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Introduction

PNS are rare side effects of cancer that occur in less than 1 % of all cancers, most 

often small-cell lung cancer, ovarian cancer and breast cancer. These tumours express 

proteins normally only expressed in immuneprivileged tissues like the testis and the 

central nervous system. The body recognizes these proteins as foreign and an immune 

response is initiated. The body produces antibodies and activates T cells directed 

towards these proteins. By a so far unknown mechanism the antibodies and T cells 

cross the blood-brain barrier, attack the neurones that express these onconeural 

proteins, and the patients develop neurological symptoms. Often these symptoms are 

seen early in tumour development, while the tumour is still small and unnoticed. 

Detection of paraneoplastic antibodies are therefore important diagnostic tools for 

identifying tumours at an early stage, which again increases the chance of recovery. 

The most common paraneoplastic antibodies are Hu, Yo, CRMP5, amphiphysin, Ri 

and Ma2 antibodies. Yo antibodies are most commonly associated with ovarian or 

breast cancer and causes paraneoplastic cerebellar degeneration with loss of Purkinje 

cells followed by ataxia. These antibodies recognize a cytoplasmic protein called 

CDR2 that is normally expressed in the Purkinje cells in cerebellum and in testis, but 

the function of this protein is largely unknown. CDR2 is also expressed in more than 

60 % of all ovarian tumours and 25 % of all breast cancer tumours. Some of these 

patients develop antibodies towards this protein, with a prevalence of approximately 

2.3 % in ovarian cancer and 1.6 % in breast cancer. 
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Abstract

The mechanisms behind anti-Yo mediated paraneoplastic cerebellar degeneration is 

still not understood, and very little is known about the function of CDR2. In our 

studies we have tried to elucidate the properties of Yo antibodies, potential antibodies 

that coexist with anti-Yo and whether sequence variants in the CDR2 gene or 

differences in CDR2 transcription and expression could explain why some patients 

develop PCD. 

The avidity of antibodies is associated with onset of disease and disease severity, and 

the avidity of paraneoplastic antibodies has never been examined before. We 

compared differences in antibody avidity among patients with the two most common 

paraneoplastic antibodies, anti-Hu and anti-Yo. We found that the antibody avidity 

among patients with these antibodies was heterogeneous, but patients with Yo 

antibodies generally had antibodies with higher avidity than patients with Hu 

antibodies. This might reflect differences in the patient’s immune response, the 

severity of the disease or different time points of sampling.  

Since antibody avidity increase over time we also did a longitudinal study where we 

followed patients with Hu or Yo antibodies over time. This study showed that while 

the avidity indexes increased over time for most patients with Hu antibodies, the 

avidity indexes for patients with Yo antibodies were fairly constant. This could 

indicate that Hu antibodies are discovered at an earlier time point in the disease 

progress, while the Yo antibodies have persisted for a while before the neurological 

symptoms developed.  

More than 60 % of all ovarian tumours express CDR2, but only 2.3 % of these 

patients develop Yo antibodies and even fewer develop PCD. The reason why some 

patients develop paraneoplastic antibodies is not known. We wanted to study whether 

the production of Yo antibodies in some ovarian cancer patients were related to 

variants in the cDNA sequence or to difference in the CDR2 mRNA or protein level 
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in tumour tissue from patients with ovarian cancer. We found no differences among 

the patients that could explain why some of them develop Yo antibodies and PCD. 

However, we observed that CDR2 was not solely expressed by tumour cells. Also 

normal ovarian tissue expressed low levels of CDR2. These findings indicate that 

CDR2 may be more widely distributed than previously reported. Our findings also 

support the hypothesis that development of PCD is not solely related to CDR2 

expression and Yo antibody synthesis, but also to immune dysregulation, such as 

antigen presentation and cooperation between B and T cells. 

Yo antibodies most commonly appear alone. We identified a patient with PCD and 

Yo antibodies that also harboured antibodies towards a little described protein called 

CCDC104. We found that this protein was expressed in several tissues, especially 

brain and testis. We further investigated whether this antibody was a potentially new 

paraneoplastic marker. CCDC104 antibodies were not related to cancer or PNS. 

However, 10.5 % of the anti-Yo sera also had CCDC104 antibodies, suggesting there 

is a significant association between anti-Yo and anti-CCDC104. 
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1. The immune system 

The immune system is divided into the innate and the adaptive immune system. The 

innate immune system is regarded as the primitive, first-line defence towards 

pathogens. It is not specified towards specific pathogens, but rather recognizes 

intruders in a general manner. The innate immune system is characterized by a rapid 

response to danger that activates mechanisms like fever and the complement cascade. 

Phagocytic cells, such as macrophages, play an important role in innate immunity. 

The macrophages digest microbes and presents antigenic fragments of the microbes 

to members of the adaptive immune system. 

The adaptive immune system can recognize and selectively eliminate specific foreign 

microorganisms and antigens. B lymphocytes (B cells) and T lymphocytes (T cells) 

are the two major cell types in the adaptive system. They both arise from 

hematopoietic stem cells of the bone marrow, but while the B cells continue their 

maturation in the bone marrow, the T cells migrate to the thymus gland to mature. 

B cells are exposed to self antigens in the bone marrow. Those who recognize self 

antigens are eliminated, while those that do not, leave the bone marrow displaying a 

wide variety of antigen-binding receptors (bound antibodies) that can identify a huge 

variety of foreign antigens. When a B cell binds to a matching antigen, the B cell 

divides rapidly and differentiates into memory B cells and antibody secreting plasma 

cells that secrete huge amounts of circulating antibodies. 

The T cells undergo a similar selection as the B cells. In the thymus those that 

recognize self antigens are destroyed, while the others leave the thymus. Mature T 

cells express a unique antigen-binding receptor called the T cell receptor. While the B 

cell receptors can recognize antigens alone, T cells only recognize antigens when 

bound to MHC molecules on cells. MHC I is expressed on nearly all nucleated cells, 

while MHC II is expressed by antigen-presenting cells. When a T cell encounters an 

antigen bound to MHC on a cell, it differentiates into memory T cells, T helper 
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(CD4+) and T cytotoxic (CD8+) cells. Activated T helper cells become effector cells 

that secrete cytokines that can activate B cells, T cytotoxic cells, macrophages and 

other cells that are involved in the immune response. Cytokines also differentiate T 

cells that recognise antigen-MHC I complexes into effector cells called cytotoxic T 

cells. Cytotoxic T cells eliminate virus-infected cells, tumour cells and cells of a 

foreign tissue graft. Figure 1 shows a schematic illustration of the different processes 

in an immune response. 

 

 

Figure 1: Key processes in an immune response.  
APC= antigen presenting cell; TH= T helper cell; CTL= Cytotoxic T lymphocyte

(http://www.answers.com/topic/cellular-immunology)
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1.1 Immune system in the central nervous system 

Protecting the brain is a difficult immunological challenge. Effective and rapid 

clearance of pathogens is essential to maintain the structural integrity of the brain. 

Even small lesions in critical neuronal networks can have devastating effects. Since 

any cellular immune reaction leads to damage followed by scarring, the intensity of 

the immune reaction must be tightly regulated to avoid unnecessary damage. The 

central nervous system has many complex functions and a large number of tissue 

specific proteins. It is therefore unlikely that there is complete immunological 

tolerance to all of these antigens (Wucherpfennig 1994). To avoid unnecessary 

immune activation, access to the brain is restricted to activated lymphocytes that scan 

the central nervous system. If there is no danger, the T cells leave the brain through 

the blood-brain barrier (Kleine and Benes 2006). The MHC I and MHC II 

expressions are very low in normal central nervous tissue, and the low MHC 

expression probably protects the brain against autoimmunity. In normal microglia 

cells, MHC II is not detected, but in early stages of experimental allergic encephalitis 

MHC II is upregulated in microglia cells (Wucherpfennig 1994). Some nerve cells, 

like Purkinje cells and hippocampal neurons, express high levels of MHC I (Darnell 

1998), which renders them particularly susceptible to autoimmune diseases.  

1.2 Autoimmunity 

Autoimmune diseases occur when the body’s immune system attacks its own cells 

and tissues. Common for the diseases are the presence of circulating autoantibodies 

and autoreactive lymphocytes in affected tissues. In many autoimmune disorders 

there are extensive interactions between the brain and the immune system. Several 

proteins that have important functions in the brain also have a crucial role in the 

immune system. For instance Toll-like receptors are very important in the innate 

immune system and flies that lack the Toll gene do not develop dorsal ventral 

polarity. Several cytokines stimulate lymphocytes, but can also affect important brain 
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regulated functions like sleep, temperature and appetite. The principal inhibitory 

synaptic transmitter in the nervous system, GABA, can also be secreted by immune 

cells and participate in immune protection of the brain [reviewed in (Bhat and 

Steinman 2009)]. MHC I proteins are involved in activity-dependent signals in 

developing and mature neurones (Darnell 1998). Common autoimmune diseases are 

multiple sclerosis, diabetes mellitus, systemic lupus erythematosus and rheumatoid 

arthritis. Approximately 5 % of the population have an autoimmune disease, and 80 

% of these are women [reviewed in (Libert, Dejager et al. 2010)]. 

Breakdown of self tolerance occurs in autoimmune diseases. The mechanisms that 

lead to autoimmunity are not well understood, but both genetic and environmental 

factors play a role. Only a few gene defects have been linked to specific autoimmune 

diseases. Breakdown of self tolerance can be caused by hormones, viral or bacterial 

infections, immunological challenges during pregnancy, fetal microchimerism, or it 

can be X chromosome related (Libert, Dejager et al. 2010). Some autoimmune 

diseases can be initiated by bacterial or viral infections. In these cases the pathogens 

share similar structures with the autoantigens. This is called molecular mimicry. For 

instance, it has been shown that Campylobacter jejuni shares a structural homology 

with the lipo-oligo-saccaride of the peripheral nerve, GM1 ganglioside, and this 

infection can cause Guillian-Barré syndrome (Ang, Jacobs et al. 2004). Another 

theory is that incomplete phagocytosis of apoptotic cells leads to release of self 

antigens and development of autoimmune diseases (Nagata 2010). There is also the 

possibility that posttranslational modification of proteins has an impact. All 20 

primary amino acids have the potential to undergo posttranslational modification. The 

most common modifications are acetylation, glycosylation, hydroxylation, 

methylation, phosphorylation, deamidation and citrullination. In some cases such 

modifications alter the protein so that it is no longer recognized as self. For instance, 

some patients with rheumatoid arthritis have antibodies towards citrullinated fillagrin, 

while citrullination and acetylation of myelin basic protein has been associated with 

multiple sclerosis [reviewed in (Doyle and Mamula 2005)]. 
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Irregularities in the innate immune system are the cause of some very rare 

autoimmune disorders affecting the brain, but it has also been implicated in 

Alzheimer’s disease (Bhat and Steinman 2009). Autoimmune diseases that implicate 

the adaptive immune system involve both secretion of specific antibodies and 

activation of T cells that target the antigens. Multiple sclerosis, neuromyelitis optica 

and paraneoplastic neurological syndromes are examples of diseases where the 

adaptive immune system is involved. In T cell mediated autoimmune diseases the 

proportion of autoaggressive T cells is crucial for whether or not an individual who is 

predisposed to autoimmunity develops an autoimmune disease. It has also been 

postulated that if the body develops low-avidity autoaggressive T cells during an 

initial infection, secondary infections later in life might result in accumulation of 

high-avidity autoreactive T cells and development of autoimmune disease (Christen, 

Hintermann et al. 2009). 

1.2.1 Autoantibodies

Evolutionary, immunoglobulins have probably been developed for clearance of body 

waste in the first animals with three germ layers. Some antibodies can react with self-

antigens, and these are referred to as autoantibodies. Autoantibodies can be directed 

towards cell surface membranes or receptors, cytoplasmic proteins or nuclear 

proteins. Naturally occurring antibodies exist in all vertebrates and have important 

functions in maintaining tissue homeostasis. They are mainly of the IgG or IgM type, 

have low affinity and circulate in plasma. Some of them are directed against 

intracellular and cytoskeletal proteins like anti-tubulin, anti-actin and anti-spectrin 

[reviewed in (Lutz 2007)]. 

Not all autoantibodies are beneficial. In many cases upregulation of autoantibodies is 

associated with autoimmune diseases. In systemic autoimmune disorders antibodies 

are deposited in affected tissues and cause injury. Many autoantibodies can bind to 

the surface membranes causing cell destruction. Cell membrane antibodies like 

thyroid antibodies, phospholipid antibodies and aquaporin-4 antibodies bind to the 
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cell membrane and activate the complement cascade, with subsequent cell lysis 

(Lazarus, Parkes et al. 2002; Di Simone, Luigi et al. 2007). Other autoantibodies, like 

antibodies towards the AChR in myasthenia gravis can bind cell surface receptors, 

following aggregation and redistribution of the receptors in the membrane. The 

antibodies block the ligands from binding to the receptors, and the receptors are 

internalized. This leads to impaired neuromuscular function (Drachman 1994). 

NMDAR antibodies act in a similar way. They decrease the surface density and 

synaptic localization of NMDAR clusters via antibody-mediated capping and 

internalization (Hughes, Peng et al. 2010). Some antibodies, like thyroid stimulating 

hormone antibodies, bind to receptors and cause constant activation leading to 

hormone overproduction (Chistiakov 2003). Other autoantibodies form large immune 

complexes that activate the complement system and cause tissue damage, e.g. in 

glomerulonephritis (Nangaku and Couser 2005).  

In many autoimmune diseases patients harbour antibodies towards intracellular 

proteins. They serve as important diagnostic tools, but their role in disease 

mechanisms is unresolved. It has been suggested that autoantibodies to intracellular 

proteins may bind to cell surface membranes. In some cases this can be caused by 

cross-reactions between intracellular and membrane antigens as is the case for anti-

ribosomal P protein antibodies (Caponi, Anzilotti et al. 2007). Other studies suggest 

that injury, activation or apoptosis of the cell can translocate a normally intracellular 

antigen to a site were circulating antibodies could bind to it. It has been reported that 

nuclear autoantigen translocation can lead to autoantibody opsonisation (marker for 

phagocytosis), increased dendritic cell phagocytosis and presentation of nuclear 

antigens (Frisoni, McPhie et al. 2005).  

