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Abstract 

In recent years there has been a decline in both size and the geographical distribution of the 

sandeel stock. The decline has been particularly profound in the Norwegian economic zone 

where the sandeel play an important part not only in terms of economic interests, but also in 

transferring energy from the planktonic society to the higher trophic levels. If there are not 

enough copepods to feed on, the sandeel along with several other animals would lose its basis 

of existence.  

As a part of the IMR SMASSC (Survey methods for abundance estimation of sandeel 

(Ammodytes marinus) stocks) project it was decided to develop methods for acoustic 

identification and abundance estimation of copepods. This was done by comparing biological 

samples to acoustic abundance estimates using multi frequency methods with the operating 

frequencies 18, 38, 120 and 200 kHz collected in 2010. These data were to be compared with 

data collected in 2009 with six operating frequencies 18, 38, 70, 120, 200 and 333 kHz.   

Results from these studies indicate that 333 kHz is required in most cases to identify 

copepods, and that the copepod distribution is far too heterogeneous for biological net 

samples alone to be reliable. Acoustic methods are better suited for mapping geographical 

distribution of copepods and may also be better suited for abundance estimation of copepods 

than the time consuming net sampling methods.      

In addition, sandeel (Ammodyte marinus) digestion rate and gastric evacuation rate were 

monitored in a tankt. The digestion experiment implies that the sandeel leave the sand to feed 

once a day at the most. Also, it seems like light, more than the presence of copepods, is the 

decisive factor of motivation for the sandeel to emerge from the sand. 
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Symbols 

 
sv Volume backscattering coefficient  [m3/m3] 
 
Sv Volume backscattering strength (dB re 1 m-1) 
 
sa  Area scattering coefficient [m2/m2] 
 
sA Nautical area scattering coefficient [m2/nmi2], equal to 4π (1852)2sa 

 
σ Acoustic backscattering cross section [m2] 
 
<σ> Average backscattering cross section [m2] 
 
r(f) Relative frequency response 
 
TS Target strength of one scatter, dB re m2 

 
ESR Equivalent spherical radius, the radius of a sphere having the same volume as an 

irregular shaped object  
 
g Density contrast between an object and its environment [g/cm3] 
 
h Contrast in sound speed within an object and its surrounding environment  
 
ρA Area density [#/m2], [#/nmi2]   
 
ρv Volume density [#/m3] 
 
CML Cube root mean of the length                                   
 
CTD Conductivity, Temperature and Depth  
 
D Simpson index 
 
1-D Simpson index of diversity 
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1. Introduction 

The North Sea is the part of the Atlantic Ocean located between Norway and Denmark in the 

east, Great Britain in the west and Germany, Netherlands, Belgium, and France in the south. 

The 61th temperate latitude draws the border to the Norwegian Sea in the north. While 

Lindesnes-Hanstholm draw the border towards Skagerrak in the east, the south border is 

drawn from Calais-Dover at 51th temperate latitude. It is a typical semi-enclosed continental 

shelf sea (Howarth, 2003).   

 

The North Sea is a productive area with an extensive primary production occurring in the 

upper 30 m of the water column. Nutrients are supplied by inflow from the Atlantic, the 

rivers, the sediments and the Wadden Sea. Nutrient concentration in the central part of the 

North Sea is increased by upwelling from the coastal areas during the summer. The upwelling 

enhances the primary production (Brockmann, 1990; Radach and Lenhart, 1995) and supports 

a large secondary production. The North Sea inhabits several important pelagic species like 

herring, mackerel and sandeel.  

 

Secondary production in the marine environment is dominated by copepods. Copepods are 

usually the main herbivore organisms in marine waters and are the most important food 

supply for plankton predators (Levinton, 1995; Hay, 1995). According to marinespecies.org, 

more than 200 copepod species are registered in the North Sea. Copepods are the main food 

source for many important mid-trophic pelagic fish (Frederiksen et al., 2006). In the North 

Sea the lesser sandeel (Ammodytes marinus Raitt; hereafter sandeel) is such a fish and has 

been dominant in the mid-trophic pelagic region since the 1970’s (Frederiksen et al., 2006).   

 

The sandeel is one of the most abundant fish in the North Sea and considered as a key species 

in the ecosystem (Sparholt, 1990; van Deurs, 2009). The sandeel are an important link 

between the planktonic society and the higher trophic levels (Reay, 1986; Adlerstein, 2000) 

because of its high abundance and high caloric level (Hislop, 1991). Sandeel are also a key 

part of the diet for many different taxa ranging from sea birds and seal to predatory fish, but 

also of great economic interest to industrial fishery (Furness, 1990; Frederiksen et al., 2006). 

Sandeel fishery in the North Atlantic is almost exclusively located in the North Sea where 
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Norway and Denmark are the main actors (Jensen and Christiansen, 2007). The sandeel 

swims in large shoals and spends most of its time buried in the sand. Because of its sand 

dwelling behaviour it is exclusively found on sandy substrate. Sediments where the weight 

fraction of the fine particles silt (particles<0.09mm)  and fine sand  is larger than 10%  will be 

avoided by the sandeel (Wright et al., 2000), and generate a patchy geographical distribution 

of sandeel. 

 

While adult sandeel feed on copepods, sandeel larvae feed mainly on copepod larva and eggs 

along with apedicularians (Economou, 1991). If the copepod eggs are already hatched when 

the sandeel larvae is supposed to feed there will be little food available, and the risk of 

starvation increases rapidly when sufficient prey is not present soon after hatching (Arnott and 

Ruxton, 2002). Sandeel eggs hatch from February to May (Wright and Bailey, 1996) and the 

egg laying of C. finmarchicus peaks in March. The other abundant copepod Calanus 

helgolandicus maximizes its egg laying in May (Jonasdottir et al., 2005). Because of the 

difference in the egg laying period it is of great interest to (van Deurs, 2009) the sandeel with 

a dominance of C. finmarchicus rather than C. Helgolandicus. The lifecycle of the lesser 

sandeel seems to be adapted to and dependent on the egg laying period of the C. finmarchicus. 

Changes in the copepod community with respect to dominance, will affect top predators 

through a climate induced mismatch (Edwards and Richardson, 2004) in lifecycle between the 

sandeel and the copepod community (Frederiksen et al., 2006). A record high copepod 

feeding Herring stock (ICES, 2004) may perhaps also contribute to a decline in sandeel 

population.   

 

A number of factors indicate a decline in sandeel abundance the past few years.  In 2004 there 

was recorded an all time worst breeding season for seabirds in the north western North Sea  

(Frederiksen et al., 2006) on the east coast of Scotland. Also, a recruitment failure in the 

sandeel stock dated back to 2002 led to a 50% reduction in the commercial sandeel landings 

and a collapse in the sandeel stock in 2003 and 2004 (ICES, 2004). The collapse in 2003 was 

unexpected as the snadeel recruitment was very high in 2001.  

Decline in the sandeel population has been related to possible climate induced changes in the 

copepod community (ICES, 2006). Records from continuous plankton recorder surveys show 

reduced copepod abundance, and as figure 1.1 (ICES, 2006) shows, there has been a 
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significant decline in the abundance of Calanus finmarchicus and an increase in Calanus 

helgolandicus and an overall decline in calanus abundance (Heath, 1999).   

A change in temperature by 1°C over 40 years may seem insignificant, but it has none the less 

led to a change in the North Sea from a boreal to a temperate system (Beaugrand, 2008; 

2009). When keeping in mind that each species has a certain temperature optimum, and that 

there is competition for recourses between the species, the preferred temperature interval for 

each species is probably smaller than experiments have shown (Bonnet, 2005; Helaoueet, 

2007). This change in composition in the copepod community will definitely have a critical 

impact on the North Sea ecosystem. 

 

 

Figure 1.1(ICES, 2006): The C. finmarchicus , C. helgolandicus composition change relative to total 

calanus abundance in the North Sea from 1960-2003.The figure show a shift in dominance from C. 

finmarchicus to C. helgolandicus with an overall decline in the calanus population.  

Today’s estimates of copepod biomass are based on biological sampling. The biological 

samples provide precise information about species composition and developmental stages 

rather than reliable abundance estimations. The processing is very time consuming and the 

results are usually not available before months after the sampling period. Conventional 

sampling is also exposed to clogging and avoidance from larger zooplankton. There is also the 

possibility of a mismatch in sampling intervals and the spatiotemporal intervals of 
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zooplankton (Cassie, 1968; Greenlaw, 1979). Net sampling of zooplankton has been going on 

for approximately 200 years (Melle, 2004), while investigation of the acoustic properties of 

zooplankton first started in the 1970’s (Greenlaw, 1979). Since then, in order to better 

understand sound scattering from these tiny animals there has been made significant progress 

in the acoustic modelling work (Stanton, 1994A, 1994B; Demer, 1995; Stanton, 2000).  

To detect changes in the copepod community over a small spatiotemporal scale, a 

combination of biological and acoustic sampling will be well suited.  

 

To be able to acoustically identify and perform acoustic abundance estimations of copepods it 

is a necessity to understand their acoustic scattering properties (Warren, 2001). 

Zooplankton may be divided into three different categories based on their scattering 

properties; (1) gas bearing (e.g. Siphonophora), (2) hard elastic shelled (e.g. gastropods) and 

(3) fluid like scatterers, where the copepods are placed (Simmonds and MacLennan, 2005). 

Because of the lack of both gas filled inclusions, a hard shell or bone, the echo reflected by 

fluid like organisms is much weaker than echoes from gas bearing organisms. In comparison, 

more than 90 % of the echo is considered to originate from the swim bladder in 

swimbladdered fish (Foote, 1980; Simmonds and MacLennan, 2005), where the rest of the 

echo is produced by bones, scales, tissues and fat. Echo from copepods is much weaker and 

more complex than the echo from swimbladdered fish, and about one million copepods in an 

ensemble are needed to produce about the same echo as one 10 cm swimbladdered fish 

(Korneliussen and Ona, 2000).  

 

When there are many small targets like copepods in the acoustic sampling volume their 

individual echoes are combined, and it is almost impossible to resolve the individual targets. 

