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INTRODUCTION 

 

AML- EPIDEMIOLOGY AND ETIOLOGY 

 

   Acute myeloid leukemia (AML) is the most common myeloid malignancy; the median age at the time 

of diagnosis is 70 years and men have a slightly higher incidence (ratio 3:2) [1]. The etiology of the 

disease can be identified only for a minority of patients, even though several risk factors are known. 

Firstly, exposure to ionizing radiation increases the risk of cancer in general and especially of myeloid 

malignancies; this has been studied in detail among survivors of the atomic bombs in Japan at the end 

of the Second World War [2]. Radiation is probably also the cause of an increased incidence among 

cockpit crew [3]. Secondly, exposure to environment toxins is associated with AML; occupational 

benzene exposure is well established as a risk factor [4], and the benzene content in cigarette smoke 

may also explain the slight increase in AML incidence among smokers [5]. Thirdly, treatment of other 

malignancies with chemotherapy and/or radiotherapy increases the risk of a second malignancies, 

especially AML or myelodysplastic syndromes (MDS). Approximately 10-15% of AML cases are 

reported to be therapy related [6], and especially treatment with topoisomerase II inhibitors (e.g. 

doxorubicin, mitoxantrone and etoposide) and alkylating agents (e.g. cyklophosphamides and its 

derivates) seems to have a leukemogenic effect [6]. Finally, inherited genetic abnormalities (e.g. 

Downs syndrome, Li-Fraumeni syndrome, certain forms of congenital neutropenia) also increase the 

risk of AML.  

 

CLINICAL PRESENTATION OF AML 

 

   The clinical signs and symptoms of AML are diverse and nonspecific, they are usually caused by the 

leukemic bone marrow infiltration or more seldom by infiltration in other organs. The leukemic cell 

population blocks normal hematopoiesis and thereby causes cytopenia. This will usually affect all 

three myeloid lineages and cause anemia leading to fatigue, neutropenia causing infections and 

thrombocytopenia causing hemorrhages. Leukemic infiltration of other organs is less common and can 

manifest as hepatospelenomegaly, lymphadenopathy, gingival hyperplasia or central nervous system 
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(CNS) symptoms. Hyperleukocytosis with leukostatsis can lead to acute multiorgan failure. 

Exceptional patients present as a myeloid sarcoma, i.e. a single extra medullar mass of leukemic cells. 

 

 

DIAGNOSIS AND CLASSIFICATION OF AML 

 

   Although new diagnostic tools have been introduced during the last decades, the primary diagnosis 

of AML still rests on the morphological identification of leukemic blast in blood and/or bone marrow 

smears for most patients. These smears are examined after May-Grünwald-Giemsa or Wright-Giemsa 

staining. Bone marrow biopsy is not considered necessary for the diagnosis, but should be considered 

in patients with dry tap (punctio sicca). Leukemic blasts typical have a round-to-irregular nucleus, 

distinct nucleoli and very little fine granular cytoplasm. Auer rods could be seen in some cases. The 

diagnosis of acute leukemia requires the presence of >20% leukemic blast in the bone marrow, but for 

certain subtypes (e.g. t(8;21), t(16;16), inv(16;16)) this is not required [7]. The WHO criteria reduced 

the blast criteria from 30% in the FAB (French-American-British) classification to 20%, even though 

several investigators have argued that there may be a biological difference between patients with 20-

30% and more than 30% myeloblasts in the bone marrow at the time of diagnosis [8]. 

   The first subclassification in AML was the FAB-system based on leukemic cell morphology and 

histochemistry (Table 1). This system did not define prognostically relevant subsets except for the 

acute promyelocytic leukemia (APL) variant [9]. Morphological characteristics are still important in the 

more recent and generally accepted WHO classification (Table 2) [8], but this classification is in 

addition based on clinical characteristics (previous MDS or therapy related AML) and genetic 

abnormalities as will be described below (Table 2). 

 

Table 1. The FAB classification based on AML cell morphology [1, 10]. 

Classification Characteristics 
M0 Immature blasts without signs of differentiation 
M1 Without maturation 
M2 Evidence of granulocyte differentiation 
M3 Acute promyelocytic leukemia 
M4 Acute myelomonocytic leukemia 
M5 Acute monocytic leukemia 
M6 Acute erythroleukemia 
M7 Acute megakaryoblastic leukemia 
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Table 2. The WHO classification of AML [1, 8, 11]; a classification based on clinical, 

morphological and genetic abnormalities.  

 
 Acute myeloid leukemia with recurrent genetic abnormalities  
     AML with t(8;21) 
     AML with inv(16) or t(16;16) 
     APL with t(15;17) 
     AML with t(9;11) 
     AML with t(6;9) 
     AML with inv(3) or t(3;3) 
     AML (megakaryoblastic) with t(1;22) 
     AML with mutated NPM1  
     AML with mutated CEBPA  
 
 Acute myeloid leukemia with myelodysplasia-related changes 
 
 Therapy-related myeloid neoplasms 
 
 Acute myeloid leukemia, not otherwise specified 
     AML with minimal differentiation  
     AML without maturation  
     AML with maturation  
     Acute myelomonocytic leukemia  
     Acute monoblastic/monocytic leukemia  
     Acute erythroid leukemia  
     Acute megakaryoblastic leukemia  
     Acute basophilic leukemia  
     Acute panmyelosis with myelofibrosis  
 
 Myeloid sarcoma   
 
 Myeloid proliferations related to Down syndrome  
     Transient abnormal myelopoiesis  
     Myeloid leukemia associated with Down syndrome  
 
 Blastic plasmacytoid dendritic cell neoplasm  
 
 Acute leukemias of ambiguous lineage  
     Acute undifferentiated leukemia  
     Mixed phenotype acute leukemia with t(9;22) 
     Mixed phenotype acute leukemia with t(v;11q23) 
     Mixed phenotype acute leukemia, B/myeloid 
     Mixed phenotype acute leukemia, T/myeloid 
 
 

   Immunophenotyping is mandatory to distinguish between AML and acute lymphoblastic leukemia 

(ALL) [12]. Especially expression of the CD34 stem cell marker is important [13]; it represents an 

additional independent prognostic factor and differences in CD34 expression are associated with 

distinct gene expression profiles [14]. Conventional cytogenetic analysis is a mandatory screening 

strategy for detection of genetic abnormalities; at least 20 metaphases should be analyzed and 

abnormalities are then detected in approximately 55% of the patients. An alternative to conventional 
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cytogenetic analysis for detection of specific gene rearrangement is fluorescence in situ hybridization 

(FISH). Finally, molecular analyses should be used to detect specific mutations.  

 

CYTOGENETIC ANALYSIS IN HUMAN AML 

 

   Cytogenetic abnormalities are found in approximately 55% of AML patients [11, 15-17], and the 

karyotype is one of the most powerful independent prognostic parameters in AML [17]. Loss or gain of 

chromosomes occurs due to unequal segregation of the chromosomes. The first translocation 

discovered in AML was the balanced translocation between chromosome 8 and 21; t(8;21) [18], and 

this genotype has distinct biological and clinical characteristics [7]. AML with t(8;21) or the 

t(16;16)/iv(16) have common characteristics and are often referred to as core binding factor (CBF)-

AML. CBF-AML together with the APL variant characterized by t(15;17) have a favorable prognosis. 

On the other hand, an adverse outcome is especially seen with (i) two or more distinct autosomal 

chromosome monosomies, (ii) one single autosomal monosomy in the presence of structural 

abnormalities (referred to as monsomal karyotype) [19], and (iii) complex karyotype with at least three 

abnormalities [16]. It should also be emphasized that many patients have rare cytogenetic 

abnormalities, and the prognostic impact of such abnormalities is often uncertain [16]. A classification 

of cytogenetic abnormalities according to their prognostic impact is given in Table 3 [11]. 

 

Table 3. Karyotype and prognosis [11]. 

  
Favorable abnormalities 
     t(15;17), t(8,21), inv(16)/t(16;16) 
 
 Intermediate  
    Normal cytogenetics 
    Entities not classified as favorable or adverse  
 
 Adverse  
     abn(3q), inv(3) 
     add(5q), del(5q), –5,  
     –7, add(7q)/del(7q) 
     +8 
     t(6;11), t(10;11) 
     t(11q23) (excluding t(9;11) and t(11;19) 
     t(9;22) 
     –17/abn(17p) 
     Multiple (>3 abnormalities) 
     Monosomal karyotype 
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MOLECULAR GENETICS OF HUMAN AML 

 

   Gene mutation and deregulated gene expression allow the description of the genetic diversity within 

defined cytogenetic groups [20, 21]. This is of particular importance for the large group (45%) with 

normal cytogenetics [15]. Cytogenetic and molecular genetic abnormalities are not mutually exclusive 

and often coexist. The mutations can broadly be divided into class I and class II mutation. Class I 

comprises mutations that activate signal transduction pathways and therefore increase survival and 

proliferation of the affected cells. In contrast, class II mutations interfere with transcription factors that 

are important for hematopoietic cell differentiation. Table 4 summarized the most common 

cytogenetics and molecular genetics aberration in the two classes. 

 

Table 4. Genes involved in class I and class II AML-associated mutations  

Class I mutations Class II mutations 
 

FLT3-ITD 
 

PML-RARA/t(15;17) 
FLT3-TKD AML-ETO/t(8;21) 

KIT CBFB-MYH11/inv(16)-t(16;16) 
JAK NPM1 

NRAS CEBPA 
KRAS MLL 

 RUNX1/AML 
 

    

 

The "second hit" hypothesis is based on this classification, postulating that one class I mutation and 

one class II mutation are necessary for transformation to the complete malignant phenotype. Although 

this theory does not fit all AML cases, it can explain why a type I mutation often coexist with a type II 

mutation, e.g. KIT and AML-ETO [7] and FLT3-ITD and NPM1 [15]. The most important mutations will 

be described below and their characteristics are briefly summarized in Table 5. 

   

ASXL1 mutations 

The Additional Sex Comb-Like 1 (ASXL1) gene on chromosome 20q11.1 encodes a protein believed 

to be involved in chromatin modification and to act as a coactivator for the retinoic acid receptor [22]. 

The mutations occur in exon 12, with a frequency in AML probably between 5 and 10 % [22, 23]. The 
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mutation is associated with older age, male sex and secondary AML [22, 23].  The prognostic impact 

is negative, with inferior complete remission rates [23], and shorter overall survival [22]. 

 

BAALC expression level 

   The Brain And Acute Leukemia, Cytoplasmatic (BAALC) gene is located on chromosome band 8q23 

[24]. The function of the BAALC protein is largely unknown, it is highly expressed in hematopoietic 

precursor cells as well as leukemic blasts and is down-regulated during differentiation [24]. High 

BAALC expression is a poor prognostic parameter in cytogenetically normal AML [24, 25]. 

 

CEBPA mutations 

   The transcription factor CCAAT enhancer binding protein alpha (CEBPA) is crucial for normal 

differentiation of granulocytes [26]. The two most important mutations are N-terminal frame-shift 

mutations and C-terminal in-frame insertions, and together they are observed in roughly 10% of AML 

patients either in the combination on separate alleles (CEBPAdouble-mut) or as single mutation 

(CEBPAsingle-mut). These patients are often classified as FAB subtype M1 or M2 and have normal 

cytogenetics.  Patient with CEBPAdouble-mut seem to have a distinct gene expression profile [27-29], and 

a more favorable prognosis than patients with CEBPAsingle-mut [28, 29]. Both the gene expression profile 

and the favorable prognostic impact of CEBPAdouble-mut indicate that this AML subset is related to the 

CBF-AMLs [29].  Analysis of CEBPA mutational status has recently been suggested as a part of the 

routine clinical handling of AML patients [11]. 

 

DNMT3A mutations 

   A recent study described mutations in DNA methyltransferase 3A (DNMT3A) in 22% of AML patients 

[30]. This was confirmed in two recent studies, reporting a frequence of DNMT3A mutations of 18% 

[31, 32]. The mutation was absent in APL (t15;17) and CBF-AML, but had an increased frequency in 

patients with intermediate-risk cytogenetics [30]. The mutation seems to be associated with monocytic 

features [33] and seems to have an adverse prognostic impact [30-33].  
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ERG expression level 

   The ETS-related gene (ERG) is located at chromosome band 21p22 and is involved in regulation of 

proliferation, apoptosis and differentiation [34, 35]. High ERG expression in AML is associated with 

upregulation of genes involved in leukemogenesis [34]. Cytogenetically normal AML with high ERG 

expression has decreased remission rate, higher relapse rate and reduced overall survival [34, 35]. 

The adverse prognostic impact of high ERG expression is seen especially in patients with NPM1 

mutation and normal cytogenetic [35].  

 

FLT3 abnormalities 

   The FLT3 gene is localized on chromosome 13q12 and encodes a receptor tyrosine kinase (RTK) 

with an extracellular ligand-binding part and an intracellular catalytic unit [36].  FLT3 ligation leads to 

complex protein interactions by the intracellular domain [36] that induces a cascade of protein 

phosphorylation events in downstream targets including mitogen-activated protein (MAP) kinase, 

signal transducer and activator (STAT) molecules, phosphatidylinositol 3-kinase (PI3K) and AKT. 

FLT3 interacts with several other cytokines including stem cell factor (SCF), interleukin-3 (IL-3) and 

granulocyte macrophage colony stimulating factor (GM-CSF) in the regulation of phospholipid 

metabolism, gene transcription, proliferation and apoptosis of hematopoietic cells. 

   The most important AML-associated abnormalities of the FLT3 gene are the in frame internal 

tandem duplications (FLT3-ITD) [37]. These mutations consist of insertions of variable length in the 

juxtamedullar encoding part of the gene [38], they occur in approximately 25% of the patients [39] and 

in approximately 30% of patients with normal cytogenetics [40]. FLT3-ITD is associated with an 

adverse prognosis [39, 40], although this prognostic impact seems to depend on the size of the ITD 

[38]. Analysis of the FLT3 mutational status is regarded as mandatory in the clinical handling of AML 

patients [11]. 

   The second type of FLT3 mutations is missense point mutations in the tyrosine kinase domain 

(TKD), most of them occurring in codon 835 and therefore referred to as D835 mutation. This mutation 

occurs in approximately 5 % of patients [15]. Although both FLT3-ITD and FLT3-TKD mutations cause 

constitutive receptor activation, they seem to differ in their downstream signaling events [41] and this 

is possibly the reason why they do not cluster together in gene expression analyses [20] and differ in 

their prognostic impact. While FLT3-ITD clearly is associated with a more unfavorable outcome, the 
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role of FLT3-TKD is controversial. This may have been confounded by the fact that FLT3-TKD often 

coexist with other mutations, especially the favorable NPM1 mutation [42], whereas patients with 

FLT3-TKD as the sole abnormality may have a poor outcome [40]. 

