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Abstract

A method for obtaining the normal mode solution of a linear two-layer system over sloping
topography has been derived and implemented, providing a basic tool for analysing the disper-
sion relation and modal structure of stable and unstable baroclinic shelf waves. Model results
are compared with analytical solutions for a step-shelf profile with no background flow and a
linearly sloping channel with flow in both layers. A case study for the West Spitsbergen Shelf
topography is also presented.

1 Introduction

Charney [1947] and Eady [1949] were the first to provide a mathematical treatment of the fun-
damental mechanisms of baroclinic instability in the context of geophysical fluid dynamics. From
the very beginning, two-layer models have been useful concepts for exploring the basic dynamics
of baroclinic instability [Phillips, 1954]. Semi-circle theorems and stability criteria for two-layer
flows were exposed by Pedlosky [1963]. In [Pedlosky, 1964a,b] these were expanded to account for
continuous stratification as well. Orlanski [1969] used a two-layer model with sloping topography
to show that baroclinic instability is a probable source of energy for Gulf stream eddies offshore the
east coast of the United States. Gill et al. [1974] demonstrated how potential energy in the mean
circulation of the world oceans can be converted to eddy kinetic energy by baroclinic instability.
Smith [1976] applied a two-layer channel model to investigate baroclinic instability in the Denmark
Strait overflow, detecting similar oscillation periods in observational data as given by the model.
A related model was used by Mysak and Schott [1977] to explain low-frequency oscillations in the
Norwegian Atlantic Current. Flier] [1978| derived methods for optimal fitting of data to a two-layer
model for oceanic applications. Mysak [1980] provided a thorough review of shelf wave theory and
the two-layer models used therein for studying baroclinic effects. In [Mysak et al., 1981], both
baroclinic and barotropic instabilities are discussed for a two-layer model with a linear shelf and
slope. Three-layer models have been applied to study a deep ocean with an upper current [Tkeda,
1983; Pichevin, 1998]. Poulin and Flierl [2005] systematically investigated the effect of prograde
and retrograde topography for a two-layer model with a passive layer, finding that retrograde (with
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the shallow water to the left) topography is always stabilizing, while prograde topography (with
the shallow water to the right) can be either stabilizing or de-stabilizing, depending on the Rossby
number and the amplitude of the topography under consideration. More recent papers focus on
baroclinic instability as a source of eddy activity in the ocean [Smith, 2007; Ferrari and Wunsch,
2009] and attempts have been made to utilize linear models to parameterize the process for global
ocean simulations [Isachsen, 2010].

The West-Spitsbergen Current (WSC) is an eastern boundary current flowing along the West
Spitsbergen Slope (WSS1), and the main supplier of oceanic heat and salt for the Arctic Ocean. The
WSC is renown for its frequent mesoscale eddying |Johannessen et al., 1987; Gascard et al., 1995].
Isopycnal diffusion of heat by eddy fields has been postulated as a vital process for cooling the sub-
surface layers of the current [Boyd and D’Asaro, 1994; Nilsen et al., 2006; Teigen et al., 2010, and
unstable baroclinic wave modes constitute a source mechanism for these eddies. The present study
describes a two-layer shallow-water linear model for stability analysis of shelf-slope currents, which
has been developed with the aim of studying the properties and prevalence of unstable modes in the
baroclinic WSC branch. A related barotropic model has been used with success to study stable and
unstable barotropic shelf waves |[Davies et al., 2003; Thiem et al., 2006; Nilsen et al., 2006; Teigen
et al., 2010]. Although many general results have been obtained with the two-layer models that have
been an integral ingredient in the study of baroclinic instability for more than 50 years, the detailed
structure of the baroclinic wave modes is very sensitive to the topography and background density
and current fields. For this reason it was practical to establish a numerical model that could handle
a whole range of different current and topographic profiles, relevant for the WSC and the WSSI.
The outline of the report is as follows, in section 2, the derivation of the linear two-layer model is
presented, along with a semi-circle theorem and an instability criterion for two-layer models. In
section 3, the numerical grid discretization and boundary conditions are presented. Sections 4.1 and
4.2 compares the model with analytical results, while section 4.3 deals with a practical application
of the model to the WSC. Finally, in section 5 some summarizing remarks are given.

2 Theory

In a former study by Gjevik [2002], the matrix equation for the normal modes of a two-layer shallow-
water system (see Figure 1) with no background flow in the lower layer was derived. Here, the model
is generalized to allow for a non-zero flow in the lower layer as well. Subindices 1 and 2 refer to
variables in the upper and lower layers, respectively. The u-component is pointing east towards the
shore, while the v-component is in the along-shelf direction (pointing north along isobaths).