However, the total echo intensity can be used when measuring the biomass of the sampled 

volume. This measurement is defined as the volume backscattering coefficient (sv) with a 

logarithmic equivalent called volume backscattering strength (Sv). The mean volume 

backscattering strength is commonly used when studying zooplankton. The sv is defined as 

(Simmonds and MacLennan, 2005): 

 ��  =  ∑ �
��  (1) 

 

where the sum (Σ) of all contributing echoes (σ) from the sampling volume V0  is included. 
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To identify insonified targets, the relative frequency response r(f) is an important feature. The 

relative frequency response is a measurement of the volume back scattering coefficient at a 

specific frequency relative to that of a reference frequency (Korneliussen and Ona 2002; 

Pedersen, 2009) . r(f) was defined by Korneliussen and Ona (2002) as: 

 

 	
�� = �
��
�
������

 (2) 

 

Small targets such as copepods would be expected to create weak backscattering at low 

frequencies (18-120kHz) and according to Simmonds and MacLennan (2005) the strength of 

the echo from targets smaller than one wavelength should increase rapidly with the frequency 

and enter the Rayleigh scattering region. When knowing the characteristic frequency response 

of the target, the frequency response key can be used to identify the origin of the echo 

(Korneliussen and Ona, 2003).      

 

There are two basic approaches used for acoustic estimation of copepods. One approach is 

based on the empirical relation between volume backscattering strength and biomass (Køgeler 

et al., 1987). The other is based on empirical and mathematical models (Anderson, 1950; 

Johnson, 1977; Greenlaw, 1977; Køgeler et al., 1987). The acoustic backscattering cross 

section (σ) predicted by these models is related to the target strength (TS) and rely on the 

density (g) and sound speed (h) contrast between the insonified organisms and the medium 

surrounding them, along with acoustic frequency. TS is the acoustic size of the insonified 

target measured in decibel (dB) (Simmonds and MacLennan, 2005).  The TS-σ relationship 

can be expressed as(Ona, 1999): 

 

�� =  10 log � �
��� !� " =  4$	%10�&'

(�!      (3) 

 

σ is measured in square meters in SI units. r2 is the reference area of 1 m2.  

    

The tilt angle and shape of the organism are also introduced in some models. However, the 

angular orientation is not considered very important for copepods. The importance of angular 
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orientation decreases with decreasing size because the difference in cross sectional area is less 

for small animals.  

 

From a biological point of view one of the main problems with acoustic sampling is the lack 

of specimens of the insonified organisms (Greenlaw, 1979). By combining biological and 

acoustic sampling from North Sea sandeel grounds, the main aim is to identify and estimate 

the abundance of copepods and to use this information when investigating the copepod-

sandeel interaction.   

 

Do all the sandeel individuals leave the sand every day? This is an important and relevant 

question for the survey design used in the Norwegian acoustic sandeel surveys (Johnsen et al., 

2009), where the sandeel schools are measured acoustically during daytime. The question is 

based on the assumption that the fraction of sandeel remaining in the ground during daytime 

is low. 

 

Preliminary analyses of the stomach contents in the sandeels carried out in previous surveys 

suggested that the sandeel had a very rapid digestion (pers. comm. Tore.Johannesen@imr.no), 

and an experiment was conducted to test this hypothesis. Because hunger in fish (as compared 

to mammals) is assumed to be inversely proportional with stomach filling (Vahl, 1979) and  

sandeel are visual predators this could be an indicator for how frequent the sandeel have to 

leave the sand to eat. This knowledge could be of help when estimating the amounts of 

copepods the sandeel feeding require, and in acoustic abundance estimation of sandeel.  

 

 

The main focus of this thesis will be to answer the following questions: 

 

• Is it possible to acoustically identify copepods in the North Sea with today’s survey 

equipment?    

• Is it possible to do abundance estimation on North Sea copepods based on today’s 

methods?  

• Do the sandeel leave the sand every day to feed?  
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2. Materials and methods 

2. 1 Materials 

Selected sandeel grounds in the North Sea were surveyed with RV G. O. Sars from May 3 to 

May 24, 2009 and with RV Johan Hjort from April 18 to May 9, 2010.  The data used in this 

study were collected during these two surveys. I participated and collected most of my 

material in the last of the two surveys. Below, maps (Johannesen and Johnsen, 2009; Gjertsen, 

2010) of the sampling stations from both surveys are displayed chronological. The maps also 

show the location of the plankton and CTD stations.    

 

Fig. 2.1A Map (Johannesen and Johnsen, 2009)of the survey area from the 2009 sandeel survey. The 

lines represent the surveyed area, while О and Z illustrate the plankton and CTD stations. 
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Fig. 2.1B  Map (Gjertsen, 2010) of the survey area from the 2010 sandeel survey. The lines represent 

the surveyed area, while О and Z illustrate the plankton and CTD stations. 

 

A good survey design should strive to minimize possible errors, and different designs are 

suitable for different species depending on their nature. The survey area was chosen based on 

satellite tracking data from the sandeel fleet, and trawl track information from two 

commercial vessels. The most important sandeel grounds (APPENDIX H) were covered by 

running parallel or zigzag transects (Fig. 2.1 a and b).  
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2. 2 Acoustic sampling 

2. 2. 1 Echosounder 

The echosounder used during the surveys was a SIMRAD EK60 split beam with 18, 38, 70, 

120, 200 and 333 kHz in 2009 and 18, 38, 120, 200 kHz in 2010. The EK60 is a scientific 

echo sounder used for fisheries research (Bodholt and Solli, 1992; SIMRAD, 2004; 

Simmonds and MacLennan, 2005). The EK60 was running with a ping rate of 4s-1 

(Johannesen and Johnsen, 2009). Ping rate is the number of sound pulses transmitted into the 

water column per second (Simmonds and MacLennan, 2005).   

 2. 2. 2 Calibration of the echosounders 

Calibration of the echo sounder was performed according to standard methods (Foote et al., 

1987) under good conditions and adjusted for split beam methods (Ona, 1999)  prior to the 

2009 survey and after the 2010 survey. More detailed information can be found in the 

calibration journals in APPENDIX F.  

 2. 3 Analysis 

2. 3. 1 Analysis of acoustic data 

LSSS, which is a post processing program for analysing acoustic data (Korneliussen et al., 

2006) was used for analysis and scrutinizing. To detect zooplankton we used a frequency 

response key. Given the acoustic properties of the copepods and the difference in operating 

frequencies it would be expected from the 2009 data to show better and clearer response than 

the 2010 data, especially at 333 kHz. Figures 2.2a and b are good examples of what we were 

searching for as copepod backscattering in both surveys.   
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Fig. 2.2a: Desired relative frequency response in        Fig. 2.2b: Desired relative frequency response                

in 2009.                                                         response in 2010                                

              . 
 

This example shows that the backscattering is low at 38-120 kHz compared to 200 and 333 

kHz. It is respectively 7 and 30 times higher at 200 and 333 kHz than at 38 kHz.  

 

Echograms were selected based on the plankton sampling stations which were the same as the 

CTD stations. This was done in order to compare the acoustic results with the biological 

samples. Each echogram ranged over 5 nautical miles (nmi). The sampling stations were 

placed the middle of this stretch and consequently there were 2.5 nmi on both sides of the 

stations. This part of the procedure was identical for the two surveys. We collected 12 

zooplankton samples in 2009 (Fig. 2.1a), while in 2010 (Fig. 2.1b) we sampled from 28 

different locations.  

 

In the LSSS, the threshold of included volume backscattering strength (SV) can be changed in 

order to remove unwanted acoustic backscatter from the echogram. When scrutinizing for 

copepods it is important to remove echoes with origin from organisms such as fish or hard 

elastic shelled animals which would out shadow the weak echo of small fluid like organisms. 

The unwanted backscattering from fish can be removed by narrowing the threshold interval. 

This is done by removing a part of the upper SV interval. When narrowing the threshold 

interval all echoes with SV outside the interval are removed. The echo from hard shelled 

organisms on the other hand might be more difficult to eliminate. Echoes from organisms 
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such as the gastropod Limacina retroversa are too weak to be removed by thresholding 

without removing copepod sound scatters as well.      

   

When analysing the 2009 data the threshold interval was set to -50�-70 dB. The lower part 

of the threshold interval was changed from -70 to -80dB when analysing the 2010 data. This 

was done because a significant part of the 200 kHz frequency response seemed to be located 

in this interval (-70�-80 dB). 

   

The acoustic density of copepods in a specific layer is measured through the nautical area 

scattering coefficient (sA) or the area scattering coefficient (sa). sA for backscattering 

identified as copepods, was stored to category copepods. The nautical area scattering 

coefficient is defined: 

 

 �) =  4$
1852�%�-  (4) 

 

with sA in [m2/nmi2 ] and sa in [m2/m2]  
 (Simmonds and MacLennan, 2005). 

  

Based mainly on the frequency response all the echograms were scrutinised with respect to 

copepod backscattering. In order to obtain a high resolution of the water column the data was 

stored with grid size set to 5m vertical and 0.1nmi horizontal before reports of the mean area 

backscattering coefficient were generated. The depth of initial top boundary was set to 10 m 

to avoid air bubble attenuation and the distance from bottom of initial bottom boundary was 

set to 0.5m. 

 Based on the knowledge of the expected backscatter characteristics of small fluid like 

organisms/objects the backscatter was isolated using multi frequency analysis. A layer of 

copepods of size 0.3-2.5 mm will enter the Rayleigh scattering region when insonified with 

frequencies between 18-333kHz (Korneliussen and Ona, 2000).  If we look at copepods as 

small fluid like spheres this can be expressed mathematically as the echo area (σ) being 

proportional to the equivalent spherical radius (ESR) in the power of 3: 

  

 "~/�01 (5) 
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which means that for a fixed size, the backscattering will increase exponentially with σ~ESR3  

When the echograms displayed layers with weak smoke like features and exponential 

frequency response, it was possible to use the frequency response as a key for isolating 

copepods.   

 

The depth profile of copepod backscattering calculated and illustrated using R. By calculating 

the mean backscattering value for each depth channels and plotting mean sA against depth, the 

depth profile is illustrated (Fig. 3.9) by a box plot. This was done for all of the 12 sampling 

stations from the 2009 survey.  

