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Figure 1: The Curve Density Estimate of a high frequency sine curve with a normalized histogram of evaluated

values densely sampled along the x axis. Our continuous representation of this curve closely matches that of the

histogram.

Abstract

In this work, we present a technique based on kernel density estima-
tion for rendering smooth curves. With this approach, we produce

uncluttered and expressive pictures, revealing frequency information
about one, or, multiple curves, independent of the level of detail in the
data, the zoom level, and the screen resolution. With this technique
the visual representation scales seamlessly from an exact line draw-
ing, (for low-frequency/low-complexity curves) to a probability den-
sity estimate for more intricate situations. This scale-independence
facilitates displays based on non-linear time, enabling high-resolution

This article was published in Proceedings of Eurographics/IEEE-VGTC Symp. on Visuali-
zation (EuroVis 2011), 30(3), pages 633–642, 2011, and presented at EuroVis in Bergen,
Norway by Ove Daae Lampe.
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accuracy of recent values, accompanied by long historical series for
context. We demonstrate the functionality of this approach in the
context of prediction scenarios and in the context of streaming data.
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1 Introduction

In the context of time-dependent data the drawing of function graphs is one of
the most natural and at the same time one of the most effective data visualiza-
tion techniques. As long as the spatial complexity of the graph is limited, this
immediate translation of data into a graph is straight forward and provides in-
tuitive results. If the curve to draw, however, becomes very long or the spatial
complexity increases, for example when considering a fractal curve, then the sim-
ple plotting of such a curve or graph will likely result in problems with overdraw
and cluttering. This overdraw in an example graph led us to the question: Why
did our regular graph of a sine curve look so different when its samples where
drawn in a scatterplot instead? (see Figure 2 a and c). The scatterplot, when
drawn with transparency, resembles the histogram of these values, as shown in
Figure 3. This histogram shows the distribution of the evaluated values, but the
curve representation completely obscures this distribution, even when applying
transparency, as shown in Figure 2b. In this paper, we investigate an alternative
way of rendering such curves, that does not display the same problems, but keep
the clear benefits of the regular curve.

As, perhaps, a very trivial summary, a function graph displays a single mea-
sured value, on one axis, with its continuous changes over another axis. Unless
the changes are piecewise continuous, a curve is not an appropriate choice of
visualization.

One of the biggest challenges when drawing function graphs is that they are
mainly useful for displaying frequencies that, on the extreme, is at least greater
than the pixel with of the display. The common way to deal with this is to either
constrain/zoom in on the axis, or to aggregate values, to "smooth" out rapid
changes. In Figure 4, aggregated stock prices for Intel are shown, with the black
curve being the center-shifted moving mean, enveloped in the curves’ standard
deviation. The outer polygon is the moving max-min. This enveloped curve, as
described by Miksch et al. [84], captures the overall movement of the underlying
data very well, and its standard deviation polygon reveals important information
about the frequency or stability of the smoothed data. This method works best
when the data is close to the normal distribution (or at least unimodal).In the case
of a bi- or multimodal data distribution, however, this aggregation looses certain
expressiveness. The visualized mean can easily associate with highly improbably
data values, for example, in the middle between two modes. Moreover, the
moving mean relies on a certain window, which either provides lagging results or
it is undefined for the latest values.

As a simple example we consider a sine curve from zero to a number larger than
the amount of available pixels in the horizontal direction. A naïve approach to
display this curve is shown in Figure 2a, which suffers from overdraw, and would
mainly only display the extent of the curve. A first approach on how to solve this
problem could be to apply transparency, shown in Figure 2b. The transparency
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Figure 2: Figures displaying the sine curve from zero to 1000π. In the top figure, a, an opaque line is used,

and because of overdraw, displays only the extent of the function. In the second figure, b, a transparent line is

used. The third figure, c, is a scatter-plot of the samples drawn transparent, and shows the same distribution as

the histogram. The fourth figure, d, is aggregated with moving mean, standard deviation and extent. As opposed

to Figure 4, this data is unsuitable for this type of aggregation. In the bottom figure, our technique, the Curve

Density Estimate, is applied, and the distribution corresponds with that found in the histogram in Figure 3.
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Figure 3: 30 bins histogram of y = sin(x) for regularly sampled values of x.