We assume a steady, along-slope, geostrophically balanced background current. Upon integra-
tion this yields for the displacement of the surface 7;

_ fot

= vidz, (1)

x
where f is the Coriolis parameter, g is the acceleration of gravity, L, is the total width of the channel
and 01 (x) is the steady along-slope background current in the upper layer. For the displacement of
the interface between the two layers, 72, we have

_ f/me g
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Figure 1: Tllustration of definitions for the two layer model.

where 75(x) is the background current in the lower layer and ¢’ = gp"’p%pl [m/s?] is reduced gravity
(p1 and po are the densities in the two layers).

The basis for the model is the depth-integrated shallow water equations. For the upper layer
the equations of motion (3a, 3b) and the continuity equation (3c) are

Ouy Ouy Juy __om
PR i A R (3a)
Bvl (9111 (9111 _ %

19} 0 0

% = —8—m[u1h1 —+ ughg} — @[Ulhl =+ ’l}2h2]. (3(2)

Here, h; is the total thickness of the upper layer (the mean thickness is hi = H; + m — 2, Hi
is the thickness of the upper layer in the absence of a mean current) and hg is the total thickness
of the lower layer (the mean thickness is ho = Hy + 72, Hy is the thickness of the lower layer in
the absence of a mean current). The density interface between the two layers may intersect the
bottom topography, resulting in an offshore two-layer region and an onshore mono-layer region
|[Kawabe, 1982|. Offshore of the intersection point, Hy = d (d is the undisturbed interface depth)
and Hy = h(xz) —d (h(z) is the undisturbed total depth), whereas in the mono-layer region, Hy = 0
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and H; = h(z). In the lower layer, we have

Ous 8@ Ousg 0 /
“2 -2 - =—— 4
5 Tz, turg- —fur=—glom + g, (4a)
8?}2 (91}2 8 /
“2 ) =—— 4b
o T, +vz + fup ay[gm +g'ml, (4b)
on 0 0
—= = ———[ugha] — ——[v2ha). 4
o 5 (u2h2] oy [v2ho] (4c)
We introduce small perturbations to the background flow, according to
m =+, (5a)
ur = “/15 (5b)
vy =01 + 0, (5¢)
2 = iz + 15, (5d)
ug = ub, (5e)
Vg = Vg + Ué. (5f)

The total layer thicknesses are now hy = Hy + i1 + 1) — (2 + n5) and hy = Ha + 72 + 15, In
Equations 5a to 5f, primed quantities are perturbations. We search for normal modes on the form

i = i (@)cos(ky — wb), (62)
uf = 41 (2)sin(ky — wt), (6b)
v] = 01 (x)cos(ky — wt), (6¢)
712 = fa(x)cos(ky — wt), (6d)

= G (z)sin(ky — wt), (6e)
vh = Do()cos(ky — wt), (61)

where ¢ is time, k is wave number and w is angular velocity. Inserting the normal modes into the
linearized versions of Equations 3a to 3¢ and 4a to 4c, leads to (after some algebra) the following
matrix equation

ok, —hi L — %, hik, (v2—01)k, —holk — %, hok M M

giv U1k77 7f7 07 07 0 121 ﬁl

gk, —f=@ Wk 0, 0 0 wl_ ol o
0, 0, 0, ok, —hod —dha - po 2 2

g, 0, 0, g, ok, | 2

gk7 O> 07 g/k7 7f - %7 772k v2 U2

which represents an eigenvalue problem for the complex frequency w = w, + iw;. For w; > 0, the
solution is unstable with exponential growth rate w;. The real component w, determines the phase
speed ¢, = w,/k of the vorticity wave with wave period P = 27 /w, and wave length A\ = 27 /k.
2.1 Semi-circle theorem and condition for instability

The complex phase speed ¢ = ¢, + i¢; of the unstable shelf waves resulting from arbitrary current
and bathymetric profiles cannot be retrieved analytically. However, in many cases it is still possible
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to obtain theoretical bounds on ¢, and ¢;. Pedlosky [1963] provides a semi-circle theorem for a flat-
bottomed two-layer ocean, in analogy with Howard’s famous semi-circle theorem for hydrodynamic
instability [Howard, 1961|, given by

(5) = (- (55) =2 .

Here, a and b are the maximum and minimum current speed within the domain, in either of the two
layers. From standard linear stability theory of quasi-geostrophic flows |Pedlosky, 1964a; Mysak
et al., 1981] a condition for exponential growth (¢; > 0) of a two-layer system with no horizontal
shear (01,79 const.) and uniformly sloping topography can be derived

= _ = Lo / Lo
u/ @iPas- 20 sz~ LT [T 0, par o, ©)
0

|51 — |2 —c? |Tg — |2

where @,, (n = 1,2) is the complex amplitude in layer n of a normal mode unstable solution to the
linearized quasi-geostrophic potential vorticity equation. « is the topographical slope. From this
condition it can be seen that for strong slopes (|a| large) and /or strong stratification, the third term
would dominate the others, rendering instability unlikely. However, if 01/c¢ (for 9, > v3) or vgrzc
(for v > 1), the first or the second term will become large and could cancel the third term.