2. 3. 2 Target strength calculations 

Target strength can be used to measure how strongly an object reflects sound. This also 

applies to zooplankton, but because of their small size and complex structure the methods 

used in abundance estimation of fish is not suiting for zooplankton, other than the those 

similar in size to the smallest fish (Simmonds and MacLennan, 2005).  

Models by Stanton and Chu (2000) indicate very weak backscattering (Fig. 2.3) from 

copepods similar in size to what we found in our biological samples. Their models show a TS 

of approximately -135 dB for a 0.94 mm copepod with a cephalothorax of 0.65 mm 

(Pseudodiaptomus coronatus) when insonified with 333 kHz.  

They also made controlled acoustic measurements from hundreds of freely swimming 

copepods. Their experiment indicated that their model calculations were correct.    
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Figure 2.3 (Stanton, 2000): Comparison of TS models and laboratory data. The dashed line represent 

TS calculations based on the Andersons (1950)sphere model while the continuous line represent a 

deformed finite cylinder model. The copepods used in the experiment were the species 

Pseudodiaptomus coronatus with a total length of 0.94 mm, a 0.65 mm cephalothorax and a width of 

0.234 mm. The angular distribution was 0°-10° and the density and sound speed contrasts in this study 

were set to g=h=0.01.     

Our TS calculations were performed by Dr. Lucio Calise, a scientist at IMR, using a sphere 

model (Anderson, 1950). In a sphere model an irregular shaped fluid-like target is described 

as a sphere with equivalent volume to the irregular shaped target. From the theory, the 

scattering from a object is given by its size, form and acoustic impedance, which depends on 

the difference in specific mass density and sound speed between the object and the 

surrounding medium. Thus, an acoustic model can predict the scattering from individual 

fluid-like organism (target strength) where the acoustic frequency, size of the organism, 

density and longitudinal sound speed contrasts between the animal and its environment are the 

basic input to the model.  

The body length ranged from 0.5 to 3 mm with step of 0.1 mm and the density and sound 

speed contrasts (g and h) (Table 2.1) between the target and its surroundings were obtained 

from Køgeler et.al.(1987)  
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The target strength calculations show a TS approximately 12 dB higher than found by Stanton 

and Chu  (2000) (Fig. 2.3) for a similar sized copepod and with a frequency of 333 kHz. This 

difference in TS will part of the discussion.    

From the TS we found the σ (Table 2.1) and the slope of the σ (Fig. 2.4) through the size 

distribution. From nonlinear regression we established that the σ is proportional to Length3 

(L3). The relationship σ = b0L
b1 was found, and calculations (Table 2.2) show that there is a 

close to cubic relationship between backscattering and animal size at 333 kHz.   

Table 2.1: Target strength calculated with a  frequency of 333 kHz  and backscattering cross section 

for copepods between 0.5-3mm. g and h are obtained from Køgeler et.al.(1987). σ in units of m2. g and 

h are respectively the density and sound speed contrast to the surrounding water.     

total 
length[mm] 

estimated 
ESR[mm] 

TS 
[dB] 

σ 

[mm2]  

ρ ρ ρ ρ     
[[[[kgl-1]]]]    

g H 

0.5 0.16 -139.6 1.39E-07 1.024 0.99805 1.021 
0.6 0.20 -134.6 4.34E-07    

0.7 0.23 -130.5 1.12E-06    

0.8 0.27 -127.0 2.52E-06    

0.9 0.30 -123.9 5.09E-06    

1.0 0.34 -121.2 9.44E-06    

1.1 0.37 -118.9 1.63E-05    

1.2 0.41 -116.7 2.67E-05    

1.3 0.44 -114.8 4.15E-05    

1.4 0.48 -113.1 6.18E-05    

1.5 0.51 -111.5 8.89E-05    

1.6 0.55 -110.1 1.24E-04    

1.7 0.58 -108.8 1.67E-04    

1.8 0.62 -107.6 2.20E-04    

1.9 0.65 -106.5 2.82E-04    

2.0 0.69 -105.5 3.54E-04    

2.1 0.72 -104.6 4.36E-04    

2.2 0.76 -103.8 5.24E-04    

2.3 0.79 -103.1 6.19E-04    

2.4 0.83 -102.4 7.19E-04    

2.5 0.86 -101.9 8.20E-04    

2.6 0.90 -101.4 9.20E-04    

2.7 0.93 -100.9 1.02E-03    

2.8 0.97 -100.6 1.10E-03    

2.9 1.00 -100.3 1.18E-03    

3.0 1.04 -100.1 1.24E-03    
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Table 2.2: The cubic relationship between length and backscattering σ = b0L
b1. 

Parameter Estimate Std. Error t-value p-value 

b0 3.047e-06 4.784e-06 8.143 2.30e-08 
b1 3.247e+00 1.241e-01 26.020 < 2e-16 

 

 

Figure 2.4 show how the acoustic backscattering cross section increase with the size of the copepods.  

The regression line  b0 * (length)b1 has a exponent(b1) of  3.247and an intercept (b0) of 

 3.047e-06.The real line forms a sigmoid curve as it approaches 3mm which means that this model is 

only suitable for copepods smaller than 3mm.    

 

 

2. 3. 3 Acoustic abundance estimation 

If the copepods are heterogeneously distributed, the correlation between the area 

backscattering coefficient and the biological abundance estimates is expected to be reduced as 
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the distance from the sampling point increases. Therefore, to be able to validate the acoustic 

biomass estimates of copepods with biological net sample data, the change in correlation 

between the acoustical and biological abundance estimates over distance were examines. The 

acoustic abundance estimation was calculated from the working equation (Ona, 1999): 

 

 2) = 3
4�5 67  (6) 

 

where ρA is the area density in #/nmi2, sA is the nautical area backscattering coefficient 

[m2/nmi2] and <σ> is the mean backscattering cross section [m2]. A0 is the area of 1 m2.  

 

The density with respect to weight was found by multiplying the ρA (Eq. 6) by the average 

weight (<W>) of the copepod sample.  

 

 28 = 2) < : > (7) 

 

where ρw is measured in g/nmi2 

The weight was found from the length-weight relationship equation by Krylov (Cohen, 1981). 

This abundance estimate was used when comparing with the biological samples.  

 

                                                            : =  0.292>1 10?1                                                                       (8) 

 

W is weight in grams, and L is length in mm.   

2. 4 Biological sampling equipment 

For acoustic stock assessment of copepods to be reliable or even possible it is important to 

complement the acoustic data with biological samples. During the surveys we used a WP-2 

net for plankton sampling while a trawl was used to collect Sandeel for this study.   

2. 4. 1 WP-2 

The WP-2 (Fig. 2.5) is a net designed for plankton sampling. It is used in stationary vertical 

hauls from the bottom and up. The mesh size used was 180µm and the WP2 had a diameter of 

57cm. The WP-2 samples do not supply information about the vertical distribution of the 

catch. The WP-2 was deployed at all CTD stations.  
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Figure 2.5: This is not the exact same as we used but a WP2 from KC- Denmark 

2. 4. 2 Trawl 

The trawl in use was the Campelen bottom trawl 1800 (Engås, 1995). This is a standard 

survey trawl used for demersal trawling. This trawl is operated by both G. O. Sars and Johan 

Hjort. We used the Campelen 1800 to collect sandeel. Sandeel is not seen as a demersal 

species, but in order to avoid to big samples it is preferred over a pelagic trawl (pers comm. 

Egil.Ona@imr.no). The trawl door in use was Steinshavn W9, High type, area of 7.1m2 and 

2175kg. Se APPENDIX E for drawings.     

2. 4. 3 CTD 

CTD (Fig. 2.6) is an instrument used for measuring conductivity, temperature and depth. The 

CTD model used by IMR is SBE 911plus produced by Sea-Bird Electronics Inc. (Sea-bird, 

2010). The CTD is lowered into the water column and records the water profile continuously 

at approximately 1ms-1.  The CTD data, temperature, salinity and density was recorded and 

plotted for all CTD stations (Fig. 2.1) from the two surveys. The data is transmitted via a long 

cable to a computer.  
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Figure 2.6: The CTD produced by sea-bird electronics inc. and used by IMR (IMR, 2009).The CTD 

probe record salinity, temperature and depth.  

2.5 Processing of the biological samples 

2. 5. 1 Onboard ship 

The zooplankton samples were split in two with a Motoda plankton splitter. One half was 

fixed on 4% formalin (CH2O) and buffered with borax (Na2B4O7·10H2O) for later taxonomic 

analysis. This is the most common method used for fixing and storing zooplankton samples 

because it is cheap and the samples can be stored for several years (Kapiris et al., 1997).    

 

The other half was filtered through 2000 µm, 1000 µm and 180 µm filters. The zooplankton 

measurements larger than 2000 µm were identified and measured and put on an aluminium 

dish for dry weight. The 1000 µm and 180 µm samples were put directly on dishes and put in 

a heating closet at 60°C for more than 24 hours to determine dry weight. The data recorded 

were uploaded to the IMR plankton web.  This procedure was used onboard Johan Hjort. The 

samples from the 2009 survey were not split for biomass estimation but put directly on 

formalin as no specialist on zooplankton participated on the survey. The formalin fixated 
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samples had to be prepared for weighing in the laboratory at the High technology centre in 

Bergen.  

2. 5. 2 At the IMR lab 

The samples were further analysed at the zooplankton laboratory of the IMR. The 

zooplankton samples were processed in accordance with standard IMR procedure. First, the 

samples were sifted through an 180µm sifter and the formalin washed out with fresh water. 

With the help from a Motoda plankton-splitter the samples were further, stepwise split in 

halves until the sample was of countable size. By recommendations from the engineers at the 

IMR zooplankton laboratory, the splitting was restricted to 1/128 of the original sample. This 

was done in order for the subsample to be as reliable as possible when back-calculating to the 

original sample. This was not possible for all samples, as some of them were too numerous 

and had to be split down to 1/512 of the original sample.   

 

When the splitting was done, the subsample was put in a counting chamber consisting of five 

cambers and analysed under a stereomicroscope of type Leika MZ7.5 (Leika, 2008). All the 

chambers were counted. After the counting was done the subsample was put back on borax-

buffered formalin for scanning. 