Figure 4: Intel opening stock price with a moving average, standard deviation and extent.

could correctly display the amount of overdraw, but this does not correctly display
the distribution of the curve. The distribution of a curve, alternatively described
as its continuous histogram by Bachthaler and Weiskopf [9], is found by taking
regular samples along its parameter axis, and inserting evaluated values in a
histogram. The histogram for the sine curve is shown in Figure 3. It is worth
noting that the curve with transparency will have a single visible mode at zero,
which is almost the opposite of what the histogram indicates, with two modes at
one and minus one.

A second technique on how to deal with this high frequency sine curve could
be to first aggregate it. In Figure 2d, we show, similar to Figure 4, the moving
average, standard deviation, and extent. Using a sufficiently large window, the
average of the sine curve is stable at zero, and its standard deviation is constant.
Part of the problem is that this way a model, with a normal distribution, is
enforced onto the data. If there is a mismatch between the assumed model and
the data, such a visualization will not be expressive.

With our technique applied to the sine curve, as shown in Figure 1 and Fig-
ure 2e, we recreate the distribution without any prior knowledge of model, and
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will do so independent of frequency, zoom level and screen resolution. That said,
we do not propose to replace the aggregation techniques, as in Figure 4 or other
techniques, where the model is known, but provide a default view, that can either
be used before the model is established (if it exist), or to investigate how well a
selected model fits the data.

With this paper we introduce a novel way of displaying function graphs, that
also supports:

• Graphs with a frequency higher than the pixel-width of its display
• Smooth transition between high frequency areas and single line curve
• The creation of a probability density estimate that does not assume a nor-

mal distribution of values
• The probability density of both single and multiple curves (and a mix be-

tween those)

In the following, we first discuss related work, then move on to the theoretical
details of curve density estimates, before we add technical implementation details.
Lastly, we apply our technique to real world data before providing the summary
and conclusions.

2 RelatedWork

Existing techniques, improving or extending the curve, fall briefly into the cate-
gories: compact views, overdraw views and, distribution views.

Compact Views: By utilizing techniques to compress the value axis, the as-
pect ratio is improved such that longer time-series can be shown on less space
without contracting the time axis, and thus avoid the frequency problem. Saito et
al. [102] designed a compact graph view, that utilizes a colored banding to over-
lay multiple ranges of the curve on top of each other. Using this banding, which
was further refined into the horizon graph by Panopticon [98], a precise value
can be read out, while reducing the physical height down to an eighth. When
the value range of a process is known, and also can be defined in levels, such as
low, normal and high, all values in these ranges can be replaced with colors to
produce a compact visualization, as described by Bade et al. [10]. They provide
an interesting example of body temperature graphs, where there are clearly de-
fined normal levels. Another compact graph visualization are the Sparklines as
introduced by Tufte [120], which strips the curve down to a text-line sized graph,
that can even be included mid-text. As a separate thread of compact visuali-
zation techniques, is the pixel based category, where each sample is displayed
using a colored pixel. In 2008, Hao et al. [52] provided an evaluation on how
best to place such pixels, while keeping temporal coherence. While not quite
a compact view, Kincaid proposed combining high frequency time series with a
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focus+context interaction [74]. This interction provides both an overview, and a
detailed view down to the individual samples.

Overdraw Views: Techniques that deal with visual clutter of high frequency
by introducing schemes to blend multiple overdraws. Most visualization packages
allows the user to specify different opacities, effectively implementing an overdraw
view. In 2002, Jerding and Stasko introduced the Information Mural [64] to deal
with high frequency graphs and other cluttered 2D visualizations. This technique
downscales large, original, and uncluttered views to miniatures, while counting
the overdraws to each pixel. This overdraw count is then used to apply a greyscale
color.