 

IDH mutations 

   The IDH1 and IDH2 genes encode two isoforms of isocitrate dehydrogenase (IDH); mutation of this 

gene was first detected by DNA sequencing of the whole genome of an AML patient [43], and the 

mutations were thereafter identified in 15 out of 187 patients [44]. Three later studies [45-47] 

demonstrated that the frequencies of IDH1 and IDH2 mutations were 7.6-9.6% and 3.0-7.0% 

respectively [46, 47]. Both IDH1 (14% of these patients) and IDH2 (19%) mutations are more frequent 

in patients with normal cytogenetics [45], and IDH1 mutations were in addition associated with NPM1 

mutation [46, 47]. All these studies reported an adverse prognostic impact by both mutations [45-47]. 

 

JAK mutations 

   The janus kinase (JAK) genes encode non-receptor thyrosine kinases that can be divided in the four 

families JAK1, JAK2, JAK3 and TYK2 [48, 49]. These enzymes are important for activation of STAT 

molecules that are involved in both normal and leukemic hematopoiesis. The acquired JAK2 V617F 

mutation is frequently found in myeloproliferative neoplasms, especially polycythemia vera (PV). JAK 1 

and JAK2 mutations are relatively uncommon and especially detected in AML secondary to 

myeloproliferative neoplasms [48, 49], whereas JAK3 mutations are detected especially in the rare 

variant acute megakaryoblastic leukemia (M7) [50]. The prognostic impact of these mutations is not 

completely known.    

 

KIT mutations 

   The KIT-encoding gene is located at chromosome band 4q11 [51, 52]. KIT mutations are observed 

in approximately 30% of CBF-AML [7, 51, 52], the mutations may then have an adverse prognostic 

impact [52] and seem to be associated with a distinct gene expression signature and deregulation of 

the nuclear factor B  (NF- B) pathway [53]. Specific small-molecule tyrosine kinase inhibitors (TKIs) 

are considered for the treatment of these patients [54].  
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RAS mutations 

   RAS oncogenes (N-RAS, K-RAS and H-RAS) encode a family of membrane-associated proteins 

that regulate signal transduction and are involved in regulation of proliferation, differentiation and 

apoptosis [55]. Mutations of RAS genes are predominantly found in codons 12, 13 and 61, and they 

lead to constitutive activity of the RAS proteins with uncontrolled proliferation and antiapoptotic 

signaling. Mutations in N-RAS are most frequent and appear in 10-15% of AML patients [15, 55-57], K-

RAS mutation occurs in approximately 5% of patients [55] whereas mutated H-RAS is uncommon [55]. 

Both N-RAS and K-RAS can be associated with inv(16)/t(16;16) [56] and probably represent a “second 

hit” (see above). RAS mutations do not seem to have any prognostic impact in patients receiving 

intensive chemotherapy [56, 57]. 

 

MLL mutations 

   Molecular studies of the breakpoint regions of several translocations involving chromosomal band 

11q23 identified the Mixed-Lineage Leukemia (MLL) gene [58]. This gene is also called HRX or ALL-1. 

The MLL protein is a part of a large molecular complex involved in nucleosomal remodeling and 

histone deacetylation and methylation [58]. MLL mutations occur in approximately 5% of AML cases 

[58], the frequency being slightly higher in cytogenetically normal AML (7%) [15], and in secondary 

and therapy-related AML [58]. MLL mutations are considered as an adverse prognostic parameter with 

reduced remission rates [59]. MLL is a stable genetic marker and may become useful for detection of 

minimal residual disease (MRD) in human AML [60]. 

 

MN1 expression level  

   The meningioma 1 (MN1) gene is located at chromosome band 22q11 [61, 62], and encodes a 

protein involved in transcriptional regulation. Overexpression of MN1 is often observed together with 

NPM1 wild-type and BAALC overexpression [61], high expression is associated with low remission 

rate and it is an independent adverse prognostic factor [61, 62]. 

 

NPM1 mutations 

   Nucleophosmin1 (NPM1) is a chaperone protein that shuttles between the nucleus and cytoplasm; it 

predominantly resides in the nucleolus and is involved in the regulation of multiple cellular functions 
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that possess both oncogenic and tumor-suppressor properties [63]. In 2005 somatic mutations in exon 

12 of the NPM1 encoding gene were described; this abnormality leads to aberrant localization of the 

NPM1 protein in the cytoplasm, thus the designation NPMc+ AML [64]. NPMc+ AML is also 

characterized by unique global gene expression and microRNA signatures [65, 66]. 

   NPM1 mutations are found in approximately 30-35% of all AML cases and up to 60% of patients with 

normal cytogenetics [64]. Patients with NPM1 mutations are twice as likely to have FLT3-ITD 

mutations as those without this abnormality [64], and NPMc+ AML is associated with a favorable 

prognosis in the absence of a coexisting FLT3-ITD [11, 64]. 

 

RUNX1/AML1 mutations 

   Runt-related transcription factor 1 (RUNX1, also called AML1) was initially identified from the 

breakpoint region of t(8;21) AML [7]. The encoded protein represents the alpha subunit of CBF and is 

involved in normal hematopoiesis. Chromosomal translocations involving this gene are well-

documented in human leukemia [7]. In addition to translocations, specific mutations in the RUNX1 

gene occur in approximately 5% of AML cases [67], and are probably most common in secondary 

AML [67, 68]. Although an initial study indicated inferior outcoume for patients with RUNX1 mutations 

[67], the total prognostic impact of these mutations remains to be established. 

 

TET2 mutations 

  Mutations of the tet oncogene family member 2 (TET2) gene were recently described in different 

hematological malignancies [69]. The mutations are heterogeneous [69] and are detected in 8-24% of 

AML patients [69-71]. The biological effects and the prognostic impact of these mutations have to be 

further evaluated, but the first reports described no significant prognostic impact [71].  

 

TP53 mutations 

   p53 is important in coordinating cellular responses to a wide range of stress factors. Inactivation of 

p53 through mutations in the tumor protein 53 (TP53)-encoding gene on chromosome 17p is detected 

in more than 50% of solid tumors [72]. However, p53 mutations are uncommon in hematologic 

malignancies and found only in approximately 5% of AML patients [73]. TP53 mutations in AML are 

associated with complex cytogenetic abnormalities, chemoresistance, high relapse rate and adverse 
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prognosis [73, 74]. Single TP53 deletion should therefore be regarded as high-risk aberrations in AML 

[73, 74]. 

 

WT1 mutations 

   The Wilms Tumor 1 (WT1) gene is located on chromosome 11p13, and mutated WT1 gene was first 

described in AML more than a decade ago [75]. WT1 is probably important in regulation of survival, 

proliferation and differentiation of hematopoietic cells [76]. The mutations occur in approximately 10% 

of adult patients and are most frequent in patients with normal cytogenetics [76]. The first report 

suggested an adverse prognostic impact [75], and this has later been confirmed [77, 78]. 

 

 

Table 5. A summary of the most common molecular genetic abnormalities in human AML. 

GENE DEFECT APPROXIMATE 
OCCURRENCE PROGNOSTIC IMPACT 

ASXL1 Mutation 5-10% Adverse 
BAALC Overexpression - Adverse 
CEBPA Double mutation 10% Favorable 
DNMT3A Mutation 20% Adverse 
ERG Overexpression - Adverse 
FLT3 ITD-mutation 25-30% Adverse 
FLT3 TKD-mutation 5% Adverse 
IDH1/2 Mutation 10% Adverse 
JAK Mutation 5% Intermediate 
KIT Mutation 10% Adverse in CBF-AML 
K-RAS Mutation 5% Intermediate 
MLL Mutation 5% Adverse 
MN1 Overexpression - Adverse 
NPM1 Insertion 30-35% Favorable without FLT3-ITD 
N-RAS Mutation 10-15% Intermediate 
RUNX1/AML1 Mutation 5-10% Intermediate 
TET2 Mutation 10% Intermediate 
TP53 Mutation 5% Adverse 
WT1 Frame shift mutation 10% Adverse 
 

 

 

 

 

 

 



22

CONVENTIONAL TREATMENT OF AML 

 

   The primary objective for the intensive chemotherapy in AML is to induce remission (disease control) 

through the induction treatment and thereafter to prevent relapse from residual disease (consolidation 

therapy). The aim of induction therapy is thus to reduce the leukemia cell burden and reach complete 

hematological remission, i.e. <5% blasts in the bone marrow with absence of Auer rods and 

extramedullary disease, restoration of normal hematopoiesis with peripheral blood  platelet count >100 

x 109/l,  neutrophil count >1,0 x 109/l and independence or red cell transfusions [11].   

   An antracycline, usually daunorubicin, combined with cytarabine is the cornerstone in the induction 

treatment. Antracycline is given for three days [11], while cytarabine is given as continuous infusion for 

seven days (100-200 mg/m2/day), e.g. the 3+7 regimen. Antracyclines work both by inhibiting DNA 

synthesis and causing DNA damage, and one important side effect is their cardiotoxicity. Cytarabine is 

an antimetabolite that causes DNA damage and thereby triggering of programmed cell death. High-

dose cytarabine in the induction regimen results in excessive toxicity without further therapeutic benefit 

[79]. Other antracyclines than daunorubicin have been evaluated but seem to be inferior when using 

equivalent doses [11, 80]. Attempts to improve patient outcome by using additional cytotoxic agents 

have also failed [80]. Finally, priming of the AML cells to cell-cycle specific agents through the 

administration of the hematopoietic growth factors G-CSF [81] or GM-CSF [82] has also been tried; 

some studies have reported promising results especially for subgroups of patients [81, 82], but this 

treatment is not recommended for routine clinical practice [11].  

   The consolidation therapy can be either conventional intensive chemotherapy or stem cell 

transplantation. Firstly, based on a large randomized clinical trial the standard treatment for younger 

patients has been based on highdose cytarabine (single doses 3 g/m2) for younger patients below 60 

years of age [83]. Secondly, autologous stem cell transplantation (auto-SCT) can also be included in 

the consolidation treatment. Finally, allogeneic stem cell transplantation (allo-SCT) is the most 

powerful antileukemic treatment. The stem cells from either a HLA-matched family or unrelated donor 

are transfused to the patient after initial intensive conditioning therapy. Antileukemic effects are then 

mediated both by the conditioning therapy and by immune-mediated graft-versus leukemia effects [1, 

11, 84, 85]. However, due to the risk of transplant-related mortality patients and donors have to be 
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carefully selected. A reduced-intensity conditioning (RIC) regimen may offer an advantage for subsets 

of patients with increased risk of severe transplant-related complications, e.g. elderly patients [86]. 

   Risk stratification is now used as a basis for deciding the consolidation treatment, the most important 

factors in standardized risk assessments being the response to the first induction cycle together with 

the cytogenetic analysis and mutation status especially for NPM1 and FLT3 and possibly also KIT and 

CEBPA [87]. The level of circulating blast cells also seems to be important at least in certain subsets 

of patients [88]. An example of risk stratification is given in Table 6. 

 

Table 6. Risk assessment of patients with newly diagnosed AML based on cytogenetic analysis 

and selected gene mutations [11, 80, 87] (wt, wild type; + means mutated, double-mut means two 

mutated alleles). 

 

 

Risk of chemoresistance or 
AML relapse Cytogenetic analysis 

Cytogenetics combined with 

molecular genetic analysis 

 
Favorable prognosis 

 
t(8;21) 
inv(16)/t(16;16) 
t(15;17) 
 

 
Normal cytogenetics plus: 
-  NPM1+ and FLT3-wt 
- CEBPAdouble-mut  and FLT3-wt 

Intermediate prognosis Normal cytogenetics 
t(9;11), +8, t(3;5) 
Other cytogenetic abnormalities 
not classified as favorable or 
adverse 
 

KIT mutations  in the presence of 
t(8;21) or inv(16)/t(16;16) 
 

Adverse prognosis Specific abnormalities: 
Inv(3)/t(3;3), t(6;9), t(v;11),  
-5, 5q-, -7, 7q- 
abnl(17p) 
Monosomal or complex 
karyotype 
 

Intermediate risk cytogenetics plus 
FLT3-ITD+ 
 
 

 

   For patients below 60 years of age in the favorable risk group the consolidation therapy will often be 

repetitive cycles of high-dose cytarabine without auto-SCT or allo-SCT [89]. However, certain subsets 

of these patients seem to have an inferior prognosis, e.g. t(8;21) AML presenting with high levels of 

circulating blasts or possibly also with KIT mutations [52, 90]; allo-SCT may be considered for these 

patients [80, 87]. For the intermediate group consolidation therapy with high-dose cytarabine is still 
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widely used, but allo-SCT is regarded as superior especially for patient with low transplant risk (e.g. 

low age and no comorbidity) [91], and for patients harboring FLT3-ITD mutation [15, 92]. Finally, for 

the adverse group allo-SCT is superior to other regimen [89, 91]. Highdose cytarabine should here 

only be considered in the consolidation regime if it is impossible to find a matched related or unrelated 

donor, or if the risk of transplantation is considered too high [80]. 

 

 

SPECIAL SITUATIONS IN THE TREATMENT OF AML 

 

Relapsed AML 

   Leukemia relapse after achievement of complete remission is usually seen within three years after 

diagnosis. The possibility to achieve a second remission after intensive conventional induction therapy 

depends on the time in remission until relapse, age, cytogenetics and whether a previously allo-SCT 

has been preformed, but the only realistic possibility of cure is an allo-SCT [93]. Clinical studies of 

intensive chemotherapy are few and often relatively small, and the treatment is therefore often based 

on local traditions without any consensus. Intermediate or highdose cytarabine is often used, 

alternative regimen include mitoxantrone or etoposide [11]. Previously allotransplanted patients may 

be offered a retransplantation if they have a late relapse [94]. If allo-SCT is impossible an auto-SCT 

may be an alternative [11]. However, for a major part of these patients the best alternative will be 

optimal palliative or eventually disease-stabilizing treatment.  

 

AML secondary to previous chemotherapy or chronic myeloproliferative disease 

   AML can develop after earlier chemotherapy and/or radiotherapy, and these patients have an 

inferior outcome. Therapy-related AML is associated with high frequency of unfavorable cytogenetic 

abnormalities, the remission rate is relatively low and the risk of relapse is high [95]. According to the 

WHO classification the term secondary AML includes AML with myelodysplastic changes and AML 

developing after previous MDS or chronic myeloproliferative neoplasms. The incidence of secondary 

AML varies between different studies and it is associated with an adverse prognosis due to several 

factors, including high age, increased comorbidity and high frequencies of high-risk cytogenetic 

abnormalities. The treatment of secondary AML is in principle the same as for de novo AML, but these 
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patients are often more difficult to bring into remission, and further treatment should be carefully 

considered in the delicate balance between benefits and harms for the patient.  

