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1. ABSTRACT

The region under study is the Tropical Western Atlantic (TWA) which includes the Caribbean Sea 

with adjacent coastlines, the Gulf of Mexico, Bermuda and the coast of South America down to the 

tropical/temperate transitional zone near Uruguay. There are several examples of genetic breaks 

within the Caribbean that have been attributed to oceanographic factors, transient allopatry, as well 

as ecological  factors,  but  no common biogeographical  pattern has been found and mechanisms 

behind diversification within the region are not fully understood. The aim of this project was to 

shed light on diversification patterns of shallow-water soft-bottom invertebrates in the TWA by 

using the gastropod Bulla occidentalis as a model species. The following questions were adressed: 

(1)  Is  B.  occidentalis  a  homogenous genetic  entity  or  is  it  made-up of  more  than  one  genetic 

partition (ESUs) as hypothesized by Malaquias and Reid (2009)? (2) What caused the pattern of 

genetic discontinuities (ESUs)? (3) Are the genetic breaks shared with other species? and (4) Are 

there periods of major expansion or contraction in population size and what may have caused these 

events? Material  was obtained from museum collections  and through fieldwork,  and sequences 

fragments of the cytochrome c oxidase subunit I (COI) and 16S rRNA mitochondrial genes were 

amplified and sequenced using standard methods. Population genetic indices such as number of 

haplotypes,  haplotype  diversity,  nucleotide  diversity,  and  fixation  indices  were  estimated,  and 

statistical parsimony haplotype networks for the individual genes were constructed to assess the 

population structure. The  B. occidentalis  species genealogy with divergence times between main 

lineages  was  estimated  based  on  calibration  with  the  oldest  known fossil  attributed  to  the  B. 

occidentalis lineage (Early Miocene, 20,43 – 15,97 Mya) under the assumption of a strict molecular 

clock.  Isolation-by-distance  methods  were  employed  to  test  correlation  between  genetic 

differentiation  and  geographic  distance.  The  demographic  history  was  reconstructed  using  a 

Bayesian Skyline method. The B. occidentalis population showed a structured genealogy with three 

ESUs (A: all coastline samples from Brazil to Eastern Florida, including Yucatan and the islands of  

Guadeloupe  and  Bermuda;  B:  all  samples  from  the  Florida  Keys;  C:  predominantly  Cuban 

samples).  The three  lineages  had an  average  genetic  distance  of  4,6% – 5,9% (uncorrected  p-

distance).  Divergence between the three lineages was dated to  the Late Miocene (11,06 –  6,11 

Mya),  and may have been caused by vicariance related to the Panamanian Isthmus up-lift.  The 

mechanisms maintaining divergence of these lineages are difficult to pinpoint because no direct link 

was  established  between  the  geographical  subdivision  and  present  oceanographic  patterns, 

ecological factors or Isolation-by-distance. Genetic divergence of the Florida Keys-lineage mirrors 
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patterns found in other groups. The genealogy and demographic history reconstruction showed an 

increase  in  genetic  diversification  and  effective  population  size  during  the  Pleistocene.  This 

coincides with an increase in the magnitude of glaciation cycles that may have caused periods of 

transient allopatry likely reducing population connectivity leading to genetic diversification, as well 

as potentially creating new niche-opportunities during low sea-level stands allowing the population 

to expand.
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2. INTRODUCTION

2.1. Biogeography of the Tropical Western Atlantic

The  aim  of  phylogeography  is  to  understand  intra-specific  and  species-complex  patterns  of 

divergence and how they coincide with present-day and historical geologic and geographic features 

and processes (Chan et al. 2011). The geographical area under study in this research project is the 

Tropical Western Atlantic (TWA) as defined by Spalding  et al.  (2007): the Caribbean Sea with 

adjacent  coastlines,  Bermuda  and  the  coast  of  South  America  down  to  the  tropical/temperate 

transitional zone near Uruguay, but in addition including the Gulf of Mexico.

The TWA is a region that has been through large changes in recent geological history. The rise of 

the Panamanian Isthmus, a process taking place over 12 million years, and reaching completion 

approximately 2.8 Ma ago, had large consequences for ocean circulation patterns, global climate, 

and evolution of both marine and terrestrial organisms (Coates and Obando 1996; Lessios 2008). 

The changes in the Tropical Western Atlantic environment included new current patterns as well as 

raised temperature and salinity, which in turn marked the onset of glaciaction cycles and increasing 

eustatic changes during the Pliocene (5,332-2,588 Mya) and Pleistocene periods (2,588 Mya – 12 

Kya) (Lessios 2008). 

The TWA is traditionally divided into distinct biogeographic provinces identified and characterized 

by unique assemblages of species and clades, but the exact names, numbers and boundaries of these 

provinces vary somewhat between authors (summarized by Reid (2009)). At least two provinces are 

commonly recognized within the TWA, the Caribbean and the Brazilian (Reid 2009), but a separate 

West  Indian  province  (including  Bermuda,  the  Bahamas,  the  Leeward  and  Windward  Antilles 

Islands) has also been suggested (Briggs 1974). The northern bound of the Caribbean province is 

placed somewhere along the east coast of the United States in a transition zone between Warm-

Temperate and Tropical climates and another such transitional zone was placed on the gulf-side of 

the Florida peninsula, based on many examples of faunal breaks between Tropical Florida and the 

temperate Gulf of Mexico (Briggs 1974). North of the Caribbean province lies the Carolinian, and 

the division between these two have a long history dating back to the Early Miocene, represented by 

the  Caloosahatchian  province  (North  Carolina  to  Florida  and  the  Yucatán  peninsula)  and  the 

Gatunian province (includes the Caribbean) (Vermeij 2005). A major feature along the north-eastern 
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coast of South America, separating the Caribbean and Brazilian provinces is the Amazon Barrier, 

which is created by freshwater run-off from the Orinoco and Amazon rivers that was established in 

its  present  form during  the  Pliocene  (Briggs  1974;  Campbell  Jr.  et  al.  2006)).  This  over  2300 

kilometre stretch of coastline is influenced by sediment-rich freshwater forming a plume of lower 

salinity  that  represents  a  biogeographic  barrier  for  many species  (Rocha  2003).  The  Brazilian 

province stretches to the southern transitional zone between tropical and warm-temperate climates 

near Uruguay. 

Taxonomically  based  biogeographic  subdivisions  have  traditionally  been  defined  by  unique 

assemblies of groups at low taxonomic levels. These are, however, seldom exhaustive. For instance 

the system proposed by Briggs (1974) was mostly based on fish, and for the Caribbean, subdivision 

has largely been based on taxonomic levels in the range from Class to Family (Miloslavich et al.  

2010). Recently an attempt was made at making a global classification of the  marine environment 

based on the presence of homogenous composition of species, and the predominance of a small  

number of ecosystems, oceanographic and topographic features (Spalding et al. 2007), but this was 

not consistently supported by a later regionalization (Miloslavich  et al.  2010). Focus on certain 

taxonomic  groups  or  focusing  on  higher  taxonomic  levels  will  result  in  species  distributions 

sometimes failing  to  be consistent  with established subdivisions  (Miloslavich et  al. 2010).  For 

bivalves and gastropods in the Caribbean no general pattern of species distributions exists (with 

exceptions  in  Yucatán  and  Belize),  suggesting  that  distribution  of  species  in  the  Caribbean  is 

controlled by availability of different habitat types (Miloslavich  et al.  2010). There are, however, 

certain examples of  groups at low taxonomic levels (genus and family) that show specific patterns 

in their  distribution due to vicariant events during the evolution of the Caribbean Sea, and this 

variation  can  be  masked  if  focus  lies  on  higher  taxonomic  levels  (Miloslavich et  al. 2010). 

Miloslavich et al. (2010) suggest that the Caribbean as a whole is a distinctive sub-region of the 

Northern Tropical Western Atlantic Province, but that the region is not biogeographically uniform 

due  to  its  complex  geological  history,  and  present-day geographic  variation  in  hydrologic  and 

habitat regimes.

2.2. Genetic discontinuities in the Tropical Western Atlantic

A large part of the TWA is the Caribbean Sea, which is known to be a marine biodiversity hotspot 

(Roberts et al. 2002; Miloslavich et al. 2010) despite being a fairly compact area with few obvious 
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physical barriers and large degree of faunal homogeneity (Taylor and Hellberg 2006; Reid 2009). 

Despite this perceived uniformity there are several examples of established genetic breaks within 

species, suggesting that some drivers of genetic differentiation do exist (Brachidontes exustus, Lee 

and Ó Foighil 2005;  Elacatinus sp.,  Taylor and Hellberg 2006;  Bulla occidentalis,  Malaquias and 

Reid 2009; Cittarium pica, Diaz-Ferguson et al. 2010). Both ecological and vicariant explanations 

have been offered, but the processes seem to differ between different animal groups, and patterns of 

genetic discontinuities do not seem consistent between animal groups (Taylor and Hellberg 2006; 

Rocha et al. 2008; Diaz-Ferguson et al. 2010).

Strong evidence was found for the presence of a phylogenetic break in the Mona Passage between 

the islands of Hispaniola and Puerto Rico islands for different ecologies of the coral reef fish genus 

Elacatinus  (Taylor and Hellberg 2006). The strong northbound current through the passage was 

thought to inhibit dispersal between the two islands, thereby causing a genetic discontinuity. Weak 

support for a genetic barrier was also found in the Exuma Sound of the Bahamas, but if present, this 

is likely established later than the Mona barrier (Taylor and Hellberg 2006). 

Another  approach  for  identifying  genetic  discontinuities  and  recognizing  regions  of  high 

connectivity, thereby also biogeographic break points, is by the use of hydrodynamic models of 

larval dispersal (fish, Cowen et al. 2006). Cowen et al.  (2006) detected the presence of four such 

connectivity-regions, corresponding to the Eastern Caribbean, Western Caribbean, the Bahamas-

region and the coastlines influenced by the Colombia-Panama gyre.  The central  Caribbean was 

suggested to be a zone of admixture, mediating a low level of connectivity between regions. These 

four  connectivity  regions  were  only  partly  supported  by  the  genetic  structure  of  the  trochid 

gastropod Cittarium pica (Diaz-Ferguson et al. 2010). A low level of differentiation was uncovered 

between the Eastern Caribbean and the Bahamas, a Venezuelan population that was expected to 

group  with  the  Eastern  Caribbean  proved  to  be  differentiated  from  all  other  groups  and  a 

Panamanian  population  was  strongly  differentiated  from  geographically  close  populations  in 

Panama and Costa Rica. The authors viewed their results as supporting the Carribean as a uniform 

biogeographical  province,  with high genetic  diversity due to meso-scale oceanographic features 

(Diaz-Ferguson  et  al.  2010).  For  instance,  the  Colombia-Panama  gyre  is  likely  causing  some 

isolation  in  the  area  encompassed  by  the  coastlines  of  Colombia,  Panama,  Costa  Rica  and 

Nicaragua, as is evident from the mentioned modelling experiment (Cowen et al. 2006) and from 

the trochid gastropod Cittarium pica (Diaz-Ferguson et al. 2010). The Antilles Current (Figure 1) is 
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weak compared to the other mentioned currents which potentially creates a difference in dispersal 

capacity in a East-North direction compared to a East-West direction along the Caribbean current.

Figure 2 depicts variation in coastline range with variable sea levels, which likely made an impact 

of connectivity within the adjacent areas of the Caribbean sea. This possibility is especially relevant 

when discussing Pleistocene glacial cycles that have been taking place in the last 2,5 million years 

(Lessios 2008; Miller  et al.  2005). There is evidence for periods (or pulses) with a high rate of 

mollusc extinctions and species origination in the Pleistocene, and these glaciation events could be 

directly related to the diversification of Western Atlantic shallow water organisms (Lessios 2008). 

Transient  allopatry has been suggested as a potential  mechanism producing species pairs  along 

single coastlines in  the TWA and in the Tropical  East  Pacific  Ocean for example in  calyptraid 

gastropods (Collin 2003).