Distribution Views: Techniques that by aggregation deduce the distribu-
tion of a single, or multiple curves. Hochheiser and Shneiderman [57] utilized
envelopes that displayed the full extent of curves, in their TimeSearcher appli-
cation. In 2004, Kosara et al. [77] described the TimeHistogram, where the time
axis was divided into intervals, and a separate histogram was calculated for each
of these intervals. These histograms, with colored 1D representations, was then
in turn displayed along the time axis. In the work by Muigg et al. [87] multiple
curves where binned while aggregating both the count and the directions, to cre-
ate a visualization close to that of a flow field, utilizing line integral convolution
(LIC) to overlay direction on top of the frequency. Bade et al. [10] introduced
an extension to the information mural [64], that adds the median, the 25 and
75 percentiles and extent. Which is similar to BinX [14] which visualizes long
time series by binning along the time axis at different levels of aggregation and
then displays mean, minimum, maximum value, and standard deviation per bin.
Johansson et al. [66] discussed a blending scheme to introduce temporal changes
in parallel coordinate plots (PCP). Their implementation aggregates continuous
changes on top of each other forming, what can be described as a continuous
1D histogram from discrete samples. This 1D histogram is then the basis for
creating a polygon that is drawn to the next axis in the PCP. Feng et al. [38]
also introduced an extension of PCP, that is the result of mapping the 2D KDE
between each axis, into its corresponding parallel coordinate version. Further-
more, Feng et al. [38] also introduced several enhancements to interaction and
brushing techniques to better suite frequency data.

The technique proposed in this paper is an extension of our previous work [28],
where we first introduced the concept of a line kernel to kernel density estima-
tion. The line kernel is used to reconstruct continuous changes, by connecting
consecutive samples, forming an elongated kernel, and that integrates up to one
independent of the distance between samples. In this work we extend this line
kernel, and show how to reduce it into an exact and continuous, parametric for-
mulation. In our previous work, we utilized a table of pre-integrated convolved
results, whereas this extension allow us to directly evaluate the exact result. Ad-
ditionally, in this work, we introduce a curve visualization, called curve density
estimates (CDE), that provide distributional characteristics along the time axis,
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Figure 5: 100 cumulative random curves with a slight bimodal trend. The top graph show the curves with slight

transparency. All the samples at the green line, at x = 90, are drawn using a histogram and a 1D KDE in to the

right. The graph to the bottom shows the CDE. Note how the 1D KDE corresponds to the green line drawn over

the CDE as well.

comparable to the concept of a continuous 1D KDE. This visualization is enabled
by a moving column based normalization scheme further detailed in Section. 3.
Several other extensions are also provided here, over our previous work, e.g.,
non-linear time, single curve to multiple curves transition.

3 Curve Density Estimates (CDE)

The main rationale behind the use of kernel density estimation (KDE) as a basis
is that it does not impose any model on the data. Given a discrete set of samples,
with an appropriate bandwidth and kernel, KDE can truthfully approximate any
probability density estimate (PDE). For an extensive overview of KDE we refer
to Silverman [108]. The KDE is defined as the sum of a number of kernels,
one kernel per sample. With (x1, x2, ..., xn) being samples corresponding to an
unknown density f , the according KDE is defined as

f̂h(x) =
1
n

n∑
i=1

Kh(x − xi) =
1

nh

n∑
i=1

K
(x − xi

h

)
, (1)

with K a suitable kernel. As the kernel, often the normal distribution, N(x) =
1√

2πσ2 e− (x−μ)2

2σ2 , is used, with μ being the mean, σ2 the variance, and h the
bandwidth, or kernel size.

