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Abstract

Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the
binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to
couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either
normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and
multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic
and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is
allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at
sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting
functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for
characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug
design.
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Introduction

Protein function depends on the balance between different

conformational states. This balance can be shifted by many

external factors that regulate protein activity, including localized

perturbations such as ligand binding or phosphorylation. When

the perturbation site is not directly adjacent to the site of altered

activity the regulation is called allosteric. A classic example of

allosteric regulation is the cooperative ligand binding of many

oligomeric proteins, where binding of substrate to one subunit

affects the ligand affinity in other identical subunits. The early

phenomenological MWC (Monod-Wyman-Changeux) [1] and

KNF (Koshland-Némethy-Filmer) [2] models were devised to

explain this cooperativity; the first model states that binding

stabilizes one of several available states with emphasis on sym-

metry conservation [3], whereas the latter assumes an induced-fit

scenario. Weber showed that both models can be integrated in a

general physical framework [4]. Free energy landscape-based

descriptions of allostery have introduced the related terms

population shift and conformational selection [5,6]. In a recent

review Cui and Karplus gave a clear discussion of the relation

between the classical models [1,2] and the ‘‘new views’’ of allostery

[5,6], pointing out that the MWC/Weber formalism already

includes the idea of population shift [7].

The microscopic mechanisms involved in allostery have been

studied at different levels of coarse-graining. Analysis of the effect

of different types of perturbations has shown some promise in

identifying allosteric sites [8,9]. Ferreiro et al. showed that

frustration localized to a few residues facilitates transitions between

alternative conformations [10]. Normal modes have been used to

quantitatively analyze different energetic and entropic contribu-

tions to allostery [11,12,13], and also the major components of

conformational change [14,15]. The interaction networks used in

normal mode analysis define subunits of coherent dynamics and

can be used to identify key residues that maintain this coherence

[16,17]. The network description has also been extended to study

transmission of allosteric signals throughout the protein [16,18,19,

20,21]. Caution must however be taken against overly mechanistic

interpretations of the networks: allosteric regulation is primarily a

thermodynamic process.

An integral part of the modern understanding of allostery is that

the states subject to regulation are part of the intrinsic protein

dynamics [3,6,22,23], which to some extent is a truism since states

not sampled by the native protein would require infinite binding

energies to be given finite Boltzmann weights upon binding. A

reasonable interpretation of this concept is however that regulation

does not require crossing of large barriers: the relevant states are

easily reached from the native basin and are occasionally visited

also in the absence of effectors. For example, the allosteric confor-

mational transitions are often well described by low frequency

normal modes [14,15]. The existence of purely entropic allosteric

proteins [24], where regulation only alters the magnitude of

fluctuations around the native state, also shows the importance of

intrinsic dynamics. Studies of artificial allosteric inhibitors show

that allosteric proteins are often amenable to additional regulation,

and that artificial inhibitors stabilize a ‘‘naturally occurring con-

formation’’ [25]. These observations give hope for identifying

allosteric sites based on intrinsic protein dynamics without doing

full scale simulations: it seems that knowledge of basic degrees of

freedom, such as low frequency normal modes, or some alternative

PLoS Computational Biology | www.ploscompbiol.org 1 September 2011 | Volume 7 | Issue 9 | e1002148



conformations from different crystal structures, gives useful infor-

mation for finding plausible mechanisms for allosteric regulation.

Our goal is to build a general molecular description of allosteric

regulation that allows prediction of biological and latent allosteric

sites, as well as catalytic sites, from crystal structures. We restrict

our analysis to enzymes regulated by ligand binding, not

considering allostery due to metal binding, covalent modifications

or interactions with other macromolecules [26]. Ligand-induced

allostery can either be heterotropic – when the effector ligand is

not the same as the substrate – or homotropic, where the effector is

the substrate itself and its binding changes the substrate affinity in

other identical subunits of the protein. We include cases where

binding of one substrate affects the affinity for a second substrate at

the same site, if this change in affinity is associated with a

significant change in the protein’s structure or dynamics.

To predict allosteric sites we will analyze the ability of different

binding sites to couple to the intrinsic dynamics of a protein.

Ideally, one would study the thermodynamics of the protein by

simulations sampling the relevant parts of conformational space,

but limitations in the currently available energy functions, and also

in computational power, make this unfeasible. The motions are

instead approximated by either normal modes or comparisons

between crystal structures representing states with different

activity. A large body of research has shown that the functional

motions of many proteins are well described by low-frequency

normal modes (see the reviews by Ma [14] and Bahar [15]). This

does not mean that proteins undergo large-scale harmonic motion,

but it shows that low frequency normal modes capture the most

important conformational degrees of freedom around the native

state – by definition, transitions between distinct free energy

minima require barrier crossing [27]. To find potential binding

sites we will employ a minimalistic docking procedure to probe the

surface of a protein and generate a list of possible binding sites. For

each site we estimate the strain on the ligand-protein contacts

under the deformations described by low frequency normal

modes. The strain is high when the ligand has many contacts

with residues that are moving in opposite directions. We say that

the site has high binding leverage (a mathematical definition is given

in the Results section). Ligands binding to such sites have a large

potential to affect which states are available to the protein.

In this paper we introduce a fast computational approach that

uses binding leverage to predict functional binding sites. The

novelty of our method lies in the clear connection between confor-

mational change and binding, and the low computational cost,

which allows large-scale analysis. We study two sets of proteins: 15

enzymes with well-documented allosteric regulation, and 226

enzymes from different SCOP domains with annotated catalytic

residues. The allosteric enzymes have at least two crystal structures

showing the conformational changes involved. We probe the

binding pockets of the proteins and find that the biological sites

generally have higher binding leverage than other surface pockets.

Ligands binding to high leverage sites can couple strongly to con-

formational changes and are thus able to modulate them. Con-

sequently, we propose that other sites with high binding leverage

are either natural or latent allosteric sites. We show that our

approach can be applied to comprehensive data sets to detect drug

targets in the form of latent allosteric sites. Finally, we analyze a

case of purely entropic allostery and find that collective motion

probably plays a smaller role here, implying a different mechanism

for this type of allostery. Our analysis however indicates that the

high buriedness of the effector site is important for this protein.

Results

Definition of binding leverage
We have illustrated what we see as the most basic mode of

allosteric regulation in Figure 1. An enzyme samples a number of

conformations, of which some are catalytically competent, while

others are not. For illustrative purposes we assume that there is one

main active and one main inactive conformation. In the active

state the catalytic site has a conformation that allows substrate

binding and transformation. In the inactive state the catalytic site

is deformed to some extent. Any binding pocket other than the

active state that also changes conformation during this transition

could potentially be used for allosteric regulation, either activation

or inhibition. In our illustration there is one such pocket, which is

where the effector binds. Included in the picture is also a putative

free energy landscape from which it is clear that there is no

intrinsic reason why conformational selection and induced fit

should be mutually exclusive mechanisms [28,29]. In specific cases

one could imagine that the barrier to effector binding is very high

in one of the states, for example due to steric hindrance, which

would then favor one mechanism over the other, but there is no

fundamental opposition between the two.

