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Chapter 1

Introduction

In modeling surface waves, while the model solutions provide fair descriptions of

the waves, it is still important to be able to use these descriptions for prediction of

the fluid flow properties beneath the surface.

This work attempts to provide some information about the details of fluid flow

associated with a given surface wave. In the weakly nonlinear regime, and in par-

ticular in the Boussinesq scaling, the derivation of the model equations such as

the Boussinesq system and the KdV equation contains clues about the fluid flow

below the surface. Once the equations are derived, this information is often dis-

carded. This work explores some implications of this by-product of the derivation.

A parallel development concerns similar work on understanding fluid flow

below the surface in the context of the full Euler equations. Even though this

appears to be very difficult, recent times have seen much progress in this direction

[24, 25, 26, 46], even in the context of rotational flow. These works are based on

rigorous mathematical proofs. Numerical work for the full Euler equations has

been provided for instance in [38, 50, 75]. More examples of works investigating

vorticity effects are [53, 54, 64, 74] and in [35] for linear waves.

In this chapter, we look at the motivation behind this study and give an

overview of the problems that have been considered. A general background of

the water-wave problem is presented in chapter 2. In chapter 3, the Boussinesq

theory including the derivations of the Boussinesq system and KdV equation is

reviewed. The last chapter gives a summary of the main results and future work.

1.1 Motivation

A bore is a well known phenomenon that occurs for example in rivers and open-

channel flow. River bores are generally due to tides, where a long tidal-wave can

steepen and develop a bore if it propagates upstream into a river of funnel-like
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shape, and then they are called tidal bores.

Tidal bores have been widely observed in numerous rivers around the world.

The largest is the Qiantang river in China where the wave height at the bore front

is reported to reach up to 9m and traveling speed up 11m/s, and the Severn river

in England where there are more than 250 bores a year which can transfer energy

for up to 10Km upstream (National Geography News, Oct. 28, 2010). The phe-

nomenon is also found in the Dordogne river in France and the Lupar Benak river

in Malaysia.

Generally, a bore can be defined as a transition between two uniform flows in

which an increase in water depth exists. According to Favre’s experiments [39]

(1935), bores are classified into three different states depending on the ratio of the

difference between upstream and downstream flow-depths against the undisturbed

depth, denoted as α, these states are:

1. Undular bores display smooth oscillations (undulations) behind the bore

front with no waves breaking, and occur if α is less than about 0.28.

2. If the ratio α increases beyond 0.28 but not more than 0.75, there will be

undulations but with few waves breaking.

3. Turbulent bores feature totally turbulence region at the bore front as the

value α is beyond 0.75.

An example of the development of undular bores is shown in figure 1.1.

While it is widely believed that the energy loss in turbulent and strong bores

is attributed to the observed oscillations and turbulent motion following the bore

front, it seems that the precise explanation of the energy loss in weakly undular

bores has not been well provided. The classical theory of bores proposed by Lord

Rayleigh [69] employs conservation of mass and momentum in the shallow-water

model to show that energy cannot be conserved across the bore.

This study is motivated by our desire to understand the precise nature of the

energy loss in the undular bores through quantitative evidence. By deriving a

formula for the total mechanical energy associated to a dispersive model for the

undular bore, we have been able to quantitatively show that the energy loss in

the shallow-water theory for undular bores is actually absorbed by the oscillations

behind the bore front. These findings led us to a further interesting development,

that is, investigating more generally the principles of mass, momentum and energy

conservation laws in the dispersive theory.
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Figure 1.1: The schematic shows the development of an undular bore, where the

wave-train is following the bore front, and the wave at the front attains the highest

amplitude.

1.2 Energy loss in undular bores

The bore and other long-wave phenomena have been an area of interesting re-

search for many decades. The first theories that have been used for modeling these

phenomena are G.B. Airy 1842 [3], G. Stokes 1847 [72], J. Boussinesq 1871 [16],

L. Rayleigh 1876 [70], and G. Korteweg& de Vries 1895 [56]. Beside the early

experiments by Favre [39] on bores, other laboratory experiments have been done

for instance by Binnie and Orkney [8], and recently by Chanson [18] and Koch

and Chanson [58]. A development of an undular bore has been investigated in

[68] by using dispersive systems, but no energy study was provided.

The first work investigating the energy loss is by Lemoine [62], where it is as-

sumed that the wave-train following the bore front is of sinusoidal shape. There-

fore a linear approach is used to calculate the rate of energy radiation and com-

pared with experiments, however only moderate agreement was found. Benjamin

and Lighthill [6] argued that the wave-train following the bore front is of cnoidal

character. Their results showed that, in order for a wave-train of cnoidal waves

to match a uniform stream, there must be a change in the volume flux or mo-

mentum flux or energy per unit mass. Later, using a cnoidal wave approximation

and Favre’s experiments, Sturtevant [73] argued that due to existence of a bot-

tom boundary layer below the bore there must be change in both momentum and

energy.

Indeed, dissipation plays a role that may be as important as dispersion in an

experimental setting. However, due to the hyperbolic nature of the shallow-water

model (non-dispersive), we argue that the energy loss predicted by the shallow-

water equations is not due to dissipation mechanism that has not been accounted

for, but rather could be looked at as a failure of the shallow-water model to capture

the precise transition at the bore front. This argument is quantitatively confirmed
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by incorporating dispersion corrections into the shallow-water model.

Let us briefly describe the dispersive system to be used for modeling undular

bores. Suppose that a is a typical wave amplitude and � represents a dominant

wave-length, and define non-dimensional parameters α = a/h0 and β = h20/�
2,

where h0 is the undisturbed water depth. The Boussinesq theory makes the as-

sumptions that the waves are both of small amplitude and long wave-length, and

that there is an approximate balance between non-linearity and dispersion. These

assumptions are formulated by requiring that α << 1, β << 1 and α ≈ β. De-

noting the non-dimensional surface elevation as η̃, the dispersive model is given

in the non-dimensional form as

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ +
β

6
w̃x̃x̃x̃ = 0,

w̃t̃ + η̃x̃ + αw̃w̃x̃ +
β

6
η̃x̃x̃x̃ = 0,

(1.1)

where w̃ represents the flow horizontal velocity at a non-dimensional height√
2/3, t̃ and x̃ are the non-dimensional time and horizontal coordinate, respec-

tively. Actually, the shallow-water model can be obtained by taking the limit

β → 0 in (1.1). The dispersive model (1.1), which is a special case of a family of

Boussinesq models, shows that the energy loss is due to the increasing number of

oscillating behind the bore front.

In order to use Boussinesq models to study the energy loss, and the mass and

momentum conservation principles, the mass, momentum and energy densities,

denoted as M , I and E, respectively, and the corresponding fluxes qM , qI and qE
have to be developed. This will be done in the general context of the more general

Boussinesq systems derived by Bona et al. in [11].

1.3 Mechanical balance laws in Boussinesq
theory

We develop the theory by giving a systematic derivation of the mass, momen-

tum and energy densities, and the corresponding fluxes associated with the abcd

system introduced in [11]. This system describes the evolution of two-way wave

motion at the surface of a fluid body, which in its first order is given by the non-

dimensional form

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + aβw̃x̃x̃x̃ − bβη̃x̃x̃t̃ = 0,

w̃t̃ + η̃x̃ + αw̃w̃x̃ + cβη̃x̃x̃x̃ − dβw̃x̃x̃t̃ = 0 .
(1.2)
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The parameters a, b, c and d are given by

a =
1

2

(
θ2 − 1

3

)
λ, b =

1

2

(
θ2 − 1

3

)
(1− λ),

c =
1

2

(
1− θ2

)
μ, d =

1

2

(
1− θ2

)
(1− μ),

where λ and μ are modeling parameters which can be chosen freely, and w̃ denotes

the non-dimensional horizontal velocity at a non-dimensional depth 0 ≤ θ ≤ 1.