3 Numerical method

The lateral boundary condition at the walls (z = 0 and z = L) is zero normal velocity in both
layers, i.e. u, = 0,(n = 1,2). For the case when the interface intersects the topography, the
across-shelf velocity is zero at the intersecting grid point. A staggered one-dimensional grid was
used for the numerical calculations (see illustration in Figure 2). The staggered grid discretization
gives better accuracy than a collocated grid and the numerical boundary conditions are consistent
with the analytical boundary conditions. The matrix system (7) was solved using Matlab, which
utilizes the Lapack library routines for eigenvalue calculations. The modal structures of the real
current and displacement fields is given by

uh = [ (x)cos(ky — wyt) — G, (z)sin(ky — wit)] exp(wit), (10a)
vy = [01,,(z)sin(ky — wyt) + 91,:(x)cos(ky — wyt)] exp(w;t), (10b)
s = [ (@)cos(y — wnt) — i a(@)sin(ky — wt)] exp(eit), (100)
ty = [ (2)cos(ky — wyt) — i (z)sin(ky — wrt)] exp(eit), (10d)
vh = [Do,(z)sin(ky — wyt) + Do () cos(ky — wrt)] exp(wit), (10e)
ny = [f) 277‘(1)(:03(]{?:!/ wyt) — foi(x)sin(ky — wyt)] exp(wit), (10f)

where 1y, Op, and 7y, , are the real components of the eigenvector in the n’th layer and @y, ;, On;
and 7, ; are the imaginary components.
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m

Figure 2: Illustration of the staggered grid discretization. Plus symbols denote nodes for ,, and 9,,, while

circles mark nodes for 7,,.
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4 Results

4.1 Comparison with step shelf
The step-shelf geometry is given by

hy, f <z<l
h(z) = 0, for 0 <ax <l (1)
hs, for Ly, >z >1,

where hg is the depth on the shelf, h, is the depth in the abyssal ocean and [ is the position of
the shelf-break (see illustration in Figure 3). With no background current, the following expression
describing the relationship between w and k can be derived analytically

1) |pa (wip = 1)+l 9| 4 42 (w5 =) Do+ 0) +halo = A1 =0. (12

where hy = hg,hs = d and hz = h, — d. % =,/1+ Cé%(l - ‘}’—;), where ¢y = Z;hizg is the internal

gravity wave speed. The numerical two-layer model was run with parameter values similar to the
West Spitsbergen Shelf (see Table 1).

0

E Parameter Value
g hs 180 m
ho 2500 m
[ 100 km
[ Step shelf profile Lz 200 km
[ Upper layer, [ d 500 m
-Lcwerlayer,p2 g, 0.81 - 1073 m/s2
Dista:\?:g [km] 190 200 f 1.42-107* g1
Figure 3: Tllustration of the step-shelf profile and the two layers, Table 1: Input parameters for
for the parameter choices in Table 1. the step shelf case.

The roots of equation 12 were found through numerical iteration, for a selection of wave lengths.
A comparison with the dispersion relation found with the two-layer model can be seen in Figure
4. The match between the two models is quite close, the difference is barely discernable. For
short wave lengths (20-80 km), the lowest mode follows the internal gravity wave period, while for
longer wave lengths (beyond 80 km) the lowest mode approaches the inertial period. In Table 2,
the convergence sequence for the highest mode can be seen for different grid sizes. The analytical
solution for this wavelength (A = 50 km) was w/f = 0.437 or 7' = 28.53 h. The results indicate
that the present model comes quite close to the analytical solution for resolutions Az = 0.5 km or
less. The analytical solution is derived for an infinitely wide shelf and deep ocean, but increasing
the width of the numerical calculation domain in the present model had little effect on the solution.
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60 * Eigenmodes from two-layer model
- - - Internal gravity wave
--.- Inertial period T_= 12.47 h
50 f ; : $
{ Analytical disp. relation IS
a0t $
— &
z . ¢
B°30r :
20 el
IO Az [km)] w/f T |hrs]
N ._._._._._._4:.—_—..‘%&:;-_-—.-.% ....... PR A T $ 5 0402 30.989
i 1 0.422 29527
Of N N N A S R S 0.5 0433 28794
0 40 60 80 100 120 140 160 180 200
Wave length [km] 0.25 0.438  28.427
Figure 4: Comparison of the dispersion relation for the step- Table 2: Effect of grid refine-
shelf topography (11) calculated with the numerical ment for a step shelf.
two-layer model and the analytical dispersion elation. The tabulated values
The internal gravity wave and inertial wave periods are calculated for \ =
are indicated. 50 km.