2.3. Physical and geological description of the Tropical Western Atlantic Ocean

The flow of surface currents can have implications for potential  genetic connectivity in marine 

populations (White  et al.  2010), and an understanding of the ocean surface current system in the 

TWA is  therefore  a  vital  piece  of  the  puzzle  in  uncovering  underlying  causes  for  genetic 

discontinuities. The online service Ocean Surface Currents summarizes data from a vast amount of 

literature  on ocean surface  currents.  For  convenience  we divide  the  review into  two parts;  the 

Caribbean Sea (including Tropical Florida) with the Gulf of Mexico, and the outer-Atlantic region 

(Bermuda,  Brazil,  and  the  Atlantic  ocean  east  of  the  Antilles).  The  most  relevant  and  general 

information is included here to produce a broad picture of the Tropical Western Atlantic surface 

current-system, but for detailed information on the current system, see the Ocean Surface Currents 

website (http://oceancurrents.rsmas.miami.edu/index.html).

2.3.1. The outer-Atlantic region

The South Equatorial Current system is a mainly westward-bound current system that is found in  

the Central Tropical Atlantic ocean and is deflected into northbound and southbound currents where 

it hits the easternmost region on the Brazilian mainland near 14ºS  (Bonhoure  et al. 2004). Water 

from the South Equatorial  Current system that is  deflected to the north feeds the North Brazil  

Current, which travels along the Brazilian Bahia State at an average speed of around 60-100 cm/s  

until it reaches the coast of Guyana. A part of the water from the South Equatorial Current system 
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travels in a north-eastward direction, feeding the North Equatorial Counter-Current or feeding the 

Caribbean Current depending on the season (Bischof et al. 2003). The North Brazil Current feeds 

the Guiana Current which has a mean velocity that is measured to be 41.6 cm/s. The Guiana Current 

enters the Caribbean Sea mostly through the Windward Islands and constitutes the majority of the 

water that enters the Caribbean Sea (about 70%). The Guiana Current varies in flow velocity during 

the year, and with the peak speeds observed in April-May and a minimum speed in September. The 

Antilles Current flows from the northern Lesser Antilles north-west into the Florida Current, but is  

of a variable nature and its existence has been discussed (Rowe et al. 2011).

Table 1:  Estimates of surface current travel distances and velocities
(Data gathered from http://oceancurrents.rsmas.miami.edu/ and Google Earth)
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FC= Florida Current
LC = Loop Current
AC = Antilles Current
GC = Guiana Current
NEC = North Equatorial Current
NECC = North Equatorial Counter-Current
NBC = North Brazil Current
SEC = South Equatorial Current
BC = Brazil Current
CPG = Colombia-Panama Gyre

Figure 1: Overview of the Tropical Western Atlantic Ocean current system.

Current name Ca. dist. (km) V (cm/s) V (km/day) Distance travelled per n days (km)
86400 10 14 21

CC (Aves ridge to Florida strait) Low
2800

30 26 259 363 544
CC High 40 35 346 484 726
AC (British Virgin Islands – Northern Bahamas) High

1800
9 8 78 109 163

AC Low 4 3 35 48 73
GC (Guiana-Antilles) 1300 42 36 359 503 755
NBC (Bahia tip-Guiana) High

2221
100 86 864 1210 1814

NBC Low 60 52 518 726 1089

http://oceancurrents.rsmas.miami.edu/


2.3.2. The Caribbean Sea and the Gulf of Mexico

The majority of sampling localities in this project are located in or adjacent to the Caribbean sea, 

which  is  a  semi-enclosed basin in  the  Western  Atlantic  Ocean surrounded by the  Atlantic-side 

coastlines of Northern-, Middle and South America and the Lesser Antilles Island Arc. The main 

circulation direction in the Caribbean Sea is counter-clockwise, with water entering in the south-

west  through  the  Lesser  Antilles  arc  and  exiting  in  the  north-west  between  Florida  and  Cuba 

becoming the beginning of the Gulf Stream that flows along the east coast of Florida and into the 

Northern Atlantic. Deep water does not enter the Caribbean Sea because of the shallow depths in 

the Lesser Antilles Arc, and the upper 1200 meters of the water body of the Caribbean is stratified 

with  little  deep-water  circulation   (Gyory  et  al. [2011a]).  The  sea  bottom  topography  of  the 

Caribbean Sea can be divided into five basins separated by underwater ridges (Miloslavich  et al. 

2010), a feature that has implication for creating meso-scale eddies in Caribbean surface-currents 

(Andrade and Barton 2000). The depths of these basins are abyssal with over half of the Caribbean 

Sea deeper than 3600 meters, and an average depth of 2200 meters (Isaza et al. 2006; Miloslavich 

et al. 2010) while the ridges and plateaus separating are shallower, for instance the Gorda Bank off 

the coast of Honduras which in some areas is less than 20 meters deep. The Caribbean Current is 

fed by the Guiana Current mainly through the Grenada, St. Vincent and St. Lucia passages in the 

Windward Island group (Gyory et al. [2011a]). The Caribbean Current has a general flow in an east-

west direction in the Caribbean Sea from the Lesser Antilles to the Yucatan Strait, with the strongest 

flow in the southernmost third of the Caribbean Sea, velocity reaching 70 cm/s. The current system 

in the Caribbean Sea does show both seasonal and spatial variation, but the exact nature of this 

variability is not fully resolved (see Gyory et al. [2011a] for discussion). Both meso-scale meanders 

and eddies have been detected, as well as larger gyre systems. A clockwise-circulating gyre (the 

Colombia-Panama Gyre) has been suggested to exist off the coast of Panama, but the exact nature 

of this is at this point elusive (Gyory et al. [2011a]).

Water from the Caribbean Sea enters into the Gulf of Mexico through the straits of Yucatan that 

separates  Cuba from the  Yucatan  peninsula.  This  flow feeds  the current  system in  the Gulf  of 

Mexico, the most important in this context being the Loop Current. This current is the flow that 

feeds both the Yucatan Current and the eastward-flowing Florida Current that exits the Caribbean 

Sea between Cuba and Florida. The position of the Loop Current is interchanging, variably feeding 

the Florida Current and the Yucatan Current. The Florida Current is fed by the Loop Current and the 
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Antilles Current with the main portion coming from the Loop Current, which is considered to be the 

beginning of the Gulf Stream (Gyory et al. [2011b]).

2.3.3. Bathtmetry and sea level variation

Global sea level changes (eustasy) related to the formation and melting of continental ice-sheets can 

happen  very  rapidly,  up  to  200  meters  pr.  thousand  years  for  the  formation  of  ice-sheets  and 
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Figure 2: Illustration showing Caribbean coastlines at A) 
present sea level B) Sea-level 150 meters below todays level 
(as during Pleistocene glacial maxima). Dark grey areas 
show depths of 0-50 m. Adapted from Bellwood and 
Wainwright (2002).



resulting sea-level drop, and 20 meters related to melting and resulting sea-level rise (Miller et al. 

2005). Global sea-level changes from the Oligocene to the Early Pliocene were in the order of 

around 30 to 60 meters, relating mainly to the behaviour of the Antarctic ice-sheet (Miller  et al. 

2005). Formation and decay of large ice-sheets in the northern hemisphere with correspondingly 

large sea-level changes have taken place during the last 2,5 million years, from the late Pliocene to 

the present, initiated by climatic effects of the closing of the Panamanian Isthmus (Miller  et al. 

2005). In the Northern Atlantic a relationship between complex evolutionary histories and global 

glaciation cycles have been detected in Littorina as a consequence of changes in the availability of 

suitable habitat due to eustatic changes (Doellman et al.  2011). The effect of glaciation cycles on 

tropical benthic soft-bottom communities inhabiting oceanic islands is poorly understood (Cuhna et  

al.  2011). During periods of low sea-level stands in the Pliocene and Pleistocene the implications 

for  species  inhabiting  soft-bottom and hard-bottom substrates  on oceanic  islands  in  the Pacific 

ocean were different with soft-bottom species experiencing local extinctions due to habitat loss and 

hard-bottom communities showed elevated speciation rates due to new niche opportunities (Paulay 

1990).

With the Plio-Pleistocene low sea-level stands causing sea levels to drop around 100-150 meters 

(Miller  et al.  2005; Haq, Hardenbol and Vail (1988) in  Cunha  et al. 2011), both habitat loss and 

population connectivity in the TWA could have been affected in severe ways. Figure 2 shows the 50 

m isobaths (underwater sea-bottom contour line at a specific depth) with today's sea-water level, 

and with a global sea-level 150 meters below present levels. With a sea-level drop of 150 meters, 

the reduction in continental  shelf-area would be 89%, potentially decreasing the availability of 

estuaries, lagoons and other shallow-water habitat types (Bellwood and Wainwright 2002).

2.4. Model species: Bulla occidentalis

2.4.1. Phylogeny, ecology and palaeontological history

Bulla occidentalis (Figure 3) is one of twelve species in the genus  Bulla, the only genus in the 

family Bullidae of cephalaspidean opistobranch gastropods. Two Bulla species exist in the TWA, B. 

occidentalis and B. solida, but the sister species of B. occidentlais is B. striata (Malaquias and Reid 

2008). B. striata is found in the Eastern Atlantic Ocean and the Mediterranean Sea (Malaquias and 

Reid 2008). The species-pair is not possible to distinguish morphologically, but do show reciprocal 
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monophyly for the COI, 16S and 28S genes is are for this reason recognized as different species 

(Malaquias and Reid 2008, 2009). This clade appears marginally earlier in the fossil record in the 

Eastern Atlantic (Aquitainian, 23–20 Ma) compared with the Western Atlantic (Burdigalian, 20–16 

Ma) and has an estimated divergence time of 20.4 – 27.3 Mya (Malaquias and Reid 2008, 2009). 

This  led  Malaquias  and  Reid  (2008,  2009)  to  suggest  a  westward  direction  of  trans-Atlantic 

dispersal for this clade.

B. occidentalis  is found in shallow waters with sandy or muddy bottom down to about 3 meter 

depths, typically in estuaries or lagoons (Malaquias and Reid 2009). They are herbivores feeding on 

green algae and benthic phytoplankton. B. occidentlais  have slender shells with thick shell walls 

and an involute spire, and an approximate maximum length of 45 mm. The colour of the shell varies 

between different brownish tones. The animal itself is brown with bright white dots (Figure 3).  

Colour tones of the shell and animal body can vary between localities. B. occidentalis is distributed 

throughout the TWA, from southern Brazil near the tropical/warm-temperate transitional zone in 

Uruguay in the south, throughout the Caribbean Sea and in the Gulf of Mexico and northwards to 

Bermuda (Malaquias and Reid 2008).

B.  occidentalis  are hermaphroditic  with  sexual  reproduction  involving  copulation  with  internal 

fertilization.  They are seasonal  spawners  with a one-year  life-cycle,  and have been reported as 

common in November in Brazil (Malaquias and Reid 2008), and specimens were found abundantly 
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Figure 3: Live specimen of Bulla occidentalis. Photo: Manuel A. E. 
Malaquias.



in Venezuela during March 2010 (M. A. E. Malaquias), Panama during June 2010 (M. Kambestad), 

and Guadeloupe in July 2010 (by the author). In the latter three cases the specimens were not yet 

full  adults.  They produce  an  egg-mass  that  is  deposited  on  benthic  vegetation,  often  sea-grass 

(Malaquias and Reid 2008). Little is known about the dispersal capabilities of  B. occidentalis,  as 

these have never been specifically studied. The precence of a planktotrophic veliger larva has been 

detected in  B. gouldiana,  B. solida  and  B. striata, but the exact longevity is not known. Larval 

development of  B. striata has been observed under experimental conditions, and shown to last at 

least  ten  days  (Murillo  and  Templado  1998).  However,  in  this  study  the  development  was 

prematurely terminated  so this  can only serve  as  a  minimum estimate of  larval  longevity.  The 

detected presence of a planktotrophic veliger larva in three different Bulla species and similarities 

between the protoconch of all Bulla could be an indication for similar development throughout the 

genus (Malaquias and Reid 2009). Typically, shelled cephalspids with indirect development last in 

average two to four weeks in the plankton (Schaeffer 1996).