The mechanical balance law associated to the system (1.2) for any physically

property, such as mass, momentum or energy, can be written in the form

∂

∂t̃
X̃ +

∂

∂x̃
q̃X = O(α2, αβ, β2), (1.3)

where X̃ and q̃X are the non-dimensional density and flux per unit width of the

property, respectively. As it will turn out, the derived mechanical balance laws

for mass, momentum and energy are correct to the same order of accuracy as the

system (1.2), and they have similar forms as (1.3). The derived expressions for

the densities and fluxes of the mass, momentum and energy are given in terms of

dependent variables η describing the free surface elevation and w representing

the horizontal velocity at depth θh0.
Similar developments exist for the linear and the shallow-water approximations

[71], but have not been done for the Boussinesq scaling.

One-directional propagation

In similar developments, we derive the same principles in the case of unidirec-

tional wave propagation, such waves can be modelled by the Korteweg-de Vries

(KdV) equation. The KdV equation is popular because it features exact traveling-

wave solutions. As this equation is derived under the assumption that there exists

a balance between the nonlinear steepening and dispersion effects, waves prop-

agate without changing their shapes. In the non-dimensional variable, the KdV

equation has the form

η̃t̃ + η̃x̃ +
3

2
αη̃η̃x̃ +

1

6
βη̃x̃x̃x̃ = 0. (1.4)

We examine the case where waves are stationary with respect to a moving frame in

addition to both right-moving and left-moving waves scenarios. As will be shown,

the derived balance equations are correct to same order as the KdV equation (1.4).

In addition to the expressions of the densities and fluxes of mass, momentum and
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energy, a formula for the total head is found. All the derived formulas for these

physical quantities are given in terms of the principle unknown variable η.

Validation of the results is carried out through comparison with previous

works. For example, in the context of stationary cnoidal waves, the mass flux

qM , total head H and momentum flux qI are compared with the quantities Q,

R and S presented in the work by Benjamin-Lighthill [6] on cnoidal waves and

bores. As a result, an excellent agreement is found.

In the general Boussinesq theory the momentum and energy fluxes depend on

the pressure forces, therefore a formula for water pressure is also derived for both

the KdV equation (1.4) and Boussinesq model (1.2).

Pressure approximation in rotational waves

In further investigations, using an asymptotic series for the stream-function, we

derive an approximation for the water pressure and the model equation for steady

long-waves with constant vorticity. In addition to the vorticity, the solutions of

the model equation depend on three constants representing the mass flux Q, the

energy per unit mass R and the momentum flux S, which are defined in terms of

the rotational flow. Similar equation has been derived in [5]. If the vorticity ef-

fects are disregarded, then the model equation becomes equivalent to an equation

appeared in [6] used to model stationary cnoidal wave.

We gradually increase the vorticity to study the departure from cnoidal wave

and to investigate its affects on the pressure profile. As it will be shown, increasing

the vorticity effects will introduce a dip in the pressure and the maximum pressure

is no longer found under the wave crest. Moreover, the wave-length may increase

or decrease depending on the sign of the vorticity.



Chapter 2

Background

The water-wave problem for surface waves on an inviscid fluid is rich with fasci-

nating mathematics and theories, and has been an active field of research for more

than 200 years [29]. In this chapter, we will review some theories that have been

used to simulate the wave motion based on different assumptions. In addition we

study the background of the problem and present the flow governing equations

along with the boundary conditions. We will assume throughout that the fluid is

homogeneous (has constant density).

2.1 Euler equations
We start by exploring the governing equations of the fluid motion: the Euler and

Navier-Stokes equations. As Euler equations are a special case of the Navier-

Stokes equations, we start with the latter.

Navier-Stokes equations

The assumption that the fluid density is constant implies that the fluid is incom-

pressible, and then the three-dimensional motion of the fluid may be described

by Navier-Stokes equations. These equations are derived through utilization of

Newton’s second laws and constitutive relations between the fluid velocity and

the stress tensor. Denoting 	U [ms−1] as the velocity field, the compact form of

Navier-Stokes equations is given by

D	U

Dt
=
∂	U

∂t
+ (	U · ∇)	U = −1

ρ
∇P + 	g + ν∇2	U. (2.1)

Here 	g = (0, 0,−g) [m s −2] represents the gravitational acceleration, ρ [kg m−3]
is the density, the water pressure is denoted as P [N m−2], ν [m2 s−1] denotes the
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kinematic viscosity. The conservation law of mass in a control volume means

that the rate of change in mass must be equivalent to the mass net flux, which is

expressed in terms the continuity equation as

Dρ

Dt
+ ρ∇ · 	U = 0, (2.2)

however, since ρ is constant as the fluid is assumed incompressible, the continuity

equation reduces to

∇ · 	U = 0. (2.3)

An important factor that measures the rotation of the fluid flow is called vorticity,

denoted by 	Ω can be defined by the curl of the velocity field as

∇× 	U = 	Ω, (2.4)

if 	Ω = 0, then the fluid flow is called irrotational, otherwise it is called rotational.
For an incompressible and inviscid fluid, the vorticity remains constant with re-

spect to time and therefore no change in the initial fluid rotation takes place at

later time points. This can be shown by taking the curl of equation (2.1) with the

substitutions ν = 0, ∇× 	U = 	Ω and ∇×∇P = 0, as a result D�Ω
Dt

= 0, see [30].

Euler equations

When the viscosity effects are neglected, then the Navier-Stokes equations reduce

to the Euler equations.

Consider the flow of water is in an open narrow channel with flat bot-

tom placed along the x-direction, where it is assumed that no variation in y-

direction as if the wave is long-crested and that the channel extends to infinity

in both directions. Therefore the flow may be studied in (x, z) plane. Figure

2.2 describes the problem domain in which x is the direction of wave propaga-

tion and z is the vertical coordinate measured from z = −h0 at the flat bot-

tom to z = η(x, t) at the free surface. The domain can then be express as

Λ(t) = {(x, z) ∈ R
2| − h0 ≤ z ≤ η(x, t), 0 < y < 1}. Assume that the fluid is

inviscid, therefore the flow is governed by the Euler equations given in the form

Ut + UUx +WUz = −Px

ρ
,

Wt + UWx +WWz = −Pz

ρ
− g,

(2.5)
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where U and W are the horizontal and vertical velocities, respectively, while the

continuity equation is

Ux +Wz = 0. (2.6)

We assume that the fluid vorticity is constant denoted by −Ω0, which is in the

(x, z)-plane is defined as

(Wx − Uz) = −Ω0. (2.7)

Now, we have addressed the Euler equations that governed the problem, we pro-

ceed further and present the problem along with the boundary conditions for both

the rotational and irrotational fluid flows.

Irrotational flow

If we assume irrotational fluid flow, then the identity: ∇ × (∇K) = 0, for any

scalar field K, implies that there exists a velocity potential φ which satisfies(
U
W

)
= ∇φ.

Thus the incompressibility condition (2.6) leads to the Laplace equation

φxx + φzz = 0, in − h0 < z < η(x, t). (2.8)

In this context, it will be useful to mention an important equation that relates the

pressure, velocity potential and the level in which the pressure can be measured,

that is the Bernoulli equation, which is given as

φt +
1

2

(
φ2
x + φ2

z

)
+
P

ρ
+ gz = C(t) + C. (2.9)

The time-dependent constant C(t) can be eliminated by absorbing it in φ, for

example by redefining the velocity potential φ as Φ = φ − ∫ t

0
C(s)ds. Actually

Bernoulli equation (2.9) represents a simple integration of the Euler equations

(2.5) with the irrotational condition Ω0 = 0 in (2.7).

Boundary conditions
The bottom boundary condition is given by the requirement that no fluid can pen-

etrate the bottom, which is formulated as

φz = 0, on z = −h0. (2.10)
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At the free surface, kinematic and dynamic boundary conditions are imposed.

The kinematic condition requires that the fluid particles can never leave the free

surface, which is expressed by

ηt + φxηx − φz = 0, on z = η(x, t). (2.11)

And the dynamic condition is given by the requirement that the pressure at the free

surface is equal to the atmospheric pressure when neglecting the surface tension,

using Bernoulli equation (2.9), this condition is formulated as

φt +
1

2

(
φ2
x + φ2

z

)
+ gz = 0, on z = η(x, t), (2.12)

where the atmospheric pressure is small compared to the total pressure P , and

therefore assumed to be zero throughout this study.