The total number in each catch was calculated by multiplying the number of animals counted 

in the subsample by the denominator of the fraction of the subsample. 

 

    @ABA-C  =  @DE-FGCH IJHKBFLK-AB� BM DE-FGCH M�-NALBK  (9)  

 

Further the volume density was found by dividing the total catch by the volume filtered.  

 

  2� = OPQPRS
T�QSUVW �XSPWYWZ

                                                                 (10) 

  

The dry weight from the 2009 samples had to be measured in the laboratory at the High 

technology centre in Bergen (HIB). The samples were rinsed in fresh water to remove 

formalin before they were split in half. One part was put back on 4% borax buffered formalin, 

while the other part was filtered through sieves of mesh size 2000 µm, 1000 µm and 180 µm. 
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The different size fractions were put in pre weighed aluminium dishes and placed in a heating 

cabinet at 60°C for 24 hours, or until the weight had stabilised. 

 

The wet weight was calculated from the dry weight by multiplying with a factor of 5.0 

(Mauchline, 1998) and by adding 20% (Omori, 1978; Champalbert, 1979) as a compensation 

for the expected weight loss from the formalin fixation. However, the accuracy from this 

procedure is not as good as for the 2010 material.  

The area density was calculated from the area of the WP-2 (0.252) by multiplying the sampled 

volume by 4 for the m2 density.  

 

 2) = 4@[BA-C (11) 

 

2. 5. 3 Zooscan   

The Zooscan is a waterproof scanner for identification and measurements of zooplankton. The 

plankton species identification software is yet to be perfected, and the scanner was used for 

length distribution only.  

 

The subsamples were once again rinsed for formalin and flushed in boiled fresh water to 

remove potential unwanted buoyancy before they were poured onto the scanner. The 

zooplankton size distribution was obtained for 39 of the 40 samples, and the zooplankton was 

divided into desired taxonomic groups. Sample 206 was not measured for length distribution 

due to computer error. The size distribution within each of the taxonomic groups was not 

obtained because it would be too time consuming.  

 

The length distribution was recorded for the fraction of the sample that was measured 

between 0.3- 3.0 mm. This was done because the organisms smaller than 0.3 mm would be 

competing with dust and other contamination in the scanner. In addition, this would further 

ensure that the animals used for the length distribution data were mainly copepods, and rule 

out potential contamination from animals such as apendicularians and chaetognats, which 

here would represent significant outliers.           

From the scanning, total length and the equivalent spherical radius (ESR) which is the radius 

of a circle with volume equivalent to that of an irregular shaped object was found.  
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2. 6 Digestion experiment 

During the survey it was suggested that the sandeel digested rapidly and within hours. This 

would seem reasonable if the sandeel left the sand every morning with an empty stomach to 

feed. This would also suggest that almost all of the sandeel left the sand during the day.  

To test this, a sample of 330 A. marinus was collected from a trawl sample (station number: 

195) and put in a tank where stomach filling and digestion rate were recorded from 10 

individuals every hour. Before the experiment started we made sure that the sandeels in the 

catch were well fed. This was done by examining the stomachs of several sandeel as soon as a 

catch was on deck.  

 

A 6 level scale was made were digestion rate ranged from 0-5; 0 being empty, 1 unidentified 

matter, 2 less than 25 % identifiable individuals, 3 25-50%, 4 50-75% and 5 being easy 

detection of 75-100% of the individuals. Also a 5 level scale concerning stomach filling were 

made, where 1 was empty, 2 modest, 3 half full, 4 full and 5 bursting. The sandeel was 

terminated and the otoliths preserved before it was gutted, examined and the stomach filling 

and digestion rate recorded.    

 

Because of expectations of fast digestion it was decided to examine 10 individuals every 1 

hour in the beginning of the experiment. The sampling started at t=0 and continued with t=1, 

t=2…t=7. After 7 hours it was decided to increase the interval. The stomach data was plotted 

against time to see how long it would take for the sandeel to digest the copepods and empty 

its stomach. The data for this experiment was recorded by 5 different technicians, and data 

recorded without me being present in the laboratory were removed to avoid subjective scale 

reading.       

2.7 Statistics 

All statistical analysis were performed in R (Team, 2008). When testing the correlation 

between the biological and acoustic abundance estimations simple linear regression was used.  

The Simpson index of species diversity was used when comparing the diversity between the 

two years. The index is a measurement of the probability of two randomly picked species 

being different. The outcome of equation 12 give the Simpson index (D) where 0 is high 
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diversity and 1 is no diversity. By using the Simpson index of diversity (1-D) instead the 

index changes to a more logical scale where 0 represent no diversity and 1, high diversity.    

  

  \ = ∑ K
K?]�
O
O?]�       (12) 

  

n represents the total number of organisms of a particular species and N  the total number of 

organisms of all species. 

 

Backscattering from copepods is size dependant and small copepods scatter sound more 

poorly than large. Non linear regression was used to find the relationship between σ and the 

length, and the backscattering-length relationship found at 333 kHz proved to be close to 

cubic. This information was used when calculating the mean size of the copepods with respect 

to the backscattering which is not the arithmetic mean but the cube root mean of the length 

(CML).    

 ^_> =  ` ∑ KXaX�
∑ bcdce(  

�
 (13) 

The weight-length relationship (Eq. 9) is similar to the σ–length relationship. The 

backscattering from a certain weight is therefore assumed to size independent. This means 

that 1 kg of small copepods will scatter sound in a similar manner as 1 kg of large copepods.  

All graphical presentations and statistical calculations were performed in R (Team, 2008). 
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3. Results 

3.1 2009 versus 2010 the biological samples 

The animals collected with the WP-2 net (Fig. 2.1a and b) was identified to the lowest 

taxonomic level required for this study. The taxa recorded were Calanus sp., Microcalanus, 

Psaudocalanus, copepod Naupilii, Metridia sp., Cyclopoid copepods, Apendicularia,  

Aglantha digitale, Temisto sp., Temora longicornis, Polychaeta, Decapod larva, Chaetognata, 

Limacina retroversa, and some Hydrozooans other than A.digitale. There was some variation 

between the stations but calanoid and cyclopoid copepods were the dominant zooplankton in 

all stations. In 2009 at least 72% belonged to the order Cyclopoida and Calanoida while they 

contributed to 65% in the 2010 samples. At the most, 97 and 90% belonged to these to 

families in respectively 2009 and 2010, and the remaining taxa were represented by relatively 

few individuals. The taxonomic groups obtained from the biological samples were as 

expected from earlier North Sea surveys in the spring (Falkenhaug and Omli, 2010).  Tables 

of the taxonomic analysis can be found in APPENDIX A. 

 

Zooplankton taxa recorded during the 2010 survey were similar to the 2009 survey. The 

samples were dominated by early copepod stages belonging to the orders Cyclopoida and 

Calanoida. These two alternated as the most abundant order from station to station. Tables of 

the taxonomic analysis can be found in APPENDIX A.  

 

The Simpson index of Diversity (1-D) reveals a higher diversity in 2010 (Table 3.1) than in 

2009 with a mean index was 0.5 and 0.6 for the 2009 and 2010 data, respectively. A two 

sample Kolmogorov-Smirnov test of the index revealed a significant (p=0.03) difference in 

species diversity between the two years. The species accumulation curve (Fig. 3.1) shows that 

10 samples should be sufficient to detect all species, meaning that the 12  samples from the 

2010 survey is enough for the diversity index to be reliable. 
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Table 3.1: Simpson index of species diversity (D-1). The table explain the species diversity for all 

stations from 2009 and 2010. 0=no diversity, 1=High diversity. The values represent the probability 

of two randomly picked species being different from each other.   

Stations 

2009 

D-1 Stations 

2010 

D-1 

194 0.54 308 0.75 

195 0.65 309 0.70 

196 0.54 310 0.75 

197 0.58 311 0.76 

198 0.43 312 0.58 

199 0.60 313 0.50 

201 0.37 314 0.69 

202 0.28 315 0.74 

203 0.49 316 0.79 

204 0.52 317 0.52 

205 0.53 318 0.73 

206 0.52 319 0.73 

  320 0.69 

    321 0.69 

    322 0.60 

    323 0.41 

    324 0.34 

    325 0.40 

    327 0.68 

    328 0.58 

    329 0.57 

    330 0.47 

    331 0.67 

    332 0.48 

    333 0.43 

    334 0.53 

    335 0.73 
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Figure 3.1: Species accumulation curve. Species accumulation models seek to estimate the number of 

unseen species. The figure demonstrates that the maximum number of species is reached after 10 

samples in 2010 and that no new species were found in the rest of the samples. This suggests that 12 

samples in 2009 are sufficient when comparing species diversity between the two years. The plotted 

values are the change in mean numbers of species with increasing numbers of samples. The colored 

lines show the 95% confidence intervals.      

Abundance estimation for 2009 based on WP-2 sampling (Table 3.2) revealed a variation 

among sampling stations ranging from 10 to 36 g/ m2 with an average of 20 g. About 99% of 

the sampled biomass was found in the 180-2000 µm filters, almost equally distributed 

between the smallest and the intermediate size intervals, 180-1000 and 1000-2000 µm. This 

shows that the copepods of size <1 mm were far more numerous than those larger than 1 mm.  

Biomass estimations from the 2010 survey ranged from 0.4 to 40 g/m2 with an average of 

9 g/m2. More than 60% of the sampled zooplankton was located in the 180-1000 µm interval 

and only 30% in the 1000-2000 µm interval. This suggests that the copepods were in average 
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smaller in 2010 than in 2009. Table 3.2 and 3.3 show all biomass calculations, including a 

conversion factor between dry weight and wet weight. The compensation factor of 20% used 

in 2009 to compensate for formalin induced weight reduction(Omori, 1978) is also indicated 

in the table. 
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Table 3.2: Biomass calculations for all stations from 2009. All weight calculations are in grams where DW is dry weight [g], WW is wet weight [g] and the 

corrected sum of 20% added due to formalin induced weight decrease(Omori, 1978). 180, 1000, and 2000 µm are the mesh size of the sifters used in the 

fractioning. Wet weight is calculated from dry weight by multiplying by a factor of  5 (Mauchline, 1998).The weight fraction >2000 µm does not contain 

copepods but mostly amphipods and decapod larva. The fraction 180-2000 µm consists mainly of copepods. 

