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Introduction 

 

1 Orogen-rifted margin systems – four case studies 

Continental margins are, from a geologist’s point of view, one of the most exciting areas on 

the planet. A multitude of geological processes are acting on these boundaries between 

continents and oceans. The term ‘continental margin’ is used here in its widest possible sense 

to refer to the area ‘where land meets sea’. A continental margin is the interface between areas 

affected predominantly by erosion (the continent) and areas of deposition (the ocean basin). It 

is the place that is first and most strongly affected by sea level changes. It is along their 

margins that continents collide to form orogens and become amalgamated into larger 

supercontinents; and more often than not, later rifting during continental breakup reactivates 

old suture zones, transferring an orogen into a rifted margin once again. Thus, many 

continental margins experience periodically a transition from rifted margin to orogen and 

back to rifted margin. Good examples of this are the Atlantic margins (Wilson, 1966). 

In recent settings, geologic links across continental margins, e.g. from sedimentary source to 

sink or from one rifted margin to its conjugate partner, are easily identified. However, in 

ancient settings, these links are frequently broken. In such cases, geochronological methods 

are one of the tools that can help to re-establish broken links and unravel the tectonic history 

of a region. In the following four chapters, I present case studies from orogen-rifted margin 

systems in Western Australia, East Antarctica and southwestern Norway (Fig. 1), applying a 

variety of geochronological techniques such as U/Pb analyses of zircon and monazite, K/Ar 

analysis of illite and fission track and (U-Th)/He analyses of apatite. These methods cover a 

wide range of closure temperatures from 900 °C for zircon U/Pb dating (Cherniak and Watson, 

2000) to 120-40 °C for apatite fission track and (U-Th)/He analyses (Reiners and Brandon, 

2006). Each contribution utilises the technique that is most appropriate to the problem 

addressed and contributes a key piece to the geologic history of the respective study area. In 

Western Australia and East Antarctica, we trace sediments along their journey from their 

(orogenic) sources to their deposition in continental margin basins and their later 

incorporation into collisional orogens. In southwestern Norway, we follow the area’s 

development from the Caledonian mountain belt to today’s North Sea rift margin, with a 

special focus on the uplift history and the significance and timing of fault reactivation. 
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Fig. 1 Satellite image showing the locations of the study areas in southwestern Norway, Western 
Australia and East Antarctica. 

 

2 Choice of field areas and methods 

2.1 Detrital zircon U/Pb analyses from the Pinjarra Orogen (Western Australia) and the 

Maud Belt (East Antarctica) 

Manuscripts I and II investigate a pair of continental margins in East Antarctica and Western 

Australia that were suggested to have been conjugate in the late Mesoproterozoic-

Neoproterozoic (Fitzsimons, 2002, 2003a; Pisarevsky et al., 2003; Powell et al., 2001; Powell 

and Pisarevsky, 2002). Thick sequences of siliciclastic sediments were deposited along both 

margins in volcanic arc and back-arc settings and were deformed and metamorphosed during 

Grenville-age continent-continent collision (Bauer et al., 2003; Bisnath et al., 2006; Bruguier 

et al., 1999; Byrne, 1997; Jacobs, 2009; Jacobs et al., 2003a). If the margins were indeed a 

conjugate pair, then sedimentary sequences on either side might be expected to show the same 

provenance (Fitzsimons, 2002, 2003a). Alternatively, detrital material derived from one 

continent might be expected to be found on the other. In both the Maud Belt (East Antarctica) 

and the Pinjarra Orogen (Western Australia), the provenance of the metasedimentary rocks 

was so far insufficiently known to allow for a thorough comparative study. 

3



The method of choice to establish the sedimentary provenance of a region is U/Pb analysis of 

detrital zircons. The U/Pb zircon system has a high closure temperature (ca. 900°C; Cherniak 

and Watson, 2000), thus dating magmatic and high-grade metamorphic events that 

‘fingerprint’ potential source regions. Zircon is a very robust mineral that is neither easily 

destroyed during erosion nor affected by weathering or surface alteration. It has therefore the 

potential to carry age signals from the sedimentary source to the sink (e.g. Fedo et al., 2003). 