 

Acute promyelocytic leukemia (APL) 

   APL (FAB classification M3) is a distinct subtype of AML that is characterized by accumulation of 

promyelocytes in the bone marrow, the presentation is often characterized by rapid progression and 

disseminated intravascular coagulation (DIC). The leukemic cells usually have a balanced reciprocal 

translocation between chromosomes 15 and 17 t(15;17) that results in a fusion of the promyelocytic 

leukemia  gene and the retinoic acid receptor  gene with a differentiation-inhibitory fusion protein [9]. 

Introduction of treatment with the vitamin A-derivative all-trans retinoic acid (ATRA) has dramatically 

improved the outcome, and APL is now classified as a low-risk AML variant [9]. ATRA therapy should 

be started immediately if the diagnosis is suspected and should continue until the possibility eventually 

is excluded [11]. ATRA is currently used in combination with conventional chemotherapy, arsenic 

trioxide (ATO) may represent a therapeutic alternative [9]. 

 

Hyperleukocytosis and tumor lysis syndrome 

   Hyperleukocytosis is often defined as a peripheral blood blast count exceeding 100 x 109/l and is 

present in 10-20% of newly diagnosed AML [96]. Hyperleukocytosis with leukostatsis; e.g. pulmonary 

infiltrates and/or retinal or cerebral hemorrhages, is a medical emergency. Tumor lysis syndrome is 

then a special problem at initiation of the chemotherapy; an alternative may be hydroxyurea at 

relatively high doses (50-60 mg/kg per day) as an initial cytoreductive therapy. The effect of 

leukapheresis is controversial because few clinical studies are available [96-98].  

 

Myeloid sarcoma 

   Patients presenting with an isolated myeloid sarcoma, i.e. an extramedullary leukemic cell tumor, 

should be considered as having AML. The leukemic cells should be evaluated for genetic and 

immunophenotypic features to allow classification according to the WHO criteria. Myeloid sarcoma has 

been associated with the favorable cytogenetic abnormality t(8;21) [7], but whether the extramedullary 

disease by itself has a prognostic impact is still controversial. Patients should receive standard AML 

therapy possibly with additional local radiation therapy. 
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THE BIOLOGY OF HUMAN AML CELLS: NEW THERAPEUTIC APPROACHES TARGETING 

INTRACELLULAR PATHWAYS 

   Proliferation, differentiation, invasiveness and apoptosis of leukemic cells are partially regulated by 

external signals received from cytokines and by interactions with the local microenvironment. The 

response to these signals is, in turn, transmitted from the cell surface to the nucleus through the 

extensive series of signal transduction pathways. There is extensive cross-talk and cross-activation 

between these pathways, so that the activation of one pathway often leads to the activation of others 

[99]. The disruption of normal signaling through these pathways occurs as a result of either mutations 

of pathway components or alterations in the external signals received, e.g. from chemokines, 

cytokines or stroma [100, 101]. Conversely, many of these transduction pathways have emerged as 

potential target for pharmacological intervention in AML.  

 

The PI3K pathway 

   PI3Ks are a family of related intracellular signal transducer enzymes involved in diverse cellular 

functions such as proliferation, differentiation, migration, survival and intracellular trafficking. The 

PI3Ks phosphorylate 3-hydroxyl groups of the inositol ring of three species of phosphatidylinositol 

(PtdIns) (Figure 1).  

   The PI3K family consists of three different classes based on structural features and lipid substrate 

preferences; class I, II and III, class I is further subdivided into class IA and IB (Table 7). The activation 

of the different classes of PI3K can be caused through various pathways, but the main activators are 

RTKs, G-protein coupled receptors (GPCRs), RAS (class IA), various cytokine receptors and integrins 

(class II). In contrast to the other PI3K the class III enzymes can be directly regulated by nutrients 

such as amino acids [102]; these enzymes are thereby linked to initiation of autophagy [103] and class 

III PI3K inhibitors have been considered as inhibitors of autophagy [104]. Class I PI3K frequently have 

activating mutations in solid tumors, but this is seldom in leukemia [105]. The main product of catalytic 

class I PI3K activity is PtdIns(3,4,5)P3 (Table 7) that is rapidly converted to  PtdIns(3,4)P2 and 

PtdIns(4,5)P2 by specific phosphatases [102]. These metabolites coordinate the function and 

localization of several protein kinases, including the central regulator AKT [102]. 
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Figure 1 

The PI3K-Akt-mTOR signaling pathway.  

Upstream activation of PI3K involve different mediators, however the common feature seems to be 

activation of a receptor thyrosin kinase (RTK). PI3Ks consist of three different classes based on their 

structural features and lipid substrate preferences (classes I-III), and these enzymes phosphorylate 

the 3-hydroxyl groups of the inositol ring of three species of phosphatidylinositol (PtdIns). The Class I 

enzymes are most extensively studied and their main product PtdIns(3,4,5)P3 is rapidly converted to 

PtdIns(3,4)P2 and PtdIns(4,5)P2. These two last mediators stimulate phosphointerdependent kinase 1 

(PDK1), and thereby regulate the function and localization of several protein kinases, including AKT 

(also referred to as Protein kinase B, PKB). AKT is a serine/threonine protein kinase important for 

regulation of cellular growth and survival. At the plasma membrane AKT is phosphorylated (i) at the 

catalytic domain (Thr308) by PDK1 and (ii) within the carboxyl terminal hydrophobic domain (Ser473) 

by the mammalian target of ramapamyin (mTOR) complex 2. Both these phosphorylations are 

required for maximal AKT activation.  

   More than 100 AKT substrates have been identified, and these substrates are important for the 

regulation of apoptosis and cell cycle progression. Among the most important substrates is mTOR, a 

serine/threonine kinase with a C-terminal homology to PI3K. mTOR exist as two complexes, referred 

to as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). The interactions between PI3K-

AKT and mTORC1 are more complex. mTORC1 facilitate an inhibitory effect on PI3K, and inhibition of 

this negative feedback loop can activate AKT. 

 Abbreviations: 4E-BP1, Eukaryotic initiation factor 4E-binding protein 1; BAD, Bcl-2 antagonist of cell 

death; CHK1, Checkpoint kinase 1; FOXO, The Forkhead transcription factors; IKK, Inhibitor of B 

kinase; JNK, c-Jun N-terminal kinase; MDM2, Murine double minute 2; mTOR, mammalian target of 

rapamycin; NF- B, Nuclear factor  B; P70S6K, N ribosomal protein S6 kinase; PDK1, 

phosphoinositidedependent kinase 1; PI3K, Phosphatidylinositol 3-kinase; PtdIns, 

Phosphatidylinositol; RTK, Receptor thyrosin kinase; TCS, Tuberous Sclerosis Complex. 
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Table 7. Classification of PI3K isoforms in four families according to activation pathways, 

structure, lipid substrate preferences, catalytic product and main downstream targets. (PtdIns; 

Phosphatidylinositol, RTK; receptor tyrosine kinase, GPCR; G-protein coupled receptor).  

 

Classes 
of PI3Ks 

Main 
activator 

Specific 
catalytic 
subunit 

Regulatory 
subunit Substrate Product 

Main 
downstream

activation 
 
Class IA 

 
RTKs 
GPCRs 
RAS 

 
p110 , 
110 , 
110  

 
p50 , p55 , 
p55 , p85 , 
p85  
 

 
PtdIns(4,5)P2 

 
PtdIns(3,4,5)P3 
 
 

 
Activation of 
AKT 

Class IB GPCRs 
 

p110  p101 PtdIns(4,5)P2 PtdIns(3,4,5)P3 
 

Activation of 
AKT 
 

Class II RTKs  
Cytokine 
receptors 
Integrins 
 

PI3KC2 , 
PI3KC2 , 
PI3KC2  

 PtdIns 
PtdIns4P 

PtdIns3P 
PtdIns(3,4)P2 
 

Mainly 
unknown 

Class III GPCRs 
Nutrition 
(amino 
acids, 
glucose) 
 

VPS34  PtdIns 
 

PtdIns3P mTORC1 
Autophagy 
 

 

 

PI3K in AML 

   Deregulation of intracellular signaling together with transcriptional abnormalities contributes to 

leukemogenesis. The PI3K pathway is one such pathway that is frequently activated in human AML 

[106, 107]. The mechanisms leading to this PI3K/AKT activation are not completely understood. 

Mutation in the PI3K encoding gene itself is probably rare in AML [105], but other mechanisms causing 

activation may involve (i) activating mutation in the FLT3 [108] or KIT receptor [109] and RAS 

mutations [110]; (ii) autocrine/paracrine release of insulin-like growth factor (IGF-1) [111], vascular 

endothelial growth factor (VEGF) [112], hepatocyte growth factor (HGF) [113], angiopoietins (Angs) 

[114] or CXCL12 [115]; or (iii) activation of integrin-linked kinase 1 by neighboring stromal cells [116]. 

   Results from studies on the prognostic impact of PI3K activation in AML are conflicting. A favorable 

outcome in overall AML-free survival in patients with constitutive PI3K activation has been reported 

[106], while two other studies found an adverse prognostic impact [99, 117]. 
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Table 8. The main downstream targets of AKT and their most important functional effects; 

relevance to leukemogenesis in human AML 

Important AKT 
substrates AKT effect Main function Refs. 

 
Bcl-2 antagonist of 
cell death (BAD) 

 
Inhibition 

 
Phosphorylation by AKT in AML cells inhibits its  normal 
proapoptotic function 
 

[118] 

p21 Inhibition Binds to and inhibits the activity of different cyclin 
complexes and thereby regulates cell cycle progression 
 

[119] 

Murine double 
minute 2 (MDM2) 

Stimulation Makes a complex with p53, a potential therapeutic target 
in AML 
 

[120] 

Inhibitor of B  
kinase (IKK)  

Stimulation Curtail for activation of NF- B through both the 
canonical and non-canonical  and pathway 
 

[121] 

c-Jun N-terminal 
kinase (JNK) 

Inhibition A regulator of apoptosis, differentiation, proliferation and 
cytokine production and chemoresistance in AML 
 

[122] 

The Forkhead 
transcription 
factors (FOXO) 

Inhibition Apoptosis triggers translocation out of the nucleus on 
phosphorylation by AKT, phosphorylated FOXO3a is an 
independent adverse prognostic factor in AML 
 

[123] 

Checkpoint kinase 
1 (CHK1) 

Inhibition CHK1 phosphorylation correlates with cell cycle arrest in 
AML  
 

[124] 

Tuberous Sclerosis 
Complex (TSC) 1/2 
 

Inhibition The main inhibitory complex for mTORC1 activation [125] 

 

AKT/protein kinase B  

   AKT or protein kinase B (PKB) is a 57 kDa serine/threonine protein kinase that is a critical regulator 

of many cellular functions including proliferation, viability and metabolism. The AKT kinase family is 

comprised of three highly homologous isoforms: AKT1 (PKB ), AKT2 (PKB ) and AKT3 (PKB ) [126]. 

The functions of the different isoforms are not completely overlapping and isoform-specific signaling 

probably contributes to the diversity of AKT activities [126].  AKT is a downstream target of PI3K and it 

is recruited to sites in the plasma membrane that contain increased PtdIns(3,4,5)P3 and PtdIns(3,4)P2 

produced by PI3K (Figure 1). AKT is then phosphorylated at two distinct sites; (i) at the catalytic 

domain (Thr308) by phosphoinositide-dependent kinase 1(PDK1), and (ii) within the carboxyl terminal 

hydrophobic domain (Ser473) by the mammalian target of ramapamyin complex 2 (mTORC2). Both 

phosphorylation steps are needed for full AKT activation. AKT is one of the most frequently 

hyperactivated kinases in human cancers with more than 100 identified substrates (see Table 8) [127]. 
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   Oncogenic, activating mutations in AKT have been described in solid tumors, especially breast 

cancer [128], but they are probably very rare in human AML even though they can induce leukemia in 

an animal model [128]. The most important activation of AKT in AML is mediated downstream from 

PI3K. Activation of AKT, measured by phosphorylation of Ser473, seems to occur in 50-80 % of AML 

cases [107, 117, 129] and is associated with an adverse outcome [117, 130]. Due to this prognostic 

impact AKT is regarded as a possible therapeutic target in human AML. 

 

The role of mTOR in intracellular signaling 

   mTOR is a serine/threonine kinase that has a C-terminal homology to PI3K and therefore belongs to 

the PI3K-related kinase family [131]. It has a key role in several signaling pathways both in normal and 

malignant hematopoiesis. mTOR functions as a sensor to ensure that the cell is in an appropriate 

nutritional and bioenergetic state, and it thereby supports cell growth by modulating a wide range of 

processes, including protein synthesis, ribosome activity and autophagy [131]. 

   mTOR exists as two complexes referred to as mTOR complex 1 (mTORC1) and mTOR complex 2 

(mTORC2). mTORC2 can phosphorylate the Ser473 residue on AKT and is thereby necessary for the 

maximal activity of AKT. The upstream activation of mTORC2 is mainly unknown, whereas the 

interactions between PI3K-AKT and mTORC1 are better characterized. Firstly, mTORC1 can be 

activated by PI3K through the downstream signaling via AKT and the TSC1-TSC2 complex [125] 

(Figure 1).  Secondly, mTORC1 has an inhibitory effect on PI3K and inhibition of this negative 

feedback loop can thereby activate AKT [132]. Thirdly, mTORC1 can also be activated through 

signaling in other intracellular pathways [133]. Thus, the interactions between the two mTOR 

complexes and the AKT pathway are very complex and the final functional effects are difficult to 

predict. 

   The two best characterized downstream targets of mTORC1 are the ribosomal protein S6 kinase 

(P70S6K) and the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) [132]. P70S6K is 

phosphorylated and activated by mTORC1 and is involved in ribosomal protein synthesis. In contrast, 

4E-BP1 is inhibited by mTORC1. The function of 4E-BP1 is complex, one major effect being a 

negative regulator of the initiation of protein synthesis. Consequently, the main role of mTORC1 is 

stimulation of protein synthesis, and mTORC1 has therefore been linked also to autophagy [132]. 
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   The concomitant activation of PI3K/AKT and mTOR is frequently observed in several cancers [127], 

and mTOR activation seems to depend particularly on the PI3K/AKT pathway. PI3K/AKT is activated 

in 50-80% of AML cases [107, 117, 129], but mTOR is activated in almost all AML cases [134]. This 

indicates that additional activating pathways proably are involved, supported by the observation that 

PI3K inhibition does not entirely suppress mTOR activity [134]. One possible pathway is then the Src 

kinase Lyn that is frequently phosphorylated and activated in AML [135]. 