Stations  

2009  

n10
5
/ 

sample 

n10
5
/ 

m
2 

n10
4
/ 

m
3 

DW 

180µm 

DW 

1000µm 

DW 

2000µm 

DW 

sum 

Weight  

correction 

WW/ 

Sample 

WW/ 

m
3 

WW/ 

m
2 

WW10
-5

/ 

n 

194 2.19 8.74 2.19 0.191 0.540 0.022 1.506 1.807 9.036 0.904 36.144 4.13 

195 2.41 9.63 2.41 0.149 0.203 0.005 0.714 0.857 4.284 0.428 17.136 1.78 

196 1.88 7.52 1.88 0.163 0.219 0.007 0.778 0.934 4.668 0.434 18.672 2.48 

197 0.71 2.83 0.71 0.196 0.290 0.002 0.976 1.171 5.856 0.488 23.424 8.29 

198 0.37 1.48 0.37 0.137 0.126 0.000 0.526 0.631 3.156 0.316 12.624 8.50 

199 0.61 2.45 0.61 0.316 0.148 0.003 0.934 1.121 5.604 0.400 22.416 9.16 

201 2.17 8.69 2.17 0.382 0.163 0.000 1.090 1.308 6.540 0.503 26.160 3.01 

202 1.42 5.70 1.42 0.220 0.164 0.000 0.768 0.922 4.608 0.384 18.432 3.23 

203 0.51 2.05 0.51 0.142 0.153 0.000 0.590 0.708 3.540 0.236 14.160 6.91 

204 1.48 5.94 1.48 0.140 0.068 0.001 0.418 0.502 2.508 0.193 10.032 1.69 

205 2.39 9.56 2.39 0.319 0.200 0.000 1.038 1.246 6.228 0.479 24.912 2.60 

206 0.57 2.26 0.57 0.210 0.093 0.000 0.606 0.727 3.636 0.455 14.544 6.43 
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Table 3.3: Biomass calculations for all stations from 2010.  All weight calculations are in grams where DW is dry weight [g], WW is wet weight [g] and 180, 

1000, and 2000µm are the mesh size of the sifters used in the fractioning. Wet weight is calculated from dry weight by multiplying by a factor of 5 (Mauchline, 

1998).The weight fraction >2000 µm does not contain copepods but mostly amphipods, decapod larva and some teleost larva while the fraction 180-2000 µm 

consists mainly of copepods and  the 180-1000µm fraction contained large amounts of cyclopoid copepods.   

Stations   

2010 

n10
5
/ 

 
sample  

n10
5
/ 

m
2 

n10
4
/ 

m
3 

DW  

180 µm   

DW  

1000 µm 

DW  

2000 µm 

DW 

Sum  

WW/ 

sample   

WW/ 

m
3 

WW/ 

m
2
         

WW10
- 5

/ 

n
  
   

 

308 0.69 2.74 0.55 0.190 0.002 0.013 0.205 1.025 0.082 4.100 1.49 

309 0.78 3.11 0.62 0.143 0.000 0.000 0.143 0.715 0.057 2.860 0.92 

310 0.22 0.88 0.18 0.633 0.023 0.023 0.679 3.395 0.272 13.580   15.5 

311 0.86 3.42 0.62 0.581 0.025 0.633 1.239 6.195 0.451 24.780 7.25 

312 1.32 5.29 1.10 0.753 0.279 0.004 1.036 5.180 0.414 20.720 3.92 

313 1.07 4.29 0.86 0.535 0.123 0.000 0.658 3.290 0.263 13.160 3.07 

314 1.27 5.09 1.06 0.560 0.073 0.011 0.644 3.220 0.268 12.880 2.53 

315 0.38 1.53 0.31 0.132 0.000 0.000 0.132 0.660 0.053 2.640 1.73 

316 0.47 1.86 0.41 0.067 0.000 0.005 0.072 0.360 0.032 1.440 0.77 

317 0.39 1.54 0.27 0.470 0.622 0.000 1.092 5.460 0.383 21.840 14.2 

318 0.58 2.32 0.41 0.241 0.324 0.130 0.695 3.475 0.244 13.900 5.98 

319 0.88 3.53 0.64 0.167 0.122 0.007 0.296 1.480 0.108 5.920 1.68 

320 1.00 4.01 0.70 0.115 0.162 0.004 0.281 1.405 0.099 5.620 1.40 

321 0.35 1.40 0.26 0.262 0.591 0.001 0.854 4.270 0.311 17.080 12.2 
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Table 3.3 continues: 

Stations   

2010 

n10
5
/ 

 
sample  

n10
5
/ 

m
2 

n10
4
/ 

m
3 

DW  

180 µm   

DW  

1000 µm 

DW  

2000 µm 

DW 

Sum  

WW/ 

sample   

WW/ 

m
3 

WW/ 

m
2
         

WW10
- 5

/ 

n
  
   

 

322 0.89 3.57 0.55 0.964 1.001 0.000 1.965 9.825 0.605 39.300 11.0 

323 1.11 4.43 0.81 0.091 0.062 0.000 0.153 0.765 0.056 3.060 0.69 

324 0.98 3.93 0.72 0.035 0.001 0.000 0.036 0.180 0.013 0.720 0.18 

325 0.31 1.24 0.29 0.141 0.000 0.000 0.141 0.705 0.066 2.820 2.27 

326 0.31 1.22 0.22 0.032 0.000 0.001 0.033 0.165 0.012 0.660 0.54 

327 0.13 0.54 0.10 0.038 0.000 0.000 0.038 0.190 0.014 0.760 1.41 

328 0.12 0.49 0.10 0.019 0.000 0.000 0.019 0.095 0.008 0.380 0.77 

329 0.40 1.60 0.37 0.087 0.031 0.000 0.118 0.590 0.055 2.360 1.47 

330 0.32 1.27 0.23 0.070 0.001 0.220 0.291 1.455 0.106 5.820 4.58 

331 0.34 1.38 0.28 0.026 0.000 0.000 0.026 0.130 0.010 0.520 0.38 

332 0.14 0.56 0.12 0.029 0.000 0.000 0.029 0.145 0.013 0.580 1.04 

333 0.11 0.43 0.08 0.020 0.000 0.000 0.020 0.100 0.007 0.400 0.93 

334 0.57 2.27 0.35 1.003 0.113 0.000 1.116 5.580 0.343 22.320 9.82 

335 1.95 7.78 0.97 0.309 0.098 0.000 0.407 2.035 0.102 8.140 1.05 
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All animals with total length between 0.3 and 3.0 mm were measured by the zooscanner 

where measurements larger than 3.0 mm were excluded from the dataset to avoid animals 

other than copepods.  Figure 3.2 shows the length distribution for all sampling stations from 

2009 with a mean length of 0.80 mm. More than 60% of the copepods sampled in 2009 

ranged between 0.375 and 0.625 mm, and more than 17 % were measured between 1 and  

3 mm. Due to lack of length data from station 206, copepod data from this station will not be 

included in the rest of the study.  Size distribution for the rest of the stations is presented in 

the APPENDIX B.   

 

Figure 3.2: Histogram of copepod size distribution for all stations from 2009 with a mean length of 

0.80 mm.  

In 2010 a larger fraction of the sampled copepods ranged between 0.30 and 0.425 mm than in 

2009 and only 12 % was measured between 1.0 and 3.0 mm. The length distribution of the 

copepods sampled in 2010 is shown in Figure 3.3 with a mean length of 0.75 mm. A two 

sample Kolmogorov-Smirnov test was used to test for equality in length between the two 
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years and revealed that the difference in size was highly significant with p<0.001. The 

Kolmogorov-Smirnov test is a non parametric analysis suitable to find out whether two data 

sets come from the same distribution.  

 

Figure 3.3 Histogram of copepod size distribution for all stations from 2010 with a mean length of 

 0.7 mm. 

The copepods caught in 2009 were larger than those caught in 2010. The 2009 samples 

showed a mean size of 0.80 mm while the 2010 catch showed a mean size of 0.75 mm. When 

plotting each sampling station from both years (Fig.3.4) in the same plot it is evident that 

there is a general difference in size between the two years. The difference might seem small 

but considering the relative small mean size of the copepods a difference of 0.05 mm 

represents more than 6% difference in length.  
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Figure3.4: Length distribution for all samples from both 2009 (black) and 2010 (red). The dotted lines 

represent the median length for the year with the corresponding colour.   

3.2 Hydrography 

Changes in hydrographical factors are probably one of the main reasons for change in the 

structure of plankton concentrations between different locations (Simmonds, 2005). A solar 

induced stabilizing of the upper layer of the water column is crucial for primary production to 

occur and thereby also vital for the secondary production. Increasing temperature affect the 

density of water and forces the low-density surface water to ride above the colder more dense 

water creating a stable layer (Levinton, 1995), and thereby facilitating the primary production. 

The layer where the specific density changes rapidly with depth is called the pycnocline and 

sets the boundary for were production can take place. The rapid change in density can be 

accredited the change in temperature and salinity.  
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During the G. O. Sars survey in 2009 the water temperature was well above 8°C in the upper 

30 m of the water column while the CTD sampling from the 2010 survey showed 

temperatures no higher than approximately 6.5°C.  Even though the time of the surveys was 

similar, the temperature was 1.5-2.5°C lower in 2010 than in 2009 (Fig. 3.5). The mean 

temperature during these years, for the North Sea surface temperature in April and May, are 

displayed in Figure 3.6.  From the CTD profiles in Figure 3.5 the depth of the pycnocline can 

be observed for the stations 202 and 308 and it seems like the pycnocline was located at 

approximately the same depth in both years. The rest of the CTD profiles are listed in 

APPENDIX C. 