In this study, we investigate the sedimentary provenance of both the Pinjarra Orogen and the 

Maud Belt by U/Pb analyses of detrital zircons. The Pinjarra Orogen is one of the least 

studied and understood orogens in Australia but it plays a key role in both Rodinia and 

Gondwana reconstructions. Not even the timing of orogenesis is universally agreed upon, 

with both a Mesoproterozoic and a Neoproterozoic age cited (e.g. Boger, 2011; Fitzsimons, 

2003b). Exposure is poor, being restricted to three basement blocks within the Phanerozoic 

Perth Basin. The Northampton Complex is the largest exposed block of the Pinjarra Orogen. 

While it has been extensively investigated in the second half of the 19th and first half of the 

20th centuries when lead and other metals were mined in the area (Blockley, 1971), it has 

received little attention in the last several decades, i.e. since the development of modern 

radiogenic dating methods (Bruguier et al., 1999). The detrital zircon analyses have been 

complimented in this case by U/Pb dating of metamorphic zircon rims and monazites in order 

to provide additional information on the metamorphic history of this region. 

In the Maud Belt, on the other hand, the metamorphic history is well studied (e.g. Arndt et al., 

1991; Bisnath et al., 2006; Jacobs et al., 2003a; Jacobs et al., 2003b), but previously published 

detrital zircon ages (Arndt et al., 1991; Harris, 1999) were sparse in number and insufficient 

to allow statistically sound comparisons with other regions. 

While both contributions provide valuable knowledge about the geology of the Pinjarra 

Orogen and Maud Belt respectively, their implications for the palaeogeography of the 

supercontinent Rodinia (e.g. Li et al., 2008) transcend their regional significance. Comparing 

the detrital zircon age spectra from both regions with each other and with potential source 

regions from the Kalahari Craton and Western Australia-Mawson Continent provides a test 

for Rodinia models that place Kalahari adjacent to Western Australia (Fitzsimons, 2002, 

2003a; Pisarevsky et al., 2003; Powell et al., 2001; Powell and Pisarevsky, 2002). 
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2.2 Apatite fission track and (U-Th)/He analyses and K/Ar illite dating of fault gouges in 

southwestern Norway 

Manuscripts III and IV investigate the onshore tectonic history of southwestern Norway. The 

area is not a continental margin as such, since rifting in the North Sea was ultimately 

unsuccessful. However, the early stages of the transition from orogen to rift basin can be 

studied here without interference of later breakup-related structures. In the absence of a post-

Devonian sedimentary record onshore, the tectonic history of the region is poorly understood 

and controversially discussed (e.g. Chalmers et al., 2010; Gabrielsen et al., 2010a, b; Lidmar-

Bergström and Bonow, 2009; Nielsen et al., 2010a; Nielsen et al., 2010b; Nielsen et al., 2009a; 

Nielsen et al., 2009b). Generally, two end member models have been suggested: (1) Orogenic 

collapse and complete elimination of the Caledonian mountains with peneplanation during the 

Mesozoic and renewed tectonic uplift in the Cenozoic to account for the present-day high 

relief of interior southern Norway (e.g. reviews by Gabrielsen et al., 2010a; Lidmar-

Bergström et al., 2000). (2) Incomplete orogenic collapse with a long-standing remnant of the 

Caledonian orogen that is slowly eroded to its present-day level – the isostasy-climate-erosion 

(ICE) hypothesis (Nielsen et al., 2009b). While the ICE hypothesis dismisses a tectonic cause 

for increased uplift rates in the Cenozoic, it suggests climate-driven increased erosion acting 

on an isostatically compensated mountain belt as an alternative cause for higher uplift rates. 