 

Pharmacological targeting of PI3K-AKT-mTOR 

   Several inhibitors of the PI3K-AKT-mTOR have been developed [136, 137]. Some of these inhibitors 

are specific for mTOR, PI3K or AKT, respectively. Other inhibitors are dual inhibitors of mTOR and 

PI3K (Table 9). The mTOR inhibitors everolimus (RAD001) and deforolimus (AP23573) have been 

evaluated as monotherapy in patient with relapsed or refractory hematological malignancies [138, 

139], whereas sirolimus has been evaluated in combination with MEC (mitoxantrone, etoposide and 

cytarabine) in patients with relapsed and refractory AML [140]. The mTOR inhibitors were then 

generally well tolerated [137, 139], but the effect in combination-therapy [140] as weel as in mono-

therapy seems to be limited [138, 139]. However, the effect may be more important in certain subsets 

of patients [138, 140]. Future studies are therefore warranted both to define patients eligible for this 

treatment and to determine the optimal dose and drug combination. This should also include the 

further evaluation of mTORC2 inhibitors [132]. 

   A possible therapeutic strategy is to use mTOR inhibitors after allo-SCT. Rapamycin as well as other 

mTOR inhibitors have been used for graft versus host disease (GVHD) prophylaxis, and these drugs 

may then have an additional direct antileukemic effect. Preliminary clinical results are promising with 

low non-relapse mortality when combining tacrolimus and sirolimus for GVHD prophylaxis [141]. 

Microangiopathy is a possible side effect, and for this reason mTOR inhibitors should possibly be used 

with caution in patients receiving conditioning regimens that cause increased endothelial damage, 

e.g.busulfan/cyclophosphamide [141]. Finally, so far only specific mTOR inhibitors have been 

evaluated in clinical trials for AML, but other inhibitors of the PI3K/AKT/mTOR pathway are also 

considered, including specific PI3K inhibitors, AKT inhibitors and dual PI3K/mTOR inhibitors [142, 

143].  
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Table 9. 

Inhibitors of the PI3K-AKT-mTOR pathway currently included in clinical trials. 

*) Evaluated or currently under evaluating in AML patients. 

PI3K inhibitors mTOR inhibitors 

BGT226 [144] Rapamycin/Sirolimus* [138, 141] 
XL147 [145] Everolimus/RAD001* [139] 
BKM-120* [146] Temsirolimus/CCI-779 [147] 
GDC-0941 [148] Deforolimus(AP23573)*  [140] 
SF1126 [149] Ridaforolimus (MK8669) [150] 
LY294002 [151]   
PX-866 [152]   
    

Dual mTOR/PI3K inhibitors AKT inhibitors 

 
PI-103 

 
[153, 154] 

 
GSK2141795 

 
[155] 

NVP-BEZ235 [142, 156]  SR13668 [157] 
PF-04691502 [158] GSK690693 [159] 
XL765(SAR245409) [160] MK-2206* [161] 
AZD8055 [162] Perifosine [143] 
    
 

 

THE BIOLOGY OF HUMAN AML CELLS:  FUNCTION AND THERAPEUTIC TARGETING OF THE 

HEAT SHOCK PROTEIN SYSTEM  

 

   Heat shock proteins (HSPs), also called stress proteins, represent a group of ubiquitous proteins 

that are expressed at low levels under normal physiological conditions, but increased production is 

triggered by exposure to environmental stress [163]. This is often referred to as the heat shock 

response [163]. This response can be triggered by malignant transformation, infections, inflammation, 

exposure to toxins, starvation, oxygen deprivation, nitrogen deficiency or water deprivation [164].    

   HSPs are usually cytoplasmic proteins, but there is also an increasing interest for a potential 

extracellular role of HSPs [165, 166]. They act as molecular chaperons together with a group of 

cochaperones, and play important roles in protein-protein interactions and assisting in proper protein 

conformation with prevention of unwanted protein aggregation. The HSPs are named according to 

their molecular weights, e.g. HSP60, HSP70 and HSP90 (Table 10). In contrast to HSP70 that controls 

folding of all newly synthesized proteins, HSP90 has a more restricted repertoire of client proteins 

mainly including various protein kinases [167, 168]. HSP90 seems to be important for cellular 
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proliferation, survival and adaptation to unfavorable microenvironments, and HSP90 inactivation 

results in inappropriate function and rapid degradation of its client proteins [169]. 

 

Table 10. 

The most common HSPs and their main physiological functions 

Heat shock 
protein 

Main function 

HSP27 Protection against protein aggregation, regulation of signaling in the 
apoptotic pathway, regulation of cell movement. 

HSP60 Promotes efficient mitochondrial protein folding, the main function in cytosol 
is to induce folding of actin and tubulin.  

HSP70 Stabilizes proteins prior to complete folding, regulates transport across 
membranes and proteolysis. 

HSP90 Stabilizes kinases prior to complete folding or activation; forms stable 
complexes with several transcription factors. 

HSP110 Dissociates protein aggregates, facilitates proteolysis, essential for 
thermotolerance. 

 
 

   HSP synthesis is strictly regulated both through (i) activation and nuclear translocation of the 

transregulatory heat shock transcription factors (HSFs), and (ii) at the level of translation of mRNA into 

protein [170]. Cells constitutively express HSF proteins, but these proteins do not induce HSP 

expression genes in the absence of stress reactions. In mammalian cells, HSF1 is maintained in the 

cytoplasmatic HSP90 complex as a monomer that lacks DNA binding activity [171]. This complex 

dissociates in response to stress and releases the HSF1 monomer (Figure 2). The monomer then 

forms a trimer capable of DNA binding [171].  
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Figure 2 

Activation of HSP90 transcription.  

   HSF1 is maintained in the cytoplasmatic HSP90 complex as a monomer that lacks DNA binding 

activity. This complex dissociates in response to accumulation of denaturated proteins, and releases 

the HSF1 monomer. The monomer then forms a trimer that translocates to the nucleus and binds to 

HSE. Transcription is initiated resulting in increased HSP90 translation in cancer cells.  

Abbreviations: HSE, Heat shock element; HSF1, Heat shock transcription factor 1. 
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   Exposure to anticancer agents can induce expression of HSP90 and thereby enhance 

chemoresistance and cellular recovery after this exposure. Molecular chaperones have been 

implicated in resistance to anticancer treatments; this is summarized in Table 11. Several HSP90 

client proteins have been validated as possible therapeutic targets in cancer treatment, and HSP90 

inhibition thereby makes it possible to target several intracellular pathways, including oncoprotein-

initiated signaling [169]. Furthermore, HSP90 in malignant cells is often present entirely in 

multichaperone complexes with high ATPase activity, whereas HSP90 in normal tissues is present in a 

latent, uncomplexed state [172]. All these characteristics suggest that HSP90 should be regarded as a 

possible unique target for antileukemic therapy.  

 

HSP90 expression and interaction with important client proteins in AML 

   The expression of HSPs by leukemic cells varies between patients [173-175]. Complete remission 

rates and overall survival seem to be higher in patients with generally low HSP expression [174, 176], 

wheares HSP90 expression has no correlations with white cell counts, morphology (i.e. FAB 

subclassification) or cytogenetics [176]. Similar observations have been made for patients with 

preleukemic MDS where high HSP90 expression is seen especially in the high-risk subgroups [177]. 

FLT3 is a HSP90 client protein and inhibition of HSP90 thereby seems to have an indirect inhibitory 

effect on FLT3-dependent intracellular signaling [178]. Mutated FLT3 is constitutively activated and 

probably mediates signaling that is important both for leukemogenesis and chemosensitivity, and the 

combination of conventional DNA-damaging therapy with agents that mediate direct (TKIs) or indirect 

(HSP90 inhibitors) FLT3 inhibition should therefore be considered in AML therapy [179]. Other HSP 

client proteins are probably also involved in leukemogenesis [169], some of the most important being 

summarized in Table 11. The importance of HSP90 and some of its client proteins for intracellular 

signaling and intercellular crosstalk will be discussed below. The transcription factor NF- B controls a 

wide range of genes regulating proliferation and apoptosis, and this is probably true also for primary 

human AML cells [121]. HSPs can interact with the function of NF- B [121] through (i) binding and 

possibly neutralization of pro-apoptotic or pro-inflammatory NF- B targets; and (ii) stabilization/binding 

of both the main NF- B regulators I B kinase (IKK) [180] and NF- B inducing kinase (NIK) [181]. 

These observations suggest that pharmacological targeting of chaperones in AML should be further 
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explored [182], and this is further supported by experimental studies suggesting that the role of FLT3 

in leukemogenesis involves NF- B [183].  

   The two structurally unrelated protein kinases CHK1 and CHK2 are emerging as key mediators in 

cellular responses to genotoxic stress [184]. Recent studies suggest an important role of both these 

kinases in the network of genome surveillance pathways that coordinate cell cycle progression with 

DNA repair and apoptosis regulation. These kinases thus provide a linkage between upstream 

sensors of cell cycle checkpoints and cell cycle regulation [185]. DNA damage and replication stress 

will activate the CHK1 signaling pathway, block S phase progression and thereby participate in G2 

arrest. Furthermore, AML cells exposed to cytotoxic agents often show cell cycle arrest at the G2/M 

checkpoint together with development of chemoresistance [186].  CHK1 inhibition may then allow 

checkpoint exit with induction of chemosensitivity [187]. HSP90 is important for the folding and 

stabilization of CHK1 [188] and as expected HSP90 inhibition depletes CHK1, disrupts the S-phase 

checkpoint and enhances the therapeutic effect of cytarabine in primary AML cells [124].  

   Finally, the matrix metalloproteases (MMPs) are important in the regulation of apoptosis, proliferation 

and angiogenesis [101]. MMP-2 and MMP-9 are the quantitative most important ones [101], and these 

proteases can be released from primary AML cells [189]. Both MMP-2 and MMP-9 interact with 

HSP90 [165, 190], showing that this HSP is also important for the extracellular compartment [191]. 

HSP inhibition significantly reduces the level of these proteases in in vitro models of AML [175].   

 

HSP90 inhibition 

   HSP90 possesses two binding sites for client proteins located in the N- and C-terminal fragments, 

respectively. The C-terminal fragment binds partially folded proteins in an ATP-independent way and 

is potentially regulated by cochaperones. The N-terminal domain contains a peptide binding site that 

binds preferentially peptides longer than ten amino acids, and peptide dissociation is induced by ATP 

binding [192, 193]. The majority of HSP90 inhibitors blocks the N-terminal ATPase activity [169]. The 

benzoquinone amsancines such as geldanamycin were the first HSP90 inhibitors to be developed 

[194]. Geldanamycin had several pharmacological limitations, including poor solubility, limited in vivo 

stability and hepatic toxicity and is not ivestigated further in clinical studies [195]. However, more 

soluble derivates such as 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), 17-

dimethylalaminoethylamino-17-demethoxygeldanamycin (17-DMAG, alvespimycin) and retaspimycin  
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Table 11. Main client protein of HSP90 in AML. 

Client proteins Relevance to human AML Key 
references 

 
Chaperones and relatives 

  

Heat shock protein 70 (HSP70) Cochaperone of HSP90, expression closely 
correlated to HSP90 expression 

[175] 

Nuclear distribution C (NudC) Important for nuclear migration in cell division, high 
expression in human AML cells  

[196] 

 
Transcriptional regulation 

  

p53 Important for regulation of primary AML cell viability 
in vitro and in vivo  

[197] 

Murine double minute 2 
(MDM2) 

A downstream target of AKT, the p53-MDM2 
complex is a possible therapeutic target in AML  

[120] 

Signal transducer and activator 
of transcription-3 (STAT3) 

Important intracellular mediator downstream to 
hematopoietic growth factor receptors  

[198] 

 
Kinases 

  

FMS-like tyrosine kinase 3 
(FLT3) 

Mutated FLT3 is an adverse prognostic factor in 
human AML, FLT3-ligand is a growth factor for 
primary human AML cells for most patients  

[36] 

c-Jun N-terminal kinase (JNK) A kinase involved  in apoptosis, differentiation, 
proliferation, cytokine production and 
chemoresistance in AML 

[122] 

KIT The second most frequently mutated RTK, often 
mutated in CBF-AML 

[52] 

AKT Important downstream mediators for hematopoietic 
growth factor receptors in primary human AML cells  

[117] 

Cyclin B 
 

A cell cycle regulator expressed in cytoplasm and 
nucleus of primary human AML cells, a possible 
leukemia-associated antigen  

[199] 

Checkpoint kinase (CHK1) 
 

A downstream target of AKT, there phosphorylation  
correlates with cell cycle arrest in AML  

[124] 

Bcr-Abl 
 

Involved in malignant transformation in CML, can be 
mutated in AML  

[200] 
 

Janus kinase 1 (JAK1) 
 

Can be mutated in primary human AML cells and 
has a disease-modifying effect  

[49] 
 

Insulin-like growth factor 1 
receptor (IGF-1 receptor) 

Insulin stimulate primary AML cell proliferation  
 

[201] 

Inhibitor of B  kinase (IKK)  
 

Downstream target of AKT, activates the NF- B 
complex trough both the canonical and non-
canonical pathway  

[121] 

NF- B-inducing kinase (NIK) Activates the NF- B complex through the non-
canonical pathway 

[121] 

 
Others 

  

Matrix metalloprotease 2 (MMP-
2) 

Expressed by AML cells, and has a possible 
adverse prognostic effect 

[189] 

Matrix metalloprotease 9 (MMP-
9) 

Expressed by AML cells, especially with monocytic 
differentiation 

[189] 

Survivin 
 

Inhibitor of apoptosis with a possible adverse 
prognostic impact in AML 

[202] 
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(IPI-504) and 17-allylaminogeldanamycin (17-AG) have entered clinical studies [203]. The natural 

occurring inhibitor radicicol was also early discovered as a HSP90 inhibitor in laboratory model [169]. 

This compound lacks in vivo effect, but more potent derivates have been developed and have now 

entered clinical trials (Table 12). Several synthetic drugs have been obtained by rational design from 

the crystal structures of the HSP90 binding pocket [204, 205] (Table 12), some of them have shown 

promising preclinical results have entered clinical trials (Table 12).  

   The first clinical trials with HSP90 inhibitors have been reported [206-208], including studies in AML 

[209, 210]. It should be emphasized that the large majority of the patients in these studies had 

advanced solid tumors [206-208, 211] or relapsed or refractory hematological malignancies [209, 210, 

212].  Based on these studies it can be concluded that it is possible to achieve pharmacological 

HSP90 inhibition with acceptable toxicity in a majority of patients with advanced cancers. However, 

further studies are warranted to investigate potential effects of combination therapy, the optimal time to 

start treatment and to define subgroups of patients with special benefit of HSP90 inhibition [213].   