 

Figure3.5: Examples of temperature salinity and density for station 202 (left) from the 2009 survey 

and station 308 (right) from the 2010 survey. These stations are recorded at similar depth and the 

pycnocline is approximately the same for both years. Temperatures are measured in °C, salinity in 

practical salinity units (psu) and seawater specific density in kg/m3 -1000.  
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Figure 3.6 (BSH, 2011): Mean sea surface temperature for the North Sea for April and May 2009 and 

2010.The mean temperature was lower in 2010 than in 2009.The bar at the top of the figure show the 

temperature scale. Mean surface temperature for April and May from 1990-2010 can be found in 

APPENDIX G.   

3.3 Acoustic recordings 

The sampled areas (Fig. 2.1a and b) in the two surveys was located far apart but was similar 

in depth and substrate so the probability of identifying copepods should be similar for all 

stations. In the data sampled in 2010 the frequency response was not strong enough on  

200 kHz to positively identify copepods, or actually the frequency response was too strong on 

the lower frequencies (Fig. 3.7). The latter might be explained by the presence of the gas 

producing phytoplankton Phaeosystis sp. and is considered one of the limiting factors when 

measuring zooplankton acoustically in the spring bloom. Air bubbles are resonant or close to 

resonant at about 18-38 kHz which cause the frequency response to increase in this region and 

thereby making it very hard to isolate the characteristic echoes from copepods. Because the 

lower frequencies are more affected by the air bubbles than the higher ones the copepod 

frequency response gets ‘shadowed’ by the air bubble backscattering. Figure 3.7 shows an 

example of this from station 308 where the frequency response is higher for the lower 

frequencies than for the higher.  
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Figure 3.7: An example of the frequency response found in 2010 station 308 with 200 kHz as the 

highest operating frequency showing high backscattering at 18 and 38 kHz and low backscattering at 

120 and 200 kHz. The echogram image from is also from station 308.  

Even though copepods were found in the biological samples it was decided not to use the 

acoustic data collected during the 2010 survey because of the problem of identifying 

copepods acoustically without the 333 kHz echo sounder The acoustic equipment used in 

2009 also included a Simrad EK60, operating at 333 kHz, which was less affected by the 

phytoplankton backscattering than the other frequencies.        

Based on the echograms analysed, the copepod distribution showed a substantial variation 

between stations. Among the 12 different stations the mean backscattering coefficient at  

333 kHz varied from 7 to 435 m2 /nmi2 over a 2.5 nmi distance from the sampling station. The 

difference in area backscattering within a short distance from the sampling stations also 

showed a large variability. Some of the echograms (Fig. 3.8) suggested a more heterogenic 

distribution of zooplankton across the horizontal while other suggested a homogenous 

horizontal distribution of the zooplankton layer.      
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Figure 3.8: Difference in copepod distribution between 2 stations (203 to the left and 196 to the right) 

from the 2009 survey. 

The vertical distribution of recorded backscattering was similar for most stations with a 

maximum at about 20m depth and with copepod backscattering located primarily in the 10-30 

m depth interval. The box plot (Fig. 3.9) shows the vertical distribution and the range of 

backscattering in each of the 5 meter depth channels for all stations from 2009 well reflecting 

the variability in measured backscattering over the selected 2.5nmi distance. The variability in 

recorded NASC illustrated in Figure 3.9 support the idea of a highly heterogeneous copepod 

distribution.  

The initial depth for echo integration was set to 10 m to avoid echo from bubbles caused by 

the interaction between the vessel and waves. In addition the drop keel and transducer near 

field create an acoustic blind zone which is the depth between the surface and initial depth of 

the echo integration. From Figure 3.8 it seems like the copepod distribution in station 196 

extends all the way to the surface causing the density estimation to be an underestimate. This 

indicates that the copepod abundance on each station is an underestimate. If we assume that 

the density in the blind zone is the same as the uppermost layer it is possible to correct for this 

effect. On station 196, the correction would be approximately 5-10%.        
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Figure 3.9: The vertical distribution of the nautical area scattering coefficient for all stations from 

2009. The box represents the 25 and 75% quartiles split up by the median.  

 The dotted lines represent the upper and lower limits while the data points outside the limits represent 

rare extreme values (Løvås, 2004). The variability in NASC is illustrated over 5 nmi (2.5nmi on each 

side of the biological sampling station) with a resolution of 0.1 nmi across the horizontal and 5 m 

depth channels. Stations are listed chronological from left to right from 194-206. Station 200 does not 

exist. Stations 201-206 can be viewed on the next page.   
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Figure 3.9 continues: 

 

 

 

3.4 Comparing zooplankton samples and acoustic abundance estimates 

One of the main aspects of this thesis was to test the correlation between the acoustic and 

biological abundance estimates. To test this, it was crucial to understand how far from the 

sampling station the samples could be expected to show correlation. Figure 3.10 shows a 

decrease in correlation between copepod backscatter and biological abundance estimation as 

the distance from the sampling station increased. When performing a Pearson correlation test, 
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the correlation (r) drops rapidly from 0.56 to 0.45. In a distance of 2.5 nmi away from the 

sampling point, the Pearson product moment correlation coefficient is reduced to 0.30. The 

Pearson product-moment correlation is a measure of the linear dependence between two 

variables X and Y, giving a value between -1 and +1 (Bhattacharyya and Johnson, 1977). 

In other words, the correlation decrease rapidly with distance and the reliability of the 

regression will decrease as the distance from the sampling point increase. This also 

strengthens the idea of the heterogeneous copepod distribution suggested by both the 

echograms (Fig. 3.8) and the box plots (Fig. 3.9). If the copepods were distributed 

homogenous across the 2.5 nmi the R2 in Figure 3.10 would not decrease with form the 

biological sample point.    

 

 Figure 3.10: Decrease in correlation between NASC and biological abundance estimation over 

distance from the sampling point. This suggests a high degree of patchiness because the correlation 

would be much more stable with a low degree of patchiness.    
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Because of the expectations of rapid decrease in correlation when moving away from the 

sampling station the acoustic abundance estimation of copepods was correlated to the 

biological estimates only in the near vicinity of the sampling station.  Figure 3.11 shows 

statistically insignificant correlation between the acoustic and the biological abundance 

estimation with r = 0.08. This lack of correlation can however be explained by some outliers, 

and will be further discussed. The outliers are represented by the red dots in figure 3.11.     

 

Figure 3.11: Correlation between biological and acoustic abundance estimation (gram wet weight per 

m2). The red dots represent the outliers while the red dotted lines show a very large 95% confidence 

interval. The correlation is statistically insignificant (p=0.83).  

Due to suspiciously deviant backscattering at three of the stations it was suspected that the 

samples might contain organisms with other backscattering properties than fluid like. For this 

reason the biological samples were analysed once more, to search for hard elastic shelled 

organisms. Hard elastic shelled organisms such as the gastropod Limacina retroversa reflect a 
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much stronger echo then fluid like organisms at high frequencies, and might “shadow” the 

weaker echo from fluid like organisms.  

The suspicion proved to be well-founded, and the three samples 194, 196 and 197 contained 

more than 10 times the amounts of hard elastic shelled organisms compared with the rest of 

the samples. The removal of these outliers resulted in a highly significant correlation (Fig. 

3.12) with r = 0.91. 

 

Figure 3.12: Correlation between acoustic and biological abundance estimation (gram wet weight per 

m2) after removing outliers. In this case more than 76% of the variation is explained by the model. The 

regression line (red) has an intercept of -15.4 and a slope of 1.6. The red dotted lines are the 95% 

confidence interval, while the black dotted line is an imaginary line forced through origo.       

The intercept in Figure 3.12 implicate that biological samples contain copepods even though 

copepods are not registered acoustically. This is not a surprise since the depth of initial echo 

integration was set to 10m and the fact that copepods probably occupy this part of the water 

column. Also, very low volume densities of copepods may fall under the threshold limit or the 
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detection limit of the echo sounder system. The relationship between the catch and the 

acoustics is very strong and the regression line (Fig. 3.12) shows that when the acoustic 

abundance estimation reaches approximately 25 g/m2 there is close to a 1:1 relationship 

between the acoustic and the biological abundance estimations.           

3.5 Digestion experiment 

Because of the important role in transferring the energy from the plankton society to the 

higher trophic levels in the North Sea, accuracy in abundance estimation of sandeel is of great 

interest both commercial and ecological. To understand more of the sandeels sand burrowing 

behaviour it would be interesting to find out how often it has to leave the sand to eat. Since 

hunger in fish is inversely proportional with stomach filling this experiment could help 

answering this question. The information would also be of interest when trying to estimate the 

amounts of sandeel buried in the sand during the day.             

The digestion speed was slow compared to the working hypothesis where the 50% gastric 

evacuation was expected to be reached in less than 24 hours. Nevertheless, it was first after 24 

hours that noticeable signs of progress in digestion were recorded and another 10 hours 

passed before it was certain that the digestion had progressed to the next level of the scale 

used in this study. About 60 hours went by before the first sandeel with empty stomach was 

recorded. After 84 hours of testing, the majority of the fish was still not emptied out (Fig. 3.13 

and 3.14). There was however a noticeable difference in time of digestion rate and gastric 

evacuation which will be discussed. 
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Figure 3.13: Time of complete gastric evacuation. The stomach seemed to be emptied out in about 60-

90 hours. The red dotted lines represent the 95% confidence interval. In the regression line y=ax+b, 

the intercept is 4.21 and the slope -0.03. This model is only valid within the scale used in this 

experiment.   
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Figure 3.14: Digestion rate of the sandeel.The digestion rate seemed to progress much faster than the 

gastric evacuation. According to the digestion rate the the digestion took about 40-60 hours. The red 

dotted lines represent the 95% confidence interval. In the regression line y=ax+b, the intercept is 4.98 

and the slope -0.06. This model is only valid within the scale used in this experiment.   

According to the regression lines from Figures 3.13 and 3.14 half the food is evacuated and 

digested in respectively 40 and 33 hours. The digestion rate predicts a complete gastric 

evacuation in less than 90 hours while the regression for gastric evacuation predict complete 

gastric evacuation first after 107 hours. Because these results are collected from fish in a tank 

they might not reflect the digestion rates of sandeels in nature.       
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4. Discussion 

The results from this study shed light on the problems and limitations concerning 

conventional biological sampling of zooplankton. When monitoring copepod abundance the 

main problem is the patchy heterogeneous distribution of copepods. The strong heterogeneity 

is evident both within and between stations. This variation is confirmed from several different 

angles. Echograms, vertical NASC profiles and the decline in correlation between NASC and 

biological abundance estimates over distance from the sampling station all point in the same 

direction, being that extrapolation of abundance estimates based on biological samples is most 

likely to give very imprecise estimates of the copepod biomass.    