4.2 Comparison with linear slope profile [Mysak and Schott, 1977]

Tn a seminal paper on baroclinic instability in the Norwegian Atlantic Current (NAC), Mysak and
Schott [1977] described in detail a quasi-geostrophic analytical model for calculation of the unstable
baroclinic modes of a slope current in a two-layer system (with step-wise uniform current in the two
layers), providing a suitable test case for comparison with the present numerical model. The linear
slope profile is given by

h(z) = he — (ho — hs)x /Ly, (13)

where hg is the depth at the shoreward boundary of the channel and h, is the depth at the offshore
wall. The constant input parameters were similar to those of [Mysak and Schott, 1977|, who used
values relevant for the NAC at 63°N (see Table 3). The channel is illustrated in Figure 5.
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200
400
£
£ 600
3
Parameter Value
800
hs 800 m
1000 [Linear shelf profile ho 1200 m
[1Upper layer, [ Lx 40 km
[ Lower layer, p,
1200, 5 10 15 20 25 30 35 : 40 d 500 Zn 1
Distance [km] f 1.3-107% s~
Figure 5: Illustration of the linear shelf profile and the two lay- Table 3: Input parameters for
ers, for the parameter choices in Table 3. the linear slope case.

In Figure 6a-d the dispersion relation calculated with the present model and the model by
[Mysak and Schott, 1977] is shown for two different values of reduced gravity and two different
current shears between the layers. The similarity between the results obtained with the present
model and those of [Mysak and Schott, 1977] is evident, although the growth rate is generally ~ 5%
higher for their model. The long-periodic bands of stable modes display ~ 5% higher wave period
for the model of Mysak and Schott [1977] in Figure 6a. For the other cases, the correspondence is
better. One possible reason for the deviation between the two models is the fact that Mysak and
Schott [1977] assume a rigid lid on top, while the present model retains a free surface. The surface
f;f;, which should be small for the rigid lid approximation to be justified, is
decreasing with increasing stratification. This could explain why the correspondence is better for
higher values of ¢’. The lowest stable mode in the present model is the internal gravity wave, and
corresponds well with the analytical curve (Figure 6a-d). In Figure 6¢ a third peak in growth rate,
which is not present in the solution by Mysak and Schott [1977| can be seen. It turns out that this
mode is a combination of the first and the second mode which is not possible with the model by
Mysak and Schott [1977].

divergence parameter

Table 4: Detailed comparison with Mysak and Schott [1977]. « is growth rate with unit [days™!].

MYSAK&SCHOTT TWO-LAYER MODEL

Case T [hrs] A [km] «[days™!] T |hrs] A [km] -+ [days™!]
Figure 6a  83.35 64 0.365 77.15 60 0.338
Figure 6b  99.73 90 0.116 97.99 88 0.112
Figure 6c  75.75 46 0.160 72.09 44 0.147
Figure 6d  80.91 54 0.047 78.52 52 0.043
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(a) (b)
0.4 200, o+ 104
O Period (stable), M&S (1977) O Period (stable), M&S (1977) QQQ
O Period (unstable), M&S (1977) O Period (unstable), M&S (1977) QQQ
O Growth rate, M&S (1977) O Growth rate, M&S (1977) QQ
—Internal gravity wave — Internal gravity wave
* Period (stable), 2-layer model * * Period (stable), 2-layer model
160/l A Period (unstable), 2-layer model SO0 **O 32 160/l A Period (unstable), 2-layer model 032
® Growth rate, 2-layer model <><>‘>° **** o ***OO @ Growth rate, 2-layer model
# * 0 *
* %OWOQ * * o
**
*W*W**
1 247 _120f
A 2 F
£ g £
3 T 3
s = 8
& g ¢
80 0.16 &5 80
a0F 0.08 400
0 0 .
0 24 9 120 0 48 72
Wave length [km] Wave length [km]
(c) (d)
4 0.4 20 o 0.4
& Period (stable), M&S (1977) O Period (stable), M&S (1977) o 5
O Period (unstable), M&S (1977) O Period (unstable), M&S (1977) ¢¥ &%
O Growth rate, M&S (1977) O Growth rate, M&S (1977) ¥ &%
—Internal gravity wave — Internal gravity wave ¥ ¢
* Period (stable), 2-layer model * Period (stable), 2-layer model
160) ! 0.32 16011 A Period (unstable), 2-layer model, 0.32
o 24
C 0247, 1 o
£ g £
3 ¢ 3
2 s £
& s &
80 0.16 5 0.16
40 0.08 0.08
e
0 0 . L
0 48 72 0 24 96 12%
Wave length [km]

Figure 6:

48 72
Wave length [km]

Comparison of the dispersion relation calculated with the model by Mysak and Schott [1977] and
the present model . (a) ¢’ = 0.5- 1072 m/s?, 5;=0.3 m/s, 52=0 m/s, (b) ¢’ = 1.5- 1072 m/s?,
0,=0.3 m/s, 7o=0 m/s, (c) ¢’ = 0.5-1072 m/s%, ©,=0.2 m/s, 5o=0.05 m/s, (d) ¢’ = 1.5- 1072
m/s?, 97=0.2 m/s, 92=0.05 m/s. The analytical dispersion relation of the internal gravity wave
(fat bottom) is also shown (black line).
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In Figure 7, the theoretical semi-circles (equation 8) that bound the eigenmodes corresponding
to the cases in Figure 6a-d are plotted, along with the complex phase speed of the unstable modes
calculated with the present model. All the modes lie within the semi-circle, which gives an indepen-
dent indication that the numerical results are sound, although the semi-circle theorem is derived
for a flat bottom.