 

 

Table 12. HSP90 inhibitors in clinical trials. Evaluated or under evaluating in AML   

 

Functional 
classification

 
Name of inhibitor 

 
Main administration 

 
Key references 

Tanespimycin, 
17-AAG, KOS-953, CNF110 

 
Intravenous 

 
[206-208, 212] 

Alvespimycin, 17-DMAG* Intravenous [209] 
Retaspimycin, IPI-504 Intravenous [211] 

 
Benzoquinone        
ansamycins/ 
Geldanamycin 
derivates 
 

IPI-493, 17-AG* Oral [214] 

 
 
AT13387 

 
Oral 

 
[215] 

 
Radicicol derivates 

NVP-AUY922* Intravenous [216] 
 

MPC-3100 Oral [217] 
BIIB021, CNF2024 Oral [218] 
Debio 0932,CUDC-305 Oral [219] 
KW-2478 Intravenous [220, 221] 
SNX-2112 Oral (by prodrug 

SNX-5422) 
[222] 

STA-9090* Intravenous [210] 

Synthetic 

XL888 Oral [223] 
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THE BIOLOGY OF HUMAN AML CELLS:  THERAPEUTIC TARGETING OF NF- B MEDIATED 

INTRACELLULAR SIGNALING  

   The NF- B family of transcription factors was identified 25 years ago as a nuclear factor that binds 

the  light chain enhancer in B-cells [224]. Several studies suggest a role of NF- B in leukemogenesis 

including both through its direct effects in AML cells and indirect effects through bi-directional crosstalk 

between leukemic cells and their neighboring stromal cells [121]. Studies have described constitutive 

activation with nuclear localization of NF- B in primary human AML cells [225]. The NF- B activity 

could not be detected in normal CD34+ hematopoietic cells, and as expected pharmacological NF- B 

inhibition in vitro then induced apoptosis only in AML cells but not in normal CD34+ cells [225]. The 

NF- B family consists of the five different transcription factors RelA, RelB, c-Rel, p50 and p52 (Table 

13) that bind to their response elements as hetero- or homodimers [121].  

 

Table 13. The most common nomenclature and the encoding genes of the five proteins in the 

mammalian NF- B family 
 

Proteins Alternative names Genes 

 
RelA 

 
p65, NF- B3 

 
RELA 

RelB  RELB 
c-Rel Rel REL 
p50 p105, NF- B1 NFKB1 
p52 p100, NF- B2 NFKB2 

 

   Under basal conditions this moiety is inactivated in the cytoplasm by the inhibitor I B, but in 

response to specific stimulation I B is degraded and NF- B is thereby released and can bind other 

proteins, DNA or RNA. There are two pathways for activation of NF- B: the canonical and the non-

canonical pathway [121]. Inhibitory I B is then phosphorylated on highly conserved serine residues by 

an IKK complex formed by the three subunits IKK , IKK  and IKK ; this leads to ubiquitination and 

proteasomal degradation of I B. NF- B can thereby translocate to the nucleus and induce 

transcription. On the other hand, the non-canonical pathway involves a further activation step through 

the NIK, which secondarily stimulates IKK-induced phosphorylation (Figure 3).  
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   Once translocated to the nucleus NF- B promotes cell survival by initiating transcription of genes 

encoding stress-response enzymes, cell-adhesion molecules, pro-inflammatory cytokines and anti-

apoptotic proteins (Figure 3). The pre-existing balance between expression of genes involved in 

regulation of survival and apoptosis may ultimately determine whether the cell undergoes apoptosis in 

response to NF- B activation or inhibition [226]. Under physiological conditions activation of NF- B 

triggers expression of antiapoptopic genes [227, 228]. The balance is thereby altered in favor of 

apoptosis by NF- B inhibition, and this seems to be true also in human AML where targeting of IKK 

with the specific inhibitor AS602868 blocks NF- B activation and thereby leads to apoptosis [229]. In 

addition to the antiapoptotic effects, NF- B also has a growth stimulating effect of malignant cells by 

inducing cell cycle progression and hence increased proliferation of the malignant clone [121]. NF- B 

and IKK-controlled pathways are also important functional modulators not only in the malignant cell but 

also in surrounding stromal cells, and these cells also take part in the leukemic process in human AML 

(Table 15)  [230, 231]. 
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Figure 3 

Activation of the NF- B pathway.  

   The canonical pathway (left part) activates the I B kinase (IKK) complex leading to inactivation of 

inhibitor B (I B); the I B is thereby degraded by the proteasome with loss of NF- B inhibition and 

translocation of RelA/p50 to the nucleus. Alternatively, in the noncanonical pathway (right part) NF- B 

inducing kinase (NIK) acts via IKK, to phosphorylate p52 that forms a complex with NIK and RelB. In 

both pathways the released NF- B dimmer, p50/Rela and p52/Rel B respectively, is thus able to 

translocate to the nucleus where it binds to specific DNA promoters, initiating transcription of genes 

that encode stress-response enzymes, cell-adhesion molecules, pro-inflammatory cytokines and anti-

apoptotic proteins 

Abbreviations: I B, inhibitor B; NIK, NF- B inducing kinase; IKK, I B kinase. 

   Cells that display chemokine receptors can respond to chemokine gradients with chemotactic 

migration due to activation of multiple intracellular signals including NF- B [232], and malignant 

transformation associated with constitutive NF- B activation leads to endogenous expression of 

chemokines and their receptors [233]. The cytokine release in the bone marrow microenvironment 

may create autocrine and paracrine loops that keep NF- B in an activated state. This has been 

described for human fibroblasts where CXCL8 increased the expression of its receptor CXCR2 that in 

turn led to higher CXCL8 (IL-8) release in vitro through NF- B signaling [234]. CXCL8 can thereby 

promote neoplastic growth through its effect on various cells in the cancer cell microenvironment [235]. 

   NF- B plays a crucial role in angiogenesis. Several of the angiogenic factors (e.g. VEGF and 

CXCL8) are regulated by NF- B, and their constitutive release by malignant cells is suppressed by 

NF- B-inhibition [121]. Upregulation of Ang-1 expression in both fibroblasts and endothelial cells 

occurs via the NF- B signal transduction pathway [236, 237]. NF- B also promotes expression of 

several MMPs, including MMP-2 and MMP-9 [238].  
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NF- B inhibition   

   Numerous natural products and synthetic compounds can inhibit NF- B, and recently more specific 

NF- B inhibitors have been developed [121, 239] (Table 14). The experience from preclinical studies 

of the specific IKK inhibitors suggests that NF- B inhibition can eradicate primary human AML cells at 

the bulk, progenitor and stem cell level [240].  
 

Table 14. Important NF- B inhibitors 

Classification Important compounds 

 
 
Modulators of IKK activity  
 

AS602868 
MLB120 
BMS-345541, BAY11-7085 
Thalidomide,lenalidomide 
DNMT inhibitors, HDAC inhibitors 
 

 
Proteasome inhibitors 

Bortezomib 
MG262 
CEP-18770 

 

   Among the most promising drug that also functions as a NF- B inhibitor in the treatment of 

hematological malignancies is the proteasome inhibitor bortezomib [241, 242]. The mechanisms of 

action for proteasome inhibitors are complex and include additional mechanisms and not only NF- B 

inhibition [228]. The final step before NF- B translocation is ubiquitin-dependent degradation of I B by 

the 26S proteasome [239], and inhibitors of the ubiquitin-proteasome pathway suppress activation of 

NF- B by stabilizing I B. Thalidomide and its derivate lenalidomide, that lacks the neurotoxic side 

effects associated with the parent drug, have complex pharmacological effects that can be divided into 

three major groups; (i) a direct anti-neoplastic effect, (ii) indirect effects mediated via neighboring cells 

in the neoplastic microenvironment, and (iii) immunomodulation [243]. The drugs attenuate the 

phosphorylation of IKK as well as the RelA subunit; and all three pharmacological effects are at least 

partly mediated by NF- B inhibition. Both drugs are widely used in the treatment of multiple myeloma 

(MM) [244], and their use in AML therapy is considered, especially of AML secondary to MDS [245]. 

These studies have provided evidence for antileukemic activity, especially indirect antiangiogenic 

activity, but the clinical effect of single agent thalidomide in AML seems limited [246]. Lenalidomide 

seems particularly effective in patient with 5q deletion [247] and trisomy 13 [248].  
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   More specific inhibition of IKK is a very attractive therapeutic strategy. Several IKK inhibitors have 

been identified; they have not been investigated in clinical studies, but the preclinical results of some 

agents seem promising. These preclinical studies suggest that the sensitivity to IKK inhibitors 

correlates with the basal NF- B activity and the drugs modulate adhesion molecule expression [121], 

and several agents have also been shown to target even leukemic stem cells (LSCs) [121].  

 
THE BONE MARROW MICROENVIRONMENT: NORMAL AND LEUKEMIC BONE MARROW 

 

The bone marrow organization at the macro- and microscopic level 

   The bone marrow constitutes 4% of the total body weight in humans. The red marrow consists 

mainly of hematopoietic tissue and the yellow marrow mainly of fat cells. At birth all the bone marrow 

is red, whereas with increasing age this is reduced and in adults approximately half of the marrow is 

red, i.e. mainly the marrow in the pelvic bones, skull, sternum, vertebrae, costa and the proximal 

extremity bones (femur and humerus). The non-hematopoietic cells of the marrow are referred to as 

the stroma (Table 15), and these cells provide a microenvironment that facilitates hematopoiesis. 

 

Table 15. Bone marrow stromal cells 

Cell type Main Function 

 
Fibroblasts 

 
Synthesis of collagen, glycosaminoglycans and glycoproteins; the main 
component of the extracellular matrix 
 

Osteoblasts 
 

Responsible for bone formation and mineralization, supporting the 
hematopoietic cells, forming endosteal stem cell niches 
 

Osteoclasts 
 

Involved in bone resorption by removing mineralized bone  

Endothelial cells 
 
 

Surrounding the vascular system, acting as a barrier between the vessel 
lumen and surrounding tissue, supporting hematopoiesis and forming the 
vascular stem cell niches 
 

Adipocytes 
 

Cells specialized in storing energy 

 
 
   The main function for the red bone marrow is to produce mature blood cells. These cells originate 

from the hematopoietic stem cell (HSC). The definition of a stem cell is under debate, but there is a 

general agreement that these cells (i) show self-renewal, i.e. have the ability to go through numerous 
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cell divisions while maintaining the undifferentiated state; and (ii) have the potential to differentiate into 

specialized cells (potency). This potency can be classified as described in Table 16. 

 

Table 16. Stem cell potency. 

Potency Definition Example 

 
Totipotency  

 
Cells with the ability to divide and produce all the differentiated 
cells in an organism, including extraembryonic tissues 
 

 
Zygote 

Pluripotency  Cells that have the potential to differentiate into any of the three 
germ layers: endoderm, mesoderm or ectoderm 
 

Embryonic stem 
cell 

Multipotency Cells that have the potential to give rise to cells from several, 
however limited number of lineages 
 

Hematopoietic 
stem cell 

Oligopotency  Cells with the ability to differentiate into a few cell types Common myeloid 
progenitor cell 
 

Unipotency Cells that have the capacity to develop/differentiate into only one 
distinct cell type 

Erythroblast 

 

   The HSCs are multipotent stem cells with the capacity of self-renewal, giving rice to oligopotent 

myeloid or lymphoid progenitors. The bone marrow stroma represents a supportive network of the 

HSCs [249] that are thought to reside within specific niches (Figure 4). These niches are specialized 

microenvironments created by supportive cells that facilitate stem cell survival and self renewal 

through expression of membrane molecules and release of soluble mediators. HSCs tend to reside 

near the endosteal surface [250], and studies of HSCs homing after transplantation in animal models 

have documented redistribution of HSCs to the endosteal region [251]. This is currently referred to as 

the osteoblastic or endosteal niche located at some distance from the blood supply in a relatively 

hypoxic microenvironment [252]. The hypoxia is probably important for maintenance of pluripotency 

and self-renewal capacity [252]. The major molecular response to the hypoxia is increase in the 

transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 binds to responsive target regulatory 

sequences of multiple genes involved in energy metabolism, myelopoiesies and angiogenesis [252], 

several of these probably being important for HSC maintenance. One well-characterized HIF-1 target 

involved in HSC maintenance is VEGF, which is important for survival and repopulation of HSCs [253]. 

However, several other molecules are also involved in direct crosstalk or paracrine interactions 

supporting maintenance, including the Notch [254], and Ang-Tie2 systems [255] . Pharmacological 

targeting of both these systems is currently considered in hematological malignancies [230, 254].  



46

   Although the endosteal niche is believed to be the main facilitator of HSCs maintenance and 

quiescence, a large part of the HSCs are found adjacent to sinusoids in the so called vascular niches 

(Figure 4) [249]. This is possibly an explanation why HSCs can rapidly be recruited to the peripheral 

circulation during clinical stem cell mobilization. Whether endothelial cells contribute to maintenance of 

HSCs or whether HSCs only transiently migrate trough the vascular niche is not known [249]. 

 

Figure 4 

Hematopoietic stem cells niches. 

   Trabercular long bone is richly vascularised, giving rise to organization of distinct stem cell niches; 

e.g. the endosteal niche and the vascular niche. Hematopoietic stem cells, and probably also leukemic 

stem cells, can reside to both these niches, although hematopoietic stem cells tend to localize near the 

endostial surface. Osteoblasts and other supporting cells are involved in direct crosstalk or paracrine 

interactions that support the maintenance of the hematopoietic stem cells. Hematopoietic stem cells 

are also found adjacent to sinusoids in the vascular niche, explaining why hematopoietic stem cells 

can rapidly be recruited to the peripheral circulation. Whether endothelial cells contribute to 

maintenance of hematopoietic stem cells or whether they only transiently migrate trough the vascular 

niche, is mainly unknown. 
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Leukemic stem cells 

   The theory that most cancers contain a minor population of functionally distinct cancer stem cell has 

been postulated for several years. The theory is controversial [256], but in the case of AML there is 

growing support for existence of such LSC [257]. These fractions of cells probably count for one per 

million of the whole leukemic blast population [257]. The cells are usually located within the 

CD34+/CD38- compartment [257] and are able to recapitulate the disease in mouse xenograft models 

[257]. However, LSC can probably also rest in other compartments, especially the CD34+/CD38+ 

compartment [258]. Thus, LSCs show both self-renewal and a capacity to produce leukemic 

progenitors with proliferative but not self-renewal capacity [256], and similar to their normal 

counterparts they are dependent of support from the bone marrow microenvironment [259]. LSCs also 

engraft and reside in the endosteal niche in murine models [260], most of them are in the Go phase 

and are relatively resistant to cytarabine treatment [259, 260]. Selectively inhibition of LSCs has now 

emerged as a possible therapeutic strategy [256]. 