4.1 Target strength 

For most zooplankton it is difficult to describe sound scattering with respect to its exact 

shape. To overcome this problem the use of geometrical approximations such as spheres, 

spheroids and finite cylinders have been used to describe the morphology of these small 

organisms. The sphere model dos not consider the irregulaity of the shape of the target, and 

because of the imagined spherical shape, the orientation is of no concern (Simmonds and 

MacLennan, 2005).  

 

Wiebe et al. (1990) found significant devience in TS and attributed the devience to the 

irregularity of the morphology of the target. They suggested that elogated animals such as 

copepods scatter sound like elongated targets and not spherical ones. Even though Wiebe et 

al. (1990) claim the need for more sophisticated models, the sphere model represents an exact 

solution of the acoustic wave equation for a spherical shape. It can be considered a first-order 

approximation under some condition for a very complicated scattering process of animals 

with more complex shape (Traykovski et al., 1998). 

 

TS models are very sensitive to the material property contrasts g and h. This sensitivity is 

profound, especially when the targets are close to the material properties of the surroundings, 

such as fluid like organisms in water. The density contrast (g) from Køgeler et al (1987) was 

based on a low count of animals without declared copepodite stage. Knutsen et al. (2001) 

found that for C. finmarchicus the density decreases as the stage increases until copepodit 

stage 5. The copepods in this study are small and perhaps a different g should have been 
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considered. Stanton and Chu (2000) found the TS to be 12 dB lower than the calculations 

used in this thesis. The use of a different g and h could explain this difference.  From the 

results of this study it seems like the geometrical approximation model is sufficient for 

copepods of such small size, and the copepods used in the study by Wiebe et al. (1990) was 

indeed larger than the copepods used in this study.  

 

Because the weight-length relationship is similar to the σ–length relationship, it was 

suggested that 1 kg of large copepods would give rise to the approximately the same echo 

energy as 1 kg of large copepods. This assumption proved to be incorrect for the copepods 

used in this study.  

4.2 Sources of error and limitations to the material and methods 

4.2.1 Taxonmy and length distribution 

The taxonomic groups obtained from the biological samples were as expected from earlier 

North Sea surveys in the spring (Falkenhaug and Omli, 2010). Across the years the recorded 

taxa were similar, but the composition in terms of dominance was different. 

  

In spite of the fact that the sampling was performed with a time lag of only 2 weeks, the 

copepods caught in 2009 were larger than those sampled in 2010. It could be that the time 

window is so small that 2 weeks could be considered a long time. However it is more likely 

that the growth rate of copepods is temperature dependent. This would be consistent with the 

results in the paper (Fig. 4.1) by Shin-ichi Uye (Uye, 1988) where temperature dependant 

growth rate is shown for several copepod species.  
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Figure 4.1: Temperature dependant growth rate of different copepod species (Uye, 1988). In this 

figure the growth rate of C. finmarchicus is affected by even a small difference in temperature.       

According to Uye (1988), a  decrease in temperature of 2 °C can slow down the development 

time from hatching to adult by approximately 10-20 days. If this is correct, the difference in 

size can be explained by the difference in temperature. Both difference in length and 

taxonomic composition can perhaps be explained by the difference in temperature. From 

inspections of historical data from the North Sea surface temperature (APPENDIX G), the 

difference in temperature can probably be accredited natural variation.  

4.2.2 Acoustic and biological sampling 

Sampling made with the WP-2 net provides no information about the vertical distribution of 

the catch, and is not ideal when the biological samples are to be correlated with acoustic data. 

In this study, the top boundary for echo integration was set to 10 m. Since the recordings on 

several stations reach all the way to the transducer depth, and maybe all the way to the 

surface, the acoustic abundance estimation would be expected to be an underestimate. 

 

According to Williams and Conway (1980) a large fraction of the smallest C. finmarchicus 

copepodit stages are located in the upper 10 m of the water column at daytime, while the 

larger copepodit stages are spread more evenly throughout the water column. The lack of 

information on the vertical distribution from the biological sampling makes it impossible to 

find the amounts of copepods located in the upper 10 meters. However, NASC depth profiles 
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show a decline in backscattering when approaching the 10 m limit. This could indicate that if 

present, the copepod abundance should in most cases be lower in the upper 10 meters of the 

water column. To sample the copepods in the upper 10 m, it would be better to use a multinet 

which is a sampling device with 5 nets that can be programmed to open and close at 

predetermined depths. Information provided by the multinet would also give an opportunity to 

confirm the vertical NASC profile. The assumption of the vertical location of the copepod 

scatter is also strengthened by the hydrographical data on the depth of the pycnocline as no 

copepod backscattering was identified bellow the pycnocline.       

 

The use of the frequency response for identification of copepods seems to work when the 

proper frequencies are used. From the 2010 survey we see that 200 kHz is not sufficient for 

identification of copepods. However, if the copepods are abundant and there is little  

interference from phytoplankton, Ona and Korneliussen (2000) found it to be sufficient. From 

the multi-frequency echograms from 2009 (APPENDIX D) it seems like 200 kHz might be 

adequate when identifying copepods given proper acoustic conditions. Station 202 is a good 

example of this. Data from 2009 show that when using 333 kHz, it is possible to identify 

copepods with a high degree of certainty. In most cases 333 kHz seems like a necessity.  

 

When scrutinizing echograms with respect to copepods, one should be on the alert for large 

deviations in the frequency response. If r(f) above 20 is observed for the 333 kHz the 

scattering layer may contain hard elastic shelled organisms. The problem when scrutinizing 

echograms with backscattering from hard elastic shelled organisms is that even manual   

removal of all areas likely to contain hard elastic shelled organisms (HS) may lead to an 

extreme underestimation (station 194). On the other hand, if not removed, the unwanted 

backscattering leads to an extreme overestimation (station 196 and 197) of the copepod 

abundance. Because of this it was decided to remove all data most likely to contain this 

unwanted backscattering.      

Before these scatterers were removed, the correlation between the biological and acoustic 

abundance estimation seemed to be poor. However, when the data from the three stations 

were removed, the correlation proved to be highly significant. Within the limited material 

presented with densities between x and y (Fig. 3.2), the acoustic density was quite close to the 

absolute abundance from the net sampling. This also means that the mean target strength of 
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the copepods must have been quite correct. This was not expected, since the modelling was 

based on g and h taken from the literature (Køgeler et al., 1987) and not measured. The target 

strength measurements were also nearly 12 dB different from data on P. coronatus by Chu 

and Stanton (2000). Fortunately, here, the acoustic densities and the catch data correspond 

well and the selected parameters from Køgeler et al. (1987)   must be good.  

  

4.3 Digestion experiment 

The experiment suffered from many potential sources of error. Possible stress effects from 

handling and adaptation to the novel environment cannot be ruled out. For example, acute 

stress in rainbow trout (Oncorhynchus mykiss) caused cellular alteration in the gastrointestinal 

tract (Olsen et al., 2005). Stress factors such as handling, change of environment and the lack 

of sand are most likely to cause stress, and stress has been known to slow down the 

metabolism in fish, but also to catalyse the gastric evacuation (Talbot, 1985).  

 

Gastric evacuation is dependent on temperature, and with a temperature of approximately 

6.5°C it is likely that the evacuation would take about 40-50 hours (Pandian, 1985). The 

gastric evacuation in this experiment took a minimum of 55 hours while the digestion seemed 

to be done after a minimum of 45 hours. This difference could be explained with the 

possibility of some of the sandeel feeding on small particles and faeces during the experiment, 

and thereby making the digestion rate to be more correct than the gastric evacuation rate. This 

may explain the difference in time between 100% unidentifiable matter and complete gastric 

evacuation, also seen by Pandian and Vivekanandan (1985). 

According to Pandian and Vivekanandan (1985), the evacuation rate is positively correlated 

with the feeding rate. As the sandeel in this experiment had no food available, the evacuation 

should slow down. On the other hand, Jobling (1981) found the gastric evacuation rate to be 

higher for a diet consisting of small particles than for a few large particles. Copepods are 

small and have a high surface to volume ratio, and the evacuation rate should therefore be 

catalysed. It may seem like the different factors exclude each other and that the digestion rate 

of the sandeel is as expected at such low temperatures for any other carnivore fish (Pandian, 

1985). 
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The results from the digestion experiment are very interesting, as the digestion proceeded 

much slower than the working hypothesis predicted. With a complete gastric evacuation rate 

of 50-80 hours and a digestion rate of approximately 30-60 hours it is plausible that the 

sandeel can stay in the sand for more than 24 hours without emerging to feed and thereby 

being a source of error in the acoustic abundance estimation. The sandeel caught during the 

experiment seemed to follow a similar digestion rate as the sandeel used in the experiment. 

Sandeel caught subsequent to the experiment was empty, and continued to emerge from the 

sand for several days without the presence of copepods. This raises the question of why the 

sandeel do leave the sand? Are they triggered only by light and hunger? It might seem this 

way, seeing as similar amounts of sandeel were found in the water column both with and 

without the presence of copepods.            

4.4 Conclusions and future aspects 

The results from the digestion experiment strongly indicate that the sandeels emerge from the 

sand once a day at the most to feed, but that it might not have to leave the sand more than 

every second day. It may also seem like light intensity by far is the main factor causing the 

sandeel to leave the sand.  To strengthen the results from this study, the experiment should be 

repeated with a better design and more replicates in order to get a more precise estimate. 

Evacuation rates should also be studied over time at one location with repeated dredge or grab 

sampling. Material for this kind of analysis was collected during the 2010 survey.      