Rotational flow

If the effects of the vorticity are considered (Ω0 �= 0), then the flow becomes

rotational, and the problem can be expressed in terms of the stream-function ψ
where (U,W ) = (ψz,−ψx). Thus equation (2.7) implies that

Δψ = Ω0. (2.13)

Note that when using the velocity potential φ, the velocity in a specific direction

is given by taking the derivative of φ in the same direction, while the derivative of

ψ in a specific direction gives the velocity in a direction 90◦ clockwise from the

differential direction.

We assume that the flow in the steady state, therefore all the time derivatives in

Euler equations (2.5) are removed. The corresponding form of Bernoulli equation

in this case is given [30] by

1

2

(
ψ2
x + ψ2

z

)
+
P

ρ
+ gz = Υ(ψ). (2.14)

where Υ(ψ) is constant along the streamlines. The problem is formed in terms of

the stream-function as

ψxx + ψzz = Ω0, in − h0 < z < η(x) (2.15)

The kinematic condition at the bottom is

ψx = 0, on z = −h0. (2.16)
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At the free surface, the kinematic condition is given by

ψzηx + ψx = 0, on z = η(x), (2.17)

while using (2.14), the dynamic condition is obtained as

1

2

(
ψ2
x + ψ2

z

)
+ gz = Γ, on z = η(x), (2.18)

where Γ = Υ(ψ)|z=η is constant, as (2.14) is evaluated at the free surface stream-

line.

In the context of modeling the water wave problem using Euler equations,

several features of the water flow such as pressure changes in the water column,

and mass, momentum and energy conservation properties may be examined. This

will be discussed in more details in the next section.

2.2 Conservation integrals
In this section, we define the mass, momentum and energy conservation integrals

for the Euler equation in terms of the the velocity potential φ. Assume that the

fluid is running in a narrow channel of total depth h(x, t) = h0+η(x, t), therefore,

we consider a control volume of unit width delimited by the interval [x1, x2] as

the one shown in figure (2.1). First we reconstruct an expression for the pressure

h0

η( x,t)g

x

z

Figure 2.1: The schematic describes a typical control volume used for conserva-

tion proprieties of the shallow-water and Boussinesq theories. The bottom and

lateral boundary are held fixed, while the upper boundary moves with the fluid

free surface.

force, since it is essential for computation of the momentum and energy fluxes.

For disturbances near the observer, the pressure can be found from the Bernoulli

equation given in the form

φt +
1

2
|∇φ|2 = −P

ρ
− gz + C. (2.19)
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In order to find the constant C, we evaluate this equation at the free surface. As-

suming that the surface disturbance is sufficiently localized so that η → 0 and

φ→ const. as x→ ∞, the constant C is given by

C =
Patm

ρ
,

where Patm denotes the atmospheric pressure which will always be assumed zero

in this study. Therefore the pressure P in equation (2.19) can be obtained from

P = Patm − ρgz − ρφt − ρ

2
|∇φ|2.

Mass integral

The total mass in a control volume of unit width defined as in figure 2.1 and

delimited by [x1, x2] is given by

M =

∫ x2

x1

∫ η

−h0

ρ dzdx.

The mass will be conserved if the rate of change in the total mass is equal to the

mass net flux, which is formulated as

d

dt

∫ x2

x1

∫ η

−h0

ρ dzdx =

[ ∫ η

−h0

ρ φx(x, z) dz

]x1

x2

.

Momentum integral

The total momentum of a fluid of constant density ρ contained in the control vol-

ume is given by

I =

∫ x2

x1

∫ η

−h0

ρφx dz dx.

Conservation of momentum is given by the requirement that the rate of change of

I is equal to the net influx of momentum through the boundaries corrected to the

pressure force. This can be expressed as

d

dt

∫ x2

x1

∫ η

−h0

ρφx dz dx =

[ ∫ η

−h0

ρφ2
x dz +

∫ η

−h0

P dz

]x1

x2

. (2.20)
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Energy integral

The total energy mechanical energy in the control volume considered above is

defined by

E =

∫ x2

x1

∫ η

−h0

{ρ
2
|∇φ|2 + ρg(z + h0)

}
dz dx, (2.21)

which represents the sum of kinetic due to wave motion and potential energy due

to surface deformation. The conservation of the total mechanical energy requires

that the rate of energy change is equivalent to net energy-flux plus the work done

by pressure forces acting on the boundaries. This can be formulated as

d

dt

∫ x2

x1

∫ η

−h0

{ρ
2
|∇φ|2 + ρg(z + h0)

}
dzdx =[ ∫ η

−h0

{ρ
2
|∇φ|2 + ρg(z + h0)

}
φxdz +

∫ η

−h0

φxPdz

]x1

x2

.

(2.22)

2.3 Linear theory

Waves are the disturbances that propagate in space and time without displacing

the medium, however the energy may be transferred across the medium. The force

which is responsible for generating waves is called restoring force, a.e. force

tends to bring a deformed system to its equilibrium state. The surface gravity
waves are waves generated at the free surface of a liquid due to the restoring

force of gravity, if such waves exist at the interface between two density-layers

of the fluid, they are called Internal waves which are common in stratified fluids.

However, in this study, our attention is only directed to surface gravity waves in a

homogeneous fluid.

Wave parameters
In studies of ocean and river waves, there are important wave parameters that

describe the wave such as the wave height, the water depth, the length between

two successive crests or troughs and the wave period (time need for the wave to

complete full cycle).

In figure 2.2, the free surface elevation is represented by η, the wave-length

denoted by L which is defined as the distance between two successive crests, and

here a represents the wave amplitude which may be defined as the distance from

the crest to the undisturbed depth. The wave period is denoted by T . Therefore,
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Figure 2.2: The schematic elucidates the geometric setup of the problem domain,

where η represents the free surface, L is the wave length, here a denotes the am-

plitude and h0 is the the undisturbed depth.

given T and L, the wave speed c is obtained as

c =
L

T
, (2.23)

which is called the phase speed. If we assume sinusoidal representation, then the

free surface η shown in figure 2.2 can have the form

η(x) = a cos(kx− ωt), (2.24)

where k = 2π
L

and ω = 2π
T

are the wave number and the radian frequency, respec-

tively. Here the quantity (kx − ωt) represents the wave phase, which describes

the locations on the fraction of the wave cycle that lies between a trough and a

neighbouring crest. The phase speed c can also be given in terms of the wave

number and frequency as

c =
ω

k
.

We may also introduce the concept of the group velocity, which describes the

speed of an envelope of a group of waves propagating as one body. The group

velocity, denoted as cg, is defined as

cg =
dω

dk
. (2.25)
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Solution of the linear problem

Here, we study the linear water waves theory in the context of the irrotational

flow, in particular we consider the problem expressed in section 2.1 and present

its solution. The linear wave theory makes the assumptions that waves are of

small-amplitude so that the change in the surface elevation with respect to the

horizontal dimension, and the horizontal and vertical velocities become small. As

a result, all the nonlinear terms are one order smaller than the linear ones, and

can then be neglected [57]. Moreover, the terms φz and φt can be evaluated at the

undisturbed depth z = 0 rather than at z = η. Therefore, the linearized problem

is given by Laplace equation

φxx + φzz = 0, in − h0 < z < 0, (2.26)

with the kinematic boundary conditions

φz = 0, on z = −h0,
φz = ηt, on z = 0,

(2.27)

and the dynamic boundary condition

φt = −gη, on z = 0. (2.28)

As in [57], if we assume a sinusoidal wave profile in the form

η(x) = a cos(kx− ωt), (2.29)

and use only the kinematic boundary conditions (2.27), then the velocity potential

solution for Laplace equation (2.26) is obtained as

φ =
aω

k

cosh(k(z + h0))

sinh(kh0)
sin(kx− ωt). (2.30)

The horizontal and vertical velocities can now be found as

U = φx = aω
cosh(k(z + h0))

sinh(kh0)
cos(kx− ωt),

W = φz = aω
sinh(k(z + h0))

sinh(kh0)
sin(kx− ωt).