To study the ability of a binding site to affect the conformational

equilibrium we will introduce a quantity that we call binding

leverage. We generate possible ligand conformations by coarse-

grained docking simulations where the ligand is a chain of a few

Ca atoms (see Methods); we call the residues that interact with the

ligand in a given conformation a probe location. Figure 2A shows

part of a protein with three ligands bound, with arrows indicating

directions of motion. The motion could correspond to a particular

normal mode or be a transition known to be of functional

significance. The ligands can affect the local deformation of a site

in two ways, either by attracting the surrounding atoms and thus

preventing opening or shearing deformations (ligand X), or by

sterically blocking the site from closing (ligand Z). Such sites have

high binding leverage under the proposed motion. Ligand Y, on

the other hand, binds to a pocket that is not deformed, and thus

has low binding leverage for the depicted motion. The sites that

bind ligands X and Z are allosterically coupled, like the effector

Author Summary

Allosteric protein regulation is the mechanism by which
binding of a molecule to one site in a protein affects the
activity at another site. Although the two classical
phenomenological models, Monod-Wyman-Changeux
(MWC) and Koshland-Némethy-Filmer (KNF), span from
the case of hemoglobin to membrane receptors, they do
not describe the intramolecular interactions involved. The
coupling between two allosterically connected sites
commonly takes place through coherent collective motion
involving the whole protein. We therefore introduce a
quantity called binding leverage to measure the strength
of the coupling between particular binding sites and such
motions. We show that high binding leverage is a
characteristic of both allosteric sites and catalytic sites,
emphasizing that both enzymatic function and allosteric
regulation require a coupling between ligand binding and
protein dynamics. We also consider the first known case of
purely entropic allostery, where ligand binding only affects
the amplitudes of fluctuations. We find that the binding
site in this protein does not primarily connect to collective
motions – instead the modulation of fluctuations is
controlled from a deeply buried and highly connected
site. Finally, sites with high binding leverage but no known
biological function could be latent allosteric sites, and thus
drug targets.

Binding Leverage in Allosteric Regulation
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and substrate in Figure 1, whereas the binding site for ligand Y can

neither function as effector site nor be regulated by the other two

sites under these conditions.

To quantify the concept of binding leverage, we use either a

vector Dx describing the difference between two aligned

structures, or low frequency normal modes, to represent possible

motions (arrows in Figure 2A). Between each pair of Ca atoms i

and j, whose connecting line passes within 3.5 Å of any probe

atom, we place a spring of length dij (dashed lines in the figure). We

then measure the change in potential energy of the spring due to

motion described by either a normal mode or Dx,

DU~
k

2

X

ij

Dd2
ij ,

where the indices i and j run over all relevant atom pairs, and k is

an arbitrary spring constant. This change in potential energy is

meant to represent the cost of deforming the site when the ligand is

present and resisting the motion. If DUk represents this change for

normal mode k, the binding leverage LA for a set of modes A is then

calculated as

LA~
X

k[A

DUk:

The actual sets A used will be described below. The binding

leverage calculated using Dx is denoted LD, and calculated from

the one DU corresponding to that vector.

Binding leverage should not be interpreted literally as an

energy, but as an indication of the strength of coupling between

ligand binding and functional dynamics. The binding leverage of a

site both depends on the range of motion at the site and how

tightly bound the ligand is, i.e. how many pairs of residues connect

with the ligand. A ligand that binds to a site with high binding

leverage has a potential to lock one or more collective degrees of

freedom, thus shifting the balance between the states that are

sampled along those coordinates. If the difference between these

states is of functional relevance, binding to the site can have an

effect on activity.

Figure 1. A basic model for allostery. The top left panel shows an enzyme that is allosterically inhibited by ligand binding: the inhibition takes
place by stabilization of an inactive conformation. The top right panel shows a putative free energy landscape for this process. The transition from the
active to inhibited state can follow one of two main paths, either induced fit (green) or conformational selection (red). The bottom panels show
allosteric activation for the same protein. With the geometry of the illustration there will be a large barrier for induced fit, as indicated in the bottom
right free energy landscape.
doi:10.1371/journal.pcbi.1002148.g001

Binding Leverage in Allosteric Regulation
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We detect important sites by counting the number of times a

residue is part of probe locations with binding leverage above a

certain threshold. Figure 2B illustrates how this count works at a

site with three probe locations with high binding leverage. The

core of the binding site has a higher count than its periphery,

which indicates that the core residues are responsible for the high

scores of the three probe locations. The count thus gives a rough

picture of ‘‘hot spots’’ on the surface of the protein. It does not

distinguish between probe sites at the top and bottom of the list – it

simply identifies important residues. We call the count fi(x), where

the index i represents a given residue and x is the fraction of

ranked probe locations considered. With this definition fi(1) simply

measures the distribution of probe locations, and fi(0.1) is based on

the top 10% probe locations.

We propose the following procedure for finding allosteric sites

based on binding leverage (details are provided in Methods): (1)

Docking simulations generate a large number of probe locations;

similar probe locations are paired to remove redundancy. (2)

Relevant motions are calculated, either using normal modes or by

comparing crystal structures. (3) The probe locations are ranked

by binding leverage or local closeness, and then (4) compared with

known biological sites to allow the receiver operating characteristic

(ROC) to be measured. (5) Optionally, the measure fi(x) is used to

visualize the predictions for different values of x.

Active site prediction
We began our analysis by testing binding leverage on a set of

226 protein domains from different SCOP [30] superfamilies with

annotated catalytic sites [31] taken from a paper by Slama et al.

[32]. Previous studies have found that catalytic sites are often

located between domains of anticorrelated motion [17], which

means that they are likely to have high binding leverage. We

produced probe locations with the number of simulations set to 10

times the number of residues, and the number of MC steps to

Figure 2. Binding leverage. (A) Illustration of binding leverage for one normal mode. The outline represents the protein surface and the grey
dumbbells ligands. The curved arrow shows the general direction of motion in one normal mode and the small arrows the direction of motion for
specific Ca atoms in the same mode. Dashed lines indicate pairs of atoms whose interconnecting line crosses the ligand. (B) Illustration of the residue
count fi(x) for three probe locations.
doi:10.1371/journal.pcbi.1002148.g002

Binding Leverage in Allosteric Regulation

PLoS Computational Biology | www.ploscompbiol.org 4 September 2011 | Volume 7 | Issue 9 | e1002148



1 000 times the size of the simulation box measured in Å (the box

size is set according to the Methods section). The number of atoms

in the probe (probe size) was set to 4 universally. These numbers

were chosen to make sure that the whole protein surface is

sampled and to give a chance for the probe to explore also the

deeper pockets.

To rank probe locations we calculated the binding leverage

based on the 10 lowest frequency normal modes, LLF10, and also

the local closeness [33] (LC, see Methods). To get a simple statistic

of the predictive ability of LLF10 and LC we measured the area

under the ROC curve (AUC) for all proteins, using the ranked

probe locations (see Methods). A probe location that involves more

than 80% of the catalytic residues of any biological site was

considered a positive. For illustrative purposes Figure S1 shows

ROC curves for 15 randomly chosen proteins.

For 51 of the 226 proteins there were no probe locations that

matched the catalytic site. Using probe size 6 we found the active

sites of 10 additional proteins, and with probe size 2 we found 2

more. Manual checks of a few of the remaining 39 proteins

showed that these had active sites at dimer interfaces. Such active

sites involve residues from more than one chain and are not

expected to have detectable binding pockets in single chains.

The distribution of AUC values of our predictions – for proteins

that did have probe locations matching the target sites – is

presented in Figure 3. Out of these proteins 56% had AUC values

above 0.8 using LLF10. The corresponding number for LC was

only 10%. These numbers show that knowledge of basic collective

motions, described by for example normal modes, greatly helps in

predicting catalytic sites.