2.4.2. Genetic differentiation

B.  occidentalis is  considered  to  be  a  single  species,  but  harbours  a  large  degree  of  genetic 

differentiation  within  its  distributional  range.  Malaquias  and  Reid  (2009)  identified  four 

Evolutionary Significant Units (ESUs) with genetic distance between 5,5% - 8% (uncorrected  p-

distance for the COI mitochondrial gene). The explanation for this large genetic differentiation was 

suggested to be related to ecological selection across continental and oceanic lineages (Malaquias 

and Reid 2009). The differences in habitats are thought to be due to larger nutrient influx to the  

continental  shelf  by freshwater run-off from the continents as well  as upwelling,  while oceanic 

environments like in the Caribbean islands are thought to be poorer in nutrients. This explanation 

has been suggested for different organisms (Brachidontes exustus, Lee and Ó Foighil 2005; Bulla 

occidentalis, Malaquias and Reid 2008; Echinolittorina, Reid 2009). Because of a small sample size 

(n=20),  the result  could only be seen as provisional,  and the need for further  examination was 

suggested by the authors. An increase in samples size and sampling localities will give the analysis  

better resolution to discover patterns at a more detailed level, as well as lowering the influence of 

sampling stochasitcity in the observed pattern.
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2.5. Choice of genetic markers

The mitochondrial COI-gene was selected as an appropriate marker for this study because of its 

potential  to  reveal  intra-specific  genetic  variability.  Because  mitochondrial  DNA has  a  smaller 

effective population size (Ne) than nuclear DNA, variation in the mitochondrial genome becomes 

detectable at a more rapid pace (Sunnucks 2000). The less variable mitochondrial 16S rRNA gene 

was also selected for use as a marker. COI is a protein-coding gene while 16S is a structural rRNA 

subunit in the mitochondrial ribosome and both are part of the same locus, but are under different 

selective pressures due to functional constraints (Mueller 2006). Previous work on B. occidentalis  

used both COI and 16S as genetic markers (Malaquias and Reid 2008, 2009), making it practical to 

continue using these two as this data could be easily included in this study. In addition, COI and  

16S are commonly used markers in phylogeographic studies of marine invertebrates (Siphonaria 

pectinata, gastropod, Kawauchi and Giribet 2001; Patelloida profunda, gastropod, Kirkendale and 

Meyer 2004; Doris kerguelenensis, nudibranch, Wilson et al. 2009; Brachidontes puniceus, mussel, 

Cuhna et al. 2011).

2.6. Project aims

This phylogeographic study aims to contribute to the increased understanding of diversification of 

shallow-water benthic organisms inhabiting soft-bottom habitats in the Western Tropical Atlantic 

Ocean.  This  will  be  accomplished  by further  investigating  the  observed  genetic  diversity  and 

phylogeographic  discontinuities  detected  in  Bulla  occidentalis  by  Malaquias  and  Reid  (2009), 

which in this context serves as a model organism. The data-set used by the latter authors will be 

expanded  both  in  number  of  specimens  and  localities,  and  Bayesian  phylogenetic  inference 

calibrated with fossil data will be use to establish the genealogy and the time of diversification 

events. The demographic history of the species will be inferred by Bayesian Skyline reconstruction, 

and standard population genetic methods will be applied to uncover patterns of population structure. 

The outcomes from these analyses will be related to past and present ecological, geological, and 

oceanographic conditions in the TWA in an effort to uncover patterns and potential causes of marine 

diversification  in  B.  occidentalis. This  will  hopefully  contribute  to  increasing  the  general 

understanding of marine biogeography and diversification patterns in the Western Tropical Atlantic 

Ocean.
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We aim to answer the following questions:

1) Is Bulla occidentalis a homogenous genetic entity or is it made-up of more than one genetic 

partition (ESUs) as hypothesized by Malaquias and Reid (2009)? 

2) What caused the pattern of genetic discontinuities (ESUs)?

◦ Isolation due to geographical distance between localities?

◦ Isolation  due  to  ecological  selection:  segregation  across  oceanic  versus  insular 

habitats?

◦ Current  Ocean  circulation  patterns  and  surface  current-mediated  genetic 

connectivity?

◦ Pliocene-Pleistocene eustatic changes?

◦ Vicariant events in the geological evolution of the Tropical Western Atlantic Ocean?

3) Are the genetic breaks shared with other species?

4) Are there periods of major expansion or contraction in population size and what may have 

caused these events?
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3. MATERIAL AND METHODS

3.1. Sampling 

Specimens were acquired from museum collections as well as through field work performed by the 

candidate, main supervisor, student colleagues and other acquaintances. A total number of 84 new 

specimens have been used for DNA-extraction to produce a total dataset of 98 sequences including 

sequences downloaded from GenBank (see Figure 4 for sampling sites, Table 2 for sample list and 

Appendix I for detailed information). Field-work was performed by snorkelling and the collection 

itself was done by hand picking or by use of simple tools like kitchen sieves. Collected specimens 

were immediately preserved in 96% ethanol with ethanol volume approximately 3 times larger than 

the volume of specimens in jars.

Table 2: Sample locations, coordinates, number of samples pr. locality and pr country (localities 
including sequences from GenBank marked with *)

Country Location Coordinates (approx) No. of samples Total no. of samples
Bermuda Tom Moore's pond 32.20 N – 64.42 W 8 8
East Florida St. Lucie inlet * 27.10 N – 80.08 W 14 14
Florida Keys Pigeon Key * 24.42 N – 81.09 W 1 6

Long Key * 24.49 N – 80.49 W 2
Pine Channel * 24.41 N – 81.23 W 3

Cuba (south) Guanahacabibes * 21.51 N – 84.38 W 1 13
Cabo de San Antonio * 21.51 N – 84.57 W 4
Playa Giron 22.03 N – 81.02 W 6

Bahia de Cienfuegos 22.05 N – 80.23 W 2
Mexico Laguna de Chelem 21.15 N – 89.44 W 8 8
Panama Bocas del Toro* 09.20 N – 82.15 W 11 11
Venezuela Higuerote 10.32 N – 66.05 W 9 19

Isla Tortuga 10.54 N – 65.12 W 10
Guadeloupe La Manche à Eau 16.16 N – 61.33 W 10 10
Brazil Recife * 08.05 N – 34.53 W 1 9

Ilha Itaparica 13.02 S – 38.47 W 8
Total: 98
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3.2. DNA extraction, PCR and sequencing

Total genomic DNA was extracted using foot tissue, or in cases with very small specimens, shells 

were broken and whole specimens were used. Extractions were made using the Quiagen DNeasy 

Blood and Tissue Kit following the manufacturers protocol Purification of Total DNA from Animal 

Tissues (Spin-Column Protocol) (Qiagen, Valencia, CA, USA; 09/2001). Tissue was lysed overnight 

on a heated platform instead of the 1-3 hours as suggested by the protocol, and only steps 1-7 were 
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performed to produce 200 µL of total genomic DNA extract. The steps are as follows: 1 - 2) lysis of 

approximately 25 mg of tissue in 180 μL Qiagen ATL-buffer and 20 μL Qiagen proteinase-K, 3) 15 

second vortexing and adding of 200 μL of each of Qiagen AL-buffer and 96% ethanol, 4) pipet 

mixture into a Qiagen Dneasy spin-column placed in a 2 mL collection tube and centrifuge at 8000 

rpm for  1  minute,  5)  discard  flow-through and collection  tube  and place  spin  column in  new 

collection tube before adding 500 μL Qiagen AW1-buffer and centrifuging for 1 minute at 8000 

rpm, 6) discard flow-through and collection tube and place spin column in new collection tube 

before adding 500 μL Qiagen AW2-buffer and centrifuging for 3 minutes at 14000 rpm, 7) place 

spin-column in 1,5 mL microcentrifuge tube before pipetting 200 μL Qiagen AE-buffer, incubate 

the sample at room temperature for 1 min before centrifuging for 1 minute at 8000 rpm, 8) repeat 

step 7.

 

Approximately 700 bp COI DNA was amplified in  50 µL reactions containing 17,5 µL Sigma 

Water, 5 µL Qiagen 10X PCR Buffer, 5 µL 2 µM dNTPS's, 10 µL Qiagen Q-solution, 7 µL 25 mM 

MgCl2, 2 µL 10 µM of each of the primers HCO2198 and LCO1490 (Folmer et al. 1994), 0,5 µL 

Qiagen Taq DNA Polymerase and 1 µL DNA-extract pr. sample. Sequences were amplified with an 

initial denaturation phase of 95°C for 3 minutes, followed by 40 cycles with a 45 second 94°C 

denaturation phase, a 45 second 45°C annealing phase and a 2 minute 72°C extension phase. The 

program was finalized with 10 minutes at 72°C. Some of the COI-PCRs were performed using the 

Qiagen HotStart+ TAQ polymerase, for which the initial denaturation phase was prolonged from 3 

to 5 minutes.

Approximately 500 bp of the mitochondrial 16S-rRNA gene was amplified using the same amounts 

of reagents as for COI, the only differences being the primers. The primers used for 16S PCRs were 

16Sar-L and 16Sbr-H (Palumbi 2002). Qiagen HotStart+ TAQ polymerase was used for all 16S-

PCRs. Sequences were amplified with an initial denaturation phase of 95°C for 5 minutes, followed 

by 39 cycles with a 45 second 94°C denaturation phase, a 45 second 51,5°C annealing phase and a 

2 minute 72°C extension phase. The program was finalized with 10 minutes at 72°C. See Table 3 

for primer details.
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Table 3: Primer information

Primer name Primer sequence Publication
LCO1490 5'-GGTCAACAAATCATAAAGATATTGG-3' Folmer et al. 1994
HCO2198 5'-TAAACTTCAGGGTGACCAAAAAATCA-3' Folmer et al. 1994
16Sar-L 5'-CGCCTGTTTATCAAAAACAT-3' Palumbi 2002
16Sbr-H 5'-TGCACTAGACTCAAGTCTGGCC-3' Palumbi 2002

Problematic DNA-extracts that did not yield satisfactory PCR products were diluted 50 times with 

Quiagen Buffer AE (1 µL DNA Extract, 49µL buffer). This diluted DNA-extract was amplified 

using the same amount of reagents as before. The original extracts for the samples that did not yield 

good PCR product after this treatment were concentrated using a vacuum-centrifuge until the total 

volume was reduced from around 200 µL to between 10 and 50 µL. 1 µL of this concentrate was 

then used for new PCRs reactions. As a last resort Quiagen REPLI-g (Qiagen, Valencia, CA, USA; 

10/2006) was used to amplify total genomic DNA.

The quality of PCR products was assessed using gel electrophoresis imaging with a 1% agarose gel  

and 0,5 M TBE buffer solution. 1 µL of loading buffer was used with 4 µL PCR product. Gel-

electrophoresis  images  and  manual  band-quantification  was  performed  using  the  GeneTools 

package from Syngene (Synoptics Limited, Beacon House, Nuffield Road, Cambridge CB4 1TF, 

United Kingdom).

Sequences were purified in 40 µL reactions each containing 0,4 µL EXO1 (10 U/µL), 4,0 µL SAP 

(10 U/µL) and 3,6 µL Sigma Water in addition to 32 µL PCR product. This was run through the 

thermal cycler at 37°C for 30 minutes and 85°C for 15 minutes. Two different PCR-cycler machines 

were used for all amplification and purification of samples. These were an Eppendorf Mastercycler 

ProS and a Bio-Rad C1000 Thermal Cycler.

The majority of DNA sequencing was performed by Macrogen Inc. (908 World Meridian Venture 

Center,  #60-24, Gasan-dong, Geumchun-gu, Seoul 153-781, Korea) with purified PCR products 

varying between 2 and 55 ng/L of DNA. All PCR products were sequenced in two directions using 

the  same primers  as  used  in  the  PCR reactions.  Occasionally,  the  local  sequencing-lab  at  the 

Institute for Molecular Biology, University of Bergen was used in cases where only few samples 

were available sequencing or to test the quality of the results. For these sequences the sequencing 
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reactions were prepared using a Big-Dye v3.1. The protocol included using 10 ng template DNA, 1 

µL Big-Dye, 1 µL Sequencing buffer, 3,2 pmol Primer and water up to a total volume of 10 µL. The 

sequencing-reaction was run in a PCR-cycler with the following conditions: An initial step of 96º C 

for 5 min followed by 25 cycles of 96ºC for 10 sec, 50 º C for 5 sec and 60ºC for 4 min. 10 µL of  

water was added to the reactions before delivery to the sequencing facility.