The total pressure P can be found using the Bernoulli equation and the dispersion

relation (2.31) in the form

P = −ρgz + ρga
cosh(k(z + h0))

cosh(kh0)
cos(kx− ωt),
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where the surface tension and atmospheric pressure are disregarded. In the

context of the linear theory, beside the velocity field and pressure distribution,

other features such streamlines and particles paths may be found.

Dispersion relation
For linear waves, the dispersion relation is the relation ω = ω(k), which is im-

portant for characterizing waves in the sense that it describes the correlation be-

tween the wave-length, frequency and wave speed. Waves are called dispersive if

waves of different wave-lengths propagate with different speeds. The dispersion

relation for the linear surface gravity waves, is given by substituting the solution

(2.29)&(2.30) into the dynamic condition (2.28), hence we obtain

ω =
√
gk tanh kh0. (2.31)

The wave speed is therefore given by

c =
ω

k
=

√
g

2π
L tanh kh0, (2.32)

which shows that the waves in this theory are dispersive since the wave speed

depends on the wave-length.

As it is mentioned, the above analysis investigates the irrotational characteris-

tics of the linear water waves, however, the rotational features of these waves have

been studied for instance in [35].

2.4 Shallow-water theory
The main assumptions in this theory are: the flow is uniform across the depth,

the vertical velocity is zero and the wave length is large compared to the water

depth (Long-wave approximation). Here, we derive the shallow-water model and

the associated flow pressure directly by using the Euler and continuity equations

shown in (2.5)&(2.6).

In shallow water, the depth is much smaller than the wave-length, that is
h0

�
<< 1, where � as before is a typical wave-length, this assumption yields

tanh kh0 → kh0. Therefore, using (2.31), the dispersion relation for linear wave

in the shallow-water approximation is found as

ω =
√
gh0k2, (2.33)

and the wave speed for long surface gravity waves c0 is given by

c0 =
√
gh0 . (2.34)
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The uniform horizontal velocity assumption means that the fluid vertical layers

are flowing in parallel with the same velocity. Consider the problem domain as

illustrated in figure 2.2, and u(x, t) represents the uniform horizontal velocity,

then Euler equations (2.5) become

ut + uux =
Px

ρ
,

0 = −Pz

ρ
− g,

(2.35)

where all terms consisting of the vertical velocity W and its derivatives are

dismissed.

Hydrostatic pressure
In this long-wave theory, as the vertical acceleration is neglected, the water pres-

sure is considered hydrostatic, which means that the water pressure at any point

inside the fluid is equivalent to the weight of the fluid above that point. The hy-

drostatic pressure can be obtained by integrating the second equation in (2.35),

which gives the hydrostatics pressure in the form

P = Patm + ρg(η − z), (2.36)

where Patm is the atmospheric pressure, which is assumed to be zero. Using this

expression of the pressure as a substitution in the first equation in (2.35) yields

ut + uux + gηx = 0, (2.37)

this equation is one of the two equations representing the shallow-water system.

Now, integrating the continuity equation (2.6), we obtain∫ η

−h0

(ux + 0) dz =
∂

∂x

∫ η

−h0

udz − uηx|z=η = 0,

where the vertical velocity is considered zero. Therefore, by using the kinematic

boundary condition at the free surface

ηt = −uηx on z = η,

the shallow-water equations emerge in following form

ηt + h0ux + (uη)x = 0 ,

ut + gηx + uux = 0 .
(2.38)



20 Background

As can be seen, these equations are obtained using the continuity and Euler

equations. Therefore, the shallow-water equations (2.38) arise from the physical

principles of mass and momentum conservation, however they do not represents

the exact conservation forms for these physical quantities.

Froude number
One of the important criteria in studying water waves is the Froude Number, which

represents the ratio of the flow horizontal velocity u against the gravity wave speed

c0, given as

Fr =
u

c0
.

If Froude number is greater than unity, then the flow is called super-critical which

can create a hydraulic jump or bore, however if it less than unity then the flow is

called sub-critical.

2.5 Balance equations for the shallow-water
model

In this section, using the conservation integrals presented in section 2.2 we inves-

tigate the mass, momentum and energy conservation laws in the shallow-water

system. Denote the total depth as h(x, t) = h0 + η(x, t) in a control volume of

unit width delimited by the interval [x1, x2] as the one shown in figure 2.1.

The conservation of mass is given by the requirement that the change in the

total mass inside the control volume is equal to the net mass-flux, which is formu-

lated as

d

dt

∫ x2

x1

M0 dx = q0M
∣∣x1

x2
. (2.39)

where M0 = ρh is the mass density, and q0M = ρuh is the corresponding flux per

unit width. In the same manner, the conservation integral for momentum is given

by

d

dt

∫ x2

x1

I0 dx = q0I
∣∣x1

x2
, (2.40)

where I0 = ρuh is the momentum density, and q0I = (ρu2h + ρ
2
gh2) is the corre-

sponding flux per unit width. Note that the momentum flux is corrected to pressure

forces acting on the boundary. Dividing by (x2−x1) and taking the limit x1 → x2
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in (2.39) and in (2.40), the conservation laws for mass and momentum are given

in the form of the balance equation

∂

∂t
M0 +

∂

∂x
q0M = 0, (2.41)

∂

∂t
I0 +

∂

∂x
q0I = 0. (2.42)

This yields that the conservation laws of mass and momentum are represented by

the differential equations:

ηt + h0ux + (uη) = 0 ,

[u(h0 + η)]t + [u2(h0 + η)]x + g(h0 + η)ηx = 0 .

For smooth solutions, the above equations are equivalent to the shallow-water

equations (2.38). The conservation of energy is not a separate principle in homo-

geneous fluids, but follows from the equations of motion [57]. The total energy in

the control volume is given by the integral

E(η, u) = ρ

2

∫ x2

x1

{
u2h+ gh2

}
dx, (2.43)

where the energy density is E0 = u2h + gh2. The energy influx at the boundary

corrected to pressure forces is given by

q0E =
ρ

2
u3h+ ρguh2, (2.44)

Note that the second term in q0E comprises both the energy flow rate and the

work done by the pressure force, and therefore the quantity q0E
∣∣x1

x2
represents the

net influx of energy into the control volume. Using similar steps as for the mass

and momentum integrals, the energy conservation law is expressed in the form

∂

∂t
E0 +

∂

∂x
q0E = 0. (2.45)

From the above discussion it is clear that the shallow-water model features con-

servation of mass, momentum and energy for smooth solution and that these prin-

ciples are written in terms of balance equations, however, to our knowledge, such

investigations has not been done before for the Boussinesq theory.





Chapter 3

Boussinesq theory

In this chapter, we present the historical background of Boussinesq theory and

recall the derivation of the general Boussinesq system (1.2) and the Korteweg-

de Vries equation using non-dimensional asymptotic expansion of the velocity

potential. Some traveling-wave solutions for the KdV equation such solitary

and cnoidal waves are also presented. In addition, an overview on the work by

Benjamin-Lighthill [6] is provided.

3.1 Scott Russell’s discovery of the solitary
wave

A solitary wave is a wave of a single hump that propagates at a constant speed

without changing its shape . Solitary waves were first discovered by Scott Rus-

sell in 1834 when he was observing the waves created by a boat moving in the

Edinburgh-Glasgow canal. After that he went on and proved the existence of the

solitary waves through laboratory experiments. Here, it will be beneficial to men-

tion the much-quoted Russell’s description that he included in his 1844 report

’Report on waves’. He explains:

” I believe I shall best introduce the phenomenon by describing the circum-
stances of my own first acquaintance with it. I was observing the motion of a boat
which was rapidly drawn along a narrow channel by a pair of horses, when the
boat suddenly stopped - not so the mass of water in the channel which it had put in
motion; it accumulated round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of
water, which continued its course along the channel apparently without change
of form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour [14 km/h], preserving its



24 Boussinesq theory

original figure some thirty feet [9 m] long and a foot to a foot and a half [300 -
450 mm] in height. Its height gradually diminished, and after a chase of one or
two miles [23 km] I lost it in the windings of the channel.”