The blue vertical graph to the bottom right of Figure 5 shows an 1D KDE.
This KDE is created from the set of points where the black curves intersect the
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green line in the upper-left graph in the same figure. This 1D KDE clearly reveals
the bimodal nature of this dataset. Our curve density estimates (CDE) in the
lower graph in Figure 5, can be interpreted as a continuous series of these 1D
KDEs. However, instead of modeling our solution by expanding 1D KDEs, we
find a solution via a 2D KDE. A standard 2D KDE can be created using the
unconnected sample-points from the dataset, inserted into Eq. 1. This approach
will not create a continuous distribution when the samples get far apart, but
rather be the distribution of the previously mentioned scatterplot (2c). The
consecutive samples in the time series represent a continuous change from one
value to the next, and thus the probability, given two samples, should not be
0.5 at each sample, but rather be distributed evenly from one to the next. We
achieve this by building upon a line kernel Lk defined by two consecutive data
samples, and their positions pi and pi+1 [28]:

Lk(x) =
∫ 1

0
ciKH

(
x − ((1 − φ)pi + φpi+1)

)
dφ, (2)

with KH being the 2D normal distribution kernel. To enable a proper recon-
struction from uneven sampling in time, we insert the elapsed time between the
two samples in the scaling factor ci.

We now can reduce Eq. 2 to 1D by only considering values on the line defined
by pi and pi+1. We name this 1D equation Lk1D(x). Furthermore we define
the 2D points pi and pi+1 to their 1D equivalents (they are per definition on
this line), qi and qi+1, respectively. This 1D line kernel is then defined as the
integral of Gaussians placed along a line segment. So for any point x, we observe
that Lk1D(x) is defined by the sum of these kernels, and that all those kernels
incrementally have a mean/μ that is greater and greater than x. By turning
this problem around, we deduce that the integral on one position of kernels with
its mean moving away, is equal to the finite integral over a single kernel. The
integral of the normal distribution is a cumulative distribution function (cdf).
This distribution function is defined by

cdf(x, μ, σ) =
1
2

(
1 + erf

(x − μ√
2σ2

))
. (3)

Considering a point x where x < q1, and for explanation purposes a q2 → ∞.
At this point x, f(x) = cdf(x, q1, σ), since it is equal to the unbound integral of
all the kernels starting from q1 towards ∞. However, since q2 is actually a finite
value and we do not have any contribution from kernels beyond this point, we
have to remove this from our equation. The contribution from all kernels starting
at q2 going towards ∞ is similarly, f(x) = cdf(x, q2, σ). We then conclude, that
for the two points q1 and q2, where q1 < q2, the line kernel, in 1D, is given by:

Lk1D(x) =
1

|q2 − q1|
(
cdf(x, q1, σ) − cdf(x, q2, σ)

)
, (4)
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with |q2 − q1|, the length between these points, applied for normalization, since∫
cdf(x, q1, σ) − cdf(x, q2, σ)dx = q2 − q1. (5)

One important quality of this line kernel is when q1 approaches q2

lim
q1→q2

Lk1D(x) = N(x) (6)

the line kernel approaches the normal distribution, N(x), an observation which
was also previously made by Kniss et al. [76].

The next step, is to expand this 1D line kernel, over to our 2D case again. In
our previous work [28], we relied on the product kernel to define the line kernel.
Here, to expand our 1D parametric line kernel to 2D, we also rely on a product
kernel, but we let the first kernel be our 1D line kernel, and the other, the normal
distribution. Let w be the point x projected onto the line L defined by p1 and
p2, i.e., w = x + |r · (x − p1)|r, with r a unit vector perpendicular to the line.
Then let u be the distance |p1 − w| and v the distance |x − w|. This then gives
the new and parametric 2D definition of the line kernel:

Lk(x) = ciLk1D(u) · N(v) (7)

The KDE using our line kernel that will continuously reconstruct the sample
points (p1, p2, ..., pn) is defined by

fLk(x) =
n−1∑
i=0

Lk(x, pi, pi+1) (8)