Allosteric transitions
We studied 15 allosteric enzymes that were selected using rather

strict criteria (see Methods). The proteins chosen are listed in

Table 1. We began our analysis of the allosteric proteins by

describing the conformational change that could be deduced from

crystal structures. By measuring the overlap between the lowest

frequency normal modes and the conformational change we found

that in some cases up to 90% of the motion is described by only a

few normal modes, and in all cases except two it is enough to have

20 modes to describe 50% of the motion (see Figure S2). We

determine the collectivity of the conformational transitions using

the measure by Brüschweiler, which is 1 for completely collective

transitions (rigid body motion) and 1/N (where N is the number of

atoms) for motions involving only one atom [34]. Figure S2 shows

that this collectivity is lower for small proteins – where the

transition is dominated by tertiary rather than quaternary rear-

rangements – and for proteins for which the transition is poorly

described by low frequency modes. In addition, we analyzed the

collectivity of the 10% lowest frequency modes for all 15 proteins

(see Figure S3). Except for BGDH and ATCase, the collectivity is

on average much higher for the first 10 modes than for the others.

As we will show below, the predictions for BGDH using the 10

lowest frequency modes are comparable to those of the other

proteins, indicating that binding leverage gives an accurate de-

scription even when all of the modes used have low collectivity.

Most of the proteins in Table 1 (ATCase, DAHPS, DAK,

BGDH, G6PD, NADME, PFK, PGDH and SS-UPRT) display

classical oligomeric allostery. The majority are both homotropi-

cally and heterotropically regulated. They are all described well by

low frequency normal modes, as can be seen from Figure S2. The

heterotetrameric enzymes anthranilate synthase (AS) and trypto-

phan synthase (TrpS) share the property that they have two

different active sites and that activity at one site controls activity at

the other. In both cases this allows the product of one reaction to

be used efficiently for the second reaction [35,36,37,38]. In

addition, AS is inhibited by tryptophan binding to a third site. Low

frequency normal modes describe the allosteric transition of both

these proteins well.

Two of the analyzed proteins are kinases: adenylate kinase

(AdK) and protein kinase A (PKA). Their dynamics have been

analyzed extensively in the literature [27,39,40,41,42,43,44,45,

46]. They are not allosteric proteins in the classical meaning –

ATP and substrate bind to the same site – but in both cases binding

of ATP and/or substrate causes a large conformational change, and

they are therefore often described as allosteric. Previous research

has shown that the closing of AdK is well described by a few low-

frequency normal modes [47], and we found that this is also the case

for PKA (Figure S2).

The enzyme protein tyrosine phosphatase 1B (PTP1B) is

inhibited by an artificial effector that immobilizes an active site

loop [48]. The localized nature of this motion is reflected in the

poor overlap with low frequency modes (Figure S2).

Binding of S-adenosylmethionine (SAM) activates the dimeric

enzyme threonine synthase (ThrS) [49]. The main component of

the conformational change is asymmetric, only one of the sites is

activated upon SAM binding, whereas the other remains largely in

the apo conformation [50]. This asymmetry probably explains

why the conformational transition is poorly described by low

frequency normal modes.

Overall binding site characteristics
To analyze the binding leverage of the allosteric enzymes we

first generated probe locations. Depending on the size of the

protein, the number of simulations varied between 500–12 000 to

allow the probe to sample all parts of the surface. We ranked probe

locations by four different measures, LD, LFM5, LLF10 and LC. The

three binding leverages LD, LFM5, and LLF10 are calculated using

the difference vector Dx, the 5 normal modes that overlap the

most with functional motion (FM5), and the 10 lowest frequency

normal modes (LF10), respectively. For each protein we listed all

biological ligands, and defined the binding sites by measuring

which residues had at least one atom within 3.5 Å of the ligand

(protein and ligand coordinates were taken from a crystal structure

with ligand). To measure ROC curves we defined positives as

probe locations with more than 40% of the residues of any

biological binding site. The AUC value only gives a lower bound

Figure 3. Prediction of catalytic sites. Histograms of AUC values
based on catalytic site predictions using LC and LLF10 for 226 enzymes.
doi:10.1371/journal.pcbi.1002148.g003

Binding Leverage in Allosteric Regulation
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to the accuracy, since some of the ‘‘false positives’’ are likely latent

sites, which we also want to be able to find. On the other hand,

since there is evolutionary pressure to optimize allostery, biological

sites should be easier to find than latent ones.

The results of the analysis including the simulation parameters

are presented in Table 1. ROC curves for the 15 proteins are

shown in Figure S4. On average, the performance is similar

between the measures in Table 1, but it can be quite diverse for

individual proteins. Surprisingly, the large difference between

LLF10 and LC seen for catalytic site prediction disappeared. We

attribute this to the generic definition of binding site used,

compared to the well-annotated catalytic residues in the previous

set. The fact that LLF10 is comparable to LD indicates that

regulatory sites can be found from a single structure without

experimental knowledge of conformational change.

Initially, we were not able to generate probe locations matching

some of the biological sites, usually due to them being too buried

or the ligand being large. To reach deep binding pockets we

increased the length of the simulations and reduced the probe size

(for TrpS for example). Protein structures that have large ligands,

such as the bisubstrate analog in the active state crystal structure of

AdK (PDB entry 1ake), require larger probe sizes. As far as

possible we use apo structures for the docking simulations. In the

end we were only unable to match the phenylalanine binding-

pocket in DAHPS and some of the NADP and GTP sites in

BGDH.

The allosteric transition of the protein PTP1B is not described

very well by low frequency normal modes (see Figure S2). In spite

of this, the prediction results using LLF10 and LFM5 are comparable

to those of LD. All three ROC curves (see Figure S4) increase

rapidly and then flatten out, because the active site does have high

binding leverage while the artificial allosteric site does not. As we

showed above, the active sites in single enzyme domains usually

have high binding leverage, regardless of if the protein has been

shown to be allosteric or not. We attribute the difficulty predicting

the allosteric site to a combined effect of a shallow binding pocket

and the localized conformational changes involved.

We analyzed single protomers from the oligomeric proteins to

see if these could be used to improve predictions for the

problematic proteins above. The results are presented in Table 2

and a comparison between the oligomer and monomer analyses in

Figure 4. In this situation there was no problem finding all binding

pockets in BGDH and DAHPS. Even though we did not take into

account that some parts of the monomer are buried in the

oligomer, some of the proteins had clear improvements in AUC

values in this analysis, in particular ATCase for which perfor-

mance was poor when analyzing the full protein.

Before proceeding to specific examples we note that the protein

ATCase stood out among the 15 proteins in Table 1; here our

predictions were considerably worse than random for some of the

measures. With 12 chains, this was the largest protein in our set.

The ATP/CTP regulatory site is peripheral, and ranked very low

with all our measures. The top ranking sites in our analysis are at

chain interfaces that undergo large rearrangements in the

allosteric transition. It seems reasonable that ligands that bind to

these crevices could stabilize either active or inhibited conforma-

tions. When we analyzed one of the catalytic subunits by itself the

AUC value for LLF10 increased from 0.46 to 0.92.

Analysis of specific allosteric proteins
The above analysis was somewhat abstract in that we assigned a

single scalar to evaluate the predictive abilities of our measures,

and ultimately the correctness of our model of allostery. To get a

better picture of how our measures work we performed a detailed

Table 1. Simulation parameters and results.