The theory that antibodies are able to penetrate living cells has long been debated, but 

several autoantibodies are able to penetrate cells (Alarcon-Segovia 2001). Recently, it 

was demonstrated that Purkinje cells are able to take up IgG and IgM antibodies 

independent of the immunoglobulin’s reactivity with Purkinje cell antigens, and that 

uptake of Yo antibodies causes Purkinje cell death in a non-apoptotic way (Hill, 
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Clawson et al. 2009; Greenlee, Clawson et al. 2010). Further, amphiphysin antibodies 

can be internalized at the nerve terminals and bind strongly to amphiphysin on the 

presynaptic side of the nerve terminals (Geis, Weishaupt et al. 2010). 

1.3 Antibody avidity 

An antibody’s ability to bind effectively to its ligand is an important feature of 

antibodies. The antibody-antigen interaction is a combination of several weak 

physical forces: van der Waals forces, hydrogen bonding and electrostatic forces. The 

energy of this antibody-antigen binding is called affinity or avidity. Affinity is defined 

as the force of binding when one single paratop of an antibody binds to its 

corresponding epitope on the antigen molecule. Avidity is the binding force between a 

multivalent antibody and a multivalent antigen. The measured binding energy 

between antibodies and their antigens reflect the avidity of antibodies. In many cases 

the two terms are used interchangeably. 

The specificity of antibodies is defined by its relative affinity. Antibodies with high 

affinity to a specific epitope can bind to similar epitopes with lower affinity. High 

antigen density is one of the crucial requirements for binding to such epitopes. High 

antigen density is also important for binding of low affinity antibodies, depending on 

enhanced avidity provided by bivalent attachment to the antigen (Zuckier, Berkowitz 

et al. 2000). Antibody avidity is independent of antibody concentration, and an 

individual’s avidity response is partly genetically controlled (Kim and Siskind 1978). 

The MHC composition, the influence of several genes and the immunoglobulin 

subclass are all factors that affect the antibody avidity (Steward, Reinhardt et al. 

1979; Persson, Brown et al. 1988; Devey, Bleasdale-Barr et al. 1990; Achenbach, 

Koczwara et al. 2004). 

IgG avidity is low in primary infections or early in the disease course. The avidity 

increases with time as the disease progresses or after secondary infections. Avidity 

determination can therefore give important knowledge of the nature and phase of the 

infection. In this way avidity measurements can give an indication of whether the 
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infection is new or has persisted for a while. Such information is especially valuable 

for distinguishing recent from old toxoplasmosis infection or rubella infection in 

pregnant women (Hedman and Seppala 1988; Hedman, Lappalainen et al. 1989). 

Some naturally occurring autoantibodies have high affinity. Some of these antibodies 

are directed against IL-1, IL-6 and interferon alpha. The high affinity is a prerequisite 

to prevent the antibodies from binding to other plasma components and high avidity 

cytokine binding only occurs when the cytokines are oligomerized (Lutz 2007). In 

autoimmune diseases the avidity of anti-�2-GPI autoantibodies increased during the 

course of systemic lupus erythematosus (Cucnik, Kveder et al. 2004). High-avidity 

antibodies have been associated with disease onset and have been shown to impair 

nerve fibre regeneration in Guillain-Barré syndrome (Comin, Yuki et al. 2006; 

Lopez, Zhang et al. 2010). Rabbits immunized with GM1 develop antibodies with 

lower affinity than what is seen in humans, and this is believed to be the reason why 

these antibodies do not elicit disease in rabbits (Lopez, Villa et al. 2002). Patients 

with aquaporin-4 antibodies have heterogeneous affinity, but whether this has any 

clinical relevance remains to be elucidated (Crane, Lam et al. 2011). Affinity 

maturation is believed to be clinically less relevant in diseases where avidity of 

antibodies is not relevant for pathogenicity, e.g. AChR antibodies in myasthenia 

gravis (De Baets and Stassen 2002). 

The most used methods for avidity measurements involve use of chaotrops like NaCl, 

thiocyanate (e.g. KSCN) or urea (Hedman, Lappalainen et al. 1989; Saalman, 

Dahlgren et al. 2003). Chaotrops can be added to a solution to break weak, existing 

antibody-antigen complexes, or the chaotrope can be added to the solution to prevent 

the formation of low-avidity complexes. The signal ratio between two wells, one with 

and one without chaotrope, gives the avidity index. Another way of measuring 

antibody avidity can be surface plasmon resonance. Surface plasmon resonance 

measures macromolecular interactions, like antigen-antibody interactions, in real 

time. It detects alterations in the refractive index of the medium surrounding the 

receptor immobilized on a solid support at the moment of ligand binding, and can be 

employed to determine kinetic parameters, equilibrium binding constants and 
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concentration (Laffer, Lupinek et al. 2008; Li, Chen et al. 2008). The benefit of this 

approach is that the protein is in its native form. When using chaotrophs for avidity 

measurements, one risks partially denaturing the protein in such a way that the 

conformational epitopes are altered. With surface plasmon resonance this problem is 

avoided. However, this technique requires advanced equipment and in many cases 

chaotrop-avidity assays might be easier, more accessible and cheaper to perform. 

1.4 Tumour immunity 

The immune system plays an important role in suppressing cancer cells. It protects 

the host against viral infections, thereby suppressing virus-induced tumours. It also 

eliminates pathogen infections which can create an inflammatory environment that 

facilitates tumour development. In addition, the immune system can eliminate tumour 

cells. Nascent tumour cells often co-express both ligands that activate receptors on 

innate immune cells and tumour antigens, thereby activating an immune response 

[reviewed in (Schreiber, Old et al. 2011)]. How important the immune system is for 

cancer surveillance is illustrated by the high cancer incident ratio in patients with 

immune deficiency like AIDS (Simard and Engels 2010) and the high levels of skin 

cancer seen in immunosupressed individuals (Schulz 2009). Common for patients 

with various forms of immune deficiencies is that they develop cancers that are 

triggered by previous viral infections. An increase in non-infectious lung, colon, 

pancreas, kidney, and endocrine system cancers have also been observed in 

immunosupressed individuals, which supports the idea that the immune system is 

important for monitoring many forms of malignancies [reviewed in (Vesely, Kershaw 

et al. 2011)].  

Patients with rheumatoid arthritis and other autoimmune diseases have an increased 

risk of cancer. This may be due to the use of immunesuppressive medications and 

chronic immune activation, but many polymorphisms that lead to autoimmunity also 

predispose for cancer (van de Schans, van Spronsen et al. 2010). Recently, it was 

shown that CD4+ T cells from patients with rheumatoid arthritis have decreased 

levels of the DNA repair kinase ATM, a protein that is associated with both immune 
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deficiency and increased risk of cancer (Shao, Fujii et al. 2009). Viral-associated 

cancers make up for a large proportion of new cancers also in immunocompetent 

individuals. The most common being EBV-associated lymphomas, HPV-associated 

cervical cancer and Hepatitis B and C-associated hepatocellular carcinoma (Schulz 

2009).  

Changes in the cell that may ultimately lead to the development of cancer cells 

happen all the time in the body. Thus, the immune system’s ability to recognize 

cancer cells as foreign is crucial. The adaptive immune response is important in 

cancer surveillance. When a healthy cell transforms into a cancer cell, multiple 

genetic changes occur. This results in different protein expression patterns in the 

cancer cells. The proteins can be mutated, differently folded, degraded, or in some 

cases the cells express proteins normally only expressed in other tissues. More than 

2000 tumour-associated antigens have been recognized by patient sera, but only a few 

of these have been associated with cancer in general, which suggests that many 

immunogenic mutations may be unique for each individual cancer (Anderson and 

LaBaer 2005). These altered proteins are expressed on the cell surface as tumour 

antigens that can activate the immune system. In many cases the patients develop 

antibodies towards these tumour antigens, and these antibodies can be used as tumour 

biomarkers. Among the antibodies that are common for various forms of cancers are 

antibodies towards testis-cancer antigens like NY-ESO-1 and antibodies towards 

mutated forms of tumour suppressor p53 (Vesely, Kershaw et al. 2011). It is not 

known if the antibodies reflect the underlying immunosurveillance of cancer, or if 

they have an impact on the clinical outcome of the disease.  

Upregulation of fetal proteins or overexpression of proteins normally only expressed 

in immune privileged sites like the central nervous system can occur. An example of 

this is small cell lung cancer (SCLC). SCLC is a severe form of cancer that originates 

from primitive neuroendocrine cells in the lung. SCLC cells express several antigens 

normally only expressed in the nervous system. All SCLC cells express the neuronal 

protein HuD (Dalmau, Furneaux et al. 1992; Dalmau, Graus et al. 1995). In addition, 
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a large proportion of the SCLC cells express other neuronal proteins like VGCC, 

SOX or recoverin (Kazarian and Laird-Offringa 2011). Some of the patients with 

SCLC develop antibodies towards these proteins. Such antibody production is linked 

to a group of autoimmune diseases called paraneoplastic neurological syndromes 

(PNS), which will be discussed later. The role of these antibodies is not yet clear. 

There have been reports stating that patients with low titres of Hu antibodies do not 

develop PNS, but the cancers appear to be smaller, and the patients have a more 

favourable outcome than Hu-negative patients (Winter, Sekido et al. 1993; Graus, 

Dalmau et al. 1997; Mason, Graus et al. 1997). Some cases where the SCLC has 

spontaneously regressed in anti-Hu positive patients have also been reported (Darnell 

and DeAngelis 1993). This suggests that these antibodies have a role in tumour 

control. 

In recent years a new theory has evolved for the role of the immune system in cancer. 

It was discovered that tumours formed in immunodeficient mice were more 

immunogenic than similar tumours that developed in mice with a normal immune 

system. The immune system not only protects the host against malignancies, but can 

also facilitate tumour growth. This concept is called immunoediting. Normally, 

transforming cancer cells will start to express Type I IFNs. These cytokines activate 

dendritic cells which elicit an anti-tumour response. Other proteins such as stress 

ligands (e.g. RAE-1 and MICA/B) probably also facilitate activation of the immune 

system. Activation of T cells is required to effectively eliminate cancer cells 

(Schreiber, Old et al. 2011).  

In some cases the cancer cells can survive the elimination process and enter 

equilibrium where the adaptive immune system keeps the tumour cells from 

developing further. In this phase the immunogenicity of the cancer cells can be 

moulded. In patients with a previous cured cancer, not all cancer cells are necessarily 

eradicated. Occult cancers can lie dormant for decades. For example, 20-45 % of 

patients with breast or prostate cancer will have a relapse several years after their 
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initial disease. Use of immunosuppressants can increase the risk of relapse (Vesely, 

Kershaw et al. 2011). 

CD8+ T cells destroy antigen-presenting cells, leaving behind less immunogenic 

cells. The tumour cells can remain in the dormant state for the rest of the life, or they 

can escape and evolve into growing tumours. Alterations of the tumour cell, such as 

loss of antigens, can lead to reduced immune recognition. Increased resistance to the 

cytotoxic effects of immunity can lead to tumour growth. Loss of tumour antigen 

expression can happen if the tumour cells stop expressing tumour antigens, through 

loss of MHC I or if the tumour cells loose their antigen processing function which 

abolishes the cell’s MHC I-antigen presentation. This generates tumour cells with low 

immunogenicity, i.e. the tumour cells become “invisible” to the immune system and 

the cells can grow uncontrolled. The tumour cells can also facilitate their escape from 

the immune system by producing immunosuppressive cytokines, like the growth 

factors VEGF and TGF-� or by recruiting immune suppressing cells like T regulating 

cells (Treg) (Schreiber, Old et al. 2011). In some patients with SCLC the tumour 

secretes interleukins that skews HuD-specific T cells towards a noncytolytic subtype 

(Roberts, Deluca et al. 2009). It has also been shown that chronic inflammation can 

contribute to tumour genesis by generating genotoxic stress, to cancer promotion by 

inducing cellular proliferation and to cancer progression by enhancing angiogenesis 

and tissue invasion (Schreiber, Old et al. 2011). Figure 2 gives an illustration of the 

different steps of immunoediting. 

 



 23

 

Figure 2: Immunoediting. The three stages of cancer immunoediting: elimination, equilibrium, and 

escape. (a) After transformation of normal cells (grey) into cancer cells (red), the cancer cells are 

attacked by different immune cells (round cells). This may lead to elimination of the cancer cells. (b)

If elimination is unsuccessful, the immune system and the cancer can reach an equilibrium in which 

immune cells keep the cancer in check but cannot remove it completely. The genome of the cancer 

cells is unstable, and during the elimination phase there is selection of the cancer cells. This can lead 

to escape (c), in which mutated cancer cells can inhibit the immune system and thereby grow without 

restrictions. CD4+, CD8+, CD4+CD25+ Treg, �� and NKT cells are all types of T cells; M� cells are 

macrophages and NK cells are natural killer cells. [From: (Strausberg 2005)]. 

 

The tumour promoting inflammation and the protective tumour immunity can 

probably coexist. Even though pro-inflammatory cytokines, like IL-1�, IL-23 and 

MyD88, are recruited during tumour induction, other immune components, like IFN-

�, IFN-�/�, IL-12 and T cells, are recruited later in the tumour development. It has 

also been shown that IL-1� and MyD88 can facilitate recognition of tumour cells 

undergoing immunogenic death at later stages of the tumour genesis (Vesely, 

Kershaw et al. 2011). In humans it has been found that cancer patients with tumour 

infiltrating lymphocytes have improved prognosis (Sato, Olson et al. 2005; Galon, 

Costes et al. 2006; van Houdt, Sluijter et al. 2008). It has been suggested that even 

though these T cells have not been able to prevent tumour growth, they may be active 

in keeping the tumour from spreading to the lymph nodes. 
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Several forms of immunotherapy are being explored to try to evoke the body’s own 

mechanisms for controlling cancer. One approach is vaccination that elicits strong 

specific immune responses to cancer antigens like MAGE-3 and NY-ESO-1 

(Schreiber, Old et al. 2011). Immunization with HuD DNA has been shown to retard 

tumour growth in mice (Carpentier, Rosenfeld et al. 1998; Ohwada, Nagaoka et al. 