By evaluating this KDE we get a density field with the integral∫
fLk(x)dx =

n∑
i=1

ci, (9)

since individually, all kernels integrate up to one, but are scaled by ci. Usually,
to create a probability density estimate, we would normalize by this integral, but
instead we propose to normalize it after rasterization, and then only column by
column, individually. Given the 2D grid, G, evaluated by fLk(x), we create a
column-normalized grid Gn by,

Gn[i, j] = G[i, j]/
h∑

ĵ=0

G[i, ĵ], (10)

where h denotes the height of the grid. Figure 6a, displays two curves, that coin-
cide before separating, and Figure 6b the rasterized result, after this column-wise
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Figure 6: Two coinciding curves splitting up, in a, and the rasterized result after normalization, in b. Note that

all columns sum up to one.
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Figure 7: Two different curves, on the left, and their corresponding views, on right, after being rescaled down to

one column.

normalization. The rationale for this normalization is to, first, have an intuitive
number indicating how much time the curves spent where, and secondly be able
to interpret every column as a 1D probability density estimate. A one indicating
that all the curves was here 100% of the time, and 0.5, 50%, regardless of how
many curves are used, and importantly, if non-linear time is used, regardless of
how compressed time is. Utilizing this normalization will render single curves,
with small changes, with the most intense values from the chosen color map,
and also effectively applying anti-aliasing. However, when the curve reside in the
same column, with large changes, e.g., when zooming out, or showing long time-
series, the normalization will give the probability density/continuous histogram
of where the curve "spent its time". Figure 7 shows two different curves, and
their rasterized results after rendering them into a single column.
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Figure 8: The three different proxy geometry schemes for reconstructing line kernels. The circles indicate the

vertices needed. The colored curves below, depicts the evaluated kernel in the corresponding cross-sections

above (not normalized).

4 Technical Details

While we see the usefulness of this technique in off-line renderings for static
displays, we will, in this section, first address the challenges we face when ei-
ther rendering real-time streaming data, or need interactivity, e.g. zooming and
panning. In order to overcome the challenges and achieve good frame-rates, we
offload all the calculation to the GPU. When rendering large time-series, we store
vertex arrays, containing the samples, in GPU residing memory, in chunks sorted
temporally. Because of this temporal ordering, we perform an intersection test,
with the chunks’ span vs. that of the view, to determine if it should be rendered
or not. The chunk containing the most recent values, however, are stored in
main memory, to be able to constantly append new values to it. To minimize
the memory usage, the memory structure only contains the samples once, and
the proxy geometry, needed by the line kernels, is constructed in a geometry
shader step. The geometry shaders input are the consecutive samples, using the
GL_LINE_STRIP_ADJACENCY, and it will output the proxy geometry in
three distinct ways.

In the first case, a single, unconnected kernel is constructed as a quad. This
case is used when the two consecutive samples’ distance is less than a threshold
|pi − pi+1| ≤ ε, and that threshold, expressed in terms of pixels, should be one.
In our experience, however, there is no significant visual change when increasing
ε to three pixels (given that the bandwidth is larger than that as well). This case
is depicted in Figure 8a.

In the second case, when ε < |pi − pi+1| ≤ cσ2, we have a line kernel, but one
that have a single mode, or maxima. This occurs for c ≈ 5 (see our previous
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work[28] for a discussion on this clamping, and for the errors introduced), when
distance is approx. five times that of the bandwidth, since the line kernel Lk is
in effect the sum of multiple normal distributions, and its edge will follow the
cdf function. This line kernel consists of two quads, meeting at the center-point
between the points (pi + pi+1)/2. This case is depicted in Figure 8b.

The third case, is when the distance between the points is sufficiently large,
i.e., |pi − pi+1| > cσ2, to have a "flat" region between them. In this case the
proxy geometry consists of three quads, two for the end caps, and one for the
continuous region in between. This case is depicted in Figure 8c. In this case,
we can simplify the calculation of the line kernel Lk, to only include the normal
kernel perpendicular to the centerline, for the middle segment.