Protein Chains PDB entries used RMSD Probe size # sim. MC steps Ligands
Probed
sites AUC

LD LFM5 LLF10 LC

AdK 1 1ake, 4ake 7.1 Å 8 500 100 000 AP5 1/1 0.91 0.91 0.94 0.73

AnthS 262 1i7s, 1i7q 3.3 Å 4 3 000 300 000 TRP BEZ PYR ILG 7/8 0.97 0.97 0.92 0.75

ATCase 362+263 1d09, 1rac, 3d7s, 7at1 6.3 Å 4 12 000 700 000 PAL CTP ATP 15/15 0.68 0.51 0.46 0.24

BGDH 6 1nr7, 1nqt, 1hwz 4.6 Å 6 10 000 300 000 ADP GTP NDP 13/18 0.68 0.73 0.83 0.89

DAHPS 4 1gg1, 1kfl 1.5 Å 4 3 000 200 000 PGA PHE 4/8 0.87 0.82 0.79 0.98

DAK 2 3ju5, 3ju6 0.7 Å 4 3 000 150 000 ANP ARG 1/2 0.81 0.73 0.85 0.93

G6PD 6 1cd5, 1hor, 1hot 4.2 Å 2 4 000 250 000 AGP 16G 12/12 0.69 0.68 0.70 0.70

NADME 4 1efk, 1gz3 0.8 Å 2 10 000 600 000 ATP FUM 8/8 0.69 0.74 0.77 0.68

PFK 4 3pfk, 4pfk, 6pfk 1.7 Å 4 4 000 200 000 PGA F6P 8/8 0.80 0.71 0.81 0.65

PGDH 4 1psd, 1yba 3.4 Å 4 10 000 400 000 NAD AKG SER 11/12 0.69 0.60 0.62 0.61

PKA 1 1j3h, 1atp 2.6 Å 6 1 000 200 000 ATP 1/1 0.98 0.97 0.98 0.95

PTP1B 1 2hnp, 1aax, 1t49 0.8 Å 2 1 000 100 000 BPM 892 3/3 0.77 0.71 0.74 0.71

SSUPRT 4 1xtt, 1xtu 1.9 Å 4 4 000 150 000 CTP U5P 8/8 0.94 0.84 0.75 0.73

ThrS 2 1e5x, 2c2b, 2c2g 2.1 Å 4 1 500 200 000 SAM LLP 6/6 0.87 0.74 0.79 0.93

TrpS 262 1bks, 3cep 1.7 Å 2 3 000 300 000 G3H PLP IDM 6/8 0.89 0.92 0.58 0.82

Average: 0.82 0.79 0.79 0.79

AUC averages were calculated without the outlier ATCase. Ligand names are taken from the PDB files. Italicized PDB codes indicate the pair of structures used to
calculate RMSD and difference vector. The column labeled ‘‘# sim’’ indicates the total number of simulations performed. ‘‘Probed sites’’ indicates how many of the
binding sites our probe managed to reproduce. The AUC values are averages over two independent runs with different random number seeds. The differences between
the total averages (bottom row) of the two runs were in the range 0.005–0.015.
doi:10.1371/journal.pcbi.1002148.t001

Binding Leverage in Allosteric Regulation
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analysis for a few of the proteins (PKA, ThrS, BGDH, PFK). To

aid in the analysis we will show fi(x) for the different proteins. The

value of x will be chosen such that all biological sites are covered.

PKA undergoes a relatively large conformational change upon

substrate binding, as is common for many kinases [40]. Figure 5A

shows the structure of PKA together with its two substrates. It has

a kidney shape with one smaller and one bigger lobe that close

over the active site when both ATP and protein substrate are

present. Binding of either substrate causes partial closing of the

active site [40] and experiments have shown that binding of one

substrate increases affinity for the other [41]. Figure 5B shows that

the active site has the highest binding leverage, in line with the fact

that binding here causes large conformational change. The whole

peptide binding site is not captured but the ‘‘hot spot’’ covers part

of it. Since the peptide is relatively large we do not expect its entire

binding site to have high binding leverage, and it was not included

in the ROC analysis in Table 1. For reference, the corresponding

ROC curve is shown in Figure 5C. To assess the significance of the

particular choice of crystal structure used we also analyzed PDB

entry 1atp. Probes of size 6 were not able to find the active site in

this closed structure, but probes of size 2 did. The AUC values

were 0.90, 0.80, 0.84, and 0.99 for LD, LFM5, LLF10, and LC

respectively, which is a decrease for all measures except LC. This

decrease is probably primarily due to the difficulty of docking

using a closed structure. The normal modes of a closed structure

might also be less useful [47].

ThrS synthesizes threonine from O-phosphohomoserine with

pyridoxal phosphate (PLP) as coenzyme. As mentioned, it is

allosterically activated by S-adenosylmethionine (SAM) binding,

which causes conformational change at the PLP site [49], including

the PLP molecule itself [50]. In total four SAM molecules bind to

the dimer, two per protomer, at the interface between the two

chains (Figure 6A). The active site is in the large cleft dominating

one face of the structure. As measured by fi(0.34) (Figure 6B & C) the

SAM binding site is well defined and relatively isolated, but the PLP

site is part of a larger region with high binding leverage. It is possible

that binding anywhere in this cleft could affect the dynamics and

activity of the protein. The wide spread of sites with high binding

leverage around the active site explains the poor AUC values for this

protein in Table 1, also illustrated by the ROC curve in Figure 6D.

We note that even though the allosteric transition was not

particularly well described by low frequency normal modes (Figure

S2), LLF10 captures the important regions of the protein. LC does

however do a better job than binding leverage at pinpointing the

exact location of the important sites.

The allosteric regulation of bovine glutamate dehydrogenase

(BGDH) is complex and involves both homotropic and heterotro-

pic effects (Figure 7A). This hexameric protein is negatively

cooperative with respect to coenzyme binding (NADP+), and is

primarily regulated by GTP (inhibition) and ADP (activation).

Additional allosteric ligands have also been identified [51]. Each

chain consists of three subdomains: the Glu, NAD and antenna

domains. Rotation of the NAD domain towards the Glu domain

closes the catalytic cleft that lies between them. The cleft needs to

close to initiate catalysis and then open to release the reaction

products [52]. The opening of the cleft varies quite significantly

throughout the asymmetric unit of the apo crystal, showing that

the protein can visit a variety of states in its unliganded form [53].

ADP binding is compatible with both closed and open structures

[54], and is believed to facilitate the transition between the two

[53]. GTP only binds to a closed conformation and probably locks

the enzyme in this state [54]. In addition to the ones discussed

here, there are several allosteric effectors whose binding sites are

unknown [51]. There are also artificial inhibitors that bind to the

central core of the hexamer [55].

The ROC curves in Figure 7D show that robust predictions can

be made for this protein using both LLF10 and LC, based on the

sites that were matched by probe locations. Figure 7B shows

fi(0.25) for BGDH (based on LLF10 ranks), demonstrating that both

the active site and the cleft surrounding the ADP site have high

binding leverage. GTP binds in the cleft connecting the two sites

which is also detected by fi(0.25). Even though our probe was not

able to match all binding sites we see here that all the known

biological sites have high LLF10. By increasing the number of probe

locations taken into consideration we found several possible latent

allosteric sites: In Figure 7C we see that fi(0.41) gives two

additional sites with threefold symmetry at the waist of the protein,

i.e. the interface between the two trimers. As mentioned, artificial

Figure 4. Analysis of single chains. Comparison between AUC
values obtained for analyses of oligomeric enzymes and single chains
(monomers) taken from the oligomeric structure. ATCase, which has
very poor prediction results in the oligomeric analysis, behaves well in
the single chain analysis (see also Table 2).
doi:10.1371/journal.pcbi.1002148.g004

Table 2. Analysis of monomers. For each protein 1 000
simulations of 100 000 MC steps each were performed.