1999). Another approach involves adoptive transfer of in vitro expanded, naturally 

arising or genetically engineered tumour-specific lymphocytes. Also therapeutic 

administration of monoclonal antibodies like Rituximab (against CD20 in leukaemia 

and lymphoma cells) and Herceptin (against HER2 on breast cancer cells), has shown 

promising results (Schreiber, Old et al. 2011).  

2. ATM and CCDC104 
Dysregulation of genes that control cell-cycle progression and DNA repair is a hall-

mark of tumour genesis. These defects also have an impact on neurons under certain 

conditions. Cell-cycle reactivation in neurons has been associated with degeneration 

of Purkinje cells and neuronal apoptosis (Staropoli 2008). The DNA repair kinase 

ATM plays a role both in neurons and in cancer. ATM is activated as a response to 

double-stranded DNA breaks. Following DNA break, ATM is autophosphorylated, 

and this activates the protein. ATM activation further triggers an ATM dependent 

phosphorylation cascade of substrates downstream of ATM (Lavin and Kozlov 

2007). ATM can also phosphorylate the p53 tumour suppressor, and the ATM-p53 

pathway is involved in maintaining glucose homeostasis (Armata, Golebiowski et al. 

2010). Mutations in ATM lead to a rare human disease called ataxia telangiectasia. 

This disease has its onset in early childhood and is characterized by extreme cellular 

sensitivity to radiation, predisposition to cancer and neurodegeneration, particularly 

of the Purkinje cells, with subsequent ataxia. About 30% of all patients with ataxia 

telangiectasia develop cancer, usually lymphoma, and people that are heterozygous 

for ATM mutations have increased risk of developing breast cancer. Such patients 

also express a mild form of immunodeficiency with decreased levels of IgA, IgE and 

IgG2 (Ball and Xiao 2005).  



 25

Little information exists on the coiled-coil domain-containing 104 (CCDC104) 

protein. It is located on chromosome 2 p16.1, and two different isoforms have been 

verified. Isoform 1 has 342 amino acids and a molecular weight of 39 kDa, whereas 

isoform 2 has 367 amino acids and a molecular weight of 42 kDa (Strausberg, 

Feingold et al. 2002; Clark, Gurney et al. 2003; Hillier, Graves et al. 2005). In 

addition, there are several unverified isoforms (Ensembl geneID: 

ENSG00000163001) that code for proteins with estimated molecular weights of 25, 

26 and 36 kDa. CCDC104 can be phosphorylated on Ser201 by ATM, which is 

activated as a response to double-stranded DNA breaks, or ATR (ATM-Rad3-

related), which is associated with single-stranded DNA breaks (Matsuoka, Ballif et al. 

2007). CCDC104 also has a potential role in the mitogen activated protein kinase 

(MAPK) pathway. A yeast two-hybrid screen found that CCDC104 interacted with 

the Rho GTPase RAC1 (Bandyopadhyay, Chiang et al. 2010). RAC1 works upstream 

of p38MAPK, and p38MAPK can be regulated by ATM and ATR as a response to 

DNA damage (Reinhardt and Yaffe 2009). Mass spectrophotometric studies have 

also revealed that CCDC104 can be phosphorylated on Ser85 and Ser147 in testis 

(Gauci, Helbig et al. 2009; Huttlin, Jedrychowski et al. 2010). These studies further 

showed that testis-specific phosphorylated proteins in general are involved in meiosis 

and cell cycle regulation and DNA damage and repair, while the nonphosphorylated 

testis-specific proteins are enriched in spermatogenesis and microtubule-based 

movements. This implicates a role for CCDC104 in cell cycle regulation. 
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3. Paraneoplastic neurological syndromes 
PNS are rare side effects of cancer in which the tumour expresses proteins normally 

only expressed in the nervous system. The tumour proteins are identical to the 

neuronal proteins, but for unknown reasons these proteins are identified as foreign 

and an immune attack is mounted. The body produces antibodies and activates T cells 

towards these proteins in an attempt to control tumour growth. Somehow, these 

antibodies and T cells cross the blood-brain barrier and cross-react with proteins in 

the nervous system. This cross-reaction leads to loss of neuronal cells and 

development of neurological symptoms (Darnell and Posner 2003). Figure 3 gives a 

schematic illustration of proposed pathogenic mechanisms in PNS. 

The most common paraneoplastic antibodies are anti-Hu, anti-Yo, anti-CRMP5, anti-

amphiphysin, anti-Ma2 and anti-Ri. If a patient harbours any of these antibodies and 

shows neurological symptoms, the patients are diagnosed with PNS regardless of the 

detection of a tumour or not (Graus, Delattre et al. 2004). Tumours commonly 

involved in PNS express neuroendocrine proteins (e.g. SCLC and neuroblastoma), 

affect organs with immunomodulatory properties (thymoma) or contain mature or 

immature neuronal tissues (teratomas). About 3-5 % of all patients with SCLC and 

15-20 % of patients with thymoma develop PNS. Less than 1 % of the patients with 

other types of tumour develop paraneoplastic symptoms (Dalmau and Rosenfeld 

2008). 
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Figure 3: Proposed mechanism for paraneoplastic neurological syndromes. A tumour 

outside the nervous system expresses a neuronal protein that is recognized as nonself by 

the immune system. Dendritic cells (DC) phagocytose apoptotic tumour cells, migrate to the 

lymph nodes and activate antigen-specific CD4+, CD8+ and B cells. The B cells mature into 

antibody-producing plasma cells. The antibodies and the cytotoxic T cells slow the tumour 

growth, but they also react with the nervous system. Some antibodies react with peripheral 

neurones like the neuromuscular junction. Others cross the blood-brain-barrier and attack 

antigen expressing neurons. Image from (Darnell and Posner 2003). 
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Although paraneoplastic antibodies are detected in less than 1 % of all tumour 

patients, the detection of these antibodies is an important diagnostic tool. The clinical 

manifestations of PNS often appear early in the cancer development, while the cancer 

is still small (Graus, Keime-Guibert et al. 2001; Shams'ili, Grefkens et al. 2003), and 

the type of antibody can give indications as to where the cancer originated (Darnell 

and Posner 2003; Pittock, Kryzer et al. 2004). The tumour can then be identified at an 

earlier stage, specific cancer treatment can be started, and the chance for better 

recovery is increased. Anti-Hu and anti-Yo are the most common antibodies found 

(Giometto, Grisold et al. 2010). Anti-Hu is often associated with SCLC, while anti-

Yo is normally associated with ovarian and breast cancer (Manley, Smitt et al. 1995; 

Monstad, Knudsen et al. 2009). As the detection of paraneoplastic antibodies 

precedes the cancer in about 2/3 of the cases, routine follow-up of patients with 

paraneoplastic antibodies where no cancer is detected should be performed for at least 

4 years (Graus, Keime-Guibert et al. 2001; Vedeler, Antoine et al. 2006; Dalmau and 

Rosenfeld 2010; Giometto, Grisold et al. 2010). Table 1 lists an overview of the most 

common paraneoplastic antibodies and their associated cancers. 

Table 1: Overview of paraneoplastic antibodies and associated cancer

Antibody Syndrome Cancer 
Hu PEM, PCD, myelitis, PSN, 

autonomic dysfunction 
SCLC, other 

Yo PCD Ovarian, Breast 
CRMP5 PEM, PCD, chorea, optic and 

peripheral neuropathy 
SCLC, thymoma, other 

Ma2 Different forms of encephalitis Germ-cell tumours of the testis, 
other solid tumours 

Ri PCD, brainstem encephalitis, 
POM 

Breast, ovarian, SCLC 

Amphiphysi
n 

Stiff person syndrome, PEM Breast 

PEM – paraneoplastic encephalomyelitis, PCD – Paraneoplastic cerebellar degeneration, PSN – 

paraneoplastic sensory neuronopathy, POM – paraneoplastic opsoclonus- myoclonus, SCLC- small 

cell lung cancer 



 29

PNS is a heterogeneous group of syndromes, and therefore Graus et al (2004) set up a 

list of criteria to define PNS. This study divided PNS into definite and possible PNS 

based on the detection of paraneoplastic antibodies, neurological symptoms and 

presence or absence of cancer. Syndromes that are often associated with cancer and 

paraneoplastic antibodies are defined as classical PNS. Among these are 

paraneoplastic encephalomyelitis, paraneoplastic limbic encephalitis, paraneoplastic 

cerebellar degeneration, paraneoplastic sensory neuronopathy and paraneoplastic 

opsoclonus-myoclonus. Lambert-Eaton myasthenic syndrome and dermatomyositis 

are also characterized as classical PNS, but they are less often associated with cancer 

(Vedeler, Antoine et al. 2006). Non-classical syndromes are diseases in which the 

patients show diverse neurological symptoms as a response to cancer, but 

paraneoplastic antibodies are not always detected (Graus, Delattre et al. 2004). 

Giometto et al. (2010) reported that 18 % of all patients with definite PNS had no 

paraneoplastic antibodies. 

PNS can affect all parts of the central or peripheral nervous system. Anti-Yo 

mediated paraneoplastic cerebellar degeneration especially affects the Purkinje cells 

in the cerebellum leading to ataxia due to loss of Purkinje cells (Storstein, Krossnes et 

al. 2009). In limbic encephalitis, the medial temporal lobes are affected. The 

symptoms can be psychological (anxiety, depression), but also short-time memory 

loss and dementia. Paraneoplastic limbic encephalitis is associated with anti-Hu, anti-

Ma2, anti-CRMP5, anti-amphiphysin and anti-Ri (Vedeler, Antoine et al. 2006; 

Grisold, Giometto et al. 2011). Paraneoplastic encephalomyelitis affects most of the 

central nervous system, especially the limbic system, cerebellum, basal ganglia, 

brainstem and spinal cord, and is associated with anti-Hu, anti-CRMP5, anti-Ri, anti-

Ma2 and anti-amphiphysin (Graus, Delattre et al. 2004; Rosenfeld and Dalmau 

2010).  

Sensory and autonomic nerves can also be affected. Paraneoplastic sensory neurono-

pathy can affect limb, trunk and cranial nerves, and the patients complain of pain, 

numbness and sensory deficits. This is most often associated with anti-Hu or anti-
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CRMP5. Paraneoplastic opsoclonus-myoclonus affects eye movement, often 

followed by myoclonus and truncal ataxia and is most often associated with anti-Ri, 

anti-Hu, anti-amphiphysin or anti-Ma2 (Vedeler, Antoine et al. 2006; Rosenfeld and 

Dalmau 2010).  

Common for most patients with PNS of the central nervous system is the rapid 

development of symptoms and signs of inflammation in the CSF, such as pleocytosis, 

increased protein concentration, high IgG index and CSF-specific oligoclonal bands. 

Some of these bands represent Hu or Yo antibodies (Storstein, Monstad et al. 2004). 

Infiltrates of mononuclear cells, neurophagic nodules, neuronal degeneration, 

microglia proliferation and gliosis are present, such as in paraneoplastic cerebellar 

degeneration (Storstein, Krossnes et al. 2009). Patients with antibodies against 

intracellular antigens often have CD4+ and CD8+ T cell infiltrates in the brain 

(Rosenfeld and Dalmau 2010). Several studies indicate that PNS is T cell mediated. 

Activated CD4+ T cells have been found in the cerebrospinal fluid of patients with 

paraneoplastic cerebellar degeneration (Albert, Austin et al. 2000), while cytotoxic T 

cells that recognize CDR2 have been found in the blood of anti-Yo positive patients 

with paraneoplastic cerebellar degeneration (Albert, Darnell et al. 1998; Tanaka, 

Tanaka et al. 2001; Santomasso, Roberts et al. 2007). However, the functions of the 

cytotoxic T cells in PNS remain uncertain. Ma1-activated CD4+ cells have been 

found to induce encephalomyelitis in mice (Pellkofer, Schubart et al. 2004). Tani et 

al. (2008) found that SCLC patients with LEMS and Hu or Yo antibodies had lower 

levels of TregFoxp3+ cells than SCLC patients without PNS. They concluded that low 

levels of Treg cells may be caused by an immune regulatory dysfunction in PNS 

(Tani, Tanaka et al. 2008). It has also been demonstrated that epithelial ovarian 

cancer patients with a high CD8+/ Treg ratio have improved prognosis (Sato, Olson et 

al. 2005).  

Many tumours associated with PNS express one or more of the onconeural antigens, 

and some patients even harbour paraneoplastic antibodies without developing 

neurological symptoms (Storstein, Monstad et al. 2011). Why some patients develop 
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PNS, while others do not, remains uncertain, but the HLA haplotype has been 

suggested to be important. The frequency of the HLA-DQ2+ haplotype is higher in 

PNS patients with anti-Hu (de Graaf, de Beukelaar et al. 2010), while the frequency 

of HLA-A2.1, HLA-A24 or HLA-B27 haplotypes is higher in patients with anti-Yo 

mediated PCD (Albert, Darnell et al. 1998; Sutton, Steele et al. 2004; Santomasso, 

Roberts et al. 2007; Carpenter, Vance et al. 2008). 

Some studies suggest that tumour expression of onconeural antigens invoke the 

body’s tumour immunity response. Patient with paraneoplastic antibodies often have 

smaller tumours, and in some cases the tumour disappears (Darnell and DeAngelis 

1993; Mason, Graus et al. 1997). However, the loss of neurones is permanent, and in 

many cases the neuronal damage has been so devastating that the patients have 

severely reduced life quality or sometimes die as a consequence of the paraneoplastic 

disease itself.  