Another usage for the geometry shader, in addition to the three previous cases,
is applied when non-linear axes are used. The geometry shader evaluates, accord-
ing to the distance between the two points, the error introduced by a single linear
kernel, and performs a subdivision if needed.

Now, after the geometry is constructed, the kernels evaluate Eq. 7, and their
sum is stored in a 32bit floating point texture. The fragment shader, parameter-
ized with u and v, respectively, along and across the geometry, evaluating Eq. 7,
calculates N(u) using a table lookup, and the Lk1D(v) using existing erf hardware
accelerated GLSL implementation. Then, two steps remain, namely, the column
normalization, and the application of a color-map. Before the normalization of
the columns, however, we first need to calculate the sum per column. We store
these sums in a 1D floating point texture, with the same width as the source
image, the 2D rasterized grid. To calculate the sum, we first bind the 1D texture
as a frame buffered object (FBO), as the render target, and then in a fragment
shader, iterate over all texels in the corresponding column of the 2D texture,
calculating the sum. As the last step, we apply the normalization division per
fragment, while simultaneously applying the color-map.

5 Applications

In this section we cover a varied set of applications for the technique of curve
density estimates (CDE). With these applications we show both the generality of
the proposed technique while also highlighting specific areas where this technique
can outperform the current state of art. Some of these examples are also covered
as videos in the supplemental material to demonstrate the interactivity.

5.1 High Frequency Curves

A high frequency curve has significant amplitude fluctuations within short spans,
in terms of the visualized area. Sound is an excellent example for high frequency
curves. In Figure 9 we display the CDE of the waveform from Beethovens Sym-
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phony No. 5. The top image in this figure displays five minutes and 34 seconds,
with almost 15 million samples. We use this example specifically, to show our
techniques independence from zoom level. Where the top of Figure 9 showed over
five minutes, the next zoom level, in the second graph, spans three seconds. In
the third graph, we can directly see the curve, as this graph spans 50 milliseconds.
We show this as three discrete zoom levels in this figure, but while interacting
with the application, this zooming action is both seamless and smooth. The
second and the bottom graph, in Figure 9, both show the same timespan of an
interesting piece where a bassoon makes an intricate pattern. This pattern is
however, completely lost in the bottom graph, which is the default waveform
viewer in Audacity [8]. This intricate pattern is made, in part, by the curve seen
in the third zoom level. In this zoom level we see that the curve has two distinct
repeating peaks, one with a single mode and the other with two modes, and it is
these modes that make up the intricate pattern.

5.2 Prediction Curves

Alan Cox once said:

I figure lots of predictions is best. People will forget the ones I get
wrong and marvel over the rest.

which, somehow, nicely fit the scheme on how modern weather forecasts are
done. Instead of a single prediction, an ensemble of possible futures are outlined.
However, when a forecast is prepared for public display, it is most often reduced to
a single, most likely outcome. When the ensemble of curves spread out, forming
a normal distributed pattern, the mode, can correctly be presented as the likely
outcome, and the variance, can be presented as the prediction certainty. However,
when the ensemble spreads out with two modes, as shown in Figure 5, this model
breaks down. We suggest two different use cases for CDE in prediction. In
the first case, real-time data is combined with prediction ensemble curves. The
historical data will appear as a solid line, and at the most recent sample, an
ensemble of curves will possibly spread out, defining the density estimator of the
future outcome. This solid line, representing the measured observations is shown
in Figure 5, where at x = 5 the CDE spreads out into the distribution of future
outcomes. By using the full ensemble, rather than the best represented outcome,
the operator can also prepare for worst case scenarios, if their probability reaches
a given threshold.