Protein Probe size Ligands Probed sites AUC

LLF10 LC

Anths TrpE 4 BEZ PYR TRP 3/3 0.91 0.83

Anths TrpG 4 ILG 1/1 0.93 0.81

ATCase 4 PAL 1/1 0.92 0.97

BGDH 4 ADP GTP NDP 3/3 0.78 0.87

DAHPS 4 PGA PHE 2/2 0.76 0.93

DAK 4 ANP ARG 2/2 0.85 0.94

G6PD 2 AGP 16G 2/2 0.61 0.76

NADME 2 ATP FUM 2/2 0.70 0.61

PFK 4 PGA F6P 2/2 0.77 0.59

PGDH 4 AKG NAD SER 3/3 0.85 0.67

SSUPRT 4 CTP UP5 2/2 0.54 0.84

ThrS 4 SAM LLP 2/3 0.79 0.72

TrpS a 2 IDM 1/1 0.90 0.99

TrpS b 2 SRI IDM PLP 3/3 0.77 0.996

doi:10.1371/journal.pcbi.1002148.t002
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allosteric effectors have been found to bind at the center of the

protein [55], which does not seem to be accessible to our probe,

but the waist sites we found are in the same general area. This

extended analysis also points out the entire bases of the antenna

helices to be important (partly shown in Figure 7C). These helices

are believed to be involved in the negative cooperativity of NAD

binding and also in making catalytic turnover more efficient [53].

The tetrameric enzyme phosphofructokinase (PFK) is allosteri-

cally inhibited by phosphoenolpyruvate (PEP) and activated by

ADP binding to the same site [56]. It is cooperative with respect to

binding of the two substrates, fructose-6-phosphate (F6P) in the

presence of PEP [57]. The crystal structure with the allosteric

activator ADP present (4pfk) is in principal identical to the apo

structure (3pfk) [58], indicating that the activator simply stabilizes

the active state. An inhibited structure has also been determined by

crystallizing the protein with a PEP-analog (6pfk). The binding of

inhibitor primarily causes a quaternary structural change – two

dimers rotate rigidly with respect to each other [56]. Within the

subunits, two helices in the effector-binding domain shift positions,

otherwise the chains are largely rigid. The active site lies at the

Figure 5. Analysis of protein kinase A (PKA) using LLF10. (A) Cartoon of protein structure. Protein coordinates are taken from PDB entry 1j3h
and ligand coordinates from 1atp. (B) Residues colored by fi(0.04), with cyan representing fi = 0 and magenta the highest recorded fi. (C) ROC curves
obtained with the four measures in Table 1.
doi:10.1371/journal.pcbi.1002148.g005

Figure 6. Analysis of threonine synthase (ThrS) using LLF10. (A) Cartoon of structure with the coenzyme PLP drawn with white spheres and the
SAM molecules with grey spheres. Protein coordinates are taken from PDB entry 1e5x and ligand coordinates from 2c2b. (B) Rotated view showing
the SAM binding site, colored according to fi(0.42). (C) Same view as (A) showing fi(0.42) for active site cleft. (D) ROC curves.
doi:10.1371/journal.pcbi.1002148.g006
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dimer-dimer interface and is thus affected by the quaternary change

(see Figure 8A). Our analysis (Figure 8B) showed that the active site

F6P ligand is at the center of a ‘‘hot spot’’ and the regulatory PEP/

ADP sites are at the periphery of the central ‘‘pore’’ that has high

binding leverage. In addition to the biological sites we detected a

possible latent site with fourfold symmetry (Figure 8C), which is

located at a chain-chain interface.

Allostery without conformational change
Lastly we turn to the dimeric catabolite activator protein (CAP) –

a transcriptional activator allosterically regulated by cAMP-binding

[59]. It is negatively cooperative with respect to cAMP binding, but

displays no significant conformational change upon binding. NMR

experiments have however shown that binding of one cAMP

molecule increases fluctuations, i.e. entropy, and that binding of a

second cAMP molecule quenches these fluctuations [24], and thus

the affinity is lower for the second molecule. We have illustrated the

free energy landscape at an intermediate ligand concentration in

Figure 9B. The distinction between allosteric pathways illustrated in

Figure 1 does not apply here.

We did 1 500 probe simulations of 100 000 MC steps, using a

probe of size 2 and protein coordinates from PDB entry 1g6n. We

ranked probe locations using LC and LLF10. AUC values are 0.61

for LLF10 and 0.98 for LC. Figure 9A shows fi(0.1) for both measures.

The cAMP ligand is marked in the figure by black spheres. It is clear

both from the figure and the AUC values that LC predicted the

allosteric sites well, whereas LLF10 did not. The top site predicted by

binding leverage is at the interface between two subdomains. As far

as it is known this cleft has no binding partner. The actual cAMP

binding site is more deeply buried and not directly connected to

collective motion, which could mean that the allostery of this protein

primarily involves other types of motion. Experiments show that

both slow (0.1–1 s) and fast backbone fluctuations (1 ps–1 ns)

contribute to the negative cooperativity of cAMP binding, and it

seems that the quenching upon binding of the second cAMP ligand

is the primary component of negative cooperativity [24]. The

measure LC can be used to locate deeply buried, highly connected

sites, which are presumably well suited for inducing the type of

global rigidification observed for this protein.

Discussion

It is well understood that catalysis and allosteric regulation takes

advantage of the motions inherent to the native protein (by

motions we mean both pure fluctuations and visits to nearby local

Figure 7. Analysis of bovine glutamate dehydrogenase (BGDH) using LLF10. (A) The hexameric structure of BDGH with ligand atoms drawn
as spheres. Red ligands are NADP, blue GTP and green ADP. The individual chains are colored yellow, orange and white within each trimer. 1nr7 was
used for protein coordinates, and NADP, GTP and ADP were taken from PDB entries 1hwz and 1nqt. The antenna helices of three of the chains are
indicated with arrows. (B) Slightly rotated view showing the active and both allosteric sites, colored according to fi(0.25). (C) When more probe
locations are included in the analysis, latent sites emerge, as exemplified here by fi(0.41). (D) ROC curves.
doi:10.1371/journal.pcbi.1002148.g007
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free energy minima). Ligands binding at catalytic and allosteric sites

should be able to couple to these motions. Until now, this under-

standing has however not been used to predict functional sites, the

analysis has instead focused on characterizing the properties of

individual proteins. We introduce the measure binding leverage to

quantify the coupling between a ligand and conformational transi-

tions of the protein. We use MC simulations to generate probe

locations on the surface of the protein, and then measure the

binding leverage for these using either low frequency normal modes

or motions derived from paired crystal structures. We analyzed a set

of 226 diverse well-annotated catalytic domains, and found that

binding leverage gives much better predictions of catalytic sites than

the static measure local closeness, which we introduced in an earlier

study [33]. The analysis of allosteric proteins showed that the

binding leverage approach predicts most of the allosteric binding

sites studied. We illustrated by some specific examples that our

statistical analysis underestimates the quality of the predictions, both

because the ‘‘false positives’’ can be understood as possible latent

allosteric sites, and because the hot spots match the biological

binding sites – also those that were not discovered by comparing the

residues in the probe locations with the biological sites. The ability

to locate latent allosteric sites is useful for drug design.