 

THE BONE MARROW MICROENVIRONMENT: ANGIOGENESIS AND THE ANGIOREGULATORY 

NETWORK IN AML 

 

   Angiogenesis is regulated by angiogenic activators and inhibitors, and the shift in the normal 

homeostatic balance in favor of angiogenesis is often referred to as the angiogenic switch [261]. 

Cancer-associate angiogenesis was originally described in solid tumors [262], but more recent studies 

have brought attention to angiogenesis as important for development, progression and prognosis in 

hematological malignancies: 

 Bone marrow microvessel density (MVD) is often increased in hematological malignancies, 

especially in patients with advanced stage disease [263]. 

 Antiangiogenic therapy causes vascular disruption and has antileukemic effect [264]. 

 The crosstalk between leukemic and microvascular endothelial cells can increase the 

proliferation of both the endothelial [265] and leukemic cells [266]. 

 The use of magnetic resonance techniques can provide functional imaging of bone marrow 

vascularity that can possibly be used for prognostication in AML [267]. 
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Several mediators have been postulated to have pro- or antiangiogenic effects, and some of the most 

important angioregulators in human AML will be described below. 

 

VEGF 

   There are five members of the mammalian VEGF family: VEGFA, VEGFB, VEGFC, VEGFD and 

placental growth factor. VEGFA (hereafter referred to as VEGF) is a growth and survival factor for 

vascular endothelial cells, and it is well characterized for its role in developmental and pathological 

angiogenesis [268]. VEGF is highly expressed in several human cancers, this is at least partly caused 

by its transcriptional upregulation by hypoxia and by various oncogenes [268]. VEGF can be released 

both by malignant cells, including AML blasts, and by surrounding stromal cells [269]. It binds and 

activates the two related RTKs of VEGF receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2). Most 

of the activities attributed to VEGF are mediated by signaling through VEGFR2, including its mitogenic 

as well as survival and motility enhancing effects. The role of VEGFR1 in angiogenesis is controversial 

and less well understood. VEGFR2 is predominantly found in endothelial cells where its activation is 

critical for blood vessel formation, migration, differentiation and vascular permeability. Several 

strategies have been tried to inhibit these effects [268], including (i) neutralizing antibodies to VEGF or 

VEGFRs; (ii) soluble VEGFRs or chimeric receptors that trap circulating VEGF and (iii) -VEGFR TKIs. 

VEGF-targeted agents in clinical use in Norway include the VEGF-specific monoclonal antibody 

bevacizumab, and the TKIs sorafenib, sunitinib and pazopanib.  

 

HGF 

   HGF binds to its receptor mesenchymal-epithelial transition factor (MET); MET is expressed by cells 

of epithelial origin whereas HGF is produced by mesenchymal cells, and HGF is the only known MET 

ligand [113]. HGF can be produced both by bone marrow stromal cells [270] and by AML blasts [231], 

and high serum levels are associated with an adverse prognosis in AML [271, 272]. HGF binding to its 

receptor activates the RTK activity, initiates intracellular protein phosphorylation and thereby several 

intracellular signaling cascades; the two most important being the PI3K and STAT pathways [113]. 

MET activation then leads to a proliferative, invasive, antiapoptotic and angiogenic phenotype of 

endothelial cells. HGF/MET has emerged as potential therapeutic target in cancer therapy, and these 

inhibitors can be divided in two main subclasses; (i) biological HGF/MET antagonists and (ii) synthetic 

MET kinase inhibitors [273]. The biological antagonists include truncated or uncleavable HGF forms 
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that antagonize full-length HGF binding and neutralizing monoclonal antibodies directed against HGF 

or MET [113, 273]. The MET kinase inhibitors competitively antagonize the intracellular ATP binding 

site, thereby preventing the RTK-mediated intracellular phosphorylation cascade [113, 273]. 

Compounds in both classes have now entered early clinical trials [273]. 

 

Chemokines 

   Chemokines are small chemotactic cytokines with a molecular weight of 8-10 kDa. They are divided 

into four subgroups (C, CC, CXC, CX3C) based on the presence of amino (N)-terminal cysteine 

residues; the largest are the CC and the CXC chemokines [100]. The chemokines have a complex 

angioregulatory role [274], and they can be classified as proangiogenic or angiostatic, e.g. facilitators 

or inhibitors of angiogenesis, respectively. The most important angiogenic and angiostatic chemokines 

are briefly described in Table 17 [100, 274, 275]. 

 

Table 17. Angiogenic and angiostatic chemokines; the most important chemokines 

(corresponding receptors) are given in the upper part and their main functions in the lower. 

Angiogenic chemokines Angiostatic chemokines 

 
CCL1 (CCR8) 

CXCL4 (CXCR3B) 

CCL2 (CCR2) CXCL9 (CXCR3B) 
CCL3 (CCR5) CXCL10 (CXCR3B) 
CXCL1 (CXCR2) CXCL11 (CXCR3B) 
CXCL8 (CXCR2) 
 

 

Main angiogenic function Main angiostatic function 

 
Recruitment of angiogenic hematopoietic cells 

 
Recruitment of T-cells which induce expression 
of angiostatic factors 

Activation of endothelial cell chemotaxis and 
tubular formation 

Activation of endothelial cell apoptosis and 
regression 

Stimulating angiogenic growth factor signaling Inhibition of angiogenic growth factors 
Direct stimulating and activation of RTKs 
 

Direct binding and inhibition of RTKs 

 

   Primary human AML cells generally show constitutive release of several angioregulatory 

chemokines [233], the highest levels are usually seen for proangiogenic CXCL8 [233]. Antiangiogenic 

chemokines, e.g. CXCL9-11, can also be released but usually at lower levels than CXCL8 [233].    The 

only chemokine yet to be a pharmacological target is CXCR4, and the specific inhibitor plerixafor is 
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now used for stem cell mobilization [276]. However, this drug is also investigated as a possible 

antileukemic agent and is tried in the treatment of AML [276].  

 

Ang and Tie system 

   Tie1 and Tie2 constitute a distinct family of RTKs expressed mainly by endothelial cells. Their 

naturally occurring agonists are the Angs that constitute four different classes (Ang1-4). Ang1 and 

Ang2 are the most important agonists, and Tie2 is the most relevant receptor in angiogenesis. Ang1 is 

a Tie2 agonist, whereas the role of Ang2 is more complex. Ang2 can be a competitive Tie2 antagonist 

for Ang1 in endothelial cells [277], but more recent studies have demonstrated that Ang2 is a context-

dependent partial agonist/antagonist of Tie2 signaling [278]. The function of Ang2 then seems to 

depend on cell and tissue localization, developmental stage of the cells, Ang2 concentration and 

duration of exposure [279]. Furthermore, Ang1 ligation of Tie2 strengthens the interactions between 

endothelial and periendothelial supportive cells; whereas Ang2 primarily disrupts these interactions 

resulting in vessel destabilization [280]. The final effect of Ang2 will then depend on the presence of 

other angioregulatory cytokines, the effect being either an angiogenic response or vessel regression 

(Table 18). 

 

Table 18. The Ang/Tie2 system in angiogenesis. 

 Main source Receptor Tie2 effect Main effect on endothelial cells 

 
Ang1 

 
Non-endothelial cells 
AML cells 

 
Tie1 
Tie2 

 
Agonist 

 
Stabilizing and maturation of 
neovasculature 
Important for cell-cell interaction 
Antiapoptotic effect 
 

 
Ang2 

 
Endothelial cells 
AML cells 

 
Tie2 

 
Partial 

agonist/ 
antagonist 

 
Context-dependent effects 
Destabilizing and regression of 
neovasculature 
Angiogenic response in the presence of 
VEGF or absence of Ang1 
 

   

   Several studies suggest that the Ang/Tie2 system is important both for leukemogenesis and 

chemosensitivity in AML [231, 281], and these effects may then be mediated through a bidirectional 

crosstalk between AML cells with constitutive Ang release and their neighboring endothelial cells. 

However, the effect of Ang/Tie2, and especially Ang2 expression, in leukemogenesis and on 
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chemosensitivity is still controversial. High pretreatment levels of Ang2, investigated both by mRNA 

expression levels in peripheral blood mononuclear cells [281], and by semi quantitative 

immunohistochemistry in bone marrow biopsies [282], have been associated with chemosensitivity 

and favorable outcome [281, 282]. In contrast, high levels of Ang2 in bone marrow blast detected by 

real time polymerase chain reaction (PCR) [283], or high plasma levels of  Ang2 [284], have also been 

associated with an unfavorable prognosis [283, 284]. The latest is also in concordance with a study 

demonstrating that high levels of circulating Ang2 were associated with an unfavorable outcome after 

allo-SCT among AML or high risk MDS patients [285]. Taken together, these conflicting results 

demonstrated that both the origin of Ang2, e.g. leukemic cells or stromal cells [230], and the context, 

e.g. agonistic/antagonistic interactions in the presence of Ang1 and other cytokines [279], probably 

also is clinical relevant.  

   Therapeutic targeting of the Ang/Tie2 system is possible by administration of selective Ang1/2-

neutralizing or Tie2 blocking antibodies [230]. In experimental models this strategy decreases 

endothelial cell proliferation and thereby inhibits angiogenesis, causes tumor necrosis and reduces 

tumor growth [230, 286]. Ang1/2 neutralization can also inhibit angiogenesis driven by other 

proangiogenic cytokines [287], e.g. the VEGF-dependent angiogenesis that seems to have a 

prognostic impact in AML [288]. Furthermore, experimental studies suggest that combined 

antiangiogenic targeting is more effective than targeting VEGF alone [289]. Both VEGF and Ang2 

have prognostic impact in AML [231, 289], and combined targeting is then of particular interest [290].  

 

MMPs 

   MMP expression is upregulated in several malignancies, including AML. These proteases were 

originally thought to be responsible for degradation and turnover of the extracellular matrix, but they 

are in addition involved in angiogenesis, inflammation and cell migration [101]. The MMPs are strictly 

regulated by their endogenous inhibitors called Tissue Inhibitor of MMPs (TIMPs). The TIMPs are 

broad-spectrum inhibitors of MMPs, although there are some differences in their affinities for various 

MMPs. An imbalance between MMPs and TIMPs is believed to promote AML progression [101]. 

Importantly, the TIMP molecules should not only be regarded as MMP antagonists; they have complex 

functions and both growth-enhancing and antiapoptotic effects have been described [291]. A total of 
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23 different human MMPs and four different TIMPS have been identified; those that are important in 

AML are summarized in Table 19.    

 

Table 19. MMPs and TIMPs in AML (expression frequencies according to [189]). 

Name AML 
expression Characteristics 

 
Refs 

 
MMP-2 

 
49% 

 
Both secreted and membrane bound in AML cells, up 
regulation is associated with drug resistance and adverse 
prognostic outcome in AML 

 
[189, 292-
295] 

 
MMP-7 

 
21% 

 
Can generate soluble FasLigand which further increases 
apoptosis in surrounding cells through the activation of Fas 
receptor. Associated with resistance to chemotherapeutics 

 
[296] 

 
MMP-9 

 
47% 

 
Both secreted and membrane bound in AML cells, higher 
expressed in more mature AML (FAB M4/M5) and 
associated with an invasive phenotype 

 
[189, 295, 
297, 298] 

 
MMP-10 

 
100% 

 
Demonstrated to induce growth both in lymphoma and solid 
tumors 

 
[299] 

    
 
TIMP-1 

 
60% 

 
Antiapoptotic effects in malignant cells, including malignant 
hematopoietic cells. 

 
[291] 

 
TIMP-2 

 
94% 

 
Growth-regulatory effects through specific binding to 
intergrins 
 

 
[291] 

 

   MMPs are considered promising targets for cancer therapy. Several MMP inhibitors (MMPIs) have 

been devoloped and can be broadly divided into peptidomimetic, non-peptidomimetic, tetracycline 

derivatives and naturally occurring inhibitors (Table 20). The results from testing in animal models and 

in cell cultures were compelling, including studies in AML cell lines [300]. These results generate a 

great expectation [301, 302]. However, results from clinical trials have been disappointing with several 

studies demonstrating none or only marginal effects [301, 302]. The reasons for these failures are 

assumed to be multifactorial. Firstly, results from animal models may not predict the outcome for 

human tumors [303]. Secondarily, most clinical studied were performed in advanced tumors, while 

MMPIs may be more effective in the early stages due to their cytostatic rather than cytotoxic effect 

[303]. Thirdly, the MMPIs used in clinical studies target a broad spectrum of MMPs, and improved 

target specificity may be more beneficial [303]. Finally, MMPs and TIMPs may have protective roles in 

certain cancers [304].    
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   Although no MMPIs have been ivestigated in clinical trials for AML, MMPs still represent an potential 

interesting therapeutic target in these patients [101]. However, a better understanding of the role of 

different MMPs in leukemogenesis is needed before optimal clinical studies can be designed. 

 

Table 20. Classification, nomenclature and pharmacological characteristics for MMP inhibitors 

used in clinical trials [101]. 

Classification Central inhibitors Characteristics 

Peptidomimetic Marimastat / BB-2516 
Batimastat / BB-94 
ABT-518 

 
Low water solubility and/or bioavailability. 
Not for further clinical development. 
 

Non-
peptidomimetic 

Prinomastat / AG3340 
Tanomastat / BAY12-9566 
BMS-275291 
CGS27023A / MMI270 

Good oral bioavailability. 
Musculoskeletal symptoms are the main side 
effects. 

Tetracycline 
derivates 
 

Metastat/COL-3/ 
SC-683551 

Good oral bioavailability. 
Main side effects include malaise and 
photosensitivity. 

Naturally 
occurring 
inhibitors 

Neovastat/AE-941 Good oral bioavailability. 
An additional effect is inhibition of VEGF and 
induction of apoptosis in endothelial cells. 
 

 
 

Endocan 

   Endocan, previously called endothelial cell specific molecule-1, is a soluble proteoglycan with a 

molecular weight of 50 kDa [305]. Experimental evidence suggests that endocan act as a key player in 

the regulation of cell adhesion, local inflammation and tumor progression. Endocan serum levels are 

elevated in patients with various malignancies [306], and in patients with severe sepsis [306]. Endocan 

is produced by endothelial cells but not by AML cells [265]. Pro-angiogenic growth factors (e.g. VEGF 

and HGF) increase endocan expression by human endothelial cells [305], whereas Ang2 seems to 

have an opposite effect [230]. The possible role of endocan in leukemogenesis and its possible use as 

a biomarker in human AML require further studies [305]. 