_ 0457

@

E

=

°

8 01f

2]

Q

2]

©

<

Qo

2 0.05

£

[))

©

E
0 : -,
0 0.05 0.1 0.15

Real phase speed c, [m/s]

Figure 7: The semi-circles (8) corresponding to 9;=0.3 m/s, o=0 m/s (green) and 9;=0.2 m/s, 5,=0.05
m/s (red). The unstable modes calculated with the present model for cases (a-d) in Figure 6 are
indicated.

A sensitivity analysis was carried out to evaluate any systematic deviations between the present
model and that of Mysak and Schott [1977|. In Figure 8a and b, the sensitivity to the magnitude of
the current speed in either layer is shown. Some general observations can be made from this plot.
The growth rate increases with increasing shear between the two layers, which is to be expected from
standard theory of baroclinic instability, see e.g. [Smith, 2007], who derived an expression where
the growth rate is proportional to the inverse square root of the bulk Richardson number (Ri),

1 V1 —V2

VX TE T Vad The model of Mysak and Schott [1977] is generally giving slightly higher wave

periods and growth rates than the present model. In Figure 8c and d, the sensitivity to changes
in bottom slope and reduced gravity are investigated. The growth rate is increasing, while the
wave period and wave length are decreasing, with weakening stratification. This is in line with the
condition given in equation 9, where the third term will dominate for strong stratification and/or
topographic slopes, rendering instability less likely. An increasing topographic slope is decreasing
the growth rate, wave period and wave length. In all the cases in Figure 8a-d, the qualitative
similarity between the two models is obvious, although the present model seem to produce slightly
lower growth rates.
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TWO-LAYER MODEL Mysak and Schott [1977]

(2) 04 (b)
0.287% 0.35

- 0.26) & 0.26

£ 03 E

024 _ o024

H 025's § oz

> 015 2 5

< o 2

_E’g 0.1 E:

o
=3
Q
&

Growth rate y[d ]

Topographic slope,

o
=3
=3
<)

<

o
=3
=]
J

0.006f

0.0052 5 6 7
Reduced gravity, g’ [m/€] x 107

Figure 8: In the two upper panels, a sensitivity study of the upper and lower layer flow speed with the
present model (a) and that of Mysak and Schott [1977] (b) is presented. In the two lower panels,
the sensitivity of the bottom slope and reduced gravity with the present model (c¢) and that of
Mysak and Schott [1977] (d) is shown. The growth rate of the gravest unstable mode is plotted
with colored, filled contours, whereas the corresponding period of the gravest unstable mode is
displayed with white, labeled contour lines. The wavelength of the gravest unstable mode is
shown with black, dotted contour lines.

4.3 Case study: the West Spitsbergen Current

The modeled West Spitsbergen topography is uniform in the along-shelf direction, and the undis-
turbed water depth, h(z), is represented by a smooth double tanh function in the across-shelf
direction (resolving the two-step nature of the slope, see the illustration in Figure 9)

h(z) = a1 (1 — gy tanh (I ;“)) T ap (1 — gotanh (z ;;2)) —ax(l—go),  (14)

where a; = 621 m, g = 0.7069, z; = 117 km, s; = 7 km, ap = 2350 m, go = 0.3191, x5 = 155
km and sy = 14 km. This is the same bathymetric function as was used by Nilsen et al. [2006] and
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Teigen et al. [2010]. The maximum upper bottom slope is ~ 6 - 1072 and somewhat steeper than
the maximum deep bottom slope (~ 5-1072). The more gently sloping segment between the two
slopes is ~ 1-1072. For the West Spitsbergen configuration, the density interface between the two
layers intersects the bottom topography, resulting in an offshore two-layer region and an onshore
mono-layer region. The background current field in both layers is modelled as a Gaussian jet, given

by
() = Top eXP [— (x_LB>2] =12 (15)

B

Here, Lp is the position of the current maximum, while 9, is the maximum current speed in layer
n and B is the half-width of the jet. Lp and B are assumed to be the same in the two layers.
Three different calculation domains were considered (see Figure 9) for the numerical computa-
tions. Case T includes the flat, deep portion of the channel (z = 0 km) to the shelf-break (z = 165
km), Case IT consists merely of the slope (from the foot of the slope, z = 65 km, to the shelf-
break, z = 165 km), while Case III spans the deep portion, slope and shelf (z = 0 km to x = 300
km). The three cases were run with the input values given in Table 5, for three different grid sizes

(Az =1,0.5,0.25 km).