3.3. DNA analyses

3.3.1. Assembly and alignment

Sequences  were  assembled from forward  and reverse  primers  using  Sequencher  v4.10.1  (Gene 

Codes  Corporation)  and were  aligned  together  with  the  sequences  downloaded  from GenBank 

(Appendix I) using ClustalX v2.0 (Larkin et al. 2007) before being manually inspected and adjusted 

in BioEdit v7.0.5.3 (Hall 1999).  BioEdit v7.0.5.3  (Hall 1999) was used for trimming sequences 

prior to analysis.

3.3.2. Molecular clocks

The assumption that the COI and 16S mitochondrial genes evolved under a strict molecular clock 

was assessed using model parameters from two Bayesian tree searches, set up as in section 3.3.4.,  

and inspected in Tracer v1.5 (Drummond and Rambaut 2007).  The first run used the combined 

dataset with outgroup and a Yule prior for speciation, and the second run excluded the outgroup and 

used  a  Bayesian  Skyline  coalescent  prior.  The parameter  ucld.stdev  can  be  used  to  assess  the 

behaviour of substitution rates in the dataset. If this value is zero there is no variation in rates 

among branches, but if this value becomes larger than 1, the standard deviation in branch rates is 

greater than mean rates, and rate heterogeneity can be expected. In addition, if the distribution of 

estimated substitution rates abbute against zero there is no among-branch rate heterogeneity. This 

also applies to the coefficient of variation-parameter (Drummond et al. 2007). 

3.3.3. Population genetics

In all analyses falling under the population genetics heading the sequence Cuba074 was excluded 

due to one nucleotide ambiguity (IUPAC ambiguity code R). When describing population genetics 
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analyses  the  term population  will  be  used  to  describe  all  sequences  falling  into  one  sampling 

country  (Table  2),  meaning  that  specimens  from  for  instance  Venezuela  will  fall  into  one 

Venezuelan population even though there are two sampling stations in this country.

Standard genetic diversity-calculations were performed in Arlequin v3.5.1.2 (Excoffier and Lischer 

2010). The  statistics  include  number  of  haplotypes  (Nh),  haplotype  diversity  (h),  number  of 

polymorphic sites (Np), nucleotide diversity (πn) and mean number of pairwise differences between 

sequences (k) in each of the populations. This was done for each of the individual genes and for the 

combined  dataset.  This  software  was  also  used  for  calculating  pairwise  population  FST and 

population ФST values to assess the degree of subdivision within the TWA. Pairwise FST values 

represent  comparisons  between  pairs  of  populations  and  provide  information  on  the  degree  of 

differentiation between populations. Significance tests are performed with 5000 permutations under 

the null hypothesis that there are no differences between populations. The obtained p-value is the 

proportion  of  permutations  that  provide  an  FST-value  that  is  larger  than  the  observed  value 

(Excoffier and Lischer 2010).  ФST   is a fixation index measured through Analysis  of Molecular 

Variance (AMOVA) and this was used to assess hierarchical population structure by computing the 

degree  of  explained  variability  within  and  between  groups  of  populations  based  on  a  priori 

assumptions of groups. These analyses were set up to: 1) test the hypothesis of one panmictic TWA-

population 2) test the hypothesis of four connectivity regions corresponding to: Eastern Caribbean, 

Western Caribbean, the Bahamas-region and the coastlines influenced by the Colombia-Panama 

gyre  (Cowen  et  al.  2006).  The  significance  of  the  test  was  assessed  by  performing  20000 

permutations of the underlying data and recomputing statistics to create a null distribution. The 

assumption of normal distribution and equality of variance in the populations is not necessary in 

AMOVA as  implemented  in  Arlequin  v3.5.1.2  because  of  null-distributions  from permutations 

(Excoffier and Lischer 2010).

Haplotype networks for COI and 16S were created using TCS v1.21 (Posada and Crandall 2000) 

with  default  settings  and  treating  insertions  and  deletions  as  a  fifth  state.  We  also  tested  for 

neutrality using standard tests, Tajima's D and Fu's Fs in Arlequin v3.5.1.2 (Excoffier and Lischer 

2010).  p-values  for  Tajima's  D and  Fu's  Fs  were  calculated  with  10000 permutations  to  asses 

statistical significance. This process generates random samples under the hypothesis of neutrality 

and a population in equilibrium with the use of a coalescent simulation algorithm (Excoffier and 

Lischer  2010).  Both  Tajima's  test   and  Fu's  Fs  are  based  on  an  infinite-site  model  without 
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recombination,  and  significance  is  tested  by  generating  random samples  (permutations)  of  the 

samples under the hypothesis of selective neutrality and a population in equilibrium, with the use of 

a coalescent simulation algorithm.

3.3.4. Phylogenetic analysis and estimating divergence times

Appropriate nucleotide substitution models were selected with the software MEGA 5.0 (Tamura et  

al.  2011)  according to  the  Akaike  Information  Criterion.  The selected  model  for  COI was the 

HKY+G+I and for 16S the GTR+G model was selected (see Appendix II for details). Using the 

same software, the substitution saturation of first second and third codon positions in the COI gene 

was visually inspected both including and excluding an outgroup in the dataset. This was done by 

plotting  total  number  of  sequence  differences  (transitions  +  transversions)  against  pairwise  p-

uncorrected distances for each of the codon positions. The intraspecfic phylogeny of B. occidentalis 

was  inferred  using  a  Bayesian  Markov-Chain  Monte  Carlo  (MCMC) analysis  in  Beast  v1.6.1 

(Drummond and Rambaut 2007). This was done separately for each gene to assess the congruence 

of  gene  tree  topologies.  Searches  ran  for  ten  million  generations  with  sampling  every  1000 

generations. The first 100 trees in each run were discarded as burn-in after visual inspection of  

convergence in  Tracer  v1.5 (Drummond and Rambaut  2007).  The tree searches  were set  up in 

Beauti v1.6.1 (Drummond and Rambaut 2007) using the same settings as for the combined dataset, 

which will be described next.

Based on the combined dataset the genealogy and divergence times were estimated in Beast v1.6.1 

(Drummond and Rambaut 2007) using two B. striata sequences as an outgroup (16S: DQ986625, 

DQ986631, COI: DQ986564, DQ986566). The run was set up in Beauti v1.6.1 (Drummond and 

Rambaut  2007) with data partitioned into two genes with the nucleotide substitution-models as 

found in MEGA 5.0 (HKY+I+G for COI, GTR+G for 16S), but the tree priors were linked to reflect 

the fact that the non-recombining mitochondrial genome in reality is one locus and therefore the 

genes are expected not to have significantly different genealogies. Substitution models and clock 

rates were unlinked, and a Yule-prior for speciation was used because we included an outgroup 

from another species.  The tree root height  prior  was set  up with a  lognormal distribution.  The 

lognormal distribution is considered to be appropriate for fossil calibrated phylogenies because it 

incorporate the uncertainty related to fossil age estimates and the fact that fossils can only provide 

minimum age estimates (Forest 2009). The lognormal distribution was set up with a mean of 18.2 
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Mya, a ln standard deviation of 0.066 and an offset of 0, yielding a 2.5% quantile of 15.96 Mya and  

a 97.5% quantile 20.67 Mya. These priors were based on fossils of B. chipolana which is to our best 

knowledge the earliest fossil sharing synapomorphic traits with  B. occidentalis.  These fossils are 

known  from the  Chipola  formation  in  Florida,  USA,  and  date  to  the  Burdigalian  in  the  Early 

Miocene (20.43 – 15.97 Ma) (Huddlestun 1984; Weisbord 1971). We let the two genes evolve under 

the  assumption  of  a  strict  molecular  clock  as  suggested  by  test  parameters  from Beast  under 

different models (see Results). The substitution rate was allowed to be estimated for both genes 

with uniform priors in the range 0-10 for both with a 0.1 initial value for COI and a 0.01 initial  

value for 16S. This was based on prior knowledge about substitution rates in Bulla spp. (COI: 0.5% 

My-1 and 16S: 0.05% My-1) (Malaquias and Reid 2009). The Bayesian MCMC analysis was run for 

twenty  million  generations  with  sampling  every  thousand  generations.  The  computations  were 

performed in Beast v1.6.1 (Drummond and Rambaut 2007). The parameter log file was visually 

inspected in Tracer v1.5 (Drummond and Rambaut 2007). TreeAnnotator v1.6.1 (Drummond and 

Rambaut 2007) was used to produce a consensus maximum clade credibility tree with mean node 

heights from the stored trees from the MCMC run with a 10% burn-in fraction.

3.3.5. Demographic history of B. occidentalis

The demographic history of B. occidentalis in the period after the three main lineages split at 11,06 

– 6,11 Mya as inferred from the species genealogy (see Results) was estimated using Beast v1.6.1 

(Drummond and Rambaut 2007). The reconstruction of demographic history based on a genealogy 

is subjected to a large degree of uncertainty (Ho and Shapiro 2011), and this problem is adressed in 

the Bayesian Skyline method where the genealogy, the demographic history and parameters in the 

substitution models are co-estimated in one single analysis together with credibility intervals that 

represent phylogenetic and coalescent uncertainty. This should therefore minimize the errors as far 

as possible (Ho and Shapiro 2011). 

The run was set up in Beauti v1.6.1 (Drummond and Rambaut 2007) with data partitioned into two 

genes with the nucleotide substitution-models as found in MEGA 5.0 (HKY+I+G for COI, GTR+G 

for 16S), but the tree priors were linked. As tree prior, we used the Coalescent Bayesian Skyline, 

and default priors were used for the rest of the parameters except for the tree root height, molecular 

clocks  and  skyline  population  size.  The  coalescent  framework  implies  assumptions  about  the 

dataset:  ideally  the  sequences  should  be  gathered  randomly  from  a  panmictic  population,  the 
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markers should be orthologous, non-recombining and should evolve neutrally  (Drummond  et al.  

2005). The piecewise-constant model  embedded in the analysis  assumes that  population size is 

constant  in  any  one  time  interval  and  changes  instantaneously  at  the  transition  between  two 

intervals (Ho and Shapiro 2011). Selecting the correct number of groups (i.e. intervals) is at this 

point not a simple task because of the lack of thorough guidelines  (Ho and Shapiro 2011). The 

default number of ten groups was selected based on what is used in a similar study with a dataset of  

comparable size (Cunha et al. 2011) and based on advice from the developers of the methodology 

(Simon Ho, personal communication).

The tree root height prior was set up based on the divergence times estimated from the analysis in  

section 3.3.4. The lognormal distribution was set up with a mean of 8,5 Mya, a ln standard deviation 

of 0,155 and an offset of 0,5, yielding a 2.5% quantile of 6,197 Mya and a 97.5% quantile 11,38 

Mya. We let the two genes evolve under the assumption of a strict molecular clock as suggested by 

test parameters from Beast under different models (see Results) and because we are dealing with an 

intra-specific genealogy, it is unlikely that there is considerable variation between lineages. The 

substitution rate was allowed to be estimated with uniform priors in the range 0-10 for both with a 

0.1 initial value for COI and a 0.01 initial value for 16S. The population size prior was set to a 

uniform distribution with a lower bound of 1 and an upper bound of 109 and a starting value of 1. 

Little is known about the size of the B. occidentalis population in the TWA, and we therefore chose 

to use a generous upper bound to avoid restriction of the effective population size estimate. The 

Bayesian  MCMC  analysis  was  run  for  10  million  generations  with  sampling  every  thousand 

generations. The computations were performed in Beast v1.6.1 (Drummond and Rambaut 2007). 

The demographic history was inferred from a Bayesian Skyline Plot (BSP) produced using Tracer 

v1.5 (Drummond and Rambaut 2007) with a 10% burn-in fraction.

3.3.6. Isolation-by-distance

Correlation  between  genetic  differentiation  and  geographic  distance  was  assessed  using  the 

Isolation-by-distance web-service (Jensen et al. 2005). All distinct sample localities were treated as 

populations, so that for instance Cuba had two populations (Cabo de San Antonio and Playa Giron). 