The fact that two different ligands can have opposite allosteric

effects at the same site, as for PFK, shows that some sites are

intrinsically better coupled to the dynamics of the protein and

depending on ligand the effect can go either way (see also Figure 1).

Furthermore, two of the four proteins we analyzed in detail

(BGDH and PFK) are clear examples of cases where at least one of

the modes of regulation simply involves stabilizing a conformation

also found in a crystal structure without the effector. Binding

leverage was devised specifically to detect sites with such abilities.

We demonstrated that it is sometimes easier to predict important

sites by looking at single chains rather than full oligomers. The

ancestors of oligomeric enzymes were most likely monomeric

enzymes of related function. A common path for evolving allostery

is probably first formation of oligomers to allow homotropic

cooperativity and then the addition of heterotropic regulation,

which can take advantage of the collective motions already involved

in homotropic regulation. Thus, the catalytic site is often the only

site of significance in a monomer and will be easier to identify when

the monomer is isolated – the allosteric sites however sometimes

only make sense in the context of the oligomer. We recommend a

combination of both approaches when looking for catalytic and

heterotropic allosteric sites for uncharacterized oligomeric proteins.

We also analyzed the transcription factor CAP, which displays

‘‘purely entropic’’ allosteric regulation. For this protein we found

that binding leverage does not predict the allosteric site very well,

whereas the purely geometrical measure local closeness does. Even

though it is hard to draw any definite conclusions from a single

example, a plausible explanation in this case is that allostery

without observable conformational change does not involve the

collective motion associated with the canonical examples. Since

local closeness finds deep surface pockets with high residue inter-

connectivity, it might be a better measure than binding leverage

Figure 8. Analysis of phosphofructokinase (PFK) using LLF10. (A) Two views of the tetrameric structure. Blue spheres represent the activator
ADP and red spheres the substrate F6P. Protein coordinates were taken from PDB entry 3pfk, coordinates for F6P from 4pfk, and for PGA from 6pfk.
(B) Same views as in (A) but now showing the surface colored by fi(0.22). (C) Latent sites can be seen in a slightly rotated version of the left half of (B).
(D) ROC curves.
doi:10.1371/journal.pcbi.1002148.g008
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for detecting sites from which alterations of local fluctuations can

propagate through the protein. When available, other proteins

with entropically driven allostery should be analyzed with respect

to local closeness to verify whether this conclusion is valid. There is

of course always an entropic component involved in allosteric

transitions. Hypothetically, the cases in Table 1 where binding

leverage gives poorer predictions than local closeness might have a

larger entropic component than the cases where binding leverage

works well.

As pointed out in the introduction, intraprotein signaling

network descriptions do not capture the thermodynamic nature

of allosteric regulation. Allosteric regulation depends on confor-

mational transitions between closely related states: knowing the

motions involved is often enough to understand how effector

ligands regulate activity. We have shown that, for many proteins,

one can make reliable predictions of different types of binding sites

with a method that only relies on finding binding pockets and

measuring how well these pockets are connected to the collective

dynamics of the protein. To our knowledge this is the first time the

connection between dynamics and functional sites has been

analyzed at such a large scale. Prediction of allosteric and functional

sites is important for characterizing proteins of unknown function

and for locating potentially druggable sites.

Methods

Local closeness
In a previous paper we defined the centrality measure local

closeness (LC) to predict binding site residues from a residue

interaction graph [33]. LC is a minimalistic purely geometric

measure that can find catalytic and allosteric sites in a large range

of proteins. In the residue interaction graph each node represents a

residue and edges represent interacting residues. For a given node,

let nk denote the number of nodes whose shortest distance from the

node is exactly k. The local closeness for the node is then defined

as C = n1+n2/4+n3/9+n4/16 (see the original paper for details [33]).

Surface probe simulations
We begin the analysis of a protein by probing its surface for

potential binding sites using coarse-grained docking simulations.

Both protein and ligand are represented as Ca backbones. We call

the ligand a probe, and the number of atoms in the probe the

probe size. The probe moves freely in the simulations, but for

computational efficiency the protein conformation is held com-

pletely fixed. The distance between sequential probe Ca atoms is

kept fixed at 3.8 Å and bond angles in the range 90u to 180u are

allowed. The Ca-Ca interaction has the form of a square well

attractive potential, for each pair of atoms, in the range 5.5 to 8 Å

with depth e = 0.75 kBT. To decrease the risk of the probe being

sterically trapped in deep pockets, the repulsion between atoms is

increased in steps. The repulsive energy is +3e for atom-atom

distances between 5 and 5.5 Å and +10e between 4.5 and 5 Å.

Distances shorter than 4.5 Å are not allowed. The boundary

conditions are periodic and the size of the cubic simulation box is

set to twice the maximum size of the protein along any of the x, y

or z-axes.

We run short MC simulations of this model, with ,100 000

MC steps, using the Metropolis algorithm [60]. The MC updates

for the probe include rigid body rotations and translations. Bond

angle updates are used for probe sizes $3, and torsion angle

updates for probe sizes $4. The simulations are started from

random configurations with no contacts between probe and

protein. The end configuration of each simulation is used to define

a binding site candidate. All protein Ca atoms interacting with the

probe in this configuration define a list of residues, which we call

the probe location. Because of the simplicity of the model the

simulations are fast – on a modern desktop PC (as of 2010) the

time needed to generate one probe site is of the order of 1 s

(including disk I/O, etc). For large proteins the number of

simulations needed to sample the whole protein surface is larger

than for small proteins, and more MC steps are needed to traverse

a large simulation box. Longer simulations can also be necessary to

allow sampling of deeply buried pockets. Probe sizes in the range

2–8 are used. This should correspond to typical ligand sizes up to

small peptides and dinucleotides. Using a somewhat oversized

probe size increases the chance of covering the relevant residues at

a given site, but steric hindrance makes it more difficult to reach

deep binding pockets.

A set of docking simulations generally produces some redundant

probe locations. To refine the list of locations we score the probe

locations by LC: we first calculate LC for all residues in our

protein. For each probe location we then identify the 10 residues

with highest LC and score the site by the average LC of those

residues. We compare two probe locations, A and B, using the

Jaccard similarity A\Bj j= A|Bj j. The similarity is 1 when A and

B are identical and 0 when they contain no common elements.

Before any analysis is done we merge locations that have a Jaccard

similarity higher than 0.7 keeping the location with the higher

local closeness score and merging the most similar ones first.

Normal mode analysis
The second step in the analysis is to find relevant motions for a

given protein. We use either a comparison between crystal

Figure 9. Catabolite activator protein (CAP). (A) Binding analysis
of CAP based on PDB entry 1g6n. The coloring is based on fi(0.1). To
help the eye the most important sites have been marked with circles.
The dimer is symmetric; the sites hidden in this view have similar
properties to the ones shown. The location of the cAMP ligand in the
crystal structure is marked by black spheres. (B) Putative free energy
landscape at an intermediate cAMP concentration. The x-axis indicates
the number of cAMP molecules bound, and the y-axis conformational
degrees of freedom. We indicate that the conformational entropy is
highest when one cAMP is bound by the wider minimum.
doi:10.1371/journal.pcbi.1002148.g009
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structures or normal modes. The normal mode analysis is done

using Ca elastic networks in the Molecular Modeling Toolkit

(MMTK) [61]. We calculate vibrational modes using the default

parameters of MMTK. In all analyses we discard the 6 trivial zero

frequency modes. We denote the j:th normalized normal mode ej

and the normalized difference vector between two aligned crystal

structures Dx~fDx1,Dx2 . . .Dx3Ng. The modes are sorted by

frequency.