0

Depth [m]
)
o
o

-
a1
o
o

[ 1Double tanh shelf profil
[ ]Upper layer, P,
[ Lower layer, p,
200 250

0 50 100 150 300

Distance [km]

Figure 9: Illustration of the West Spitsbergen Slope and the three calculation domains that were tested.

In Table 6, the mode with the highest growth rate is tabulated for the three different domains
and the different grid sizes. As can be seen, it is not possible to distinguish between Case I and
II, hence excluding the flat interior of the channel does not seem to affect the properties of the
gravest unstable mode to any notable extent. There are some differences between the solution for
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Table 5: Input parameters, West Spitsbergen shelf

Parameter Value
00,1 0.20 m/s
1_]()72 0.05 Hl/S
Lp 124 km
B 20 km
g 0.0022 m/s?

d 840 m
f 1.42.107* 571

Case I-II and Case III (including the shelf) that should be remarked. For Case III, the maximum
growth rate occurs at longer (2-3 k) wavelengths and wave periods (7-8 h), and at considerably
lower growth rate (3 times lower). For a grid size of Az = 1 km, the mode with the highest
growth rate for Case IIT appears at much shorter (12.5 km) wavelength, indicating that Case IIT is
more sensitive to numerical resolution than the other two cases. The modal structure of this mode
is concentrated shoreward of the shelf-break in the upper layer and is limited to a narrow region
close to the intersection between the layer interface and the slope in the lower layer. In Figure 10a
and b, the detailed dispersion relations for Case IT and III are shown, respectively (for grid size
Az = 0.5 km). An immense number of stable and unstable modes can be seen, compared with
the basic dispersion relation for the linear shelf and uniform current in section 4.2. The increased
complexity is due to the introduction of cross-shelf variation in bottom slope and current, allowing
for a rich variety of cross-modal interactions. For Case II, two distinct peaks in growth rate step
out (A =275km, T =50h,v=0.11d ! and A = 35 km, T = 68 h, v = 0.05 d~1). The same
peaks can be discerned for Case I1I as well, but they are shifted towards longer wave lengths and the
second peak is more diffuse. The maximum growth rates are also greatly reduced. When displayed
in wave length /phase speed space (Figure 10c and d), the dispersion diagram becomes more lucid,
the dominant peaks in growth rate appearing along linear bands of unstable modes. For Case IT
(Figure 10c), the two dominant peaks in growth rate are clearly visible. The resulting phase speed
of the most unstable mode is quite similar for the two cases, 0.152 m/s for Case IT and 0.146 m/s
for Case III. There are two regions where the density of modes is especially high. These modes have
phase speeds close to either the upper or the lower layer’s maximum speed, and are characterised as
surface- or bottom-intensified modes Mysak [1980] (the gray shaded regions in Figure 10c and d).

Table 6: Evaluation of calculation domain for the WSSL. « is growth rate with unit [days—1].

A [km]/T [h]/~ [days™]
Case  Zstart [km] Zena [km] Ax =1.0 km Ax = 0.5 km Az =0.25 km

I 0 165 28/50.46/0.110  27.5/50.21/0.109 27.5/50.17/0.109
11 65 165 28/50.46/0.110  27.5/50.21/0.109  27.5/50.17/0.109
111 0 300 12.5/90.06/0.045 30.5/58.09/0.039 30.5/57.98/0.036

An additional test was run for Case II and III, in which the maximum speed in the upper layer
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was increased to o1 = 0.35 m/s (the other parameters were kept the same as in Table 5). For
this case of stronger shear the resulting peak in growth rate for the two cases turned out to be
quite similar (see Table 7), Case I1T displaying 5% less growth rate, 4% longer wave length and 10%
higher wave period than Case II. This corresponds well with the findings of Mysak et al. [1981],
who found that the characteristics of the dominant baroclinically unstable wave differed little for
a channel model and a shelf model. To summarize, including the shelf region makes the solution
less numerically robust for moderate shears in the present model formulation. This is manifested in
the growth rates, which are more sensitive to grid size for Case III (see Table 6). For applications
that focus on the physics of instabilities over the slope, it is preferable to limit the extent of the
calculation domain to the slope region. This is also beneficial for saving computational time.

Table 7: Peak in growth rate for stronger shear, 9y = 0.35 m/s. v is growth rate with unit [days~].

A [km]/T [b]/ [days~!]

Case Zgtart [km| Zena |km| Az = 0.5 km
11 65 165 36/46.66,/0.419
111 0 300 37.5/51.53/0.399
For a moderate shear (g1 = 0.2 m/s, %o = 0.05 m/s), the upper and lower layer modal

structures associated with the highest peak (7" = 50 h) in growth rate are plotted in Figure 11 for
Case II. The centre of the vorticity wave in the upper layer is located close to the position of the
maximum vertical current shear. In the lower layer, the vorticity structure extends all the way to
the intersection between the layer interface and the continental slope. In Figure 12, the upper and
lower layer modal structures associated with the second (7' = 68 h) peak in growth rate are plotted.
A dipole structure can be seen, with vorticity centers both east and west of the maximum vertical
current shear. The easterly vorticity centre is more energetic than the others in the upper layer,
while in the lower layer they are more similar in strength. In the lower layer, the wave structure
is cell-like and the oscillation is intensified at the intersection between layer interface and the shelf
slope.