All sample sites with only one individual were excluded from the analysis because limitations in the 

software  allow  only  one  such  population.  This  included  Bahia  de  Cienfuegos,  Recife, 

Guanahacabibes and Pigeon Key. The Isolation by Distance-analysis was set up with the following 
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settings: 10000 randomizations for testing statistical significance, genetic distances measured as FST 

and gaps ignored.  Statistical  significance was tested by a Mantel test,  to assess if  the pairwise 

genetic distance-matrix was correlated with the pairwise geographical distance-matrix, as well as 

linear  regression  (Bohonak  2002).  All  distances  were  measured  using  Google  Earth 

(http://www.google.com/earth/index.html).

Two different analyses were performed; one with straight-line distances between sites and one with 

approximate  distances  along  the  trajectories  of  ocean  surface  currents  connecting  the  sites. 

Measuring distances in straight lines between sites is, of course, unrealistic as the effective distance 

between two localities in the ocean cannot be measured across land, but this method was chosen 

because it does not require subjective opinions about travel routes.

Some assumptions were made for the analysis using distances along hypothetical dispersal routes. 

Based on general current patters (Figure 1) it was assumed that Brazil, East Florida, Guadeloupe 

and  Bermuda  were  most  plausibly  connected  without  implying  dispersal  through  the  entire 

Caribbean Sea and instead measure distance on the outside of the Antilles Arc. The extremely large 

distances resulting from Carribbean Sea dispersal-routes and the possibility of the Antilles current 

acting as a connective force suggests that this is a plausible connective pattern. As the approximated 

oceanographic distances  are  approximations  and may be unrealistic,  this  test  was performed to 

investigate whether correlation is improved by scaling geographic distances. See Appendix II for 

distance matrices.
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4. RESULTS

4.1. Sequence analysis

Including the sequences from GenBank, our dataset numbered a total of 98 sequences with 571 bp 

for COI and 98 sequences with 387 bp for 16S. Both COI and 16S were successfully sequenced for 

all  samples,  yielding a  958 basepair  long concatenated alignment  of  98 sequences.  One of the 

sequences (Cuba074) had one ambiguous position (IUPAC ambiguity code R) and was included in 

the phylogenetic  analysis  and the reconstruction of demographic history,  but  excluded from all 

population genetic analyses. See Table 2 for overview of sampling localities and Appendix I for full 

specimen list.

Saturation in the third codon position for COI was assessed by plotting total number of pairwise 

differences (transitions and transversions) against  uncorrected  p-distances for each of the codon 

positions.  No  evidence  for  saturation  was  was  found  both  when  including  and  excluding  the 

outgroup in the analysis. Figure 5 shows the saturation-plot for the dataset excluding outgroup. The 

plot shows that the third codon position p-distances do not flatten out with increasing total distance, 

as would be expected in cases where saturation is taking place. 

A plot of pairwise uncorrected  p-distances for COI shows a bimodal distribution (Figure 6) with 

most distances falling into the intervals 0,0% – 2,5% and 4,5% – 6,5%. This could indicate that  

25

Figure 5: Substitution saturation plot



there are at least two differentiated sets of sequences for which within-set distances are greater than 

between-set distances.

4.2. Molecular clocks

Inspection of test parameters in Tracer v1.5 (Drummond and Rambaut 2007)  suggested that the 

dataset evolved under a strict molecular clock (Table 4). 16S lies consistently below 0,5 for both 

parameters for both genes in the two different models. COI, on the other hand, shows high values 

under  the  model  using  a  Yule  speciation  prior,  but  small  values  under  the  Bayesian  Skyline 

Coalescent Model. Because only one of the parameters is slightly above one, the strict clock model 

will be used as it is likely that substitution rates will be similar between intra-specific lineages.

Table 4: Molecular clock parameters

COI 16S
Outgroup / Yule prior ucld.stdev 0,9820 0,308

coefficient of variation 1,142 0,3135
No outgroup / Bayesian 
Skyline Model Prior

ucld.stdev 0,2116 0,4070
coefficient of variation 0,2094 0,4251
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4.3. Population genetic structure

For  all  population  genetics-related  analyses  the  sequence  Cuba074  was  left  out  because  of  an 

ambiguous position and the fact that ambiguities are not supported for some software packages. 

This  left  us  with a  dataset  of  97 sequences  of  958 bps  for  population  genetic  analyses.  When 

discussing population genetic analyses, the term population will be used for describing all sampling 

localities from one country as evident from Table 2.

Table 5 sums up standard diversity indices for the two genes and combined dataset for each of the 

populations. COI is  generally more variable than 16S, with a higher haplotype-diversity for all 

populations, often several times higher. COI has a haplotype-diversity that varies from 0,6667 – 1,0 

within  populations  while  16S  haplotype-diversity  varies  between  0,0  –  0,7912.  A haplotype-

diversity  of  1,0  essentially  means  that  all  specimens  from  that  locality  are  different  while  a 

haplotype diversity of 0,0 means that all sequences from a single locality share the same haplotype. 

The COI nucleotide-diversity varies between 0,002484 to 0,010819 while it varies between 0,0 and 

0,006719 for 16S. This means that most of the variety in this dataset comes from COI. This is also 

evident from the fact that the COI gene has 60 and 16S only has 22 unique haplotypes out of a total  

of 97 sequences.
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Table 5: Standard diversity indices
 n = number of sampled individuals, Nh = number of haplotypes, h = haplotypic diversity, Np = 
number of polymorphic sites, πn = nucleotide diversity, k = mean number of pairwise difference

Gene Site n Nh h Np πn k
COI Bermuda 8 4 0.7857 ± 0.1127 11 0.009882 ± 0.006040 5.642857 ± 3.027684

East Florida 14 9 0.9341 ± 0.0448 43 0.024480 ± 0.013128 13.978022 ± 6.677808

Florida Keys 6 5 0.9333 ± 0.1217 7 0.004086 ± 0.002984 2.333333 ± 1.475730

Cuba 12 5 0.6667 ± 0.1409 32 0.009579 ± 0.005583 5.469697 ± 2.831432

Mexico 8 4 0.7500 ± 0.1391 6  0.003878 ± 0.002718 2.214286 ± 1.362307

Panama 11 6 0.7273 ± 0.1444 7 0.002484 ± 0.001850  1.418182 ± 0.936320

Venezuela 20 14 0.9474 ± 0.0344 35 0.009264 ± 0.005216 5.289474 ± 2.666604

Guadeloupe 10 10 1.0000 ± 0.0447 26 0.010819 ± 0.006354 6.177778 ± 3.208330

Brazil 9 6 0.8333 ± 0.1265 8 0.003113 ± 0.002248 1.777778 ± 1.131547

16S Bermuda 8 3 0.6786 ± 0.1220 4 0.005089 ± 0.003655 1.964286 ± 1.238432

East Florida 14 6 0.7912 ± 0.0894 10 0.006719 ± 0.004294 2.593407 ± 1.476400

Florida Keys 6 2 0.3333 ±  0.2152 1 0.000864 ± 0.001137 0.333333 ± 0.380058

Cuba 12 2 0.1667 ±  0.1343 6 0.002584 ± 0.002102 1.000000 ± 0.722435

Mexico 8 1  0.0000 ± 0.0000 0  0.0000 ± 0.0000  0.0000 ± 0.0000

Panama 11 4 0.4909 ± 0.1754 4 0.002261 ± 0.001933 0.872727 ± 0.661436

Venezuela 20 6 0.4474 ± 0.1367 7 0.002277 ± 0.001859 0.878947± 0.642503

Guadeloupe 10 3 0.3778 ± 0.1813 3 0.001554 ± 0.001521 0.600000 ± 0.519281

Brazil 9 3 0.5556 ± 0.1653 3 0.002447 ± 0.002088 0.944444 ± 0.710412

Combined Bermuda 8 4 0.7857 ± 0.1127 15 0.007949 ± 0.004729 7.607143 ± 3.973043

East Florida 14 10 0.9451 ± 0.0451 53 0.017316 ± 0.009216 16.571429 ± 7.857279

Florida Keys 6 6 1.0000 ± 0.0962 8 0.002786 ± 0.001987 2.666667 ± 1.646545

Cuba 12 5 0.6667 ± 0.1409 38 0.007133 ± 0.004068 6.833333 ± 3.461689

Mexico 8 4 0.7500 ± 0.1391 6 0.002314 ± 0.001622 2.214286 ± 1.362307

Panama 11 6 0.7273 ± 0.1444 11 0.002394 ± 0.001601 2.290909 ± 1.358171

Venezuela 20 15  0.9579 ± 0.0328 37 0.006446 ± 0.003572 6.168421 ± 3.060647

Guadeloupe 10 10 1.0000 ± 0.0447 29 0.007082 ± 0.004124 6.777778 ± 3.490018

Brazil 9 7 0.9444 ± 0.0702 11  0.9444 ± 0.0702 2.722222 ± 1.591853

Tajima's  D  was  negative  for  both  genes  meaning  there  is  an  excess  of  low  frequency 

polymorphisms, which can indicate that both genes are under purifying selection  (Haubold and 

Wiehe 2006) (Table 6). However the  p-values are high showing no statistical significance of the 

result. Fu's Fs is negative for both genes, with a larger negative value for COI. Negative Fs-values 

are  considered  to  be  evidence  for  excess  alleles  and  therefore  recent  population  expansions 

(Excoffier and Lischer 2010; Fu 1997). P-values for Fu's Fs are significant on a 0,05 significance 

level. This means that our sequences cannot be viewed as behaving neutrally, but rather as evidence 
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of a recent population expansion.

Table 6: Neutrality tests

COI
Tajima's D P-value Fu's Fs P-value

-0.42107 0.38930 -22.09795 0.00080

16S
Tajima's D P-value Fu's Fs P-value

-1.02694 0.15200 -7.61527 0.00930

Pairwise FST  values are summarized in Table 7.  This shows the size of the interpopulation genetic 

variation for population pairs compared to the intrapopulation variation.  The values range from 

0,10007 – 0.94130 with some localities scoring constantly high values while others are more varied. 

Cuba  and  Florida  Keys  stand  out  with  consistently  high  values  while  the  other  groups  vary 

throughout. This implies that these populations are the most differentiated from the rest and is in 

line  with  the  groupings  retrieved  from  phylogenetic  analyses.  One  non-significant  p-value  is 

marked in bold. 

Table 7: Mean pairwise FST's (below diagonal) and p-values (above diagonal)
Bermuda Brazil Cuba East Florida Florida Keys Guadeloupe Mexico Panama Venezuela

Bermuda 0.0±0.0 0.0±0.0
0.01032 ± 
0.0013 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Brazil 0.36583 0.0±0.0 0.0±0.0
0.00040 ± 
0.0003

0.00040 ± 
0.0003 0.0±0.0 0.0+-0.0 0.0±0.0

Cuba 0.79000 0.83923 0.0±0.0
0.00060 ± 
0.0003

0.08788 ± 
0.0044 0.0±0.0

0.00020 ± 
0.0002 0.0±0.0

East Florida 0.12338 0.31359 0.62758
0.00040 ± 
0.0003

0.00040 ± 
0.0003 0.0±0.0 0.0±0.0

0.00020 ± 
0.0002

Florida Keys 0.85497 0.92264 0.82571 0.69436 0.0±0.0 0.0±0.0 0.0±0.0
0.00020 ± 
0.0002

Guadeloupe 0.44471 0.61031 0.80787 0.19388 0.86458 0.0±0.0 0.0±0.0
0.03848 ± 
0.0027

Mexico 0.48980 0.71819 0.85742 0.10689 0.93821 0.41151 0.0±0.0 0.0±0.0

Panama 0.44014 0.82753 0.87005 0.30467 0.94130 0.70167 0.81427 0.0±0.0

Venezuela 0.42988 0.58051 0.81763 0.20589 0.86335 0.10007 0.35259 0.65074

The  AMOVA testing  the  hypothesis  of  one  panmictic  TWA-population  was  designed  with  all 

sampling populations in one group, and test parameters and results can be found in Table 8. It is 

evident  from this  that  the  largest  variance  component  is  explained  among  populations  (68%), 

meaning that within-population variation is generally less than between populations. This could be 
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an indication of geographical structure in the TWA-population rather than panmixia.