To analyze to which extent an allosteric transition is described

by low frequency normal modes we use two related measures [62].

First we measure the overlaps Ij =Dx?ej/|Dx| |ej| between the

individual normal modes and the conformational transition

described by the crystal structures. The overlap is 1 when the

mode under consideration describes the whole transition, and 0

when the mode is orthogonal to the transition. The sum of all

squared overlaps is 1 since the normal modes form a complete

basis set. By checking how fast this sum (the cumulative overlap)

approaches one, one can assess to what extent the lowest

frequency normal modes describe the transition.

Statistical analysis
The third step in our analysis is to score the probe locations by

binding leverage or LC and the fourth and final step is a statistical

analysis of the probe locations, done by comparing with known

biological binding sites. A probe location that scores above a

certain threshold is considered a potential binding site. We define

probe locations that contain a certain number of residues from any

biological site as positives and then calculate the receiver-operating

characteristic (ROC), which measures the true positive rate versus

the false positive rate as the threshold is varied. The correctly

classified binding sites at a given threshold are true positives. The

true positive rate is the number of true positives out of the

positives, and the false positive rate is the number of false positives

divided by the number of negatives. The area under the ROC

curve (AUC), when the false positive rate is varied from 0 to 1, is 1

for a perfect predictor and 0.5 for a random one.

Selection of allosteric enzymes
We only analyze enzymes that are regulated by ligand binding.

There has to be at least two structures available in the PDB, one

regulated (either activated or inhibited) and one that is not

regulated. The active and allosteric sites have to be unliganded in

at least one of the structures, respectively, although in some cases

cofactors are present in all available structures. Some of the

proteins were taken from the allosteric benchmark set [63], and

others were found by literature searches. The reason we left out

most of the allosteric benchmark set is because only about one

third of the proteins are enzymes; we exclude the different classes

of signaling proteins where allosteric regulation changes the inter-

action with macromolecules like DNA, RNA and other proteins.

Furthermore, some of the enzymes in that set are regulated by

phosphorylation or didn’t have apo structures available. We also

skipped proteins where the regulation caused a shift in oligomeriza-

tion state.

Supporting Information

Figure S1 ROC curves for 15 randomly chosen proteins
out of the 226 in the set by Slama et al. [32].

(EPS)

Figure S2 Overlap with normal modes. Cumulative

overlap of the 10% lowest frequency normal modes with the

difference vector between crystal structures. The pairs of PDB

entries used to describe the motion are given in the figure. Each

protein has two curves, calculated using the normal modes of

either structure. Brüschweiler’s collectivity measure k of the

transition between two crystal structures is printed in the figure

[34].

(EPS)

Figure S3 The collectivity (by Brüschweiler’s measure)
of the 10% lowest frequency normal modes for all the
analyzed allosteric proteins. The protein BGDH and

ATCase are marked because they have relatively low collectivity

for their first 10 modes. These are also the two largest proteins in

the set.

(EPS)

Figure S4 ROC curves for the 15 allosteric proteins,
measured for the three leverages (LD, LFM5 and LLF10)
and local closeness (LC).

(EPS)

Acknowledgments

SM wishes to thank Edvin Fuglebakk for helpful discussions regarding the

normal mode analysis.

Author Contributions

Performed the experiments: SM. Analyzed the data: SM INB. Wrote the

paper: SM INB. Designed the software used in analysis: SM. Conceived

the experiments: INB. Designed the experiments: SM INB.

References

1. Monod J, Wyman J, Changeux JP (1965) On the Nature of Allosteric

Transitions: A Plausible Model. J Mol Biol 12: 88–118.

2. Koshland DE, Jr., Nemethy G, Filmer D (1966) Comparison of experimental

binding data and theoretical models in proteins containing subunits. Biochem-

istry 5: 365–385.

3. Changeux JP, Edelstein SJ (2005) Allosteric mechanisms of signal transduction.

Science 308: 1424–1428.

4. Weber G (1972) Ligand binding and internal equilibria in proteins. Biochemistry

11: 864–878.

5. Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all

dynamic proteins? Proteins 57: 433–443.

6. Bahar I, Chennubhotla C, Tobi D (2007) Intrinsic dynamics of enzymes in the

unbound state and relation to allosteric regulation. Curr Opin Struct Biol 17:

633–640.

7. Cui Q, Karplus M (2008) Allostery and cooperativity revisited. Protein Sci 17:

1295–1307.

8. Liu T, Whitten ST, Hilser VJ (2007) Functional residues serve a dominant role

in mediating the cooperativity of the protein ensemble. Proc Natl Acad Sci U S A

104: 4347–4352.

9. Atilgan C, Atilgan AR (2009) Perturbation-response scanning reveals ligand

entry-exit mechanisms of ferric binding protein. PLoS Comput Biol 5:

e1000544.

10. Ferreiro DU, Hegler JA, Komives EA, Wolynes PG (2011) On the role of

frustration in the energy landscapes of allosteric proteins. Proc Natl Acad

Sci U S A 108: 3499–3503.

11. Cooper A, Dryden DT (1984) Allostery without conformational change. A

plausible model. Eur Biophys J 11: 103–109.

12. Ming D, Wall ME (2005) Quantifying allosteric effects in proteins. Proteins 59:

697–707.

13. Toncrova H, McLeish TC (2010) Substrate-modulated thermal fluctuations

affect long-range allosteric signaling in protein homodimers: exemplified in

CAP. Biophys J 98: 2317–2326.

14. Ma J (2005) Usefulness and limitations of normal mode analysis in modeling

dynamics of biomolecular complexes. Structure 13: 373–380.

15. Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural

biology. Curr Opin Struct Biol 15: 586–592.

16. Chennubhotla C, Bahar I (2006) Markov propagation of allosteric effects in

biomolecular systems: application to GroEL-GroES. Mol Syst Biol 2: 36.

Binding Leverage in Allosteric Regulation

PLoS Computational Biology | www.ploscompbiol.org 12 September 2011 | Volume 7 | Issue 9 | e1002148



17. Yang LW, Bahar I (2005) Coupling between catalytic site and collective

dynamics: a requirement for mechanochemical activity of enzymes. Structure
13: 893–904.

18. Lockless SW, Ranganathan R (1999) Evolutionarily conserved pathways of

energetic connectivity in protein families. Science 286: 295–299.
19. Smock RG, Gierasch LM (2009) Sending signals dynamically. Science 324:

198–203.
20. Tehver R, Chen J, Thirumalai D (2009) Allostery wiring diagrams in the

transitions that drive the GroEL reaction cycle. J Mol Biol 387: 390–406.

21. del Sol A, Tsai CJ, Ma B, Nussinov R (2009) The origin of allosteric functional
modulation: multiple pre-existing pathways. Structure 17: 1042–1050.

22. Kern D, Zuiderweg ER (2003) The role of dynamics in allosteric regulation.
Curr Opin Struct Biol 13: 748–757.

23. Bahar I, Lezon TR, Yang LW, Eyal E (2010) Global dynamics of proteins:
bridging between structure and function. Annu Rev Biophys 39: 23–42.