5 Conclusions

A shallow-water two-layer model for analysis of stable and unstable modes in shelf-slope currents
has been implemented. The model shows good agreement with analytical results, and can be applied
for a wide range of shelf and current profiles. Results from the model can be helpful in the analysis
of current meter data on shelf-slopes and results from numerical ocean models. The present model
may also be used in conjunction with the more general Brink model [Brink, 2006], which requires

a-priori knowledge about the modes one is searching for, but allows for continuous stratification.

6 Acknowledgement

I wish to thank Professor B. Gjevik at the at the University of Oslo (Department of Mathematics)
for many stimulating discussions and valuable suggestions for this report.

71



Page 18

REP. IN METEOROLOGY AND OCEANOGRAPHY 1-2011

CASEII

+ Period [hrs] of stable modes.
* Period [hrs] of unstable modes
| _* Growth rate [d”"] of unstabl

2
=
9
2
i
o

0 60 70
Wave length [km]

Surface intensified modes

Q3
£
5
2
153
[
8
Q
2
e
o

0.06

Vo2
0.041
0.021
qo 20 30 40 50 70 80 90 100

60
Wave length [km]

0.0727_

Growth rate [d

0.03

0.02

0.01

Growth rate [s

CASE 11T

a
=
=
L
5
Q

Phase speed [m/s]

riod

[
+ Period [hrs] of unstable modes

80 90 10

40 50 60 70
Wave length [km]

() o2

Surface intensified modes

0.06]
VO,Z
0.04-
0.02-
(%O 20 30 4 0 80 90 100

0 50 60 7
Wave length [km]

0.0727_

Growth rate [d

0.1
0.09
:0.08
Hoor
:0.06
70.05
0.04
0.03
0.02

0.01
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period on the y-axis, while (c) and (d) is depicted with phase speed on the y-axis. The period
of both stable (black asterisks) and unstable modes (black diamonds) are shown.

72

Growth rate [s™']



Page 19

REP. IN METEOROLOGY AND OCEANOGRAPHY 1-2011

0
[=}

[wo] yuswaoe|dsip aoepns eag

N

@ { =
o o o o

[w] yuswaoe|dsip soepaU|
o o

40

o
o o o ~— N ™
™ N -~ o 1 1 1

70-

(@

NS

SN

o
©

s

o o o
w < @
[w] @oue)sip yjaysbuoy

°
«
\

70

(b

w < 0 N
_Ev__mocsm_E_m;mmco_/*

165

55

125 135 145
Distance [km]

115

105

95

(a) Upper layer modal structure of the unstable wave mode corresponding to the first peak in

growth rate (A = 28 km, 7' = 50 h

Figure 11:

The perturbation flow field is shown with black vector

).

arrows. The perturbation sea surface displacement is plotted in red/blue. (b) Lower layer modal

structure. The perturbation interface displacement

tted in red/blue.

is plo

73



[wo] Juswaoe|dsip 8oepNS S
«

- o ©
A A
-

> o
T T ©
L s I

[w] yuswaoedsip aoeua|

(=)

o o N <
< N o 1 I

-60
-80

W

W,
[

=

7

ted in red /blue. (b) Lower layer modal

145

REP. IN METEOROLOGY AND OCEANOGRAPHY 1-2011

Page 20

(2)

70-

'e) < @
[wsy] @oueysip yaysbuoy

() 70

[w] soueysip yaysbuoly

115 125 135
Distance [km]

05

95

structure of the unstable wave mode corresponding to the second peak

Figure 12: (a) Upper layer modal

68 h). The perturbation flow field is shown with black vector

5 km, T

=3

in growth rate (A

arrows. The perturbation sea surface displacement is plot

structure. The perturbation interface displacement is plotted in red/blue.

74



REP. IN METEOROLOGY AND OCEANOGRAPHY 1-2011 Page 21

References

Boyd, T. J. and D’Asaro, E. A. (1994). Cooling of the West Spitsbergen Current: Wintertime
Observations West of Svalbard. J. Geophys. Res., 99(C11), 22597 22618.

Brink, K. H. (2006). Coastal-trapped waves with finite bottom friction. Dyn. Atm. Ocean, 41,
172 190.

Charney, J. G. (1947). The Dynamics of Long Waves in a Baroclinic Westerly Current. J. Meteor.,
4(5), 136-162.

Davies, A. M., Xing, J., and Gjevik, B. (2003). Barotropic eddy generation by flow instability at
the shelf edge: Sensitivity to open boundary conditions, inflow and diffusion. J. Geophys. Res.,
108(C2).