Table 8: AMOVA results for hypothesis of panmictic population

Source of variation Degrees of 
freedom

Sum of squares Variance 
components

Percentage of 
variation

Among populations 8 532.627 5.95687 68.26

Within populations 89 246.526 2.76995 31.74

Total 97 779.153 8.72683

Fixation index (ФST) 0.68259 p < 0,05

An AMOVA-analysis was set up to test the "connectivity-hypothesis" suggested by Cowen  et al.  

(2006). In this analysis five groups represented the four connectivity regions (Eastern Caribbean, 

Western Caribbean, the Bahamas-region and the coastlines influenced by the Colombia-Panama 

gyre) and Brazil in a group of its own since it did not fall into any of the four connectivity regions. 

The largest variance component is explained by variation among populations within groups, and if 

the  connectivity-regions  were to  apply to  B.  occidentalis  we would  expect  the  most  explained 

variance among groups (Table 9). 64.92 % of the variation is explained at the among-population 

level with a p < 0.05, while 32% is explained within populations within groups with a p < 0.05. The 

subdivision of the population into groups does not markedly change the results from the AMOVA, 

and the inter- and intra-population variance components are similar in magnitude.

Table 9: AMOVA results for hypotheses from Cowen et al. (2006) Groups: 1: Bermuda and East 
Florida. 2: Cuba, Florida Keys, Mexico. 3: Venezuela, Guadeloupe. 4: Brazil. 5: Panama

Source of 
variation

Degrees of 
freedom

Sum of squares Variance 
components

Percentage of 
variation

ФST P

Among groups 4 335.450 0.25061 2.44 0.02444 P = 0,42

Among populations 
within groups

4 280.512 6.65648 64.92 0.67367 P < 0.05

Within populations 89 297.783 3.34587 32.63 0.66549 P < 0.05

Total 97 913.745 10.25297
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Figure  7:  Haplotype-network.  Top  box:  16S,  bottom box:  COI.  Size  of  circles  correspond  to 

number of sequences sharing that haplotype, also indicated by numbers. Lines connecting black 

dots  represent  mutational  steps  between  haplotypes,  while  black  dots  represent  theoretical 

intermediate haplotypes. Colour key; blue: Florida Keys, red: Bermuda, green: Cuba, cyan: East 

Florida, orange: Venezuela, yellow: Guadeloupe, purple: Panama, pink: Mexico, brown: Brazil.

31

16S

COI



4.4. Haplotype networks

The COI and 16S statistical parsimony haplotype networks created in TCS v1.21 (Clement  et al.  

2000) with a 95% connection limit are shown in Figure 7. The 95% connection limit equals 10 

mutational  steps,  and  is  a  cut-off  value  for  the  probability  of  parsimony.  This  means  that 

connections in the network causing the probability of the total network to fall below a set threshold 

(95%) will  cause  these  haplotypes  to  be  represented  in  a  separate  network.  The COI network 

consists of four distinct networks that are separated by the 95% connection limits. As can be seen 

from Figure 7, there are only very few shared haplotypes between populations. The 16S statistical 

parsimony network yielded two poorly structured networks, one encompassing most sequences, the 

other  including Bermudan,  Cuban and Brazilian sequences.  The groups from the COI and 16S 

network do not correspond. Table 10 sums up uncorrected  p-distances between the separate COI 

networks (A: the big network, B: the Florida Keys network (blue), C: the Cuban and East Floridian 

network (green and cyan), D: the Bermudan network (red)).

Table 10: Mean COI uncorrected p-distances for groups emergent from COI haplotype network. A: 
the big network, B: the Florida Keys network (blue), C: the Cuban and East Floridian network 

(green and cyan), D: the Bermudan network (red).
Groups Mean uncorrected p-distance Groups Mean uncorrected p-distance
D / A 0,015 D / B 0,055

D / C 0,050 A / B 0,060

A / C 0,055 C / B 0,046

4.5.  Phylogenetic analysis and estimating divergence times

COI, 16S and combined dataset phylogenetic trees all show the same three main lineages. These 

groups are: A) All sequences except those from Florida Keys, most from Cuba and two from East 

Florida, B) All Florda Keys sequences and C) All Cuban sequences except for two, and two East 

Floridian sequences. COI and 16S gene trees are presented in Appendix IV. The combined tree 

shows increased branch support values for the main groups, but, with an unsupported branching 

event separating lineage A from B and C. Mean COI uncorrected p-distances for the three groups 

are: AB: 0,059 ± 0,009, AC: 0,055 ± 0,008 and BC: 0,046 ± 0,008. In addition to large uncorrected 

p-distances between groups, these distances are large within groups. For instance group B has a 

range of uncorrected p-distances from 0,000 to 0,108 with a mean distance of 0,045.
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Table 11: Node ages in the B. occidentalis genealogy. See Figure 8 and text for clade definitions

Split Age (Ma)
A  / B / C 8,4952 (95% interval: 6,1077 / 11,0612)

B / A 7,0537 (unsupported)

Within A 3,4155 (95% interval: 2,2709 / 4,6219)

Within B 1,0454 (95% interval: 0,4506 / 1,7665)

Within C 1,3855 (95% interval: 0,6049 / 2,2661)

4.6. Demographic history

The Bayesian Skyline-Analysis showed that the population had a constant effective population size 

since the Late Miocene lineage division with a small bottleneck in the Lower Pleistocene followed 

by a marked population size expansion in the Middle and Upper Pleistocene (Figure 9).

4.7. Isolation by distance

Testing for isolation by distance showed no indications of a positive correlation between increasing 
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Figure 9: Bayesian skyline plot showing demographic history in the period after  
lineages split at 8.5 Mya in the Bulla occidentalis population. Black line indicates 
effective population size and blue fields indicate  error margins.  Ne  = effective  
population size, μ = subtitution rate.
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genetic distance with increased geographical distance. The two analyses yielded similar results, and 

both showed a slight negative relationship between geographic and genetic distances with small R2-

values  indicating  a  weak  relationship.  The  Mantel  test  showed  that  the  null  hypothesis  of  no 

correlation between geographic and genetic distance can not be rejected at the 0,05 significance 

level (pstraight = 0,84, pcorrected = 0,81). Test statistics are summarized in Table 12, and scatterplots of 

geographic against genetic distance are found in Figures 10 and 11.

Table 12: Isolation-by-Distance  analyses: statistical results

Straight distances
Mantel test Z = 21.5253 r = -0.1878 p = 0.8441 
Linear regression Intercept = 0.4049 

± 0.0368
Slope = -0.08276 
± 0.01019 

R2 = 0.0301 n = 66

Corrected distances
Mantel test Z = 27.1575 r = -0.1734 p = 0.8162
Linear regression Intercept = 0.4127 

± 0.0375 
Slope = -0.1069  ± 
0.0131  

R2 = 0.0353 n = 66
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Figure 11: Isolation-by-distance plot with 
straight distances. X-axis scale: 1000 km.

Figure 10: Isolation-by-distance plot with 
corrected oceanographic distances. X-axis 
scale: 1000 km.
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5. DISCUSSION

5.1. Species genealogy and genetic diversity

The high genetic variability in Bulla occidentalis  detected by Malaquias and Reid (2009) has to a 

large extent been confirmed by the presented results. This is evident both in the two gene trees 

(Appendix IV) as well as from the standard molecular diversity indices and the COI haplotype-

network (Figure 7). The intra-specific phylogeny (Figure 8) retrieves three lineages (A, B and C),  

but only one of these is "geographically monophyletic" in the sense that it only includes sequences 

from one sampling  population. This is the Florida Keys group (B), while the Cuban group (C) 

includes  nearly  all  Cuban  samples  plus  two  sequences  from  East  Florida.  Despite  being 

geographically proximate, they are genetically divergent and samples from these two clades have an 

average genetic distance of 4.6% (measured as average uncorrected p-distance for COI). The largest 

group (A) contains all other sequences including the two from Cuba that do not fall into clade C. 

Clade A has between 5–6% average genetic distance to clades B and C (measured as uncorrected p-

distance for COI). These deep lineage splits within B. occidentalis support the hypothesis raised by 

Malaquias and Reid (2009) recognising three well-defined evolutionary significant units (ESUs) in 

the TWA.

The statistical parsimony haplotype networks (Figure 7) rendered four unconnected networks for 

the COI gene and two for 16S. Unconnected networks at the 95% connection limit have been taken 

as  indications  for  the  presence  of  cryptic  species  (Hart  et  al.  2006)  which,  based  on  the  B. 

occidentalis  haplotype networks could  potentially suggest the presence of cryptic species in our 

dataset. Hebert et al. (2003) suggested that mean COI distance between sister species in molluscs to 

be 11,1  ± 5,1% (mean uncorrected  p-distance), and that  this  could be used in DNA barcoding 

efforts. This percentage value was later considered to likely be inflated (Hart  et al.  2006). The 

definition of this kind of threshold is ambiguous because different groups of organisms can have 

different rates of molecular evolution. The mean p-distance between the groups in our network are 

in the range of 1,5 to 6%, which is lower than the level suggested by Hebert  et al. (2006). In 

addition,  the  separation  of  haplotype  networks  into  unconnected  networks  could  be  sampling 

artefacts  due to geographically widespread sampling localities and limited size of samples.  The 

detection  of  intermediate  haplotypes  at  geographically  intermediate  localities  could  reduce  the 

amounts of mutational steps (in effect theoretical haplotypes) between unconnected networks and 
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thereby establishing connection between these. Moreover, Malaquias and Reid (2009) established a 

cut-off value between species in the genus Bulla at 10% uncorrected p-distance for COI gene and 

did not find the genetic breaks of the COI and 16S phylogenies to be mirrored by a phylogeny of 

the slower evolving nuclear gene 28S rRNA. With all of this taken into account, the suggestion by 

Malaquias and Reid (2008, 2009) to consider B. occidentalis as one single taxonomic entity seems 

to be valid.

A striking result was the high haplotype diversity in the COI gene (0.6667  ±  0,1409 – 1.0000  ± 

0,0447), something that is both uncommon and difficult to explain. Wilson et al.  (2009) reported 

similar  high genetic  diversity  (0,6429  ±  0,184 –  0,1000  ±  0,096) for  the  opisthobranch  Doris  

kerguelenensis from the South Atlantic/Antarctic region. Despite its direct mode of development 

and therefore theoretically limited dispersal capacity D. kerguelenes showed no shared  haplotypes 

between major geographical regions, though within regions shared haplotypes could be found up to 

450  kilometres  apart  (Wilson  et  al.  2009).  Faster  evolutionary  rate  in  COI  compared  to  16S 

presumably has greater potential for capturing glaciation events (Wilson et al. 2009) and the large 

differentiation in the COI statistical parsimony network (Figure 7) may have been caused by this.  

Wilson  et  al.  (2009) attributed the  genetic  diversity in  D. kerguelenensis  to  glaciations  events, 

where in Antarctica the ice-sheets grew over the continental shelf severely reducing the amount of 

available habitat and restricting survival to small pockets (Thatje 2005). Likely, with receding ice-

sheets  re-colonization  took  place  followed  by  rapid  differentiation  caused  by  increased  allele 

fixation  due  to  small  population  sizes  in  refugia.  Regarding  B.  occidentalis it  is  possible  that 

fragmentation of populations and reduced gene-flow during Plio-Pleistocene eustasy coupled with 

species biological intrinsic factors could have lead to the high diversity of unique haplotypes found 

in this snail.

5.2. Patterns and forces of marine diversification in the TWA

5.2.1. Are present isolating mechanisms detectable for Bulla occidentalis?

The degree of genetic connectivity and longevity of larval stages in marine organisms (and thereby 

dispersal potential) are not always correlated, and larval longevity is therefore not necessarily a 

good predictor for dispersal potential (Weersing and Toonen 2009). Our results do indicate that B. 

occidentalis  has a high level of connectivity throughout most  of the Tropical Western Atlantic. 
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Clade (A) consists of a diverse assembly of sequences from vastly different localities, including the 

extremes of the geographical range in this study (Bermuda, Brazil and Mexico). These are separated 

by geographic distances of approximately 6700 km (Brazil-Mexico), 5700 km (Brazil-Bermuda) 

and 2700 km (Bermuda-Mexico), while the Florida Keys clade and Cuban clade lie closer to each 

other and deviate more genetically.  There was no evidence for a clear-cut  isolation-by-distance 

pattern in our dataset, a conclusion that is strengthened by the fact that pairwise FST  values vary 

greatly an in a non-systematic way. Localities in the opposite range of the species distribution (e.g. 