It is difficult to treat the neurological manifestations in PNS since the neuronal 

damage usually is irreversible. In a study of anti-Hu positive encephalomyelitis 

patients only 7 % showed neurological improvement while 47 % remained stable 

after tumour remission (Sillevis Smitt, Grefkens et al. 2002). The best way of 

combating PNS is tumour removal. However, even if the tumour is successfully 

removed the antibodies may persist, but usually in low titres. Immunesuppressive 

treatment is usually beneficial in patients with PNS that affect the peripheral nerves 

(e.g. Lambert Eaton myasthenic syndrome, myasthenia gravis and stiff person 

syndrome) and in patients with antibodies directed towards ion channels and surface 

antigens. PNS that affect the central nervous system is more difficult to treat. 

Corticosteroids, intravenous IgG and plasma exchange are often used as 

immunotheraphy in PNS (Vedeler, Antoine et al. 2006; Rosenfeld and Dalmau 2010; 

Grisold, Giometto et al. 2011). 
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3.1 Paraneoplastic cerebellar degeneration 

Paraneoplastic cerebellar degeneration usually affects the entire cerebellum. The 

symptoms appear subacutely within weeks with dizziness, nausea and vomiting 

followed by gait unsteadiness. The symptoms rapidly develop into ataxia, diplopia, 

dysarthia and dysphagia. Further on in the disease course, cerebellar atrophy can be 

detected by magnetic resonance imaging. The symptoms usually occur before 

detection of the tumour. Yo, Tr, VGCC and Zic antibodies are usually associated 

with paraneoplastic cerebellar degeneration, but patients with Hu, CRMP5, 

amphiphysin, Purkinje cell cytoplasmic antibody type 2 and ANNA-3 antibodies 

have also been described (Mason, Graus et al. 1997; Dalmau and Rosenfeld 2008; 

Rosenfeld and Dalmau 2010). Some patients with Hodgkin’s disease and cerebellar 

ataxia harbour antibodies towards mGluR1 (Sillevis Smitt, Kinoshita et al. 2000). In 

many cases the paraneoplastic diagnosis precedes the tumour diagnosis (Mason, 

Graus et al. 1997; Shams'ili, Grefkens et al. 2003). 

One of the most prominent markers of paraneoplastic cerebellar degeneration is loss 

of Purkinje cells. Often the granule cells are lost as well. CD8+ cells are found in the 

cerebellum. This may be associated with inflammatory infiltrates in the cerebellar 

cortex, deep cerebellar nuclei and inferior olivary nuclei, and diffuse microglial 

activation has been observed. In some cases there are changes in the corticospinal and 

spinocerebellar tracts and dorsal columns as well (Storstein and Vedeler 2007; 

Dalmau and Rosenfeld 2008; Storstein, Krossnes et al. 2009). 

The median survival for patients with paraneoplastic cerebellar degeneration is 13-22 

months. Longer survival time has been observed in patients with breast cancer than in 

patients with tumours in the female genital organs (100 months vs. 22 months) 

(Rojas, Graus et al. 2000; Shams'ili, Grefkens et al. 2003; Storstein and Vedeler 

2007). While patients with anti-Hu associated paraneoplastic cerebellar degeneration 

have as little as 7 months median survival, patients with Ri and Tr antibodies usually 

have longer survival (Shams'ili, Grefkens et al. 2003). This probably reflects the 
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underlying cancer, as anti-Hu is usually associated with SCLC. Patients with 

paraneoplastic cerebellar degeneration and ovarian cancer often have smaller tumours 

than patients without PCD, but the cancers are still at an advanced stage at the time of 

diagnosis. A few patients demonstrate improvement of symptoms if treated with 

intravenous IgG after tumour removal if the treatment is started early (Shams'ili, 

Grefkens et al. 2003; Schessl, Schuberth et al. 2010). 

3.2 Paraneoplastic antibodies and antigens 

Several neuronal antibodies are associated or may be associated with cancer 

(Raspotnig, Vedeler et al. 2011). The well-characterized paraneoplastic antibodies 

that are associated with cancer in most cases are anti-Hu, anti-Yo, anti-CRMP5, anti-

Ri, anti-amphiphysin and anti-Ma1/2 as well as anti-Tr and anti-recoverin (Musunuru 

and Darnell 2001; Sutton 2002; Graus, Delattre et al. 2004).  

There are also several other neuronal antibodies that are associated with neurological 

diseases, but less often with tumour. An example is AChR antibodies that are 

associated with myasthenia gravis. Thymoma and AChR antibodies are found in 

approximately 15% of the cases. Titin antibodies are also associated with thymoma in 

these patients (Vincent, Willcox et al. 1998). VGCC antibodies are associated with 

Lambert Eaton myasthenic syndrome, and SCLC is found in about 60% of the cases 

(Takamori 2008). Antibodies against the VGKC complex, such as anti-LGI1 and 

anti-caspr2 are associated with limbic encephalitis and Morvan syndrome 

respectively, but cancer is rarely the underlying cause in these patients (Irani, Bien et 

al. 2011). Furthermore, NMDAR antibodies are associated with brainstem 

encephalitis, and in women older than 18 years teratomas may be found in 50% of the 

cases, whereas tumours are rarely found in children with NMDAR encephalitis. 

AMPA receptor, GABA receptor and Glycine receptor antibodies may also be found 

in patients with encephalitis and in some of these an underlying cancer can be 

detected (Rosenfeld and Dalmau 2010). 
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In the following a brief overview of the well-characterized paraneoplastic antibodies 

and their respective onconeural antigens will be outlined. 

The proteins involved in PNS are almost exclusively expressed in immuneprivileged 

tissues like the brain and the testis. Onconeural antigens are found in the tumour of 

all patients with antibody-mediated PNS, and many cancer patients without 

antibodies also express the same proteins. The genes that code for the onconeural 

proteins are not mutated in the tumour, so PNS can not be explained by infrequent 

expression or by mutations in the genes encoding for these antigens (Darnell and 

Posner 2003; Totland, Aarskog et al. 2011). Most paraneoplastic antibodies are 

directed towards intracellular proteins and common for many of these antibodies is 

that they are directed towards the functional domains of the onconeural proteins 

(Sakai, Ogasawara et al. 1993; Sodeyama, Ishida et al. 1999; Geis, Weishaupt et al. 

2010).  

Hu and Ri proteins are neuron-specific RNA binding proteins. RNA binding proteins 

are important regulators of gene expression and act at all levels: transcription, 

processing, transport, localization, stability and translation of RNA. In humans, there 

are four members of the Hu family, HuR, which is non-neuronal, and HuB, HuC and 

HuD, which are expressed in the brain (Musunuru and Darnell 2001). Hu antibodies 

recognize all members of the Hu family and specifically bind to the first two RNA-

binding motifs of the Hu proteins (Manley, Smitt et al. 1995; Sodeyama, Ishida et al. 

1999). This could suggest that Hu antibodies may affect the RNA-binding properties 

of Hu. Hu proteins have been localized to the nuclei, with weaker staining of the 

cytoplasm in central and peripheral nervous tissue (Dalmau, Furneaux et al. 1992). 

Others have reported that in the dorsal root ganglia, Hu proteins are mainly 

cytoplasmic and associated with the Golgi apparatus and mitochondria. Nuclear 

localization has been found in some, but not all, adult sensory neurons, especially in 

the nuclear pores, suggesting a role in nucleocytoplasmic shuttling (Fornaro, 

Raimondo et al. 2007).  
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HuD is the antigen that is mainly involved in paraneoplastic diseases, and it is 

expressed by all SCLC (Dalmau, Furneaux et al. 1992). Hu antibodies have been 

found in up to 25 % of all SCLC patients, and about 15 % of the patients develop Hu 

antibodies without showing neurological symptoms (Graus, Dalmau et al. 1997; 

Mason, Graus et al. 1997; Musunuru and Darnell 2001; Monstad, Drivsholm et al. 

2004). These patients have limited-stage disease and some have improved clinical 

diagnosis. Hu antibodies are associated with various types of PNS, such as 

encephalomyelitis, and the patients may have symptoms where the peripheral nerves, 

cerebellum, brainstem and the limbic system are affected (Graus, Keime-Guibert et 

al. 2001; Musunuru and Darnell 2001).  

The development of a SCLC mouse model has given new understanding of HuD 

expression in SCLC (Meuwissen, Linn et al. 2003). All mouse SCLC tumours also 

express HuD. Interestingly, 14 % of the mice developed antibodies towards HuD, and 

Hu antibodies could arise up to 100 days before the cancer was clinically detectable 

(Kazarian, Calbo et al. 2009).  

Ri antibodies are associated with paraneoplastic opsoclonus-myoclonus and most 

often seen in patients with SCLC or gynaecological cancer. Anti-Ri recognizes two 

proteins termed Nova-1 (50-55 kDa) and Nova-2 (70-80 kDa). Nova proteins are 

mainly localized to the nucleus, but can also be found in somato-dendritic 

compartments. Nova-1 is expressed in hindbrain and spinal cord, while Nova-2 can 

be found where Nova-1 is not expressed. The Nova proteins contain 3 RNA-binding 

motifs known as the KH-domains (Musunuru and Darnell 2001). Ri antibodies 

recognize the KH3 domain of Nova-1 and inhibit the RNA-binding properties in vitro 

(Buckanovich, Yang et al. 1996). 

CRMP5 is a 62 kDa protein that is mainly localized to the dendrites of oligodendro-

cytes and neurones in the cerebral cortex, hippocampus and cerebellum (Fukada, 

Watakabe et al. 2000; Bretin, Reibel et al. 2005). CRMP5 has been found to regulate 

neurite outgrowth in developing neurones and is also important for proper 

development of the Purkinje cells during dendritic branching of Purkinje cells (Brot, 
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Rogemond et al. 2010; Yamashita, Mosinger et al. 2011). CRMP5 antibodies are 

associated with cerebellar ataxia, chorea, myasthenia gravis, Lambert Eaton 

myasthenic syndrome, and peripheral neuropathy. SCLC and thymoma are the two 

types of cancer that are most often associated with CRMP5 antibodies (Monstad, 

Drivsholm et al. 2008; Honnorat, Cartalat-Carel et al. 2009).  

Ma antibodies recognize two homologous proteins, Ma1 and Ma2. Ma1 is a 37 kDa 

protein that is expressed in brain and testis, and the protein is mainly localized to the 

nuclei and nucleoli and to a lesser degree to the cytoplasm (Dalmau, Gultekin et al. 

1999). Anti-Ma1 mainly attacks the brainstem and cerebellum and is associated with 

several different forms of cancer (Dalmau, Gultekin et al. 1999). Ma2 is a 40 kDa 

protein that shows nuclear and cytoplasmic distribution in neurons in the brain, spinal 

cord, dorsal root ganglia, intestinal autonomic neurons and adrenal medullary 

ganglion. Some neurons in the cerebrum also show cytoplasmic distribution (Voltz, 

Gultekin et al. 1999; Sahashi, Sakai et al. 2003). Ma2 antibodies are mainly 

associated with testicular cancer and brain stem encephalitis or limbic encephalitis 

(Voltz, Gultekin et al. 1999). Anti-Ma2 has also been reported in breast cancer 

(Sahashi, Sakai et al. 2003). Ma2 is expresses by most small intestine neuroendocrine 

tumours, and about 50 % of these harbour Ma2 antibodies (Cui, Hurtig et al. 2011). 

The functions of Ma proteins are largely unknown, but it has recently been shown 

that Ma1 promotes neuronal cell death through it’s BH3-like sequence (Chen and 

D'Mello 2010). Adoptive transfer of a Ma1 reactive Th1 effector CD4+ T cells 

induced encephalomyelitis in rats, but neuronal degeneration was not induced 

(Pellkofer, Schubart et al. 2004).  

Amphiphysin is localized to the cytoplasmic side of the synaptic terminals, and 

shows a widespread distribution throughout the central nervous system (Lichte, Veh 

et al. 1992). Amphiphysin is also expressed in normal testis and in breast tumours, 

but low levels of amphiphysin have also been observed in normal tissue such as 

breast tissue (Floyd, Butler et al. 1998). Amphiphysin antibodies are associated with 

stiff person syndrome, and most commonly found in association with breast cancer 
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(Floyd, Butler et al. 1998). The antibodies are directed towards the SH3 domain of 

amphiphysin leading to synaptic inhibition (Geis, Weishaupt et al. 2010). There have 

been many unsuccessful attempts to make an animal model for PNS, but anti-

amphiphysin is an exception. In a recent report, purified plasma IgG from patients 

with amphiphysin antibodies and stiff person syndrome were injected into the 

subarachnoid space of rats. The rats subsequently developed symptoms similar to 

those seen for stiff person syndrome (Geis, Weishaupt et al. 2010). 

Paraneoplastic antibodies are mainly of the IgG1 subclass, a subclass that can fix 

complement. Lower levels of IgG2, IgG3 and IgG4 have also been reported in some 

patients with PNS (Amyes, Curnow et al. 2001; Greenlee, Boyden et al. 2001). Many 

patients with PNS are not positive for the well-characterized paraneoplastic 

antibodies (Giometto, Grisold et al. 2010). This may be because they harbour so far 

unidentified antibodies. It is therefore important to search for new antibodies that 

may be clinically significant for PNS.  

It has been speculated whether the presence of paraneoplastic antibodies is associated 

with improved survival. Some studies indicate that patients with SCLC and anti-Hu 

have smaller tumours and that the tumours are restricted to the chest (Mason, Graus 

et al. 1997). Other studies indicate that these patients show better response to therapy 

and improved survival (Winter, Sekido et al. 1993; Graus, Dalmau et al. 1997). 