54

AIMS OF THE THESIS 

   AML is a heterogenic disease and the response to chemotherapy differs between patients. The AML 

genotype is an important prognostic parameter in AML. Chromosomal abnormalities, gene mutations 

and gene expression abnormalities all affect critical protein levels and functions in primary human AML 

cells and may exert profound effects on chemosensitivity. Pharmacological targeting of these protein 

abnormalities has emerged as a possible therapeutic strategy in human malignancies, including AML. 

However, given the heterogeneity of AML one would expect differences between patients in their 

responses to such targeted therapies. Furthermore, the interactions between the AML cells and their 

neighboring bone marrow stromal elements are important in leukemogenesis and will probably also be 

important for chemosensitivity. Bone marrow angiogenesis with increased MVD is observed in human 

AML, and the endothelial cells will then be important both for the supply of nutritients to the leukemic 

cells and as directly leukemia-supporting stromal cells.  

 

In this context the aims of this thesis were: 

 characterization of intracellular and extracellular signaling events that affect primary human 

AML cell proliferation, viability and constitutive release of angioregulatory cytokines; 

 based on the studies described above, to describe the biological heterogeneity in human AML; 

 to investigate how pharmacological targeting of intracellular molecules (HSP90, NF- B, the 

PI3K-mTOR pathway) and Tie-2 receptor signaling affects the functional characteristics of  

primary human AML; 

 to investigate differences in systemic cytokine levels, including hematopoietic growth factors 

and angioregulatory cytokines, between acute leukemia patients after they have achieved 

complete hematological remission. 
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MATERIAL AND METHODOLOGICAL CONSIDERATIONS 

 

 

PREPARATION AND CULTURE OF PRIMARY HUMAN AML CELLS 

 

   By definition the bone marrow of AML patients contains at least 20% leukemic blasts [11]. In our 

studies we used AML blast derived from peripheral blood, and we then selected patients with high 

peripheral blood blast counts so that enriched AML cell populations could be prepared by density 

gradient separation alone [307]. Thus, our results may be representative only for this subset of 

patients. This methodological approach was used because the AML cell populations then contained 

95% AML cells, and more extensive separation procedures can alter gen expression and/or the 

constitutive release for soluble mediators [307]. Cells were stored in liquid nitrogen until used. The 

advantages of this approach are the possibility to use well-characterized AML cells, additional 

experiment are possible for the same patient and it is possible to study larger patient populations 

within reasonable time.  

   Addition of serum to cultures represents a non-standardized factor and in general our experiments 

were performed in serum-free medium. However, serum supplementation is often necessary when 

culturing non-myeloid cell, e.g. in stromal cell experiments and coculture experiments [266, 270].  

   Spontaneous apoptosis will always occur during in vitro culture of AML cells [307]. The fraction of 

cell that stays viable during culture varies between patients [230]. Thus, the effect of pharmacological 

intervention always occurs in the context of ongoing spontaneous apoptosis as can be seen from the 

control cultures that were included in all experiments.  

   Several cytokines can function as growth factors in AML [307]. The optimal cytokine combination for 

AML cell proliferation varies between patients [307]. In our studies of cytokine dependent proliferation 

we usually added FLT3-L, SCF and GM-CSF. Although detectable proliferation is not observed in all 

patients, a majority of AML blasts will proliferative in the presence of these cytokines [36]. 

   In our studies we usually included consecutive or unselected patients diagnosed with AML at our 

hospital. As discussed in detail previously [36], our patients are probably representative for the general 

AML patient population with regard to clinically relevant characteristics (i.e. prognosis). The patient 

age is relatively high, in contrast to many clinical studies that mainly include younger patients, e.g. 
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<60-65 years of age. Such clinical studies are not representative for the AML patient population as a 

whole. The disadvantages are that our patients are heterogeneous with regard to treatment and 

survival analyses are therefore difficult, and our populations included an expected low number of 

patients with good-prognosis genetic abnormalities.  

 

Table 21. Comparison between AML patients included in article III and a general AML 

population. The table compares age/gender and biological AML cell characteristics [1, 11, 16, 308].  

Demographic data 
and disease history  Study paper III General AML 

population 

 
Gender  
 

 
Male/female 

 
53%/47% 

 
60%/40% 

Age  (median) 
 

Years 64 70 (often lower in 
clinical trials) 

AML cell 
differentiation 
 

   

FAB classification  M0-1 41% 20-25% 
 M2 21% 25-30% 
 M3 0% 5-10% 
 M4-5 38% 35-40% 
 M6 0% 3-5% 
 M7 0% 3-5% 
 
 

   

Genetic 
abnormalities 
 

   

Cytogenetic Favorable 5% 15-20% 
 Unfavorable 28% 15-20% 
 Intermediate 8% 10-15% 
 Normal 58% 45% 
    
FLT3 ITD 41% 25-30% 
 TKD 3% 5% 
    
NPM1 
 

Mutated 31% 30-35% 

 
 

   We did not included patients with APL (FAB-M3), and the uncommon erythroleukemia (FAB-M6) and 

megakaryocytic leukemia (FAB-M7) were not detected among our patients. We also have few patient 

with favorable cytogenetic, e.g. t(8;21), inv(16)/t(16;16). These abnormalities are uncommon in older 

patients and these patients often have lower peripheral blood blast counts, the low frequency is 

therefore expected [309].  
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SYSTEM BIOLOGY AND BIOINFORMATICS APPROACHES 

   The term system biology has been widely used in a variety of contexts the last decade. The term 

describe a biology based inter disciplinary study field that focuses on complex interactions in biological 

system, trying to use a holistic instead of a reduction perspective [310]. System biology can be divided 

into minor groups where the most important are given in Table 22. 

 

Table 22. System biology approaches in AML. The table lists the most common system biology 

approaches together with their main characteristics and key references for the use in AML are given. 

 

Approaches Characteristics AML examples 

 
Genomics 
 

 
DNA sequencing 

 
[43] 

Transriptomics Global gene expression profiling by DNA 
microarray analyses 
 

[20, 21] 

Interferomics Studying of transcription correcting factors, i.e. 
micro RNA 
 

[311, 312] 

Epigenomics Epigenetic regulation of transcription, e.g.  DNA 
methylation and histone acetylation 
 

[313, 314] 

Proteomics Proteomics is large-scale study of proteins or 
peptides, particularly their expressions, structures 
and functions 
 

[315] 

Phosphoproteomics A branch of proteomic that identifies, classifies, 
and characterizes protein phosphorylation 
 

[198] 

Metabolimics Characterization of cell metabolism  [316] 

 

System biology requires several graphical and staticall methods that will be further discuss. Cluster 

analysis is the assignment of a set of observations into subsets (referred to as clusters), observations 

in the same cluster then show similarities [317]. There are different types of clustering that can be 

used. Hierarchical clustering is a method that seeks to build a hierarchy, e.g. groups, of clusters. The 

algorithms begin with each element as a group and merge them into successively larger clusters. An 

important step clustering analysis is to select a distance measure, which will determine how the 

similarity of two elements is calculated. There are different methods to calculate this distance that can 

influence the results from the clustering, although the differences between methods are in general 



58

small [317]. A more simplified method to describe correlations between different patients and 

mediators present this as correlation maps, this approach can give an overview regarding association 

of different samples [189].  

   Hierarchical clustering creates groups of clusters which often are presented in a tree structure called 

a denogram. The root of the tree consists of a single cluster containing all observations, and the 

leaves correspond to individual observations. Algorithms for hierarchical clustering are generally 

agglomerative, in which one starts at the leaves and successively joins samples or subclusters 

together [317]. The hierarchical cluster analysis can be performed by unsupervised or supervised 

analysis. In the first one the results of experiments do not take external factors such as clinical or 

biological features into account. In contrast, a supervised clustering can take these parameters into 

account in the final analysis [20].  

   Interpretation of data obtained by unsupervised hierarchical cluster analysis is frequently performed 

by visualization as heatmaps. A heatmap is a graphical presentation of data where the values taken 

by a variable in a two-dimensional map are represented as colors [317]. The mosaic of a heatmap 

illustrates expression level by color intensities. Heatmap is often combined with hierarchal clustering 

where the rows and columns of the heatmap are organized based on results from the hierarchal 

clustering. Heat maps originated in two dimension displays of the values in a data matrix, low or high 

values are often given the most intense colors.  

   Hierarchical clustering and heatmaps are often followed by a hierarchal clustering with distance 

matrix, e.g. pairwise correlation between samples using Parson’s Correlation [20]. This gives a 

visualization of the similarities/differences between samples. The strongest colors, e.g. deep red or 

deep green, represent one hundred percent negative or positive correlation. A hundred percent 

positive correlation between two samples indicates that high expression level in one sample is always 

followed by high expression in the corresponding sample and vise versa [20]. 

   The advantages in the use this approach in AML is to visualize heterogeneity between individual 

patients [310]. In our experiments we have used this approach to classify effects of pharmacological 

targeting; this approach will then have the potential to define patient subgroups with regard to 

pharmacological effects. 
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SUMMARY OF THE RESULTS 

Paper I 

Primary human acute myelogenous leukemia cells release matrix metalloproteases and their 

inhibitors: release profile and pharmacological modulation. 

Reikvam H, Hatfield KJ, Oyan AM, Kalland KH, Kittang AO, Bruserud Ø.  

European Journal of Haematology 2010 Mar; 84(3): 239-251 

 

Background: Angiogenesis seems important both for leukemogenesis and chemosensitivity in AML. 

Angiogenesis is regulated by the balance between pro- and antiangiogenic cytokines and probably 

also by MMPs and their natural inhibitors, TIMPs, in angiogenesis. We investigated the constitutive 

release of MMPs and TIMPs for a large group of consecutive AML patients.  

Material and methods: AML cells were cultured in vitro either alone or together with microvascular 

endothelial cells, and the levels of MMPs and TIMPs were determined in culture supernatants. The 

effects of various emerging pharmacological agents on this release were evaluated.  

Results: AML cells showed constitutive release of several MMPs and TIMPs. For all patients 

detectable MMP-10 release was observed, and most patients showed detectable release of at least 

one additional MMP, usually MMP-9 or MMP-2. A significant correlation was found between MMP-9 

and TIMP-1 release and the release of several CCL and CXCL chemokines. MMP-9 release was 

higher for AML cells with monocytic differentiation corresponding to the FAB-subtype M4/M5 AML; it 

was mainly released in its inactive form, but endogenous active MMP-9 could be detected even in the 

presence of the constitutively released TIMP-1/2. Endothelial cells released relatively high levels of 

MMP-10, and these levels were further increased by coculture with AML cells. Heterogeneous 

responses to different pharmacological agents were observed. Patients achieving complete 

hematological remission after only one induction cycle often had undetectable MMP-2 levels, 

indicating a prognostic role of this MMP in AML. 

Conclusion: Primary human AML cells show constitutive release of both MMPs and TIMPs, and this 

release may be important for leukemogenesis and possibly also for chemosensitivity.
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Paper II 

Targeting the angiopoietin (Ang)/Tie-2 pathway in the crosstalk between acute myeloid leukaemia and 

endothelial cells: studies of Tie-2 blocking antibodies, exogenous Ang-2 and inhibition of constitutive 

agonistic Ang-1 release.  

Reikvam H, Hatfield KJ, Lassalle P, Kittang AO, Ersvaer E, Bruserud Ø. 

Expert Opin Investig Drugs 2010 Feb; 19(2): 169-183. 

Background: The Tie-2 receptor can bind its agonistic ligand Ang-1 and the potential antagonist Ang-

2. Tie-2 can be expressed both by primary human AML cells and endothelial cells, and Tie-2-blocking 

antibodies are now being evaluated in clinical trials for cancer treatment.  

 

Material and methods: We investigated the effects of Tie-2-blocking antibodies, exogenous Ang-2 

and pharmacological targeting of various intracellular signaling pathways on AML cell proliferation and 

the constitutive release of angioregulatory mediators.  

 

Results: Tie-2-blocking antibodies had a growth inhibitory effect on human AML cells cocultured with 

microvascular endothelial cells, but this inhibition was not observed when leukemic cells were 

cocultured with fibroblasts or osteoblasts. AML cell viability in cocultures was not altered by anti-Tie-2. 

Furthermore, anti-Tie-2 decreased HGF levels and increased CXCL8 levels in cocultures, whereas the 

levels of endocan (a proteoglycan released by endothelial cells) were not altered. The only significant 

effects of exogenous Ang-2 were decreased levels of HGF and endocan. Constitutive AML cell 

release of agonistic Ang-1 was decreased by the proteasomal inhibitor bortezomib and the specific 

I B-kinase/NF B inhibitor BMS-345541.  

 

Conclusion: Various strategies for modulation of Tie-2 mediated signaling should be considered in 

AML therapy, possibly in combination with other antiangiogenic strategies. 
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Paper III 

Heat shock proteins expression profile for AML patients revels a distinct signature strongly 

associated with FLT3 mutation status - consequences and potentials for pharmacological 

intervention  

Reikvam H, Ersvær E, Skavalnd J, Hovland R, Petersen K, Hatfield K, Bruserud Ø. 

British Journal of Haematology 2012 Feb; 156(4): 468-80 

Background: HSPs act as molecular chaperones that prevent the formation protein aggregates and 

assist proteins in their folding to native structures. Malignant cells can express different HSPs and use 

them to avoid cellular differentiation and apoptosis. Therefore HSPs have emerged as therapeutic 

targets, and special inhibition of HSP90 chaperoning activity seems to be a promising approach. The 

aim of the study was to compare HSP levels for a large cohort of AML patients, and to investigate the 

effect of the HSP90 inhibitor 17-DMAG. 

Material and methods: Primary human AML cells derived from 75 consecutive patients were lysated 

and intracellular HSP levels measured. We used standardized bioinformatical tools to subclassify 

patients based on their HSP expression. Furthermore we also investigate the in vitro effect of HSP90 

inhibition on proliferation, apoptosis and angioregulators of primary human AML cells. 

Results: Intracellular expression of HSP27, HSP40, HSP60, HSP70 and HSP90  were detected for 

all patients. Hierarchical clustering identified two major subsets, broadly divided into low and high 

expression of HSPs. HSP70 and HSP90 levels showed a strong correlation demonstrating a highly 

coordinated expression. Patients harboring FLT3 mutations generally showed high HSP levels, 

indicating a strong dependence of especially HSP90 in stabilizing oncogenic mutated FLT3. HSP90 

inhibition had a stronger proapoptotic effect in FLT3-ITD positive patients. Furthermore, HSP90 

inhibition had a strong antiproliferative and antiangiogenic effect regardless of other patient 

characteristics.  