He also showed experimentally that the solitary wave speed denoted asCR can

be obtained from the formula

C2
R = g(h0 + η0). (3.1)

where η0 is the solitary wave amplitude. This formula shows that wave with higher

amplitude travels faster. For more on this and Russell’s experiments, see for exam-

ple [45]. The early investigations on the solitary waves were associated with some

controversy on their existence. However, using the long wave theory (β → 0),

Boussinesq (1871) and Rayleigh (1876) were the first who were able to mathe-

matically describe Russell’s observations. They showed that solitary waves are

accurately modelled by the square of the hyperbolic secant function sech2 and de-

rived his formula for the solitary wave speed, however no equation was provided

[33]. The solitary wave represent special solutions of the KdV equation (1.4), and

therefore the assumption of small amplitude is required [77].

3.2 Boussinesq systems

Boussinesq models, first developed by Boussinesq in 1872 [15], are derived

to model two-way propagation of surface water waves of small amplitude and

long wave-length in narrow open channels. These models are derived under the

assumptions that there is an approximate balance between nonlinear steepening

effects represented by α and dispersive spreading measured by the value of β.

Non-dimensionalization
In order to derive the Boussinesq model we express the irrotational flow problem

presented in section 2.1 in the non-physical form, this will introduce the two non-

dimensional parameters α and β, measuring the wave amplitude and the wave-

length, respectively. The new non-physical parameters are

x̃ =
x

�
, z̃ =

z + h0
h0

, η̃ =
η

a
, t̃ =

c0t

�
, φ̃ =

c0
ga�

φ. (3.2)

Thus, the water-wave problem for irrotational waves in terms of the non-
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dimensional variables is given by

βφ̃x̃x̃ + φ̃z̃z̃ = 0, in 0 < z̃ < 1 + αη̃, (3.3)

φ̃z̃ = 0, on z̃ = 0, (3.4)

η̃t̃ + αφ̃x̃η̃x̃ − 1

β
φ̃z̃ = 0, on z̃ = 1 + αη̃, (3.5)

η̃ + φ̃t̃ +
1

2

(
αφ̃2

x̃ +
α

β
φ̃2
z̃

)
= 0, on z̃ = 1 + αη̃. (3.6)

By introducing some restriction on the flow and the parameters α and β, several

water wave models have been derived as approximations for this problem, such as

the shallow-water model (in the limit β → 0) presented in the previous chapter,

Boussinesq system and Korteweg-de Vries equation.

In terms of the scaling parameters α and β, the Boussinesq assumptions are

given by: α << 1, β << 1 and α ≈ β. Using the scaled Laplace equation

(3.3) and the bottom kinematic condition (3.4), the velocity potential may be con-

structed in the standard form

φ̃ =
∞∑

m=0

(−1)m
z̃2m

(2m)!

∂2mf̃

∂x̃2m
βm = f̃ − z̃2

2
f̃x̃x̃β +

z̃4

24
f̃x̃x̃x̃x̃β

2 +O(β3) , (3.7)

where f̃(x̃, t̃) is arbitrary function for which f̃x̃ = ṽ represents the non dimen-

sional horizontal velocity at the bottom of the channel.

Therefore, the asymptotic expansion (3.7) is used as a substitution in the sur-

face boundary conditions (3.5) and (3.6) so that an approximation system in terms

of α and β appears in the form

η̃t̃ + ṽx̃ + α(η̃ṽ)x̃ − 1

6
βṽx̃x̃x̃ = O(αβ, β2),

η̃x̃ + ṽt̃ −
1

2
βṽx̃x̃t̃ + αṽṽx̃ = O(αβ, β2).

(3.8)

Now, for expressing this system in terms of w̃, which represents the non-

dimensional horizontal velocity at a non-dimensional depth 0 ≤ θ ≤ 1, first we

use (3.7) to define w̃ as

w̃ = φ̃x̃

∣∣
z̃=θ

= ṽ − θ2

2
ṽx̃x̃β +

θ4

24
ṽx̃x̃x̃x̃β

2 +O(β3).

Then, use the method in [11] to express w̃ in terms of the non-dimensional velocity

at the bottom ṽ in the form

ṽ = w̃ +
1

2
βθ2w̃x̃x̃ + θ4

5

24
w̃x̃x̃x̃x̃β

2 +O(β2), (3.9)
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which can now be used as a substitution in (3.8). Consequently, the new system

is obtained as

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ +
1

2

(
θ2 − 1

3

)
βw̃x̃x̃x̃ = O(αβ, β2),

w̃t̃ + η̃x̃ + αw̃w̃x̃ +
1

2

(
θ2 − 1

)
βw̃x̃x̃t̃ = O(αβ, β2) .

(3.10)

The Classical Boussinesq system emerges in the non-dimensional variables when

substituting θ2 = 1
3

in (3.10) as

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ = 0 ,

w̃t̃ + η̃x̃ + αw̃w̃x̃ =
β

3
w̃x̃x̃t̃ .

(3.11)

The above system is not the one originally developed by Boussinesq [15], but is

still commonly known as the classical Boussinesq system. The original Boussi-

nesq system featured the term of the form η̃x̃t̃t̃ in the second equation [15, 77].

The general case of the Boussinesq system (3.10) is given in the form

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ +
β

2

(
θ2 − 1

3

)
λw̃x̃x̃x̃ − β

2

(
θ2 − 1

3

)
(1− λ)η̃x̃x̃t̃ = O(αβ, β2),

w̃t̃ + η̃x̃ + αw̃w̃x̃ +
β

2

(
1− θ2

)
μη̃x̃x̃x̃ − β

2

(
1− θ2

)
(1− μ)w̃x̃x̃t̃ = O(αβ, β2) .

(3.12)

where λ and μ are model parameters which can be chosen freely. The abcd system

(1.2) is obtained by neglecting terms of second order in α and β, for which the

dimensional form is given as

ηt + wx + (ηw)x + ah30wxxx − bh20ηxxt+ = 0,

wt + ηx + wwx + ch20ηxxx − dh20wxxt = 0 .
(3.13)

The general system (3.13) and its higher-order version were reviewed in [11].

The work presented in [11, 12] was important in the sense that it gave a complete

classification of systems of Boussinesq type. Special Boussinesq systems such

as the coupled BBM system [10] and the Kaup system [51] can be deduced from

(3.13) by choosing suitable values for θ, μ and λ.

3.3 The Korteweg-de Vries equation
If the flow is restricted into one direction, then the Boussinesq system reduces

to a single equation with only one dependent variable representing the free sur-

face elevation, in the same time, it still incorporates both the non-linearity and

dispersions.
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This equation was originally derived by the Korteweg-de and Vries in 1895

[56], which is why it is named as the Korteweg-de Vries (KdV) equation. For

example, if the flow is considered to the right, one can then look for a solution

that approximates the normalized horizontal velocity ṽ in terms of η̃ as

ṽ = η̃ + αA+ βB +O(αβ, β2), (3.14)

where A and B can be found by substituting this estimation in system (3.8). The

lowest order approximation η̃t̃ = −η̃x̃ + O(α, β) implies that the time derivative

can be replaced by the negative spatial derivative or vice versa. Therefore the

system (3.8) will be consistent if

A = −1

4
η̃2,

B =
1

3
ηx̃x̃.