Patients with CRMP5 antibodies have longer survival than patients with Hu 

antibodies (Honnorat, Cartalat-Carel et al. 2009). A study of 200 SCLC patients 

showed no correlation between the presence of Hu or VGCC antibodies and 

improved survival (Monstad, Drivsholm et al. 2004). Furthermore, there has not been 

any correlation between the presence of Ri, CRMP5 or any paraneoplastic antibodies 

and survival for SCLC patients (Knudsen, Monstad et al. 2006; Monstad, Drivsholm 

et al. 2008; Monstad, Knudsen et al. 2009). In a study of patients with small intestine 

neuroendocrine tumours, those that harboured Ma2 antibodies had a lower survival 

rate and were more prone to tumour recurrence than those without Ma2 antibodies 

(Cui, Hurtig et al. 2011).  
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3.2.1 Yo antibodies 

Sera from patients with paraneoplastic cerebellar degeneration have been shown to 

react with proteins of 34 (CDR1) and 62 kDa (CDR2) in Purkinje cell extract 

(Cunningham, Graus et al. 1986; Furneaux, Dropcho et al. 1989), and antibodies 

towards these antigens are called Yo antibodies. They are mainly associated with 

ovarian or breast cancer, but they have also been found in patients with 

adenocarcinomas and lymphomas. Yo antibody frequency has been associated with 

the FIGO stage of the tumour. With higher FIGO stage, both the frequency of Yo 

positive patients and the amount of antibody increased (Monstad, Storstein et al. 

2006). 

Most patients with Yo antibodies are women, but some cases of men with Yo 

antibodies have also been reported (Debes, Lagarde et al. 2007; Matschke, 

Kromminga et al. 2007). Many of the patients have intrathecal production of Yo 

antibodies (Stich, Graus et al. 2003; Storstein, Monstad et al. 2004). Monstad et al. 

(2006) found by using a sensitive immunoprecipitation technique that 2.3 % of the 

patients with ovarian cancer and 1.6 % of the patients with breast cancer in their 

cohort harboured Yo antibodies. Yo antibodies have also been found several years 

after removal of the initial tumour without recurrence of a new cancer (Shams'ili, 

Grefkens et al. 2003) .  

Yo antibodies most commonly appear alone (Pittock, Kryzer et al. 2004; Storstein, 

Monstad et al. 2011). Antibodies against nuclear antigens have been found in 37 % 

and cytoplasmic antibodies in 42 % of Yo positive sera, but no specific correlation 

was detected (Aguirre-Cruz, Charuel et al. 2005). However, more patients with PNS 

harboured nuclear antigen antibodies compared to the general population, which 

suggests that PNS patients have a higher risk of developing autoimmune diseases 

(Aguirre-Cruz, Charuel et al. 2005). Amyes et al. (2001) reported that Yo antibodies 

were restricted to the IgG1 subclass, while others have observed lower levels of IgG2 

and IgG3 in co-existence with IgG1 (Greenlee, Boyden et al. 2001). Interestingly, 
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one study has reported that 2 of 6 Yo-positive patients co-expressed IgG and IgM Yo 

isotypes, while one patient had IgG and IgA Yo isotypes (Smith, Finley et al. 1988). 

This suggests that the immune reaction in patients with Yo antibodies follows a 

normal antibody maturation pattern, but that the clinical symptoms associated with 

the antibodies are first detected later in the disease progress.  

In immunohistochemical staining if brain sections Yo antibodies mainly bind to the 

cytoplasm of Purkinje cells but staining of cytoplasmic elements in hippocampal 

neurons, spinal cord neurons, the dorsal root ganglion, the nerve root, and Schwann 

cells in peripheral nerves have been reported (McKeon, Tracy et al. 2011). 

Ultrastructural studies have shown that Yo antibodies bind to the ribosomes of rough 

endoplasmatic reticulum and to free ribosomes in Purkinje cells (Hida, Tsukamoto et 

al. 1994). Anti-Yo recognizes the leucine-zipper motif of CDR2, and it has been 

suggested that Yo antibodies binding to this motif may affect gene transcription by 

inhibiting binding to a suitable partner protein (Sakai, Ogasawara et al. 1993). 

Recently, Greenlee et al. (2010) showed that Purkinje cells incorporate IgG, and that 

Yo antibodies accumulate in the cells and trigger Purkinje cell death in a 

nonapoptotic manner. 

The exact function of Yo antibodies is not understood. Several studies indicate that 

Yo antibodies alone are not sufficient to cause disease. Establishing animal models 

for anti-Yo mediated paraneoplastic cerebellar degeneration have been unsuccessful. 

Trials where Yo antibodies were injected into the brain (in occipital cerebellar 

parenchyma or frontal horn of the lateral ventricle) showed that anti-Yo was taken up 

by the Purkinje cells, but Yo antibodies were unable to induce neurological 

symptoms (Graus, Illa et al. 1991; Tanaka, Tanaka et al. 1994). Immunization with 

recombinant CDR2 protein resulted in the production of high titer of Yo antibodies 

without inducing neurological symptoms in different MHC-strains of mice (Tanaka, 

Tanaka et al. 1994; Tanaka, Tanaka et al. 1995). Further, neither injection of CDR2 

reactive lymphocytes in the brain, nor intravenous injection caused neurological 

damage (Tanaka, Tanaka et al. 1995).  
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Activated T cells probably play a part in the pathogenesis. Activated CD4+ T cells 

have been found in the cerebrospinal fluid of patients with paraneoplastic cerebellar 

degeneration, and treatment with immunosuppressants reduced the number of T cells 

and stabilized the neurological symptoms (Albert, Austin et al. 2000). Storstein et al. 

(2009) reported that patients with Yo and paraneoplastic cerebellar degeneration had 

loss of Purkinje cells and microglia activation. CD8+ T cells were found in cerebellar 

parenchyma, brainstem and medulla oblongata, but B cells or IgG were not found in 

the cerebellum. Some patients with paraneoplastic cerebellar degeneration and HLA-

A2.1 haplotype harbour cytotoxic T cells that can lyse CDR2 expressing HeLa cells. 

In this study, purified T cells from these patients were incubated with dendritic cells 

pulsed with CDR2 epitopes. The most promising epitope was located at the amino 

acids 289-297 (Albert, Darnell et al. 1998). Other studies have not been able to 

replicate these results.  

Sutton et al. (2004) found that patients with paraneoplastic cerebellar degeneration 

and anti-Yo express the HLA-A2.1 haplotype, but they found no cytotoxic T cells 

reactive with CDR2 epitopes. Furthermore, they found that only 2 of 9 patients had 

tumour infiltrating T cells. In another study, no CDR2-specific CD8+ T cells were 

found in paraneoplastic cerebellar degeneration (Carpenter, Vance et al. 2008). 

However, results from one study indicate that the most promising HLA-A2.1 T cell 

epitope is located at aa 290-298, not 289-297. The cytotoxic T cells that recognized 

aa 290-298 could also bind aa 289-297, but with lower binding affinity (Santomasso, 

Roberts et al. 2007). This may account for the different results. T cell clones that 

recognise the 290-298 epitope were also able to lyse CDR2-expressing tumour cell 

lines (Santomasso, Roberts et al. 2007). One study found that 2 of 3 patients with 

paraneoplastic cerebellar degeneration and the HLA-A24 or HLA-B27 haplotype had 

cytotoxic T cell activity towards a peptide (AYRARALEL) located at aa 242 

(Tanaka, Tanaka et al. 2001). 
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4. The CDR proteins 

Expression cloning studies with sera from patients with Yo antibodies have lead to 

the identification of three cerebellar degeneration-related (CDR) antigens, CDR1, 

CDR2 and CDR2L. 

4.1 CDR1 

CDR1, also known as CDR34, was first identified by Dropcho et al. (1987). The gene 

is located at Xq27.1-q27.2 near the fragile X syndrome locus, FRAXA, and the entire 

protein is encoded for by a single exon (Chen, Rettig et al. 1990; Siniscalco, Oberle 

et al. 1991). It is highly conserved among mouse and humans. CDR1 is 262 amino 

acids long and the molecular weight is approximately 34 kDa. It is a unique protein 

and contains 34 inexact hexamer amino acid repeats. These repeats compose more 

than  90 % of the protein (Dropcho, Chen et al. 1987). Tandem repeats are common 

in many parasite proteins and are quite immunogenic (Rubio, Bolchi et al. 2009; 

Dangoudoubiyam, Vemulapalli et al. 2010), maybe due to increased antibody avidity 

caused by bivalent interactions with the repetitive segments of the proteins (Valiente-

Gabioud, Veaute et al. 2010).  

CDR1 mRNA is strongly expressed in human cerebellar cortex and cerebral 

hemisphere cortex, while in mouse the expression is stronger in the cerebellum than 

in the cerebrum. Small amounts of CDR1 mRNA have been found in human lung, 

kidney and heart muscles, but not in mice. High levels of CDR1 mRNA has also been 

found in several neuroblastoma cell lines, in renal cell carcinoma lines and in 

astrocytoma, melanoma and lung carcinoma lines (Dropcho, Chen et al. 1987). The 

CDR1 protein is strongly expressed in Purkinje cells, and Western blot analysis has 

shown that CDR1 is expressed in tumour tissue from patients with paraneoplastic 

cerebellar degeneration, but not in tumour tissue from patients without paraneoplastic 

cerebellar degeneration, or in normal tissue (Furneaux, Dropcho et al. 1989). CDR1 
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mRNA upregulation has also been associated with other neurodegenerative disorders 

like prion diseases (Satoh and Yamamura 2004). 

4.2 CDR2  

CDR2, also known as CDR62, was first cloned by Sakai et al. (1990). It is a 454 aa 

long protein with an estimated molecular weight of 52 kDa, but various studies have 

reported it to be 52-62 kDa (Furneaux, Rosenblum et al. 1990; Sakai, Mitchell et al. 

1990; Corradi, Yang et al. 1997; Darnell, Albert et al. 2000). The structure and 

function of the protein is largely unknown, but the protein contains a leucine-zipper 

motif at aa 172-192, suggesting that it might be involved in transcriptional regulation 

(Fathallah-Shaykh, Wolf et al. 1991). Proteins that contain a leucine-zipper motif 

often interact with other leucine-zipper proteins and form homodimers or 

heterodimers through the leucine-zipper motifs. These proteins often participate in 

transcriptional regulation. CDR2 lacks the typical leucine-zipper DNA binding 

motifs, but contains two putative DNA binding domains and has been shown to bind 

DNA (Fathallah-Shaykh, Wolf et al. 1991). 

CDR2 mRNA is detected in many tissues, especially testis and spleen, but until now 

protein expression has only been reported in testis, brain and tumour tissue from 

patients with paraneoplastic cerebellar degeneration and ovarian or breast cancers, as 

well as in renal cancer (Furneaux, Rosenblum et al. 1990; Corradi, Yang et al. 1997; 

Balamurugan, Luu et al. 2009). Further studies have revealed mRNA and protein 

expression in the Purkinje cells, deep cerebellar nuclei, the brain stem and some 

cortical neurons, but not in hippocampus, basal ganglia and most of the neocortex 

(Corradi, Yang et al. 1997). In the testis, the CDR2 protein was located to the 

outermost cell layer in the seminiferous tubules, probably in spermatogonia (the least 

differentiated type in the germ-cell layer) (Corradi, Yang et al. 1997). The differences 

between CDR2 mRNA expression and protein expression suggest posttranslational 

regulation of the CDR2 protein expression. Further, Corradi et al. (1997) found that 

even though Yo antibodies recognize several CDR proteins, only the CDR2 gene is 

transcribed in tumours from patients with paraneoplastic cerebellar degeneration. 



 43

This implicates CDR2 as the target in anti-Yo mediated paraneoplastic cerebellar 

degeneration. However, they only examined three patients. Furneaux et al. (1989) 

identified one patient with ovarian tumour which expressed CDR1 in addition to 

CDR2 (Furneaux, Dropcho et al. 1989), so one can not rule out that other tumour 

samples can express other CDR proteins.  

Balamurugan et al. (2009) found that 54 % of the papillary renal cell carcinomas 

expressed CDR2. This is similar to the findings for breast and ovarian cancers where 

25 % of the breast cancers and more than 60 % of the ovarian cancers expressed 

CDR2 protein, while normal ovarian tissue did not (Darnell, Albert et al. 2000). Even 

more interesting is it that they observed low levels of CDR2 in normal kidney 

(Balamurugan, Luu et al. 2009). CDR2 protein expression was similar in several 

breast carcinoma cell lines and in HeLa, colorectal, hepatoma and osteosarcoma cell 

lines, as it was in ovarian adenocarcinoma tumour cell lines. This indicates that 

CDR2 is more widely expressed than previously reported. 

The function of CDR2 is largely unknown, but there is some evidence of that CDR2 

can homodimerize through its leucine-zipper motif (Takanaga, Mukai et al. 1998; 

Okano, Park et al. 1999), and that it has transcriptional activity (Takanaga, Mukai et 

al. 1998; O'Donovan, Diedler et al. 2010). CDR2 has been associated with regulation 

of genes involved in chromosomal, chromatin and nucleosome regulation as well as 

in cell cycle and mitotic biology (O'Donovan, Diedler et al. 2010). It is speculated 

whether anti-Yo can bind to the leucine-zipper motif of CDR2, inhibit 

homodimerization and repress gene transcription. CDR2 has been found to interact 

with the serine/threonine kinase PKN that phosphorylates CDR2 (Takanaga, Mukai 

et al. 1998). In addition CDR2 has been found to interact with several proteins 

involved in transcriptional regulation, like two members of the MORF4 family (MRG 

X and MRG15) (Sakai, Shirakawa et al. 2002; Sakai, Kitagawa et al. 2004), NF-� B 

(Sakai, Kitagawa et al. 2001) and PHD1 (Balamurugan, Luu et al. 2009). The 

transcriptional activities of these proteins are down-regulated in the presence of 

CDR2 (Sakai, Kitagawa et al. 2001; Sakai, Shirakawa et al. 2002; Sakai, Kitagawa et 
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al. 2004; Balamurugan, Luu et al. 2009), while presence of Yo antibodies abolishes 

this down-regulation (Sakai, Kitagawa et al. 2004).  