Bermuda-Brazil,)  have  lower  FST (0.36583)  than  localities  that  are  geographically  closer  (e.g. 

Brazil-Guadeloupe,  FST = 0.61031).  Another  interesting result  is  the fact  that  samples  from the 

southern-most sampling locality at Isla Itaparica, Brazil, were not divergent compared to the rest of 

the sampling set. It was our expectation that this locality could be divergent due to the bifurcating 

nature of the South Equatorial Current System and mainly uni-directional transport of water along 

the  Brazilian  coastline  as  well  as  its  large  geographical  distance  from the  remaining sampling 

stations. However, all Brazilian sequences fall into one well-supported sub-clade (PP = 1) with one 

Cuban and four Bermudan sequences, as well as being differentiated by 5–8  mutational steps in the 

COI haplotype network. This could indicate an ongoing diversification process, and would make an 

interesting hypothesis for further study at a later time.

There  are  several  examples  of  studies  that  aim  to  uncover  mechanisms  inhibiting  genetic 

connectivity  in  the  TWA and  it  seems  that  different  barriers  apply  to  different  animal  groups 

(marine bivalves, Mikkelsen and Bieler 2000; Brachidontes exustus, Lee and Ó Foighil 2004, 2005; 

trochid gastropods, Diáz-Ferguson  et al.  2010). One such hypothesis was tested, namely whether 

the "connectivity-hypothesis" proposed by Cowen et al. (2006) that recognized four regions of high 

connectivity  (Eastern  Caribbean,  Western  Caribbean,  the  Bahamas-region  and  the  coastlines 

influenced  by  the  Colombia-Panama  gyre)  could  explain  the  genetic  breaks  observed  in  B. 

occidentalis.  Like  for  trochid  gastropods  (Díaz-Ferguson  et  al.  2010)  this  hypothesis  is  not 

supported for B. occidentalis.  Sixty-five percent of the observed variation was explained between 

populations  within  these  pre-defined  groups  (p  <  0,05),  indicating  that  these  regions  do  not 

realistically reflect a common pattern of surface-current mediated pattern of gene-flow.

The hypothesis of a general pattern of segregation between continental and oceanic populations due 

to ecological specialization (e.g. Brachidontes exustus, Lee and Ó Foighil 2005; Bulla occidentalis,  

Malaquias  and  Reid  2009)  was  not  supported  by  the  presented  results.  The  phylogeny  and 
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haplotype networks grouped oceanic and continental populations together, providing no evidence 

that such a mechanism is causing diversification within B. occidentalis. In addition, there does not 

seem to be a consistent pattern of higher FST-values between oceanic and continental populations 

pairs compared to values between continental-continental and oceanic-oceanic pairs. 

5.2.2. Historical patterns and processes

The deep lineage splits within B. occidentalis are dated to the Late Miocene at between 11,06 – 6,11 

Mya. The slightly younger node splitting groups B and C is unsupported, so we consider splits 

between the three main lineages (A, B and C) to be dated to the same period, several million years 

earlier than the final closure of the Panamanian Isthmus. However, the shoaling process that lead to 

the closing of the Isthmus took place over 12 million years, and it is likely that these splits are in  

some way related to oceanographic and geophysical changes in the region that may have caused 

vicariance between groups A, B and C prior to the closing of the Isthmus. There exist examples of 

divergences in a wide range of Trans-Isthmian geminate clades from diverse animal groups (fish, 

Molluscs,  Crustacea  and  Echinodea)  that  do  pre-date  the  closing  of  the  Panamanian  Isthmus 

(Lessios 2008).

The Strait of Florida has been described in early literature as an important barrier for dispersal of  

marine organisms based on large differences in fish faunas on either side of the strait (Briggs 1974). 

Certain properties of the Florida current, like fast flow and little mixing were put forth to explain 

genetic breaks in the area such as a potential barrier between Florida and the Bahamas (Briggs 

1974). The Florida Keys are located in the intersection between temperate and tropical Gulf of 

Mexico, sub-tropical north-western Atlantic and the tropical Caribbean, and the environments on 

the  two sides  of  the  Florida  Keys  provide  substantially  different  habitats.  This  has  resulted  in 

examples of genetic disjunction in species distributed on both the Atlantic and Gulf-sides of the 

Florida Peninsula (Crassostrea virginica, Reeb and Avise 1989,  Brachidontes exustus,  Lee and Ó 

Foighil 2004). For American oysters (C. virginica) this discrepancy was explained by divergence 

under allopatry during Pleistocene low sea-level stands that to a large degree isolated the Gulf of 

Mexico (see Figure 2 for illustration) from the Atlantic side of Florida (Reeb and Avise 1989). For 

the scorched mussel Brachidontes, the maintenance of genetic discontinuities was suggested to be 

caused by post-recruitment ecological filters, and that the origin of this genetic disjunction was 

slightly too old to be caused by Pleistocene transient allopatry (2.91–2.18 Ma) (Lee and Ó Foighil 
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2004; Lee and Ó Foighil 2005).  A survey of the Florida Keys bivalve-fauna showed that the species 

composition of the high-salinity environment of the Florida Bay (north of the Florida Keys) has its 

own identity compared to other parts of the Keys (Mikkelsen and Bieler 2000), but our sampling 

localities are  all  close to the oceanic side of the Keys,  so it  is  not clear  whether  the observed 

divergence of Florida Keys compared to the rest of the TWA can be attributed to this ecological  

difference. The fact that the Florida Keys form the only "geographically monophyletic" group could 

serve as an indication that there is a stronger driving force maintaining genetic differentiation in this 

lineage compared to the rest of the Caribbean.

The Yucatán current, flowing between Cuba and the Yucatán peninsula connecting the Caribbean 

Current and the Loop Current has a strong flow on the western side of the Yucatán strait, but a weak 

southern flow off the eastern tip of Cuba (Gyory [2011c]). Excess water from the Loop Current that 

does not enter the Florida Current constitutes this southern-bound flow, and if this flow has been 

sufficiently persistent through time, and strong enough to inhibit larvae from the Cuban population 

entering  the  Loop  Current,  then  this  could  also  have  been  a  mechanism  promoting  genetic 

differentiation  between  the  Cuban  population  and  the  rest  of  the  Caribbean.  The  fact  that  the 

predominantly Cuban group includes specimens found in East Florida can be explained by the fact 

that the current pattern places East Florida downstream from Cuba increasing the probability of 

finding  specimens  from East  Florida  specimens  in  the  Cuban  clade.  However,  this  picture  is  

somewhat obscured by the fact that Cuban sequences are found in the larger group encompassing 

sequences from the entire region.

The origin of the biggest clade (A) that contains sequences from throughout the TWA also has its 

origin in the Late Miocene, but this group contains two large and well supported sub-clades that  

originate in Late Pliocene or Lower Pleistocene, 4,6 – 2,3 Mya. The main part of this interval pre-

dates the final closure of the Panamanian Isthmus (2,8 Mya), but places it in the final stages of the  

Isthmus up-lift, and possibly links the lineage split to this event.

The majority of lineage splits for all the three main clades are dated to the Pleistocene, during the 

last 2 Ma, with the main diversification happening during the Lower to Upper Pleistocene in the last 

1 Ma. This could be related to transient allopatry caused by sea level changes. Figure 2 shows that 

under  low sea-level  stands the Caribbean Sea can roughly be divided into three semi-enclosed 

basins,  possibly  with  strong  effects  on  ocean  circulation  patterns.  If  ocean  circulation  in  the 
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Caribbean was reduced in strength or hindered, this could potentially reduce gene-flow throughout 

the  Caribbean,  which  could  lead  to  temporary  isolation  of  populations  –  transient  allopatry  – 

allowing  for  genetic  differentiation  of  isolated  populations. For  D.  kergelenuensis  genetic 

diversification was attributed to transient allopatry causing reduction in habitat size with increased 

selection and allele fixation, the so-called Antarctic diversity-pump (Wilson et al. 2009). The timing 

of the diversification of  B. occidentalis  lineages coincides with an increase in the magnitude of 

glaciations  outside  polar  regions  from approximately  1  Mya  to  800  Kya  as  opposed  to  large 

glaciation events throughout the Quaternary as has been the common view (Ehlers and Gibbard 

2007).

5.3. Demographic history

The  Bayesian  Skyline  analysis  (Figure  9)  suggests  a  stable  effective  population  size  for  B. 

occidentalis since the three main lineages split  11,06 – 6,11  Mya,  suffering a  small  bottleneck 

between 1 Mya and 500 Kya followed by a large population expansion event during the last 500 Ka. 

This population expansion is also suggested by the negative values of Fu's  Fs. The increase in 

Pleistocene sea level fluctuations due to glaciation would have caused an increase in periodic shifts 

of habitat availability. 

Despite constantly changing coastal habitats during the Pleistocene it seems the causes of molluscan 

turnover since the closing of the Panamanian Isthmus have mainly been related to the drop in 

primary productivity and resulting change in the structure of food-webs (Todd et al. 2002; O'Dea et  

al.  2007). For bivalves, extinctions caused by the reduction in habitat availability due to receding 

sea-level has been suggested to be unlikely (Stanley 1986).  The effect of marine regression on 

species extinction has been questioned by Stanley and Campbell (1981), as declining sea-level can 

lead to an increase in sublittoral areas, and thereby making it unlikely that marine organisms would 

suffer  from crowding or  habitat  loss.  However,  this  stands  in  contrast  to  results  from Tropical 

Pacific islands where soft-bottom bivalves experienced local extinctions due to habitat loss during 

Pleistocene glaciation cycles, and were more severely affected than hard-bottom species (Paulay 

1996).  Climatic  cooling  has  been  suggested  as  a  more  plausible  mechanism  causing  mass-

extinctions in marine habitats than marine regression (Stanley and Campbell 1981). B. occidentalis  

is  found  in  the  tropical/temperate  transitional-zone  and  its  sister  species  B.  striata  inhabits 

temperate waters in the Eastern Atlantic (Malaquias and Reid 2008, 2009), which might suggest that 
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B. occidentalis has the ability to tolerate shifts in temperature regimes. The results could serve as an 

indication that sea-level oscillations during the Pleistocene likely presented new niche opportunities 

for B. occidentalis and that this species did not suffer from the effects of habitat loss or crowding,  

since receding sea-level might have created new soft-bottom habitats available for colonization.

Nevertheless, recent findings suggest that mitochondrial DNA alone has poor ability to estimate 

demographic parameters due to the small effective population size of the mitochondrial genome 

which combined with high mutation rates may obscure demographic history reconstruction (Eytan 

and Hellberg 2010). It seems that mitochondrial DNA is more suitable to reconstruct demographic 

history on short  time scales. In addition,  single locus-reconstructions cannot recover population 

history  further  back  than  to  the  most  recent  population  bottleneck,  meaning  that  a  significant 

amount of information may have been lost in the Bayesian skyline analysis (Heled and Drummond 

2008). This explains the long period of apparent stability in the effective population size observed 

in our analysis, and unfortunately limits our reconstruction to the last 1 Ma. A possibility for future 

work is to include another locus in the analysis to provide resolution for the reconstruction of the B. 

occidentalis demographic history. In addition, the assumption of neutrally evolving markers was not 

strictly held, something that may be a source of error in analyses of demographic and population 

genetic parameters.
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6. CONCLUSIONS

B.  occidentalis  harbours  intra-specific  genetic  diversity  that  is  not  easily  explained  by current 

factors mediating gene-flow between local populations. The results did not support the notion of 

oceanic/continental  subdivision,  correlation  between geographical  and genetic  distance,  and the 

integrity  of  regions  of  high  connectivity.  Three  main  lineages  showing  deep  mitochondrial 

divergence  were  discovered,  and  possibly  stem  from  vicariance  during  the  formation  of  the 

Panamanian Isthmus in the Late Miocene.  The most plausible explanation for the large present 

genetic variation in  B. occidentalis seems to be transient allopatry caused by Pleistocene eustatic 

changes  related  to  glaciation  cycles,  but  the  mechanisms  responsible  for  maintaining  genetic 

structure in three distinct groups through history are not known.