(3.15)

This consistency leads to the relation

η̃t̃ + η̃x̃ +
3

2
αη̃η̃x̃ +

1

6
βη̃x̃x̃x̃ = O(αβ, β2). (3.16)

The dimensionless KdV equation presented in (1.4) emerges by neglecting terms

of second order in α and β in (3.16). The KdV equation in the physical form can

then be obtained as

ηt + c0ηx +
3

2

c0
h0
ηηx +

c0h
2
0

6
ηxxx = 0, (3.17)

while the horizontal velocity at the bottom v has the form

v =
c0
h0
η − c0

4h20
η2 +

c0h0
3
ηxx. (3.18)

Similar equations can be derived for left-moving and stationary waves. The

BBM equation [7, 13] can be obtained form (3.16) by replacing the third spa-

tial derivative by time derivative using the first order approximation as η̃x̃x̃x̃ =
−η̃x̃x̃t̃ +O(α, β), and then neglecting terms of second order in α and β. Thus the

BBM in the dimensional from is given as

ηt + c0ηx +
3

2

c0
h0
ηηx − h20

6
ηxxt = 0. (3.19)
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3.4 Traveling-wave solutions for the KdV equa-
tion

Here, we would like to present some traveling-wave solutions for the KdV equa-

tion, these waves may be localized (solitary waves) or periodic (cnoidal waves).

Assume that the KdV equation (1.4) has traveling-wave solutions in the form

η(x, t) = F(ϑ),

where ϑ = (x − ct) with c representing the constant wave-speed. When sub-

stituting this solution in the KdV equation (3.17), and then integrating the new

equation, we get

(c0 − c)F +
3

4

c0
h0

F2 +
c0h

2
0

6
F ′′ = A . (3.20)

After multiplying by F ′ and integrating again, this equation becomes

c0h
2
0

6
F ′2 = − c0

2h0
F3 + (c− c0)F2 + AF +B, (3.21)

where A and B are arbitrary constants which arose from the integration. Now, we

will examine this equation for the solitary wave case where A = B = 0 and for

the case of periodic wave of unchanging form.

Solitary wave

The solitary wave solution can be found from equation (3.21) by imposing the

boundary conditions that all F , F ′ and F ′′ approach zero as ϑ → ±∞, hence

A = B = 0, then we obtain

h30
3
F ′2 = F2(η0 −F), (3.22)

where η0 = 2h0(
c
c0

− 1). In order to have a real solution, F ′2 has to be positive,

which implies that 0 < F < η0 and therefore η0 represents the maximum height

of F equivalent to the solitary wave amplitude. Equation (3.22) can be integrated

with utilizing the transformation F = η0 sech2θ, and then the final solitary wave

solution will emerge in the form

η(x, t) = η0 sech2
(√

3η0
4h3

0
(x− ct)

)
. (3.23)
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The solitary wave speed Cs in terms of the amplitude is expressed as

Cs = c = c0

(
1 +

η0
2h0

)
.

Using mathematical theory and experiments on the solitary waves, the ratio η0
h0

has been shown not to exceed values in the range 0.7-0.78, see [77]. For example,

using a Boussinesq model in [9], it was shown that the ratio η0
h0

is limited by a

wave-breaking criterion.

Cnoidal wave

Cnoidal waves are periodic solutions for the KdV equation (1.4) which are given

by the Jacobian elliptic function cn(x) with modulus r: 0 < r < 1. These solu-

tions can be obtained by assuming that the cubic in (3.21) has three roots η1, η2
and η3 in descending order, where η1 and η2 are the maximum and minimum wave

heights, respectively. Then by integrating and using the substitution

F = η1 − (η2 − η1)sin2θ,

we finally obtain the cnoidal wave solutions in the form

η(x, t) = η2 + (η1 − η2)cn2 (Δ(x− ct); r) , (3.24)

where Δ =
√

3(η1−η3)

4h3
0

, and the modulus r = η1−η2
η1−η3

. The wave-length is equal to

2K(r)
Δ

, where K(r) is the complete elliptic integral of the first kind.

3.5 Benjamin and Lighthill
In [6], Benjamin and Lighthill studied stationary cnoidal waves, such as if the

space coordinates are moving with the same wave-speed. It was concluded that a

cnoidal-wave solution is uniquely determined by only three constants Q, R and S
representing the volume flux per unit width, the total head for which the height is

measured from the bottom, and the momentum flux per unit width, respectively.

Starting by assuming an asymptotic expansion for the stream-function ψ, they

derived the following equation:

Q2

3

[
dζ

dx

]2
+ gζ3 − 2Rζ2 + 2Sζ −Q2 = 0. (3.25)

where ζ = h0 + η is the total depth. As the flow is assumed irrotational, ψ
is harmonic, which is equal to zero at the bottom and holds the value Q at the
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free surface streamline. The most significant thing to notice when comparing this

equation with equation (3.21) is that, equation (3.25) is derived in such a way

that clearly describes the physical meaning of the constants Q, R and S, while in

(3.21), such constants are only referred to as constants of integration. The total

volume flux per unit width Q is defined by

Q =

∫ ζ

0

ψzdz = ψ|z=ζ . (3.26)

Using the bottom and surface boundary conditions (2.16) and (2.17) we see that

dQ

dx
=

∫ ζ

0

ψxzdz + ψzζx|z=ζ = 0, (3.27)

which shows that Q is constant with respect to x. The quantity R represents

the energy per unit mass (i.e. the total head multiply by g where the height is

measured from the bottom to the free surface). Thus R is given by evaluating

Bernoulli equation (2.14) at the free surface stream as

R = Υ(ψ)|z=ζ = gζ +
1

2
(ψ2

x + ψ2
z)|z=ζ . (3.28)

Therefore equation (2.14) can be written as

1

2
ψ2
x +

1

2
ψ2
z + gz +

P

ρ
= R. (3.29)

Now, the momentum flux per unit width S ( divided by the density and corrected

for the pressure force) may be defined as

S =

∫ ζ

0

(
P

ρ
+ ψ2

z)dz =

∫ ζ

0

(
R− gz − 1

2
ψ2
x +

1

2
ψ2
z

)
dz . (3.30)

In order to show that the momentum flux S is also constant, we perform the fol-

lowing differentiation:

dS

dx
=

∫ ζ

0

(−ψxψxx + ψzψxz) dz + ζ ′[(R− gz − 1

2
ψ2
x +

1

2
ψ2
z)]z=ζ . (3.31)

Using the boundary conditions (2.17) and (2.16), and the assumption that ψ is a

harmonic function, we find that

dS

dx
= −ψ2

zζ
′|z=ζ + ζ ′[R− gz − 1

2
ψ2
x +

1

2
ψ2
z ]z=ζ

= R− [gz +
1

2
ψ2
x +

1

2
ψ2
z ]z=ζ = 0.

(3.32)
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Therefore, the quantitiesQ,R and S are all showed to be constants, where no fric-

tional effects are accounted for. Benjamin and Lighthill [6] studied the problem

of the energy loss in steady undular bore and argued that the wave-train following

the bore front is of cnoidal character. Their results showed that, in order for a

wave-train of cnoidal waves to match a uniform stream, there must be a change

in the volume flux Q or momentum flux S or the total head R. To illustrate this,

consider a uniform stream of depth h1 and velocity u1. Then Q, R, and S takes

the values

Q1 = u1h1, R1 = gh1 +
1

2
u21, S1 = u21h1 +

1

2
gh21. (3.33)

These values can be used as substitutions in the cubic in (3.25) which can then be

factorized as

(ζ − h1)
2(gζ − u21), (3.34)

which represents the case of coincident roots. If gh1 > u21 then the Froude number

becomes less than unity, and hence the solution is only the uniform sub-critical

flow. When gh1 < u21 the flow is super-critical and the only possible solution is the

solitary wave as explained in the previous section. If however some change occurs

in Q or R or S, then the cubic can have three descending roots, and therefore

cnoidal-wave solutions exist.





Chapter 4

Summary of results

In this chapter, we present a summary of the main results of the four papers. In

addition, some suggestions for further investigations regarding this study are also

given.

4.1 Derivation of balance equations for the
Boussinesq system

In paper A, using the general Boussinesq equation (1.2), we derive the mass, mo-

mentum and energy densities, and the corresponding fluxes per unit width. More-

over the water pressure is also derived as it is essential in finding the momentum

and the energy fluxes. The conservation laws of these physical quantities are cor-

rect to the same order as the evolution equations.