Conclusions: HSP expression levels can be used to subclassify AMP patients, and the levels seem 

to depend on FLT3 mutation status. HSP90 inhibition has antiproliferative, antiangiogenic and 

proapoptotic effect, the later is especially strong in patients harboring FLT3-ITD mutations. This study 

supports the further investigation of HSP90 inhibitors in preclinical and clinical AML studies. 
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Paper IV: 

Angiogenic signature for AML patients and the possible effects of different pharmacological 

agents acting on the PI3K-mTOR pathway 

Reikvam H, Hatfield K, Tamburini J, Poulain J, Ersvær E, Ryningen A, Bruserud Ø. 

Manuscript 

Background: AML is a heterogeneous hematologic malignancy, with an overall AML-free survival of 

only 40-50% even after intensive therapy. Angiogenesis seems important both for leukemogenesis 

and chemosensitivity in AML and has emerged as a potential therapeutic target. It is regulated by the 

balance between pro- and antiangiogenic factors. The aims of the study were to investigate the effect 

on primary human AML cells of new therapeutic agents targeting the mTOR and the PI3K pathways, 

and especially the effects on angioregulatory mechanisms. 

Material and methods: AML cells were cultured under highly standard in vitro condition, and different 

pharmacological effects on proliferation, apoptosis and cytokine release were evaluated. 

Bioinformatical tools were used to subclassify patients according to the effects of the different agents.  

Results: The effect of two mTOR inhibitors (rapamycin and temsirolimus), and two PI3K inhibitors 

(GDC-0941 and 3-methyladenin (3-MA)) were evaluated. All agents showed a general antiproliferative 

effect but only modest proapoptotic effect, demonstrating a cytostatic rather than a cytotoxic effect. 

The effects on proliferation varied considerably among patients, but all four drugs often had similar 

effects in the same patient. From the constitutive release profile of angiogenic factors we where able 

to identified two major subset based on the clustering of angioregulatory mediators, and further two 

major patient clusters. The effect of the agents differed between patients, but the drugs often had 

similar effects on the various angioregulatory mediators in the same patients. 

Conclusion: Pharmacological targeting of the intracellular signaling pathway PI3K-mTOR has direct 

antileukemic effects for most patients, but for a minimal subset the proliferation is increased. The 

drugs may also have indirect antileukemic effects through altered regulation of bone marrow 

angiogenesis. 
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Paper V: 

The pretransplant serum cytokine profile in allogeneic stem cell recipients differ from healthy 

individuals and different profiles are associated with different risk of posttransplant 

complications 

Reikvam H, Mosevoll KA, Melve G, Günther CC, Sjo M, Bentsen PT, Bruserud Ø 

Biol Blood Marrow Transplant 2012 Feb; 18(2): 190-9.

 

Background: Cytokines play a key role in regulation of normal and malignant hematopoiesis, 

angiogenesis and inflammation. Serum levels of several cytokines are altered in patients with 

hematologic malignancies, and certain pretransplant cytokine levels may have a prognostic impact in 

patients treated with allogeneic stem cell transplantation (allo-SCT). However, the cytokine system 

constitutes an interacting functional network, and it may therefore be more relevant examine at serum 

cytokine profiles rather than the serum levels of single cytokines in allotransplanted patients. 

Material and methods: We therefore investigated the pretransplant serum levels of 35 cytokines in a 

group of 44 consecutive allo-SCT patients, mainly with a primary diagnosis of acute leukemia. Serum 

samples were collected before start of myeloablative conditioning therapy when all patients were in 

complete hematological remission. Bioinformatic approaches were used to identify patient 

groups/subsets.  

Results: Unsupervised hierarchical clustering analysis identified three major patient groups/subsets. 

These groups differed especially in the levels of hepatocyte growth factor (HGF) and granulocyte-

colony-stimulating factor (G-CSF), and one of the groups was characterized by low early treatment-

related morbidity and high levels of HGF and G-CSF. The degree of weight gain/fluid retention after 

conditioning therapy did not differ between the patient subsets, but fluid retention showed a significant 

correlation with pretransplant serum levels of basic Fibroblast growth factor (bFGF).  

Conclusion: We conclude that the pretransplant serum cytokine profile shows a considerable 

variation even between patients in complete hematological remission. These differences are clinically 

relevant in allo-SCT recipients, and they may also be relevant for patients who can not receive allo-

SCT and instead receive consolidation or maintenance treatment with new target therapy. 
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GENERAL DISCUSSION 

 

AML HETEROGENEITY 

 

   Cytogenetic analysis allows a prognostic subclassification of patients receiving intensive 

chemotherapy for non-APL variants of AML [19]. Distinct mutations involved in leukemogenesis have 

additional prognostic impact, e.g. patients with FLT3-ITD have an adverse prognosis whereas patients 

with NPM1 mutation have a good prognosis in the absence of FLT3-ITD [15]. Global gene expression 

profiling in AML has revealed that major prognostic subgroups based on these genetic markers are 

recapitulated in global gene expression patterns and have identified specific signatures for patients 

with distinct cytogenetic abnormalities and gene mutations [20, 21, 318]; their prediction can then be 

made with almost 100% specificity and sensitivity [319].  

   DNA methylation and histone modulation are important epigenetic mechanisms involved in 

leukemogenesis, and different cytogenetic subgroups are characterized by distinct epigenetic patterns 

[313, 314, 320]. However, clustering based on methylation patterns seems less pronounced than the 

gene expression profiles [313]. It has in addition been demonstrated that AML patient subsets express 

specific signatures of microRNA, i.e. a class of small noncoding RNAs involved in regulation of 

protein-encoding mRNA [311, 312].  

In our present studies the majority of patients were characterized by cytogenetic analyses and in 

addition analysis of FLT3 and NPM1 mutations. Cytogenetic analyses were not available for a subset 

of patients. For some patients no mitosis were available for culture for chromosomal analyses, for 

other patients the samples for cytogenetic analyses were not collected at the time of diagnosis and we 

did not performed cytogenetic analyses on cryopreserved  cells because previous reports suggest that 

these results will be unreliable [321]. 

 

“ONE SIZE FITS ALL” – AML THERAPY REVISITED 

 

   The standard induction regimen in AML has for many years been an antracycline plus cytarabine, 

and this is followed by repetitive cycles of intensive consolidation therapy usually including high-dose 

cytarabine. This treatment is curative for most patients with favorable and for a large subset of patients 
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with intermediate risk disease, but only for a small minority with unfavorable risk profile. Knowing the 

biological heterogeneity of AML, an important question is now whether one still should recommend the 

same treatment to all patients. However, the most important improvements in AML therapy during the 

last two decades have not been the introduction of new therapeutic agents, but rather a more optimal 

use of well-known antileukemic drugs combined with a better supportive care [85]. Further studies 

based on specific targeted therapy will hopefully improve patient survival, even though the results from 

clinical studies of gemetuzumab ozogamacin [322], FLT3 inhibitors [323], farnesyltransferase inhibitors 

[324], histone deactylase (HDAC)-inhibitors [325] and bortezomib [326] so far have been rather 

disappointing. Our present experimental observations in article III suggest that therapeutic targeting of 

HSP90 will be most effective in FLT3-ITD patients, wears based on observations in article IV indicate 

that targeting of PI3K-mTOR may be less effective in a minority of patients 

CURATIVE VERSUS DISEASE STABILIZING AML-THERAPY 

 

   The overall AML relapse risk after conventional therapy is still 40-50% for younger patients [85], and 

the large group of patients above >65-70 years of age has an inferior prognosis [327] due to (i) patient 

related factors like general comorbidity, low performance status and unacceptable toxicity when using 

high-dose cytarabine [309]; and (ii) disease-related factors with a high frequency of high-risk 

cytogenetics and secondary AML [327]. The therapeutic decisions in elderly patients should be 

individualized and be based on the possibility to achieve complete remission versus the risk of 

treatment-related morbidity or mortality [309]. Combination of ATRA, valproic acid or another HDAC-

inhibitors and eventually theophylline or low-toxicity chemotherapy may be an alternative with low 

toxicity, and this treatment can induce disease stabilization for a subset of patients but only for a 

limited time [328-330]. The pharmacological agents investigated in the present thesis would therefore 

be considered for (i) combination with induction and/or consolidation therapy to increase AML-free 

survival; (ii) to be used alone or in combination with other drugs of palliative or disease stabilizing 

therapy; or (iii) as maintenance therapy in patients in complete hematological remission to eradicate 

residual disease and thereby decrease the relapse risk. Maintenance therapy is not common in AML, 

but results from recent studies suggest that this strategy may be effective and reduce the relapse risk 

[331, 332]. 
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ANTIANGIOGENIC THERAPY IN HUMAN AML 

 

The biological and clinical background for antiangiogenic therapy 

   Several antiangiogenic agents have a relatively low toxicity compared with conventional 

chemotherapy and are used for disease stabilization in other malignancies [244]. Crosstalk between 

AML cells and neighboring cells is probably important for cancer cell survival and proliferation, as well 

as for disease progression and chemosensitivity [265, 266]. Firstly, the bone marrow MVD can be 

evaluated either in biopsies [333], or by magnetic resonance examination, indicating that high density 

is associated with shorter overall and AML-free survival [267]. Secondly, a semiquantitative 

examination of specific angioregulators can be done by histochemistry of bone marrow biopsies, and 

high Ang2 levels then have a prognostic impact [281]. Secondly, high levels of intracellular or serum 

angiogenic factors are also associated with an adverse prognosis [284, 288, 294]. Finally, in vitro 

studies have demonstrated that the cytokine crosstalk between leukemic and endothelial cells can 

increase AML cell growth [189, 231]. These observations support the hypothesis that angiogenesis 

and endothelial cells are important for AML cell proliferation, survival and chemosensitivity. 

 

Direct targeting of angiogenic factors 

   VEGF is probably the best characterized target for antiangiogenic therapy. Bevacizumab is a 

recombinant monoclonal antibody specific for VEGF-A. In two studies bevacizumab was administered 

to patients with refractory AML and resulted in modest clinical benefit [334, 335]. Suntinib is a VEGF 

RTK inhibitor that in addition inhibits KIT and FLT3 initiated signaling, and based on the available 

results in AML the drug seems to have a limited clinical effect with complete or partial remissions of 

only short duration for a subgroup of patients [336, 337]. HGF/MET inhibitors [273] and targeting of the 

Ang/Tie2 system [338] have not yet been investigated in human AML. MMPs were previously 

considered as possible targets in antiangiogenic therapy [101]; they have not been evaluated in 

hematological malignancies, but results from initial clinical studies in solid tumors have been 

disappointing [101]. Thus, antiangiogenic therapy alone seems to have limited anticancer or 

antileukemic effects, however the clinical use of these strategies should be further evaluated. The 
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results from the present thesis clearly suggest that targeting of angioregulatory mechanisms is a part 

of the antileukemic effect of several targeted therapies that now are considered for AML therapy. 

Targeting of endothelial cells - vascular disrupting agents 

   An alternative approach is to destabilize the cancer-induced microvessel network through selective 

targeting of proliferating endothelial cells  [339]. Vascular disrupting agents (VDAs) are a new class of 

agents that target blood vessels by direct binding to microtubules in endothelial cells. The main goals 

for VDAs are to generate a rapid and selective vascular shutdown in the malign microenvironment and 

thereby induce secondary cancer cell death due to ischemia [339]. The effects of VDAs have not yet 

been completely elucidated, but probably involve inhibitory effects of the tubulin skeleton [339]. The 

question of possible systemic toxicity due to general endothelial cell damage or endothelial dysfunction 

has not been completely answered [290]. The best studied of these drugs is fosbretabulin/CA4P [339], 

and this drug and its analogue OXi4503 have shown promising preclinical results [264, 340] 

 

Inhibition of angiogenesis through targeting of intracellular signaling pathways  

   An alternative strategy is to target intracellular signaling pathways and thereby inhibit malignant cells 

as well as the stromal cells, including endothelial cells [244]. Although we do not have detailed 

knowledge about the molecular mechanism of thalidomide, lenaladomide and bortezomib, these drugs 

seem to inhibit angiogenesis possibly through NF- B inhibition when used for the treatment of MM 

[121]. Similar effects may also be seen in AML.  

   HSP90 inhibition probably targets multiple proangiogenic regulators and may thus have direct 

inhibitory effects on leukemic cells and in addition have indirect antileukemic effects through inhibition 

of angiogenesis by targeting a wide range of client proteins [175, 341]. Firstly, one important pathway 

that is usually upregulated during angiogenesis is the HIF/VEGF signaling axis [342]. Several key 

mediators of this pathway, including the HIF and VEGF receptor, are HSP90 client proteins [341]. 

Secondly, HSP90 is also important for stabilization of AKT; this kinase mediates phosphorylation and 

activation of NO synthase (NOS) that is important for stimulation and activation of endothelial cells 

[341]. Thirdly, HSP90 inhibition can reduce the constitutive release of several angiogenic factors by 

AML cells [175]. Finally, the HSP90 inhibitor SNX-2112 suppresses capillary tube formation in human 

umbilical vein endothelial cells through inhibition of the AKT/NOS pathway [222]. Clinical trials of 
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HSP90 inhibitors in AML are in progress [209] and it will then be important to evaluate both direct and 

indirect antileukemic effects [213]. 

   The PI3K-mTOR pathway also seems to have a crucial role in angiogenesis. PI3K activation and 

phosphorylation is probably important for activation of the VEGF receptor [343]. Furthermore, Ang1 

can phosphorylate and thereby activate Tie2 in a PI3K-dependent manner and thereby induce survival 

and migration of endothelial cells [343]. mTOR also seems to be important in angiogenesis, possibly 

by acting as a switch in endothelial cell metabolism that supports their proliferation [133]. mTOR 

inhibition thereby seems to have an antiangiogenic effect [344], which is also observed in AML [345]. 

 

Targeted therapy after remission induction – the possible importance of an altered cytokine 

network 

Targeted therapy to AML patients in complete hematological remission is now considered (see above), 

and our observation described in article V show that this treatment will be given in a specific biological 

context, i.e. an altered cytokine network. Our present results suggest that the pretherapy status of the 

cytokine network has an impact of the post therapy clinical course in allo-SCT patients. Future studies 

have to clarify whether the altered cytokine network also will influence the efficiency of the new target 

therapy, e.g. HSP90 and PI3K-mTOR targeting treatment.  

CONCLUDING REMARKS 

 

   New targeting therapies with antiangiogenic effects are currently considered in human AML. 

Although the clinical experience so far is limited, several of these therapies alone appear to have 

limited antileukemic effects. However, the scientific basis for simultaneous inhibition of several 

intracellular signaling systems in cancer treatment is emerging and this strategy may be more 

effective. Antiangiogenic effects may then be a part of such strategies. Given the heterogeneity of 

AML, further research is warranted to try to identify patient subsets that are likely to benefit from these 

approaches.  
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