Eady, E. T. (1949). Long Waves and Cyclone Waves. Tellus, 1, 33-52.

Ferrari, R. and Wunsch, C. (2009). Ocean Circulation Kinetic Energy: Reservoirs, Sources, and
Sinks. Annu. Rev. Fluid Mech., 41, 253-282.

Flierl, G. R. (1978). Models of vertical structure and the calibration of two-layer models. Dyn.
Atmos. Ocean, 2, 341 381.

Gascard, J.-C., Richez, C., and Rouault, C. (1995). New insights on large-scale oceanography in
Fram Strait: the West Spitsbergen Current. Cont. Shelf Res., 49, 131-182.

Gill, A., Green, J., and Simmons, A. (1974). Energy partition in the large-scale ocean circulation
and the production of mid-ocean eddies. Deep Sea Res., 21(7), 499 508, IN1, 509 528.

Gjevik, B. (2002). Unstable and neutrally stable modes in barotropic and baroclinic shelf slope
currents. Preprint Series 1, Dept. of Mathematics, Univ. of Oslo, Oslo, Norway.

Howard, L. N. (1961). Note on a paper of John W. Miles. J. Fluid Mech., 10, 509-512.

Tkeda, M. (1983). Linear Instability of a Current Flowing Along a Bottom Slope Using a Three-Layer
Model. J. Phys. Oceanogr., 13(2), 208 223.

Isachsen, P. E. (2010). Baroclinic instability and eddy tracer transport across sloping bottom
topography: How well does a modified Eady model do in primitive equation simulations? Ocean
Modell., In Press, Corrected Proof.

Johannessen, J. A., Johannessen, O. M., Svendsen, E., Shuchman, R., Manley, T., Campbell, W. J.,
Josberger, E. G., Sandven, S., Gascard, J. C., Olaussen, T., Davidson, K., and Leer, J. V. (1987).
Mesoscale Eddies in the Fram Strait Marginal Ice Zone During the 1983 and 1984 Marginal Ice
Zone Experiments. J. Geophys. Res., 92(CT), 6754 6772.

75



Page 22 REP. IN METEOROLOGY AND OCEANOGRAPHY 1-2011

Kawabe, M. (1982). Coastal Trapped Waves in a Two-layer Ocean: Wave Properties When the
Density Interface Intersects a Sloping Bottom. J. Oceanogr. Soc. Japan, 38(3), 115-124.

Mysak, L. A. (1980). Recent advances in shelf wave dynamics. Rev. Geophys., 18(1), 211-241.

Mysak, L. A. and Schott, F. (1977). Evidence for baroclinic instability of the Norwegian Current.
J. Geophys. Res., 82(15), 2087 2095.

Mysak, L. A., Muench, R. D., and Schumacher, J. D. (1981). Baroclinic Instability in a Downstream
Varying Channel: Shelikof Strait, Alaska. J. Phys. Oceanogr., 11(7), 950-969.

Nilsen, F., Gjevik, B., and Schauer, U. (2006). Cooling of the West Spitsbergen Current: Isopycnal
diffusion by topographic vorticity waves. J. Geophys. Res., 111, 1 16.

Orlanski, I. (1969). The influence of Bottom Topography on the Stability of Jets in a Baroclinic
Fluid. J. Atm. Sci., 26(6), 1216-1232.

Pedlosky, J. (1963). Baroclinic instability in two layer systems. Tellus, 15(1), 20-25.

Pedlosky, J. (1964a). The Stability of Currents in the Atmosphere and the Ocean: Part i. J. Atm.
Sei., 21(2), 201-219.

Pedlosky, J. (1964b). The Stability of Currents in the Atmosphere and the Ocean: Part ii. J. Atm.
Sci., 21(4), 342 353.

Phillips, N. A. (1954). Energy Transformations and Meridional Circulations associated with simple
Baroclinic Waves in a two-level, Quasi-geostrophic Model. Tellus, 6, 273-286.

Pichevin, T. (1998). Baroclinic instability in a three layer flow: a wave approach. Dyn. Atm.
Oceans, 28(3-4), 179 204.

Poulin, F. J. and Flierl, G. R. (2005). The influence of topography on the Stability of Jets. J. Phys.
Oceanogr., 35, 811 825.

Smith, K. S. (2007). The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res.,
65, 655-683.

Smith, P. C. (1976). Baroclinic Instability in the Denmark Strait Overflow. J. Phys. Oceanogr.,
6(3), 355 371.

Teigen, S. H., Nilsen, F., and Gjevik, B. (2010). Barotropic Instability in the West Spitsbergen
Current. J. Geophys. Res., 115, C07016.

Thiem, O., Berntsen, J., and Gjevik, B. (2006). Development of eddies in an idealised shelf slope
area due to an along slope barotropic jet. Cont. Shelf Res., 26(12-13), 1481  1495.

76