CDR2 has been found to interact with c-Myc in Purkinje cells (Okano, Park et al. 

1999). C-Myc is a potent transcription factor regulating many genes, and c-Myc is 

involved in several different processes like cell transformation, cell proliferation and 

apoptosis (Zornig and Evan 1996). CDR2 has recently been found to be upregulated 

during mitosis (O'Donovan, Diedler et al. 2010). In the interphase CDR2 is localized 

to the cytoplasm, while c-Myc resides in the nucleus. Confocal studies have shown 

that during mitosis, the nuclear envelope dissolves and c-Myc and CDR2 colocalize 

proximal to the spindle poles (O'Donovan, Diedler et al. 2010). CDR2 is important 

for proper spindle formation as CDR2 knockdown resulted in multipolar spindle 

formation. After mitosis CDR2 is rapidly degraded by APC/C-mediated polyubiqui-

tination and proteosomal degradation. (O'Donovan, Diedler et al. 2010). CDR2 has 

three cell cycle regulated phosphorylation sites, Ser309-311, close to one of its 

destruction boxes. These sites are phosphorylated in HeLa cells in the G1 phase, but 

not in the mitotic phase (Dephoure, Zhou et al. 2008). It might be that 

phosphorylation of these serines is a signal for degradation, while the 

unphosphorylated forms can interact with c-Myc. 

CDR2’s interaction with c-Myc affects the transcriptional properties of c-Myc. In 

some cases CDR2 enhances c-Myc transcriptional activity, while in other cases c-

Myc dependent transcription is down-regulated (Okano, Park et al. 1999; O'Donovan, 

Diedler et al. 2010). The CDR2 c-Myc interaction is regulated through the leucine-

zipper domains of both CDR2 and c-Myc, and c-Myc interacts with the lower band of 

the CDR2 double band. Anti-Yo sera binds specifically to the leucine-zipper domain, 

and this binding inhibits the CDR2 c-Myc interaction (Okano, Park et al. 1999).  

An animal model of SV40 T antigen (Tag) transgenic mice showed ataxia and loss of 

Purkinje cells (Feddersen, Ehlenfeldt et al. 1992). Tag, like c-Myc, is a protooncogen 

with transcriptional function. In Purkinje cells Tag can reactivate the cell cycle and 

induce DNA synthesis which results in DNA fragmentation and subsequent cell death 
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in postmitotic Purkinje cells (Feddersen, Clark et al. 1995). There are many examples 

of that reactivation of the cell cycle in neurons is thought to be associated with cell 

death (Staropoli 2008). It may therefore be that CDR2 restrains c-Myc’s 

transcriptional activity and that anti-Yo mediated disruption of this interaction 

activates c-Myc, with subsequent reactivation of the cell cycle, and thereby leads to 

Purkinje cell death.  

Common for many of the association partners found for CDR2 is that they are 

involved in gene transcription, and CDR2 can be involved in down-regulating their 

transcriptional function. There are also several examples of that induction of Yo 

antibodies in the cells can interfere with CDR2’s ability to down-regulate 

transcription factors. This is probably due to binding of anti-Yo to the leucine-zipper 

motif of CDR2. The transcription factors will then remain active and the result is 

unwanted and unregulated gene transcription. 

4.3 CDR2L 

The CDR2L gene is located at q25.1 at chromosome 17, and the nucleotide sequence 

has been described (Fathallah-Shaykh, Finizio et al. 1996; Strausberg, Feingold et al. 

2002; Gerhard, Wagner et al. 2004; Ota, Suzuki et al. 2004). The nucleotide sequence 

codes for a 465 aa long protein with an estimated molecular weight of 53 kDa. The 

protein can be phosphorylated on several different serines (Cantin, Yi et al. 2008). 

CDR2 and CDR2L have approximately 50 % sequence similarity, and it is therefore 

reasonable to assume that Yo antibodies also recognize CDR2L. Both CDR2 and 

CDR2L mRNA expression has been detected in the cerebellum, but only CDR2 

mRNA expression has been found in ovarian tumours from patients with paraneo-

plastic cerebellar degeneration. This makes CDR2 more likely to be the main target 

for Yo antibodies (Corradi, Yang et al. 1997). Results from the Human Protein Atlas 

imply that CDR2L is widely distributed in medium to low levels in many organs, but 

CDR2L is strongly expressed in the Purkinje cells and the digestive tract system and 

medium expressed in the ovaries, breast tissue and testis. Subcellular localization 
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studies suggest that the protein is mainly located to the cytoplasm 

(www.proteinatlas.org). 

5. Immunological methods 

5.1.1 In vitro transcription/translation and immunoprecipitation 

assay 

Early detection of cancer can usually reduce cancer-related mortality. The detection 

of cancer-associated biomarkers is an important tool in this search. An effective 

screening method must have high specificity and sensitivity. In order to be 

universally applied it should also be cost effective and have no side effects for the 

patients. Autoantibodies against tumour-associated antigens are more stable and 

specific than other serum-derived proteins. They are therefore often used as 

biomarkers for cancer (Anderson and LaBaer 2005).  

The most applied methods for detecting onconeural antibodies are western blot, line-

blot and indirect immunofluorescence of sections of the brain. These methods have a 

sensitivity of approximately 30 %, and more than 95 % specificity (Tampoia, Zucano 

et al. 2010). With a sensitivity of only 30 % there is a huge potential for developing 

new, more sensitive techniques.  

Routine screening for autoantibodies often rely on solid-phase assays like immuno-

blotting or ELISA. These methods work best for antibodies with high affinity and 

high titres that are not sensitive to conformational epitopes. For instance, the solid-

phase based assays are not reliable for detection of insulin specific autoantibodies, 

and for this a radioimmunopreciptitation assay (RIA) has been developed (Falorni, 

Ortqvist et al. 1995). We have modified this method so that it can be used to detect 

paraneoplastic antibodies. This is an in vitro transcription/translation and 

immunoprecipitation (ITT) assay (Storstein, Monstad et al. 2004; Knudsen, Monstad 

et al. 2006; Monstad, Storstein et al. 2006; Monstad and Vedeler 2006). In brief, 

recombinant 35S-labeled onconeuroproteins were produced by adding a plasmid 
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containing the cDNA of interest to a rabbit reticulocyte lysate 

transcription/translation system (Promega). The recombinant proteins were produced 

in mammalian cell lysates which make the proteins more like proteins produced in 

mammalian cells, and the proteins probably have their native conformations. This 

allows the antibodies to recognize both linear and conformational epitopes. The 

protein is also in solution which makes every part of the protein accessible to the 

antibodies.  

Radiolabelled proteins and patient sera diluted 1:10 were incubated over night before 

the bound antigen-antibody complexes were immunoprecipitated by adding an equal 

volume of a protein-A Sepharose mixture in 96-wells filtration plates. Each sample 

was tested in triplicate. The mixture was incubated at 4°C for 45 min, washed and 

dried. Scintillation fluid was added and the emitted radioactivity, which is a measure 

of the bound antibody-antigen complexes, was measured in a �-counter as counts per 

minute (cpm). Pooled sera from 100 blood donors were used as negative control, 

while rabbit sera containing antibodies raised against the proteins of interest were 

used as positive controls. An index was calculated from the following formula: 

1000
    

     �
�

�
�

controlnegativecpmcontrolpositivecpm
controlnegativecpmsamplecpmindexAntibody  

A selection of blood donors were tested individually and a cut-off was set to mean 

value of the blood donors antibody index + 5 SD. The method combines high 

specificity and sensitivity, and since it can be performed in 96-well plates it has huge 

capacity for analysing multiple samples in a short time.  

The ITT assay has been successfully used to detect Hu (Monstad, Drivsholm et al. 

2004; Storstein, Monstad et al. 2004), Yo (Monstad, Storstein et al. 2006), Ri 

(Knudsen, Monstad et al. 2006), CRMP5 (Monstad, Drivsholm et al. 2008), 

amphiphysin and Ma2 (Monstad, Knudsen et al. 2009) antibodies and has proven to 

be more sensitive than the established techniques, immunofluorescence and 

immunoblot. By using this assay it was found that 25 % of the SCLC patients 

harboured Hu antibodies compared to 19 % detected by the conventional methods 
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(Monstad, Drivsholm et al. 2004). In ovarian cancer it was detected that 2.3 % of the 

patients harboured Yo antibodies compared to 0.9 % detected by established methods 

(Monstad, Storstein et al. 2006). The ITT assay correlated best with the other 

methods when Ri antibodies were detected. The ITT method detected Ri antibodies in 

4.5 % of the patients with SCLC, 0.8% of the patients with breast cancer and 0.2 % of 

the patients with ovarian cancer. All but one of the positive sera was confirmed by at 

least one of the other immune assays (Knudsen, Monstad et al. 2006; Storstein, 

Monstad et al. 2011). The ITT assay detected CRMP5 antibodies in 5 % of the SCLC 

patients and 12 % of the patients with thymoma, and was proven to be far more 

sensitive than line blot and immunofluorescence (Monstad, Drivsholm et al. 2008). In 

a large retrospective study of paraneoplastic antibodies in cancer patients it was found 

that the ITT technique detected paraneoplastic antibodies in 11.9 % of the sera 

compared to 7 % of the sera by immunofluorescence and 6.3 % by immunoblot. The 

ITT assay detected paraneoplastic antibodies in 45 % more sera than the established 

techniques (Storstein, Monstad et al. 2011). 

The diagnostic value of the ITT technique can be debated. Even though the technique 

detects more positive sera than the other immunological methods only a few of the 

patients showed neurological signs. Most of these antibodies were also found by the 

established techniques. However, CRMP5 is an exception. In a case study of a patient 

with limbic encephalitis and high levels of CRMP5 antibodies, the antibodies could 

only be detected by ITT (Monstad, Nostbakken et al. 2009). Further, in a 

retrospective study of paraneoplastic antibodies in cancer patients the ITT technique 

detected 18 sera with CRMP5 antibodies. Immunofluorescence and immunoblot did 

not pick up 13 of these. Eight of the patients had PNS, six of them classical 

(Storstein, Monstad et al. 2011). This suggests that the current techniques used to 

identify CRMP5 antibodies are not sensitive enough. It may be that CRMP5 

antibodies are directed towards conformational epitopes that will not be picked up by 

solid phase assays. In addition conventional methods did not detect 3 of 5 patients 

with anti-amphiphysin and PNS, 4 of 21 patients with anti-Yo and PNS, 2 of 20 

patients with anti-Hu and PNS and 1 of 5 patients with anti-Ma2 and PNS (Storstein, 
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Monstad et al. 2011). These results suggest that improvement of the current 

techniques is important for better diagnostics in PNS.  
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6. Aims (papers 1 - 3)
Aim 1: The functional relevance of paraneoplastic antibodies is unclear. Since high 

avidity antibodies may be of pathogenic importance, the aim of paper 1 was to study 

the avidity of Yo and Hu antibodies.  

Aim 2: The reason why only some tumour patients produce paraneoplastic antibodies 

is not known. The aim of paper 2 was therefore to study if the production of Yo 

antibodies was related to differences in the CDR2 cDNA sequence, mRNA or protein 

levels in ovarian cancer. 

Aim 3: As the functional role of paraneoplastic antibodies is largely unknown, insight 

gained by identifying associated antibodies may help to clarify the pathogenesis of 

PNS. The aim of paper 3 was therefore to identify antibodies that could be associated 

with anti-Yo.  
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Results and discussion 

6.1 Paper I: Hu and Yo antibodies have heterogeneous 

avidity 

The aim of paper I was to study the avidity of Yo and Hu antibodies. Avidity 

measurements of paraneoplastic antibodies had never been performed before this 

study. Other studies have shown that pathogenic antibodies often have high avidity 

and are associated with disease onset (Comin, Yuki et al. 2006) or that increasing 

avidity can predict the duration of the disease (Hedman, Lappalainen et al. 1989). We 

therefore studied if the avidity of paraneoplastic antibodies could give more 

information about the antibodies role in PNS. Since anti-Hu and anti-Yo are the most 

common paraneoplastic antibodies (Giometto, Grisold et al. 2010), we chose to 

compare the avidity of these antibodies.  

We compared the differences in avidity among patients with Hu or Yo antibodies by 

adding a washing step with various concentrations of urea in two techniques that is 

used to test for paraneoplastic antibodies, namely immunofluorescence of rat brain 

and ITT (Storstein, Monstad et al. 2004; Monstad, Storstein et al. 2006). Urea 

dissociation studies for determining antibody avidity has been performed in both 

ELISA and immunofluorescence studies previously (Gray 1995; Rossi 1998). We 

found great variability in the avidity within each patient group which suggests that 

patients have heterogeneous anti-Hu or anti-Yo avidity. This may reflect differences 

in the patient’s immune response, the severity of the disease or different time points 

of sampling.  

In the urea immunofluorescence approach fixed rat cerebellum sections were 

incubated over night with anti-Hu or anti-Yo containing patient sera diluted 1/500. 

The slides were washed the following day and treated with various concentrations of 

urea. From our studies we found that 8M urea gave highest discrepancy between high 
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and low avidity antibodies. 8M urea has also been the chosen urea concentration in 

other studies for determining avidity by immunofluorescence (Gray 1995). At 8M 

urea the immunofluorescence signal was lost for 11 of the anti-Hu positive sera, 

while the other 10 were unaffected. Binding was abolished for 2 of the Yo-positive 

sera while 12 anti-Yo sera showed no change in binding at 8M urea. The differences 

in avidity was significantly greater for Hu than for Yo antibodies (p=0.034).  

The ITT immunoprecipitation method was used to obtain a more quantitative value of 

the antibody avidity. The ITT-method was performed as previously described, but we 

added an extra washing step with various concentrations of urea. Again, 1M and 4M 

urea had little effect on dissociation of the antigen-antibody complex, while 8M urea 

gave a significant effect and was chosen for determining avidity. Yo antibodies in 

general had higher avidity than Hu antibodies. Low avidity antibodies have 

previously been defined as antibodies with an avidity index of � 30 % while high 

avidity antibodies have an avidity index of � 50 %. (Hedman, Lappalainen et al. 