 

Traditional sampling methods alone are not suited for abundance estimation on a small spatio-

temporal scale. However, by combining conventional techniques with acoustic methods this 

can be done with a reasonable degree of uncertainty. The methods used in this study seem 

promising, and should be deployed in future investigations for verification of the results and 

further development. One of the main focuses in the future should be the limitations due to 

the presence of hard elastic shelled organisms. One way to improve the method would be to 

gather information on the vertical distribution based on biological sampling equipment from a 

device such as the multinet. It would also be desirable to gather information from an acoustic 

lander, which is a tool developed for acoustic in situ measurements of fish and zooplankton. 

An acoustic platform can be placed on the ocean floor and gather information all the way to 

the surface while the survey can perform other tasks. This would make it possible to estimate 

the copepod abundance in the upper 10 meters.     
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APPENDIX A 

Tables from taxonomic analysis 

Results from the taxonomic analysis. Stations 194-206 (Table I) are from the 2009 survey and 

308-335 (Table II) are from the 2010 survey. All animals are measured in volume density 

(ind/m2).   

Table I: Results from taxonomic analysis for the 2009 WP-2 samples. The animals were determined 

down to desired taxonomic level for this study. The calculations are in volume density (ind/m2).   

Stations  

2009 

Calanus 

sp. 

Microcalanus Psaudocalanus Naupilii Metridia 

sp. 

Cyclopoid Apendicularia 

194 503808 4096 32768 14336 2048 331776 0 

195 231424 10240 233472 4096 14336 473088 0 

196 485376 6144 43008 6144 4096 212992 2048 

197 146432 1024 12288 1024 0 122880 0 

198 36352 0 3584 0 0 108544 0 

199 104448 3072 10240 5120 2048 124928 1024 

201 124928 1024 29696 31744 1024 712704 1024 

202 34304 5632 37376 10240 1024 491520 0 

203 38656 9216 11008 5376 512 145408 0 

204 147456 32768 27648 7168 0 386048 0 

205 266240 8192 59392 12288 4096 618496 0 

206 125952 0 4096 0 0 96256 0 

 

 

Stations 

2009 

Themisto 

sp. 

Temora 

longicornis 

Limacina 

retroversa 

Polychaeta Decapod 

larva 

Chaetognata Hydrozoa 

194 4096 0 2688 0 0 2048 0 

195 8192 0 128 0 0 0 0 

196 8192 0 3328 0 0 12288 0 

197 0 0 4224 0 0 6144 0 

198 0 0 0 0 0 3072 0 

199 1024 1024 0 0 0 4096 0 

201 3072 0 2048 0 0 5120 0 

202 0 0 0 0 0 1536 0 

203 0 256 0 0 0 256 0 

204 260 0 0 0 0 0 0 

205 0 6144 0 0 0 0 4096 

206 0 0 0 0 1024 1024 0 
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Table II: Results from taxonomic analysis for the 2010 WP-2 samples. The animals were determined 

to desired taxonomic level for this study. The calculations are in volume density (ind/m2).The table 

continues on the next page.    

Stations  

2010 

Calanus 

sp. 

Microcalanus Psaudocalanus Naupilii Metridia 

sp. 

Cyclopoid Apendicularia 

308 38912 12288 19456 27136 28160 122880 17920 

309 81408 13312 24576 25088 8704 143872 3584 

310 34304 2048 5632 4096 5632 24576 512 

311 141824 1536 41984 8192 40960 59392 26112 

312 331264 4096 18944 28672 30208 71168 20992 

313 299008 5120 19456 5120 22528 20480 46080 

314 254976 7168 31744 14336 39936 107520 34816 

315 62976 3584 13824 5120 8192 41472 5120 

316 58368 3584 11264 10752 26624 53248 8192 

317 102912 2048 3584 1024 19456 15360 0 

318 95232 5120 11264 1024 30720 63488 3072 

319 129024 9216 17408 0 79872 99328 8192 

320 202752 21504 24576 6144 68608 45056 7168 

321 63488 2560 7680 1536 17920 39936 1024 

322 215040 9216 15360 3072 36864 55296 10240 

323 44032 6144 25600 17408 6144 334848 3072 

324 28672 5120 9216 15360 9216 316416 2048 

325 11264 512 10240 2560 3584 95232 0 

326 8192 0 6144 6656 3584 94208 1536 

327 6656 2048 6144 4608 3584 28160 0 

328 6400 1024 4096 1792 3072 30976 0 

329 14336 512 12288 8192 7680 101888 512 

330 6144 2048 6656 7168 3584 91136 0 

331 15360 13824 17408 4096 10240 73728 512 

332 4608 768 2816 4352 1280 39424 256 

333 2560 1024 768 768 1280 32256 4096 

334 28672 9216 15872 15360 3584 150528 0 

335 291840 2048 23552 207872 22528 176128 34816 
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Stations 

2010 

 Aglantha 

digitale 

Temisto Temora Polychaet Decapodlarve Chaetognata Hydrozoa Teleost 

larva 

308  7680 0 0 0 0 0 0 0 

309  9216 0 1024 0 0 0 512 0 

310  3072 0 1536 4608 0 0 1536 0 

311  9728 512 4608 5632 512 0 0 0 

312  10752 0 8192 4608 0 0 0 0 

313  8192 0 0 3072 0 0 0 0 

314  14336 0 3072 1024 0 0 0 0 

315  7680 512 2048 2048 0 0 0 0 

316  9216 0 1024 2560 0 0 1024 512 

317  4608 0 0 512 0 4096 512 0 

318  1024 2048 0 1024 14336 3072 0 0 

319  1024 0 1024 0 6144 2048 0 0 

320  5120 0 1024 2048 15360 2048 0 0 

321  2048 1024 512 512 1024 512 512 0 

322  5120 2048 0 0 1024 4096 0 0 

323  0 0 3072 3072 0 0 0 0 

324  2048 0 0 5120 0 0 0 0 

325  1024 0 0 0 0 0 0 0 

326  0 0 0 1536 512 0 0 0 

327  1536 0 0 1024 0 0 0 0 

328  1792 0 0 0 256 0 0 0 

329  10752 512 1024 512 0 512 1536 0 

330  5632 0 3584 0 512 0 0 512 

331  0 0 512 1024 0 512 0 512 

332  256 256 1792 0 0 0 0 0 

333  0 0 512 0 0 0 0 0 

334  0 0 2048 1536 512 0 0 0 

335  3072 0 11264 2048 3072 0 0 0 
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APPENDIX B 

Length distribution 

Histograms showing the length distribution obtained from the zooscan. Stations 194-205 are 

from the 2009 survey and 308-335 are from the 2010 survey. The box in the upper right 

corner of each histogram, show the station number, number of measured copepods, mean 

length and standard deviation.  
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APPENDIX C 

CTD profiles 

Stations 194-205 are from the 2009 survey and 308-335 are from the 2010 survey. The box in 

the upper right corner of each CTD profile, show the station number and the units for the 

different parameters. Temperature is measured in °C, salinity in practical salinity units (psu) 

and density in specific seawater density (kg/m3-1000)  
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APPENDIX D 

Echograms 

Screen shots from LSSS. Stations 194-206 are from the 2009 survey showing fragments from 

each of the 6 frequencies 18, 38, 70, 120, 200, 200 and 333 kHz.  
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APPENDIX E 

                                                                                                     Trawl drawings (Engås, 1995):  
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APPENDIX F 

Calibration 

2009: Calibration results for RV G.O. Sars for 18, 38, 70, 120, 200 and 333 kHz 
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Survey settings and calibration results for the six echo sounders used in the 2009 sandeel 

survey 

Parameter    Frequency    

  18 38 70 120 200 333 

Absorption coefficient [dB/km]  2.90 10.1 21.6 33.2 46.7 73.7 

Pulse Duration [ms]  1.024 1.024 1.024 1.024 1.024 1.024 

Bandwidth [kHz]  1.57 2.43 2.86 3.03 3.09 3.11 

Power [W]  2000 2000 800 250 150 60 

2 Way Beam Angle [dB]  -17.3 -20.8 -20.6 -21.0 -20.5 -21.0 

TS Transducer Gain [dB]  22.01 25.55 26.93 26.84 26.62 26.90 

Sa Correction [dB]  -0.69 -0.70 -0.35 -0.31 -0.27 -0.33 

Angle Sensitivity - Along ship  13.90 21.90 23.00 23.00 23.00 23.00 

Angle Sensitivity - Athwart ship  13.90 21.90 23.00 23.00 23.00 23.00 

3 dB Beam Width - Along ship [deg]  10.83 6.96 6.55 6.49 6.70 6.19 

3 dB Beam Width - Athwart ship [deg]  10.93 6.98 6.54 6.43 6.66 6.87 

Angle Offset - Along ship [deg]  0.08 0.14 0.04 0.04 0.06 0.13 

Angle Offset - Athwart ship [deg]  -0.28 -0.08 -0.05 0.02 -0.09 -0.07 
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2010: Calibration results for RV Johan Hjort for 18, 38, 120 and 200 kHz 
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Survey settings and calibration results for the six echo sounders used in the 2009 sandeel 

survey 

Parameter      Frequency  

    18 38 120 200 

Absorption coefficient [dB/km] 2.70 9.9 7.8 3.1 

Pulse Duration [ms]   1.024 1.024 1.024 1.024 

Bandwidth [kHz]   1.57 2.43 3.03 3.09 

Power [W]   2000 2000 250 120 

2 Way Beam Angle [dB]  -17.00 21.90 -20.8 -20.7 

TS Transducer Gain [dB]  22.91 26.98 24.23 26.81 

Sa Correction [dB]   -0.60 -0.58 -0.34 -0.23 

Angle Sensitivity - Along ship  13.90 21.90 21.00 23.00 

Angle Sensitivity - Athwart ship 13.90 21.90 21.00 23.00 

3 dB Beam Width - Along ship [deg] 11.04 7.25 7.07 6.46 

3 dB Beam Width - Athwart ship [deg] 11.08 7.17 7.23 6.27 

Angle Offset - Along ship [deg] 0.12 0.05 0.08 0.28 

Angle Offset - Athwart ship [deg] -0.01 0.10 0.15 0.19 
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APPENDIX G 

North Sea surface temperature 

North Sea surface temperature in April and May from 1990-2010 (BSH, 2011) 
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APPENDIX H 

The most important sandeel grounds in the North Sea  
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