In the Boussinesq scaling, as mentioned in the introduction we denote the

mass, momentum, energy densities as M , I and E, respectively. The correspond-

ing fluxes per unit width denoted as qM , qI and qE . By converting to the non-

physical variables, the corresponding non-dimensional densities are given as

M̃ =
M

ρh0
, Ĩ =

I

ρc0h0
, Ẽ =

E

ρc20h0
,

while the non-dimensional fluxes are defined as

q̃M =
qM
ρc0h0

, q̃I =
qI

ρc20h0
, q̃E =

qE
ρc30h0

.

By using the substitution of the non-dimensional velocity potential φ̃ in terms of

the non-dimensional velocity w̃ given in the derivation of the Boussinesq system

(1.2), we derived expressions for M̃ , q̃M , Ĩ , q̃I , Ẽ and q̃E defined above. These
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expressions together with the mechanical balance laws are tabulated below.

Conservation of mass
The non-dimensional mass density and flux are derived as

M̃ = 1 + αη̃,

and

q̃M = αw̃ + α2η̃w̃ +
1

2
αβ

(
θ2 − 1

3

)
w̃x̃x̃,

respectively. Therefore the mass balance equation is obtained by the relation

∂

∂t̃
M̃ +

∂

∂x̃
q̃M = O(αβ, β2)

with disregarding terms of O(αβ, β2). It turns out that this balance equa-

tion is exactly the same as the first equation in the Boussinesq system (1.2) for

λ = 0. Which means that this system exactly conserves the mass given that λ = 0.

Conservation of momentum
We found that the non-dimensional momentum density and flux to be

Ĩ = αw̃ + α2w̃η̃ +
1

2
αβ

(
θ2 − 1

3

)
w̃x̃x̃,

and

q̃I = αη̃ + α2w̃2 +
α2

2
η̃2 − αβ

3
w̃x̃t̃ +

1

2
,

respectively, note that the momentum flux q̃I is corrected for the pressure force.

Then the momentum balance equation is given by neglecting terms of second

order in α and β in the relation

∂

∂t̃
Ĩ +

∂

∂x̃
q̃I = O(α2, αβ, β2).

Conservation of energy
The non-dimensional energy density and flux are respectively derived in the form

Ẽ = αη̃ +
α2

2
η̃2 +

α2

2
w̃2,

and

q̃E = αw̃ + 2α2w̃η̃ +
αβ

2

(
θ2 − 1

3

)
w̃x̃x̃.
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where the energy flux is corrected for the work done by pressure force. Note that

the energy density is defined such that it is equal to zero when there is no wave

motion. With these definitions, the energy balance equation is found by neglecting

the right hand side in

∂

∂t
Ẽ +

∂

∂x
q̃E = O(α2, αβ, β2).

Using the same method, the mass, momentum, and energy densities and fluxes

are also derived for the higher-order Boussinesq system, where similar balance

equations are also found, see paper A for more details. Note that a similar study

was conducted for the single Boussinesq equation [52], and that [34] provides an

alternative method for obtaining an energy equation for a Boussinesq system.

There are other theories which provide different forms of energy formulas and

Hamiltonian functions for the KdV and other equations, see [17, 27]. However,

here the focus is on mechanical quantities which are valid to the same order of

approximation as the evolution equation and not on mathematical conservation

proprieties.

4.2 Conservation laws for the KdV equation

In paper B, in similar developments as in paper A, we present the derivation of

the mass, momentum and energy densities and fluxes in the context of the KdV

theory for unidirectional wave motion. However, we consider three cases: left-

moving waves, right-moving waves and the case where the motion is in a moving

reference frame in which waves are stationary. The water density is assumed to

be unity.

In order to validate the results by comparing them with the physical quantities

Q, S,R defined in section 3.5 and investigated by [6], we also derive the total head

H . The derived mechanical balance equations for mass, momentum and energy

are correct to the same order as the KdV equation.

In this summary, we will only present the expressions in the case where the

waves are predominantly moving to right. The non-dimensional total head is

defined as H̃ = H/(gh0). Thus, the expressions for M̃ , q̃M , Ĩ , q̃I , Ẽ q̃E and H̃
along with the mass balance equation are tabulated below.

Mass balance
The expressions for mass density and flux in the the non-dimensional form are
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found as

M̃ = 1 + αη̃,

q̃M = αη̃ +
3

4
α2η̃2 +

1

6
αβη̃x̃x̃.

Therefore, the mass balance law for the KdV equation is given by the relation

∂

∂t̃
M̃ +

∂

∂x̃
q̃M = O(αβ, β2). (4.1)

When neglecting terms of O(αβ, β2), we find that the mass balance equation

(4.1) is exactly the same as the KdV equation (1.4), which means that the KdV

equation exactly conserves the fluid mass, see [42].

Momentum balance
For the momentum, the density and flux are derived in the forms

Ĩ = αη̃ +
3

4
α2η̃2 +

αβ

6
η̃x̃x̃,

q̃I =
1

2
+ αη̃2 +

3

2
α2η̃2 +

αβ

3
η̃x̃x̃.

Energy balance
The non-dimensional energy density and flux are derived as

Ẽ = αη̃ + α2η̃2 +
1

2
,

q̃E = αη̃ +
7

4
α2η̃2 +

αβ

6
η̃x̃x̃.

The non-dimensional total head with depth measured from the bottom to the

free surface is derived in the from

H̃ =
α2

2
η̃2 + (1 + αη̃) .

In order to facilitate the comparison with the work of Benjamin-Lighthill pre-

sented in [6], we have to consider stationary cnoidal waves with respect to a mov-

ing reference frame in which the mass flux Q is positive. Therefore, we derive

the above expressions in the case of waves moving to the left in a moving frame

of reference which also travels to the left with the same wave speed. Then the

comparison can be achieved.

As an example, we use the cnoidal wave solution shown in figure 4.1(a) to

evaluate the dimensional quantities qM , H , and the average of qI and compare

them with the corresponding quantities Q, R, and S. These comparisons are

shown in figure 4.1. As can be seen, this figure shows an excellent agreement

with the expressions predicted in [6]. Moreover, the mass flux qM is always found

to be constant.
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4.3 Energy balance for undular bores

In paper C, we study the problem of the energy loss in weak undular bores. These

bores are commonly modelled by using the shallow-water equation (2.38), where

it is assumed that the transition between the upstream and downstream flows is

gradual and the water depth is small. The shallow-water system has a well known

weak solution with a discontinuity represents an abrupt transition between two

uniform flows.

Figure 4.2 depicts the geometric setup of the shock solution, it is considered

fluid running in a horizontal channel of unit width and undisturbed depth h0. The

difference between the two uniform depths is a0 and therefore the ratio α = a0
h0

.

The arrows point in the upstream direction as this is the flow direction for river

bores.

Consider a control volume of unit width delimited by the interval [x1, x2] in

x-direction. Assuming conservation of mass and momentum and using the shock

solution for the shallow water-model, the loss of energy across the bore may be
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Figure 4.1: A cnoidal wave solution η is shown in panel (a) where h0 = 1.1m.