1989). There was a significant association between the results from the avidity 

immunofluorescence assay and the avidity ITT assay. The lowest avidity indexes 

coincided with the negative immunofluorescence findings (p=0.008 for anti-Hu and 

p= 0.02 for anti-Yo). The avidity index was �30 % for anti-Hu and � 24 % for anti-

Yo antibody binding that was abolished at 8M urea in the avidity 

immunofluorescence test. In both groups we found patients that harboured high 

avidity antibodies, but patients with Yo antibodies in general had higher avidity than 

patients with Hu antibodies. By avidity ITT we found that 11 of 21 Hu positive 

patients harboured low avidity antibodies while 4 of 21 had high avidity. In 

comparison, 2 of 14 Yo positive patients had low avidity antibodies, while 7 of 14 

had high avidity antibodies. The other patients had intermediate avidity antibodies. 

We therefore concluded that the avidity of Hu and Yo antibodies are heterogeneous. 

Heterogeneous avidity variances in patients with antibodies towards the same antigen 

are not uncommon. For instance, sera from patients with aquaporin-4 antibodies 

showed different binding affinities (Crane, Lam et al. 2011). The heterogeneous 
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avidity may reflect that the disease has progressed for a longer period in patients with 

Yo antibodies and in patients with high avidity anti-Hu as the avidity of antibodies 

often increase with time from onset. Low-avidity antibodies are usually found within 

the first months after onset, while high avidity antibodies develop further out in the 

course of the disease (Hedman and Seppala 1988; Hedman, Lappalainen et al. 1989; 

Blackburn, Besselaar et al. 1991; Gray 1995; Rossi 1998). 

There are many examples of patients developing paraneoplastic antibodies before the 

underlying cancer is detected (Graus, Keime-Guibert et al. 2001; Shams'ili, Grefkens 

et al. 2003). In a mouse model of SCLC, Hu antibodies were detected up to 100 days 

before a cancer could be detected (Kazarian, Calbo et al. 2009). It is reasonable to 

assume that the same can be true for anti-Yo associated cancers. In this context it is 

interesting to observe that one study found that of 6 patients with paraneoplastic 

cerebellar degeneration with IgG Yo antibodies, 2 of these also had IgM antibodies 

and one had IgA antibodies (Smith, Finley et al. 1988). This implies that the antibody 

avidity maturation in patients with PNS follow the general antibody maturation 

pattern. Other studies have only been able to detect paraneoplastic antibodies of IgG 

isotypes, mainly IgG1 (Amyes, Curnow et al. 2001; Greenlee, Boyden et al. 2001). 

The symptoms of PNS probably occur after the switch from IgM to IgG, and may be 

the reason why other isotypes are not observed.  

The higher avidity of Yo antibodies can also indicate that Yo antibodies are more 

pathogenic than Hu antibodies. Pathogenic antibodies often have high avidity, and in 

a mouse model of Guillain-Barré syndrome it was found that the presence of high-

avidity antibodies coincided with onset of disease (Comin, Yuki et al. 2006). High 

avidity anti-�2-GPI antibodies have been associated with thrombosis and kidney 

disease in anti-phospholipid syndrome, while patients with pure systemic lupus 

erythematosus harboured low avidity antibodies (Cucnik, Kveder et al. 2004). High 

affinity insulin antibodies increased the risk of developing diabetes (Achenbach, 

Koczwara et al. 2004). Greenlee et al. (2010) showed that anti-Yo uptake in Purkinje 

cells on cerebellar slices killed the Purkinje cells in less than 72 hours. This 
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implicates that Yo antibodies are pathogenic. In this context it is also of interest to 

measure the antibody avidity of patients with paraneoplastic antibodies, but without 

neurological symptoms.  

We also measured the time-dependent avidity changes in some patients with Hu and 

Yo antibodies. These studies showed that while the avidity indexes increased with 

time for most patients with Hu antibodies, the avidity indexes for patients with Yo 

antibodies were fairly constant. This further indicates that one may discover Hu 

antibodies at an earlier time point in the disease progress, while the Yo antibodies 

have persisted for a while before the neurological symptoms develop.  

8M urea was used to break antigen-antibody complexes. Urea is a chaotrop that can 

disrupt the hydrogen bonds in the antigen-antibody complexes. It can also partially 

unfold the tertiary structure of proteins. We used 8M urea which can be quite harsh 

for proteins. However, it is not likely that these conditions had a significant impact on 

the results. In both the Hu and Yo groups we found patients with antibodies that were 

unaffected at 8M urea which makes it unlikely that the differences in avidity was due 

to harsh conditions. Both Hu and Yo antibodies can bind to linear epitopes (Sakai, 

Ogasawara et al. 1993; Manley, Smitt et al. 1995; Sodeyama, Ishida et al. 1999). It is 

therefore unlikely that the antibody-antigen binding would be affected by a potential 

unfolding. 8M urea has also been used successfully to disrupt antigen-antibody 

binding without causing irreversible changes to the antigen in other avidity assays 

(Hedman and Seppala 1988; Blackburn, Besselaar et al. 1991; Gray 1995; Ono, Lafer 

et al. 2004; Smolander, Koskinen et al. 2010). Furthermore, we have recently done a 

Biacore study were we measured the antigen-antibody binding capacity of purified 

IgG from anti-Yo positive patients to purified recombinant CDR2 (manuscript in 

preparation). This study showed a significant correlation between the Biacore and 

ITT avidity measurements. It is therefore likely that the heterogeneity seen in patients 

with Yo and Hu antibodies was due to differences among the patients and not the 

strong urea concentration. An ITT-urea test is therefore reliable for measuring 

onconeural antibody avidity.  
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One problem with avidity measurements is the variation in different techniques used 

to measure avidity. Some use a fixed serum dilution and determine the avidity index 

as the difference between the measured signals in the wells with urea compared to the 

signal in the wells without urea (Rossi 1998; Cucnik, Kveder et al. 2004). Others 

suggest that the avidity index is dependent on serum dilution and recommend using 

end-point titrations for avidity testing (Hedman, Lappalainen et al. 1989; Romero-

Steiner, Holder et al. 2005; Smolander, Koskinen et al. 2010). This observation 

probably had minor impact on our results since we used high dilutions of the serum 

samples, i.e. 1/500 in the immunofluorescence and 1/1000 in the ITT-avidity assay.  

6.2 Paper II: CDR2 antigen and Yo antibodies 

CDR2 mRNA is widely distributed in several tissues, but protein expression has only 

been described in immuneprivileged tissues like the brain and testis, in ovarian, breast 

and renal cell tumour tissues and some cancer cell lines (Corradi, Yang et al. 1997; 

Darnell, Albert et al. 2000; Balamurugan, Luu et al. 2009). It is speculated whether 

this discrepancy between the mRNA distribution and the observed protein expression 

is due to posttranslational modifications in the tissues. While more than 60 % of the 

patients with ovarian cancer express CDR2, only 2.3 % of these patients develop Yo 

antibodies (Darnell, Albert et al. 2000; Monstad, Storstein et al. 2006). In paper II we 

investigated whether the production of Yo antibodies in some ovarian cancer patients 

was related to variants in the cDNA sequence or to differences in the CDR2 mRNA 

or protein levels among the patients. 

In SCLC various levels of HuD expression reflecting the degree of neuroendocrine 

differentiation of the tumours have been reported (King 1997), and several mutations 

in the HuD gene in neuroendocrine tumours have been observed (D'Alessandro, 

Muscarella et al. 2009). We wanted to investigate whether there were similar 

differences in the CDR2 gene and if such differences could explain why some 

patients develop Yo antibodies and some do not. In our study we enrolled 16 patients 

with ovarian cancers, 5 had Yo antibodies and 2 of these had paraneoplastic 

cerebellar degeneration. We found no differences in the CDR2 cDNA among the 16 
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patients that could indicate an alternative CDR2 protein variant for any of the 

examined patients. However, we did not examine the CDR2 promoter regions so we 

can not rule out that these areas contain mutations important for changes in CDR2 

expression.  

The tissues from the two patients with paraneoplastic cerebellar degeneration were 

formalin fixed and we did not purify RNA from these samples. Total RNA was 

extracted from the 14 other ovarian cancers, but no differences in CDR2 mRNA 

levels could be observed among the patients. Also various normal human tissues 

expressed similar levels CDR2 mRNA. This is in accordance with a previous study 

where CDR2 mRNA was found to be evenly distributed in mouse tissue (Corradi, 

Yang et al. 1997). We found that all 16 ovarian cancers examined expressed CDR2 

protein. This result differs slightly from previous findings where only 62 % of all 

ovarian cancers expressed CDR2 (Darnell, Albert et al. 2000). This may be due to the 

fact that Darnell et al. (2000) used Yo sera from patients with paraneoplastic 

cerebellar degeneration to identify the CDR2 protein in western blot. To avoid the 

interference of the 55 kDa human IgG band they had to deplete the human IgG. We 

used a monoclonal mouse antibody against CDR2 and could therefore avoid the IgG 

depletion step. It may therefore be that some of the CDR2 expression in Dalmau’s 

experiments was lost during the IgG depletion. Another reason why we found that 

CDR2 was present in various tissues could be that the monoclonal antibody was more 

sensitive than Yo sera. It is, however, not surprising that CDR2 was found in all 

tumour samples, since CDR2 is expressed in almost all forms of renal carcinomas 

(Balamurugan, Luu et al. 2009) and HuD in all SCLC tested (Dalmau, Graus et al. 

1995).  

By western blot we did not find any differences in the protein expression levels 

among the patients. CDR2 expression was similarly strong in patients with Yo 

antibodies as in those without Yo antibodies. This suggests that other mechanisms are 

involved in the development of paraneoplastic cerebellar degeneration. Dysregulation 

of B and T cells has been suggested as mediators of paraneoplastic pathogenesis. In 
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anti-Hu associated syndromes both dysregulation of regulatory T cells and 

association of specific HLA-class alleles have been implicated (Tani, Tanaka et al. 

2008; de Graaf, de Beukelaar et al. 2010). In patients with paraneoplastic cerebellar 

degeneration activated CD4+ and CD8+ cells as well as microglia activation in the 

neural tissue have been found (Albert, Austin et al. 2000; Storstein, Krossnes et al. 

2009). A higher frequency of HLA-A2.1, HLA-A24 or HLA-B27 haplotypes have 

been observed among patients with anti-Yo mediated paraneoplastic cerebellar 

degeneration (Albert, Darnell et al. 1998; Sutton, Steele et al. 2004; Santomasso, 

Roberts et al. 2007; Carpenter, Vance et al. 2008). These patients have been shown to 

harbour cytotoxic T cells that have the potential to lyse CDR2 expressing cells 

(Albert, Darnell et al. 1998; Sutton, Steele et al. 2004; Santomasso, Roberts et al. 

2007). 

We found that western blot with a monoclonal CDR2 antibody on 3 different cancer 

cell extracts (ovarian, lung and neuroblastoma) recognized CDR2 expression as a 

double band. The highest one, with a molecular weight of 62 kDa, was the strongest 

for all three cell extracts. Such double bands have been observed in lysates of other 

cancer cell lines (Balamurugan, Luu et al. 2009), but the exact identity of these bands 

have not been described. The double bands could suggest modifications of CDR2 in 

the cells. It may also be that these antibodies recognize both CDR2 and CDR2L. The 

leucine-zipper domain of CDR2 and CDR2L has high sequence similarity, and 

antibodies directed towards this domain would probably identify both proteins. A 

weaker band in the same height as the highest band in the cell extracts was observed 

in cerebellum, while no CDR2 expression was observed in the cerebrum. These 

findings are consistent with previous findings as CDR2 expression has been found in 

many cancer cell lines, as well as in Purkinje cells in the cerebellum (Corradi, Yang 

et al. 1997; Balamurugan, Luu et al. 2009).  

We found that intracellular localization studies of CDR2 with a polyclonal antibody 

confirmed that CDR2 was expressed in both the ovarian and lung cancer cell line as 

well as in HeLa cells. In all cell lines, the CDR2 antibody showed a granular staining, 
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mainly in the cytoplasm. These findings are in accordance with Hida et al. (1994) 

who found that Yo antibodies localised to the ribosomes of rough endoplasmatic 

reticulum and to free ribosomes in Purkinje cells. Staining of HeLa cells with a 

monoclonal antibody showed similar results.  

In ovarian and colon cancer biopsies from patients without paraneoplastic cerebellar 

degeneration we found nuclear and cytoplasmic CDR2 staining of cancer cells with 

the polyclonal CDR2 antibody. Ovarian tissue from two patients with paraneoplastic 

cerebellar degeneration and Yo antibodies showed nuclear CDR2 staining of the 

cancer cells. The monoclonal CDR2 antibody 4F5 (Abnova) that O´Donovan et al. 

(2010) used to stain HeLa cells is directed against the same peptide sequence as sc-

100320 (Abcam) that we used to stain HeLa cells. Both antibodies showed 

cytoplasmic CDR2 localization. Interestingly, patient sera with antibodies towards 

both CDR2 and CDR2L stained nucleus in some cells, but the cytoplasm in other 

cells, while the monoclonal antibody and a T7CDR2 construct both localized CDR2 

to the cytoplasm (O'Donovan, Diedler et al. 2010). This indicates that CDR2 is 

transported to the nucleus during cell division. 

The ovarian biopsies used in our study also contained normal stromal and epithelial 

cells. We found weak CDR2 staining of the normal stromal cells and strong staining 

of the normal epithelial cells. These findings were confirmed by the fact that western 

blot of normal ovarian tissue lysate also showed CDR2 expression. However, these 

results are not surprising. Amphiphysin has been found in both normal and breast 

cancer tissue (Floyd, Butler et al. 1998). Weak CDR2 staining has been observed in 

normal kidney lysate (Balamurugan, Luu et al. 2009), and according to the Human 

Protein Atlas, CDR2 is widely expressed in normal tissue, including normal ovary 

follicle and stromal cells. This suggests that we have to re-evaluate the dogma that 

CDR2 is only expressed in cancer tissue and immuneprivileged sites, and that the 

model for PNS is even more complicated than previously thought.  