To further explore the population genetic structure in  B. occidentalis a good strategy would be to 

perform comparisons at a smaller scale. Genetic break-points such as the Mona Passage and the 

Exuma sound will not be revealed unless the sampling design accounts for testing these hypotheses. 

The  seasonality  of  spawning  is  also  an  aspect  that  needs  to  be  addressed,  as  it  is  only  the 

oceanographic  conditions  during  larval  release  that  will  have  potential  to  influence  population 

connectivity, so knowledge about spawning in populations throughout the TWA is necessary for 

further understanding the genetic diversity of populations of B. occidentalis.
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APPENDIX I – Specimen list

C
ountry

Sam
pling 

station

Shell length 
(m

m
)

Specim
en 

num
ber

M
useum

 
registratin 
num

ber

GenBank acc. no.

C
O

I

16S

Guadeloupe La Manche à Eau 25,39 1 Unregistered

Guadeloupe La Manche à Eau 26,48 2 Unregistered

Guadeloupe La Manche à Eau 22,4 3 Unregistered

Guadeloupe La Manche à Eau 21,37 4 Unregistered

Guadeloupe La Manche à Eau 18,33 5 Unregistered

Guadeloupe La Manche à Eau 20,53 6 Unregistered

Guadeloupe La Manche à Eau 18,43 7 Unregistered

Guadeloupe La Manche à Eau 20,93 8 Unregistered

Guadeloupe La Manche à Eau 18,2 9 Unregistered

Guadeloupe La Manche à Eau 17,73 10 Unregistered

Panama Bocas del Toro 23,09 11 Unregistered

Panama Bocas del Toro 17,32 12 Unregistered

Panama Bocas del Toro 17,18 13 Unregistered

Panama Bocas del Toro 16,45 14 Unregistered

Panama Bocas del Toro 17,64 15 Unregistered

Panama Bocas del Toro 19,13 16 Unregistered

Panama Bocas del Toro 24,58 17 Unregistered

Panama Bocas del Toro 12,95 18 Unregistered

Panama Bocas del Toro 16,69 19 Unregistered

Panama Bocas del Toro 13,72 20 Unregistered

Bermuda Tom Moore's Pond 16,82 23 ZMBN83037.3

Bermuda Tom Moore's Pond 15,77 24 ZMBN83037.4

Bermuda Tom Moore's Pond 14,08 25 ZMBN83037.5

Bermuda Tom Moore's Pond 14,82 26 ZMBN83037.6

Bermuda Tom Moore's Pond 15,34 27 ZMBN83037.7

Bermuda Tom Moore's Pond 14,12 28 ZMBN83037.8

Bermuda Tom Moore's Pond 15,57 29 ZMBN83037.9

Bermuda Tom Moore's Pond 13,31 30 ZMBN83037.10

Venezuela Laguna el Ocho, Higuerote 13,94 31 ZMBN84901.1

Venezuela Laguna el Ocho, Higuerote 16,96 32 ZMBN84901.2

Venezuela Laguna el Ocho, Higuerote 14,86 34 ZMBN84901.4

Venezuela Laguna el Ocho, Higuerote 14,16 35 ZMBN84901.5

Venezuela Laguna el Ocho, Higuerote 17,01 36 ZMBN84901.6
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Venezuela Laguna el Ocho, Higuerote 16,1 37 ZMBN84901.7

Venezuela Laguna el Ocho, Higuerote 15,25 38 ZMBN84901.8

Venezuela Laguna el Ocho, Higuerote 15,73 39 ZMBN84901.9

Venezuela Laguna el Ocho, Higuerote 15,49 40 ZMBN84901.10

Venezuela Los Mogotes, Isla Tortuga 15,15 41 ZMBN84902.1

Venezuela Los Mogotes, Isla Tortuga 14,84 42 ZMBN84902.2

Venezuela Los Mogotes, Isla Tortuga 14,79 43 ZMBN84902.3

Venezuela Los Mogotes, Isla Tortuga 13,56 44 ZMBN84902.4

Venezuela Los Mogotes, Isla Tortuga 15,99 45 ZMBN84902.5

Venezuela Los Mogotes, Isla Tortuga 14,5 46 ZMBN84902.6

Venezuela Los Mogotes, Isla Tortuga 13,86 47 ZMBN84902.7

Venezuela Los Mogotes, Isla Tortuga 13,57 48 ZMBN84902.8

Venezuela Los Mogotes, Isla Tortuga 13,02 49 ZMBN84902.9

Venezuela Los Mogotes, Isla Tortuga 12,31 50 ZMBN84902.10

Brazil Itaparica Island 27,29 51 ZMBN86412.1

East Florida St. Lucie Inlet 16,92 61 UF303042.1

East Florida St. Lucie Inlet 16,68 62 UF303042.2

East Florida St. Lucie Inlet 17,09 63 UF303042.3

East Florida St. Lucie Inlet 13,54 64 UF303042.4

East Florida St. Lucie Inlet 14,19 65 UF303042.5

East Florida St. Lucie Inlet 14,6 66 UF303042.6

East Florida St. Lucie Inlet 16,9 67 UF303042.7

East Florida St. Lucie Inlet 13,53 69 UF303042.9

East Florida St. Lucie Inlet 16,93 70 UF303042.10

Cuba Bahia de Cienfuegos 20,8 71 Unregistered

Cuba Bahia de Cienfuegos 19,87 74 Unregistered

Mexico Laguna de Chelem 23,02 81 BMNH20070095

Mexico Laguna de Chelem 20,31 82 BMNH20070096

Mexico Laguna de Chelem 21,07 83 BMNH20070097

Mexico Laguna de Chelem 23,35 84 BMNH20070098.1

Mexico Laguna de Chelem 23,5 85 BMNH20070098.2

Mexico Laguna de Chelem 23,19 86 BMNH20070098.3

Mexico Laguna de Chelem 26,22 87 BMNH20070098.4

Mexico Laguna de Chelem 23,76 89 BMNH20070098.6

Florida Keys Pine Channel 14,06 98 BMNH20070602.1

Florida Keys Pine Channel 12,68 99 BMNH20070602.2

Florida Keys Pine Channel 10,47 100 BMNH20070602.3

Florida Keys Pigeon Key - 102 BMNH20030776 DQ986544 DQ986605

Florida Keys Long key - 103 BMNH20030779.1 DQ986543 DQ986603

Florida Keys Long key - 104 BMNH20030779.2 DQ974657 DQ986604
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Cuba Playa Giron 9,68 111 ZMBN86412.2

Cuba Playa Giron 10,22 113 ZMBN86412.4

Cuba Playa Giron 9,24 115 ZMBN86412.6

Cuba Playa Giron 19,46 116 ZMBN86412.7

Cuba Playa Giron 10,36 118 ZMBN86412.9

Cuba Playa Giron 9,52 119 ZMBN86412.10

Brazil Isla Itaparica 24,81 125 Unregistered

Brazil Isla Itaparica 29,65 128 Unregistered

Brazil Isla Itaparica 26,6 129 Unregistered

Brazil Isla Itaparica 25,03 131 ZMBN86412.2

Brazil Isla Itaparica 27,36 133 ZMBN86412.4

Brazil Isla Itaparica 25,06 136 ZMBN86412.7

Brazil Isla Itaparica 24,1 139 ZMBN86412.10

Cuba Guanahacabibes - 140 BMNH20060125 DQ986538 DQ986598

Cuba Cabo de Santo Antonio - 141 BMNH20050351.1 DQ986539 DQ986599

Cuba Cabo de Santo Antonio - 142 BMNH20050351.2 DQ986540 DQ986600

Cuba Cabo de Santo Antonio - 143 BMNH20050351.3 DQ986541 DQ986601

Cuba Cabo de Santo Antonio - 144 BMNH20050351.4 DQ986542 DQ986602

Brazil Recife - 145 BMNH20030341.1 DQ986545 DQ986606

East Florida Saint Lucie Inlet - 148 UF303042.1 DQ986549 DQ986610

East Florida Saint Lucie Inlet - 149 UF303042.3 DQ986551 DQ986611

East Florida Saint Lucie Inlet - 150 UF303042.4 DQ986552 DQ986612

East Florida Saint Lucie Inlet - 152 UF303042.6 DQ986554 DQ986614

East Florida Saint Lucie Inlet - 153 UF303042.7 DQ986555 DQ986615

Panama Bocas del Toro - 154 BMNH20060118 DQ974658 DQ986616
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APPENDIX II – Nucleotide substitution model parameters

COI
Model HKY+G+I
Akaike Information Criterion 4296,3841428608

Proportion of invariant sites (I) 0,5357819676

Gamma shape parameter (G) 0,7897452939

Transition/Transversion-bias (R) 13,9365336378

Freq A 0,2255688727

Freq T 0,3611603266

Freq C 0,2017022755

Freq G 0,2115685253

Substitution matrix
From\To A T C G

A - 0,0118645147 0,006626142 0,1976680069
T 0,007410186 - 0,1884499915 0,0069502592
C 0,007410186 0,3374312972 - 0,0069502592
G 0,2107485006 0,0118645147 0,006626142 -

16S
Model GTR+G
Akaike Information Criterion 1868,5725129812

Proportion of invariant sites (I) N/A

Gamma shape parameter (G) 0,05

Transition/Transversion-bias (R) 2,2768086373

Freq A 0,2878787879

Freq T 0,3039461977

Freq C 0,1598628775

Freq G 0,2483121369

Substitution matrix
From\To A T C G

A - 0,1135684234 0,0008068587 0,1285489704
T 0,1075648925 - 0,1568706487 0
C 0,0014529796 0,2982570935 - 0,0267051423
G 0,1490322714 0 0,0171927194 -
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APPENDIX III – Isolation-by-distance geographical distances

Straight distances (km)

Oceanographic distances (km)

61

Tom Moore's pond 1 -
St. Lucie inlet 2 1600 -
Long Key 3 1880 310 -
Pine Channel 4 1950 380 70 -
Cabo de San Antonio 5 2440 865 550 490 -
Playa Girôn 6 2990 1410 1070 1020 460 -
Laguna de Chelem 7 2910 1350 995 940 510 990 -
Bocas del Toro 8 3980 2390 2070 2010 1430 1415 1870 -
Higuerote 9 5160 3500 3180 3130 2480 2230 2970 1970 -
Isla Tortuga 10 5160 3500 3180 3130 2480 2230 2970 1970 90 -
La Manche á Eau 11 1800 2295 3450 3390 2780 2390 3180 2370 810 720 -
Isla Itaparica 12 6360 8500 8180 8120 7530 7290 7920 6960 5100 5030 5870 -
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Tom Moore's pond 1 -
St. Lucie inlet 2 1600 -
Long Key 3 1780 270 -
Pine Channel 4 1840 300 58 -
Cabo de San Antonio 5 2310 760 530 480 -
Playa Girôn 6 1970 570 305 290 405 -
Laguna de Chelem 7 2760 1170 990 930 495 900 -
Bocas del Toro 8 3120 1980 1720 1700 1420 1410 1550 -
Higuerote 9 2420 2390 2250 2290 2410 2080 2830 1805 -
Isla Tortuga 10 2370 2370 2240 2280 2410 2080 2840 1860 90 -
La Manche á Eau 11 1800 2260 2215 2260 2530 2140 3010 2370 810 716 -
Isla Itaparica 12 5710 6300 6190 6220 6340 6020 6730 5390 3940 3950 4085 -
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APPENDIX IV – COI and 16S gene chronograms

COI and 16S gene chronograms show the same basic topology with the same three well-supported 

main groups, with an unsupported node between groups A and B. Posterior probabilities shown 

above branches, and scale reported in million years. There was a problem with the 16S run causing 

it to struggle to reach convergence, and producing problems in the branching pattern within clade C. 

However, the two trees are included to show that the three deep lineages are retrieved from both 

genes when analysed alone.
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