Panel (b) shows the mass flux qM vs. Q, panel (c) shows the total head H vs. R,

and panel (d) shows q̄I vs. S, where the solid-lines refer to the plots of qM , H and

q̄I , while the stars refer to the plots of Q, R and S.
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river bed

h0

U

x

a0

u = u1 u = u2

z

Figure 4.2: Schematic of a discontinuous solution of (2.38). The initial bore height is a0
and the still water depth is h0. The velocity jumps from u1 to u2, and the front of the bore

moves upstream at a velocity U .

computed exactly by the equation

(
q0E|x=x1 − q0E|x=x2

)− dE(η, u)
dt

=
a30
4
ρ

√
1
2
g3
(

1
h0

+ 1
a0+h0

)
, (4.2)

where q0E is the energy flux and E(η, u) is the total mechanical energy contained

in the fluid region between x1 and x2, these quantities are defined in (2.43) and

(2.44). The right-hand side of equation (4.2) represents the energy lost due the

approximate nature of the governing equations (2.38) and the discontinuous solu-

tion shown in figure 4.2 . The velocity U of the bore front can be deduced from

the shock solutions as

U = u2 +

√
g

2h0

(
2h20 + 3a0h0 + a20

)
, (4.3)

and the initial flow velocity at x = x1 as

u1 = u2 +
a0

a0 + h0

√
g

2h0

(
2h20 + 3a0h0 + a20

)
. (4.4)

In order to capture the energy loss in equation (4.2) we use the dispersive

model (1.1) and derive the associated total energy Ẽ(η̃, w̃), which is in the non-

dimensional variables found as

Ẽ(η̃, w̃) =
α2

2

∫ x2/�

x1/�

{
w̃2 + αη̃w̃2 + β

3
w̃w̃xx +

β
3
w̃2

x

}
dx̃

+
1

2

∫ x2/�

x1/�

{
1 + 2αη̃ + α2η̃2

}
dx̃.
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As our desire is to compare the results with the conserved quantities associated to

the shallow-water system, higher-order terms are included so that in the limit of

small β, the dimensional form of Ẽ(η̃, w̃) reduces correctly to the corresponding

expression E(η, u) in the shallow-water theory given in (2.43). These higher-order

corrections do not change the order of accuracy of the energy integral, which is

correct to second-order in α and β, but they facilitate the comparison with the

shallow-water theory. In the dimensional variables, the total energy is given by

E(η, w) = ρ

2

∫ x2

x1

(
(h0 + η)w2 + g(h20 + 2h0η + η2) +

h3
0

3
wwxx

+
h3
0

3
w2

x

)
dx.

The dispersive system (1.1) in the physical variable is given as

ηt + h0wx + (wη)x +
h3
0

6
wxxx = 0,

wt + g ηx + wwx +
gh2

0

6
ηxxx = 0.

(4.5)

Numerical approximation of (4.5) for the undular bore are found using a finite

difference method. The well-posedness of the linear version of this system is

α (q0E|x=x1 − q0E|x=x2)
d
dt
E(η, w) d

dt
E(η, u) Difference

kg m2/s3 kg m2/s3 kg m2/s3 %

0.1 0.836 0.836 0.829 0.84

0.2 2.170 2.187 2.128 1.93

0.3 4.200 4.201 4.005 4.87

0.4 7.036 7.034 6.582 6.48

0.5 10.86 10.87 9.992 7.92

0.6 15.87 15.88 14.38 9.38

0.7 22.26 22.27 19.92 10.51

Table 4.1: Comparison of the change in energy in the shallow-water and dispersive systems

when a strong backflow u2 = −2m/s is present. Column 1 shows the non-dimensional bore

amplitude α = a0/h0. The net energy flux is shown in Column 2. Columns 3 and 4 display the

rate of change in the energy of the dispersive theory and the shallow-water theory, respectively.

Column 5 shows the percentage difference between the net energy flux and the rate of change of

the shallow-water energy. The dispersive theory gives the correct result to within less than 0.3%

error.

found in [40].

Table 4.1 shows that the dispersive model (4.5) successfully captures the en-

ergy loss due to the shallow-water approximation within less than 0.3% error.

This can be explained by the fact that the dispersive model captures the correct
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transition at the bore front and that the energy loss is absorbed by the increasing

number of oscillations following the bore front. The results of this paper have

been announced in [1].

4.4 Pressure estimation in a flow with constant
vorticity

In paper D, we consider the time independent problem for the rotational flow pre-

sented in section 2.1 with fluid density equals to unity, and where the vorticity

is constant denoted as −Ω0. We derive the model equation along with an ap-

proximation for the water pressure by reconstructing an asymptotic series for the

stream-function taking into account the affects of the vorticity. Using the follow-

ing scaling

x̃ =
x

�
, z̃ =

z

h0
, ζ̃ =

ζ

h0
, ψ̃ =

1

c0h0
ψ, Ω̃0 =

h0
c0
Ω0,

where ζ is the total depth, we find the asymptotic expansion of ψ in the non-

dimensional form

ψ̃ =
1

2
z̃2Ω̃0 + z̃f̃ − β

3!
z̃3f̃

′′
+O(β2).

Here, the function f̃(x̃) represents the non-dimensional velocity at the bottom.

The boundary condition that ψ = Q at the free surface streamline z = ζ implies

that f̃ can be written in the form

f̃ =
Q̃

ζ̃
− 1

2
ζ̃Ω̃0 +

β

6
ζ̃2f̃ ′′ +O(β2),

where Q̃ is the non-dimensional mass flux. Disregarding terms of O(β2), this

equation can be solved for f̃ by inverting the differential operator as the following

f̃ =
(
1− β

6
ζ̃2 d2

dx2

)−1 (
Q̃

ζ̃
− 1

2
ζ̃Ω̃0

)
=
(
1 + β

6
ζ̃2 d2

dx2 +O(β2)
)(

Q̃

ζ̃
− 1

2
ζ̃Ω̃0

)
.

The derived model equation, which describes the departure from stationary

cnoidal waves, appears in the form

(
Q+ Ω0

2
ζ2
)2
ζ ′2 = −3

(
Ω2

0

12
ζ4 + gζ3 − (2R− Ω0Q)ζ

2 + 2Sζ −Q2
)
, (4.6)
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where the constants Q, R and S are the same as before but are defined in terms of

the rotational flow. A similar equation as (4.6) has been derived in [5]. As in [6],

the undisturbed depth h0 can be defined as h0 = g−
1
3Q

2
3 .

If Ω0 = 0, this equation reduces to equation (3.25), and will therefore have

exact cnoidal wave solutions, otherwise, smooth travelling-wave solutions can be

found numerically. The pressure formula is found as

P = R− gy − 1
2

(
Q
ζ2

+ Ω0

2

)2(
z2ζ ′2 + ζ2

)
+ 1

2

(
Ω0

6
ζ3 − Ω0

2
z2ζ − 2

3
Ω0z

3 − Q
3
ζ + z2Q

ζ

)(
2Q ζ′2

ζ3
− ζ ′′( Q

ζ2
+ 1

2
Ω0)
)
.

The main result of paper C is that, when increasing the vorticity effects, there will

be a dip in the pressure and the maximum pressure is no longer found under the

wave crest. Moreover, the wave-length may decrease or increase. We define a
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Figure 4.3: In panel (a) the solution of (4.6) is found for different negative values

of F , where the corresponding pressure profiles are shown in panel (b). The ratio

of the wave amplitude to the undisturbed water depth is α = 0.1771. For the case

where F = 0, the exact cnoidal-wave solution shown by circles is used.

non-dimensional number F , which represents the ratio of the maximum mass flux

due to the vorticity against the constant mass flux Q, as

F =
Ω0M

2

2Q
,

where M is the maximum wave height. If m represents the wave trough, then

the parameter α can be defined as α = (M − m)/(2h0). Consider for example

that Ω0 < 0. Therefore, as the absolute value of F increases, the wave-length

decreases and the pressure starts introducing a dip, this can be seen in the example

shown in figure 4.3. Figure 4.3 also shows that when |F | → 0, the numerical

solution approaches the exact cnoidal-wave solution (F = 0).
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Further work
It should be possible to extend the formulation of mechanical balance laws to KdV

equations for rotational waves [21, 76] which arise in the study of wave-current

interactions [67], and to higher-order equations for surface waves [36, 41, 60, 61,

63]. Another possible extension would be in the study of model equations for

internal waves [65].

The KdV equation also appears in this situation [28, 60], but it would also

be interesting to look at higher-order models such as the extended KdV equation

[43, 44, 49, 55] or fully nonlinear models [22]. Internal waves are also often

described by non-local models [4, 23, 47, 55, 66], and a parallel development

should also be possible here. As this study is devoted to one-dimensional models,

it should possible to make an extension to the two-dimensional case [20, 31, 32].

It would also be interesting to see if the techniques in this thesis apply to the

equations used in [37] and [60].
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