The next use case for prediction is repeating, or cyclic patterns. We can find
one such cyclic pattern in the yearly temperature. In Figure 10 we show temper-
ature readings, per hour for ten full years by the weather station at Flesland in
Bergen, Norway. Data courtesy of eKlima [89]. The temperatures are drawn as
ten overlapping curves, using Microsoft Excel in the lower graph. In the middle
graph, the moving average over the temperature for all years, and its standard
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Figure 10: Temperature readings by station nr. 50500 at Flesland, Norway, years 2000 through 2009 with month

on the x axis. The top image using CDE, the middle image smoothing using a moving mean and standard

deviation, and output by Microsoft ExcelTMon the bottom. Notice that the uncertainty/spread of temperature is

greater in the winter months Nov. to Feb., than the rest of the year, shown clearly in the CDE. June contains the

most stable temperature, represented as the high density there.

deviation is aggregated and shown. The top graph show the CDE for these ten
years. By choosing a specific date, the vertical column there represent the prob-
ability of which temperatures are likely at that date (according to history). For
example, in early June we can see that the probability for the temperature for
the EuroVis event is spread out from seven to approximate 18 degrees (given
both night and day temperatures). Another way to interpret this CDE, is by
looking at the intensity of the highest mode. The higher the mode, the more
stable temperature, and vice versa. Historically the temperature is more unsta-
ble (less likely to predict a correct outcome) in the winter months, Nov. through
Feb. One interesting finding here is the disparity between the mean, as shown in
the second graph in Figure 10 and the CDE, for Nov. and Dec., probably due to
the less normality of the distribution here.
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Figure 11: By compressing time with a semi-logarithmic scale, a high level of detail can be read out on recent

values, while an overview is available. The logarithmic exponent is given on the x axis.

5.3 Process Visualization

In process visualization, the priorities are often first placed on understanding
the now, the current situation, followed by both prediction and understanding
the historical data. A visualization that receives streaming data, should both
emphasize the most recent data, while providing an overview of historical data.
Streaming data are, often shown in a temporal window with the most recent
values in one end, and the historical data towards the other end. A suitable
temporal window is selected, which must be sufficiently small to see the current
values, and then data older than this are removed. Figure 11 shows an example
use of our CDE with non-linear time, which serves both to emphasize the recent
values, to the left, and provide a historical overview that fades into an aggregated
probability density estimate.

In drilling, as in many other processes that produce data, we find several data
sources that produce bi or multi-modal data. In Figure 12 we show one such
example, where the hook-load over time is showed. This image resembles that in
our previous work [28], but here it displays time over hook-load, while the other
displayed depth over hook-load. Hook load is measured in tonnes, and behaves
in a bimodal fashion because the hook is either lifting the entire drill string, or
when the drill string is attached in slips to the platform, is zero (actually the
weight of the hook itself approx. 40 tonnes). This figure shows the progress over
six hours, and we can quickly read out that most of the time has been spent with
the drill string attached to the slips, since the mode is highest at 40 tonnes. The
second finding, is the spans where the hook load was only at 40, meaning that
the operation stalled, and precious time was lost.
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Figure 12: Process data from a drilling operation showing hook-load in tonnes over time in seconds. The right

view shows the moving mean, standard deviation and extent, which for this bimodal distribution works particu-

larly bad. The left view displays the curve density estimate of the same data.

6 Summary and Conclusions

We have described the need for a visualization that can represent curves inde-
pendent of frequencies, zoom level and models, which does not yet exist in the
current state of the art. We provide a novel technique on how to render curves
independent of sampling-rate, zoom level and curve frequencies. Since kernel
density estimates does not impose any model on the distribution, our solution
will correctly display data with a single mode, bimodal, tri-modal, or indeed with
any underlying model. We have provided implementation details, to promote the
usage of this technique in both interactive and real-time settings. Furthermore
we have provided several compelling examples of real world usage, showing both
where this technique can improve current usages of visualization, but also the
versatility of this as a general technique.

For future work, we intend to see how we can use the described technique to
provide aid in modeling of data, providing immediate feedback on model sug-
gestions. Furthermore we plan to apply this technique into the daily usage for
process visualization, and establish its performance with a user study.
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