The pathogenesis of paraneoplastic cerebellar degeneration is probably not only 

related to the CDR2 expression and Yo antibody synthesis, but also to immune 
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dysregulation, such as antigen presentation and cooperation between B and T cells. 

Several reports have suggested that patients with specific HLA alleles are more prone 

to PNS and activated T cells directed towards paraneoplastic antigens have been 

found in many patients with PNS (Albert, Darnell et al. 1998; Albert, Austin et al. 

2000; Tanaka, Tanaka et al. 2001; Pellkofer, Schubart et al. 2004; Santomasso, 

Roberts et al. 2007; Tani, Tanaka et al. 2008; de Graaf, de Beukelaar et al. 2010). 

6.3 Paper III: Antibody to CCDC104 is associated with a 

paraneoplastic antibody to CDR2 (anti-Yo) 

Identification of new antibodies is very important in the search for new antigens that 

can be used as cancer biomarkers, as they may give improved insight into the 

etiology of PNS. In paper III we described a patient with Yo antibodies and ovarian 

cancer who also harboured antibodies towards an unidentified protein. Anti-Yo 

positivity was observed by immunohistochemistry on rat cerebellum, and was 

confirmed by a line blot with recombinant onconeural proteins. A western blot 

screening of the patient’s serum on rat cerebellar extract revealed a distinct band of 

approximately 39 kDa in addition to the expected Yo band of 52 kDa. To identify this 

unknown protein the patient serum was used to screen a cDNA expression library 

from rat cerebellum. Such expression libraries have been used to identify many new 

antigens (Dropcho, Chen et al. 1987; Sakai, Mitchell et al. 1990; Fathallah-Shaykh, 

Wolf et al. 1991; Lichte, Veh et al. 1992).  

The screening resulted in the identification of a protein called coiled-coil domain 

containing 104 (CCDC104). Very little is known about this protein. By sequence 

alignment it was found that the protein is highly conserved among mammalians with 

85 % sequence identity and 93 % amino acid sequence conservation. When proteins 

show such a degree of conservation it often implies that they have important 

biological functions.  

No expression studies of CCDC104 had ever been done before, and we wanted to 

investigate which tissues the protein was expressed in. We expressed recombinant 



 60 

full-length CCDC104 protein, and this protein was used to produce antibodies in 

rabbits. Due to the similarities between the different CCDC104 isoforms this 

antibody can probably recognize all CCDC104 isoforms. We found that the 

CCDC104 protein was widely expressed in several different tissues. Expression of 

the 39 kDa isoform was especially strong in the testis and spleen, but could also be 

observed in various parts of the brain. This is in accordance with the findings of the 

Human Protein Atlas that finds strong staining of cells in the seminiferous ducts. The 

seminiferous ducts are located in the testes, and the meiosis take place here. In this 

context it is interesting to notice that CCDC104 is heavily phosphorylated in the testis 

and that testis-specific phosphorylated proteins often are involved in meiosis, cell 

cycle regulation and DNA damage repair (Gauci, Helbig et al. 2009; Huttlin, 

Jedrychowski et al. 2010).  

We also observed several isoforms of CCDC104. A 42 kDa band was observed in the 

lung and pancreas and a 36 kDa band was seen in the heart. The observation of the 36 

kDa variant in the heart is further supported by findings of the Human Protein Atlas 

where an antibody that only identifies the 39 and 42 kDa isoforms does not stain 

heart muscle cells, while an antibody that also recognizes the three other potential 

isoforms shows strong staining of myocytes. In the brain we found that the 39 kDa 

isoform was widely expressed in almost all sections of newborn rat brain with the 

exception of the spinal cord and the frontal cortex. The main expression pattern of 

CCDC104, i.e. testis and brain, was similar to the expression pattern of many other 

paraneoplastic proteins such as CDR2, amphiphysin and Ma1 (Corradi, Yang et al. 

1997; Floyd, Butler et al. 1998; Dalmau, Gultekin et al. 1999).  

Determination of the intracellular localization of CCDC104 was done in a 

neuroblastoma cell line. A rabbit peptide antibody raised towards CCDC104 was 

used for specific detection. The study showed that CCDC104 is mainly localized to 

the nucleus, but parts of the cytoplasm were also weakly stained. Later studies of the 

CCDC104 expression in other cell lines, like ovarian cancer, HeLa and a lung cancer 

cell line showed a similar staining pattern (unpublished results). Subcellular 
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localization studies, published by the Human Protein Atlas also showed similar 

results in other cell lines. This implies that CCDC104 is a protein that is widely 

distributed in many different cell lines and organs. 

To investigate whether CCDC104 antibodies could be a new paraneoplastic marker, 

we collected serum samples from patients with the most common forms of cancers 

that are associated with PNS, namely breast, lung and ovarian cancer. About 25 % of 

these sera contained other paraneoplastic antibodies. Sera from 300 blood donors 

were used as negative controls. The reason why we picked 5 SD as cut-off value 

instead of 3 SD as has been done in other assays (Knudsen, Monstad et al. 2006; 

Monstad, Storstein et al. 2006; Monstad, Drivsholm et al. 2008; Monstad, Knudsen et 

al. 2009) was that the mean value of the blood donors was very low. When we used 

only 3 SD many “positives” turned out not to react with recombinant CCDC104 in 

western blot. When we used a cut-off with 5 SD, most of the positive patients reacted 

with recombinant CCDC104, while none of the patients below the cut-off did.  

All sera were screened for CCDC104 antibodies by the ITT assay. Nine of the ten 

patients that were positive by the ITT technique bound specifically to recombinant 

CCDC104 in western blot. CCDC104 antibodies were found in 10.5 % (4 of 38 sera) 

of the patients with Yo antibodies. CCDC104 antibodies were not found in the 158 

patients with other paraneoplastic antibodies. We also found CCDC104 antibodies in 

1.1 % of the patients with different forms of cancer. To be able to confirm that an 

antibody has a diagnostic relevance one needs to identify the right group of patients, 

and examine a large number of patients. The detection of CCDC104 antibodies was 

not correlated to any specific form of cancer, no neurological symptoms were 

reported for the patients who only harboured CCDC104 antibodies and CCDC104 

antibodies were also detected in 2 of 300 (0.7 %) of the blood donor controls. 

However, the presence of paraneoplastic antibodies has also been observed in other 

controls. CRMP5 antibodies have been detected in 2 of 300 blood donors while anti-

Ma2 and anti-amphiphysin were detected in 1 of 300 blood donors (Monstad, 

Knudsen et al. 2009). CCDC104 antibodies are probably not directly related to PNS, 
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but we only examined a limited number of patients within each cancer group and we 

only examined groups of patients with cancers that are commonly associated with 

PNS.  

CCDC104 has been shown to be phosphorylated by ATM and ATR, two proteins that 

are both associated with various forms of DNA break repair. Furthermore, it has been 

shown that patients with ataxia telangiectasia have loss of Purkinje cells and ataxia, 

symptoms that are common in patients with Yo antibodies. We do not know the 

function of CCDC104, but the fact that it is regulated by ATM, and that ATM 

dysregulation gives increased risk of cancer and loss of Purkinje cells, makes it likely 

that CCDC104 also has a role in cancer development and maintenance of Purkinje 

cells. In this context it is interesting that we found two antibodies towards proteins 

that may have regulating functions in the same cells. Both CDR2 and CCDC104 are 

highly expressed in the seminiferous ducts (Corradi, Yang et al. 1997), and CDR2 is 

expressed during mitosis (O'Donovan, Diedler et al. 2010). It is not unlikely that they 

both have a role in mitosis and meiosis. We have recently detected an accumulation 

of CCDC104 around the spindle poles in dividing cells (manuscript in preparation) 

which supports this assumption. It is also interesting to note that CDR2 is important 

for proper spindle formation. CDR2 knockdown results in an increased number of 

spindle poles in single cells (O'Donovan, Diedler et al. 2010). This further 

strengthens the relationship between CDR2 and CCDC104, and supports our findings 

that CCDC104 and CDR2 antibodies co-exist. It would therefore be very interesting 

to further see if knockdown of CCDC104 would give similar findings as shown for 

CDR2. 



 63

7. Summary and future perspectives 
Paraneoplastic antibodies and their association with specific forms of cancer have 

been known for decades, but still very little is know about the mechanisms behind the 

diseases, why only some people develop PNS, the role of the antibodies and the main 

functions of the onconeural proteins. In this study we have tried to further elucidate 

the properties of Yo antibodies, potential antibodies that coexist with anti-Yo and 

whether mutations in the CDR2 gene or differences in CDR2 transcription and 

expression could explain why some patients develop PNS.  

Paper I: In this study the avidity of 21 patients with Hu antibodies and 14 patients 

with Yo antibodies was compared. We found that Yo antibodies generally had higher 

avidity than Hu antibodies, but there was great avidity variance within each group. 

We found no association between antibody avidity and type of cancer. However, 

when we measured avidity changes in patients over time, we saw that Hu antibodies 

followed normal avidity maturation pattern with low avidity index in the earliest 

samples and a time-dependent increase in the avidity index. The Yo antibody avidity, 

however, remained high. This suggests that Hu antibodies are detected at an earlier 

time-point than Yo antibodies, and this finding may have a prognostic importance. 

Paper 1 reported a small study of the avidity of Hu and Yo antibodies. A larger study 

may be performed to see if this trend is significant. Surface-plasmon resonance 

studies would give a more functional approach for studying the avidities of these and 

other paraneoplastic antibodies (manuscript in preparation). Furthermore, we now 

have more serum samples from patients for a longitudinal study where it is possible 

to look for the avidity during the course of PNS. However, this is only known from 

the onset of the neurological disease because the onset of cancer is unknown. 

Paper II: Ovarian tumours from 16 patients were screened for differences in CDR2 

cDNA sequence, mRNA expression level and protein expression. Five of the 16 

patients had Yo antibodies, and two of the anti-Yo positive patients had 

paraneoplastic cerebellar degeneration. We found no difference in the CDR2 cDNA 
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sequence in the tumours of any of the patients that could explain a possible 

alternative transcription of the CDR2 gene. Neither did we see any difference in the 

mRNA expression levels in the ovarian tumours compared to various normal tissues. 

CDR2 protein expression was approximately similar in all tumours. Interestingly, we 

found CDR2 protein expression in several cancer cell lines, in prostate cancer and in 

normal ovarian tissue. This suggests that CDR2 expression is more abundant than 

previously reported, and it is even expressed in normal tissue. Differences in the 

immune regulation may therefore be of importance in the development of 

paraneoplastic antibodies and PNS. 

Even though we have some knowledge about CDR2, much remains to be resolved. 

There is still uncertainty about which tissues that express CDR2, its exact 

intracellular location, its functional role and potential interaction partners and 

pathways. Even less is known about the role of Yo antibodies in paraneoplastic 

cerebellar degeneration. With new commercial antibodies available it is reasonable to 

re-evaluate previous results about CDR2 expression, localization and function. 

So far there is almost no knowledge about the other CDR proteins. A few 

explorational studies about CDR1 have been performed, but since the early nineties 

no new information has been revealed. It is reasonable to assume that CDR1 also has 

a role in paraneoplastic cerebellar degeneration, since some patients with this disease 

harbour antibodies against CDR1. CDR1 mRNA has also been found to be 

upregulated in several neurodegenerative diseases. There are no commercial 

antibodies available for CDR1. Developing functional CDR1 antibodies is therefore 

necessary to characterize CDR1. Furthermore, production of CDR1 protein is 

necessary to screen for CDR1 antibodies in sera from patients with various tumours. 

Identifying potential interaction partners would also give a better understanding of 

the functions of CDR1. A yeast two-hybrid system may be used to identify such 

interaction partners.  

Little is also known about CDR2L. We know that the protein shares high amino acid 

sequence similarity with CDR2. A search in web-based databases implies that 
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CDR2L has a higher expression in the Purkinje cells than CDR2, and that CDR2L 

localization pattern resembles that seen for Yo antibodies. We have recently found 

that patients with paraneoplastic cerebellar degeneration also harbour CDR2L 

antibodies (manuscript in preparation). A better characterization of CDR2L is 

therefore also important for the understanding of paraneoplastic cerebellar 

degeneration. However, the functions of CDR2L are not known. This can be further 

studied by using a yeast two-hybrid system to look for possible interaction partners 

with CDR2L.  

Paper III: A patient with Yo-associated paraneoplastic cerebellar degeneration also 

harboured antibodies to an unknown protein. This protein was identified as 

CCDC104. CCDC104 is a well conserved protein that is mainly localized in the 

nucleus, and it is expressed in many tissues, especially in brain and testis. We found 

CCDC104 antibodies in the sera of 8 of 756 cancer patients and in 2 of 300 blood 

donors. There was no association between cancer or PNS and CCDC104 antibodies. 

However, there was a significant association between anti-Yo and anti-CCDC104. 

10.5 % of the anti-Yo positive patients also harboured CCDC104 antibodies. The co-

existence of these antibodies indicates similar biological functions and recent studies 

suggest that they are both involved in the cell cycle. 

CDR2 is probably associated with correct spindle formation during mitosis. Recent 

findings in our laboratory imply that CCDC104 is localized to the centeromers during 

mitosis (manuscript in preparation). The fact that a significant proportion of patients 

with Yo antibodies also harbour CCDC104 antibodies, the observation that CDR2 

and CCDC104 have similar distribution pattern and that they are both involved in 

mitosis makes CCDC104 an interesting interaction partner for CDR2. Unfortunately, 

there is presently little information available also for this protein. One approach 

would be to investigate CCDC104’s function in mitosis, for example by knocking 

down CCDC104 in cell cultures.  
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