Table 8: The symbol “£” has been replaced with “&”.
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"What we think, or what we know, or what we believe is, in the end,

of little consequence. The only consequence is what we do.”
John Ruskin

English critic, essayist, & reformer (1819 - 1900)