24. Popovych N, Sun S, Ebright RH, Kalodimos CG (2006) Dynamically driven

protein allostery. Nat Struct Mol Biol 13: 831–838.
25. Hardy JA, Wells JA (2004) Searching for new allosteric sites in enzymes. Curr

Opin Struct Biol 14: 706–715.
26. Goodey NM, Benkovic SJ (2008) Allosteric regulation and catalysis emerge via a

common route. Nat Chem Biol 4: 474–482.

27. Miyashita O, Onuchic JN, Wolynes PG (2003) Nonlinear elasticity, protein-
quakes, and the energy landscapes of functional transitions in proteins. Proc Natl

Acad Sci U S A 100: 12570–12575.
28. Hammes GG, Chang YC, Oas TG (2009) Conformational selection or induced

fit: a flux description of reaction mechanism. Proc Natl Acad Sci U S A 106:
13737–13741.

29. Okazaki K, Takada S (2008) Dynamic energy landscape view of coupled binding

and protein conformational change: induced-fit versus population-shift mech-
anisms. Proc Natl Acad Sci U S A 105: 11182–11187.

30. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural
classification of proteins database for the investigation of sequences and

structures. J Mol Biol 247: 536–540.

31. Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource
of catalytic sites and residues identified in enzymes using structural data. Nucleic

Acids Res 32: D129–133.
32. Slama P, Filippis I, Lappe M (2008) Detection of protein catalytic residues at

high precision using local network properties. BMC Bioinformatics 9: 517.
33. Mitternacht S, Berezovsky IN (2011) A geometry-based generic predictor for

catalytic and allosteric sites. Protein Eng Des Sel 24: 405–409.

34. Bruschweiler R (1995) Collective Protein Dynamics and Nuclear-Spin
Relaxation. Journal of Chemical Physics 102: 3396–3403.

35. Miles EW, Rhee S, Davies DR (1999) The molecular basis of substrate
channeling. J Biol Chem 274: 12193–12196.

36. Barends TR, Dunn MF, Schlichting I (2008) Tryptophan synthase, an allosteric

molecular factory. Curr Opin Chem Biol 12: 593–600.
37. Spraggon G, Kim C, Nguyen-Huu X, Yee MC, Yanofsky C, et al. (2001) The

structures of anthranilate synthase of Serratia marcescens crystallized in the
presence of (i) its substrates, chorismate and glutamine, and a product,

glutamate, and (ii) its end-product inhibitor, L-tryptophan. Proc Natl Acad
Sci U S A 98: 6021–6026.

38. Mouilleron S, Golinelli-Pimpaneau B (2007) Conformational changes in

ammonia-channeling glutamine amidotransferases. Curr Opin Struct Biol 17:
653–664.

39. Arora K, Brooks CL, 3rd (2007) Large-scale allosteric conformational transitions
of adenylate kinase appear to involve a population-shift mechanism. Proc Natl

Acad Sci U S A 104: 18496–18501.

40. Taylor SS, Yang J, Wu J, Haste NM, Radzio-Andzelm E, et al. (2004) PKA: a
portrait of protein kinase dynamics. Biochim Biophys Acta 1697: 259–269.

41. Masterson LR, Mascioni A, Traaseth NJ, Taylor SS, Veglia G (2008) Allosteric
cooperativity in protein kinase A. Proc Natl Acad Sci U S A 105: 506–511.

42. Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ,
et al. (2004) Linkage between dynamics and catalysis in a thermophilic-

mesophilic enzyme pair. Nat Struct Mol Biol 11: 945–949.

43. Hanson JA, Duderstadt K, Watkins LP, Bhattacharyya S, Brokaw J, et al. (2007)
Illuminating the mechanistic roles of enzyme conformational dynamics. Proc

Natl Acad Sci U S A 104: 18055–18060.

44. Daily MD, Phillips GN, Jr., Cui Q (2010) Many local motions cooperate to

produce the adenylate kinase conformational transition. J Mol Biol 400:
618–631.

45. Whitford PC, Gosavi S, Onuchic JN (2008) Conformational transitions in

adenylate kinase. Allosteric communication reduces misligation. J Biol Chem

283: 2042–2048.

46. Masterson LR, Cheng C, Yu T, Tonelli M, Kornev A, et al. (2010) Dynamics
connect substrate recognition to catalysis in protein kinase A. Nat Chem Biol 6:

821–828.

47. Tama F, Sanejouand YH (2001) Conformational change of proteins arising from

normal mode calculations. Protein Eng 14: 1–6.

48. Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, et al. (2004) Allosteric
inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11: 730–737.

49. Curien G, Job D, Douce R, Dumas R (1998) Allosteric activation of Arabidopsis

threonine synthase by S-adenosylmethionine. Biochemistry 37: 13212–13221.

50. Mas-Droux C, Biou V, Dumas R (2006) Allosteric threonine synthase.

Reorganization of the pyridoxal phosphate site upon asymmetric activation
through S-adenosylmethionine binding to a novel site. J Biol Chem 281:

5188–5196.

51. Smith TJ, Stanley CA (2008) Untangling the glutamate dehydrogenase allosteric
nightmare. Trends Biochem Sci 33: 557–564.

52. Singh N, Maniscalco SJ, Fisher HF (1993) The real-time resolution of proton-
related transient-state steps in an enzymatic reaction. The early steps in the

oxidative deamination reaction of bovine liver glutamate dehydrogenase. J Biol
Chem 268: 21–28.

53. Banerjee S, Schmidt T, Fang J, Stanley CA, Smith TJ (2003) Structural studies

on ADP activation of mammalian glutamate dehydrogenase and the evolution of

regulation. Biochemistry 42: 3446–3456.

54. Smith TJ, Schmidt T, Fang J, Wu J, Siuzdak G, et al. (2002) The structure of
apo human glutamate dehydrogenase details subunit communication and

allostery. J Mol Biol 318: 765–777.

55. Li M, Smith CJ, Walker MT, Smith TJ (2009) Novel inhibitors complexed with

glutamate dehydrogenase: allosteric regulation by control of protein dynamics.
J Biol Chem 284: 22988–23000.

56. Schirmer T, Evans PR (1990) Structural basis of the allosteric behaviour of

phosphofructokinase. Nature 343: 140–145.

57. Valdez BC, French BA, Younathan ES, Chang SH (1989) Site-directed

mutagenesis in Bacillus stearothermophilus fructose-6-phosphate 1-kinase.
Mutation at the substrate-binding site affects allosteric behavior. J Biol Chem

264: 131–135.

58. Evans PR, Farrants GW, Hudson PJ (1981) Phosphofructokinase: structure and
control. Philos Trans R Soc Lond B Biol Sci 293: 53–62.

59. Harman JG (2001) Allosteric regulation of the cAMP receptor protein. Biochim
Biophys Acta 1547: 1–17.

60. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953)

Equation of State Calculations by Fast Computing Machines. J Chem Phys 21:
1087–1092.

61. Hinsen K (2000) The molecular modeling toolkit: A new approach to molecular
simulations. J Comput Chem 21: 79–85.

62. Sanejouand Y (2006) Functional information from slow mode shapes. In: Cui Q,

Bahar I, eds. Normal mode analysis: Theory and applications to biological and
chemical systems. London: Chapman & Hall/CRC. pp 91–110.

63. Daily MD, Gray JJ (2007) Local motions in a benchmark of allosteric proteins.
Proteins 67: 385–399.

Binding Leverage in Allosteric Regulation

PLoS Computational Biology | www.ploscompbiol.org 13 September 2011 | Volume 7 | Issue 9 | e1002148