Increased sediment input of material derived from the Norwegian mainland into the North Sea 

basin is well documented for the Cenozoic and is equated to higher erosion rates onshore. The 

controversy about the cause and effect of uplift and erosion boils down to a chicken or egg 

problem: Did renewed tectonic uplift create a high topography which was then preferentially 

affected by erosion resulting in higher erosion rates? Or did climate changes cause faster 

erosion resulting in higher uplift rates? The controversy around the ICE hypothesis touches 

therefore two highly relevant topics: the interaction between tectonics and climate and the 

problem of persistent high-standing mountain belts. 

In order to provide additional constraints on the post-Caledonian uplift history of 

southwestern Norway, we have chosen low-temperature thermochronological methods such 

as apatite fission track and (U-Th)/He analyses for their ability to date vertical movements in 

the upper crust (e.g. Reiners and Brandon, 2006). These methods were complimented by K/Ar 

illite dating of clay-bearing fault gouges from brittle structures assumed to be the youngest 

deformational features in onshore southwestern Norway. K/Ar dating of illite from clay 

gouges has emerged as a valuable tool to constrain the timing of brittle deformation in the 
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upper crust in recent years (e.g. Zwingmann et al., 2010) and has now been successfully 

applied to late Palaeozoic to Mesozoic faults in southwestern Norway. 

The combination of these three methods, all of which are recording upper crustal movement 

and deformation, provides improved estimates on uplift rates and fault activity in 

southwestern Norway during late Palaeozoic to early Cenozoic times. 

 

3 Synopsis of research findings 

The application of geochronological methods to investigate ancient orogen-rifted margin 

systems has produced interesting and valuable results in all three study areas. Contribution I 

and II, while focussing on different geographic areas, are connected by their contemporaneous 

nature and implications for Rodinia reconstructions. Contribution III and IV are companion 

papers, investigating the post-Caledonian history of southwestern Norway from slightly 

different angles. 

 

3.1 Detrital zircon U/Pb analyses from the Pinjarra Orogen (Western Australia) and the 

Maud Belt (East Antarctica) 

Comparative U/Pb zircon studies from the Northampton Complex and Maud Belt have 

provided valuable information on the sedimentary and metamorphic history of both regions, 

as well as testing a suggested Western Australia-Kalahari connection within Rodinia. 

In the Northampton Complex, high-grade metamorphism was dated at 1090-1020 Ma by both 

metamorphic zircon rims and monazites. Detrital zircon cores show an age distribution that is 

consistent with derivation from the Albany-Fraser Orogen in southwestern Australia, with 

additional contributions from the Mawson Continent and possibly syn-sedimentary volcanism. 

A significant number of metamorphic rims also gave ages pre-dating metamorphism in the 

Northampton Complex and are interpreted as detrital. These rims can be correlated to the two-

stage tectonic history of the Albany-Fraser Orogen and provide therefore a tighter constraint 

on the provenance of the sediments. The apparently conflicting provenance information 

recorded by the metamorphic rims and detrital cores respectively, suggests the possibility that 

all detrital zircons were derived from the Albany-Fraser Orogen, but some of them were 
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remobilised from metasedimentary rocks that derived their zircon load from the Mawson 

Continent. In this case the detrital metamorphic rims record the primary provenance of the 

Northampton Complex sediments (the Albany-Fraser Orogen), while the detrital cores 

provide a mixed, primary and secondary provenance. The most important conclusion is, 

however, that all detrital zircons in the Northampton Complex could have been derived from 

within the combined Western Australia-Mawson Continent and no outside source is required 

to explain the age distribution. 

Similar findings can be formulated for the Maud Belt. Here the sediments appear to be 

sourced primarily from within the Namaqua-Natal-Maud Belt, with minor contributions from 

the Kalahari Craton. Only a small number of detrital zircons ages could not be correlated with 

currently know sources in Kalahari but are inconclusive as to their alternative source. One 

sample is interpreted as a molasse deposit of the Maud Belt and was deposited during the 

Neoproterozoic. The detrital age spectrum is similar to that of the other two samples, with the 

addition of large amounts of Grenville-ages grains, suggesting that the molasse remobilised 

both syn-tectonic magmatic rocks of the Grenville-age Maud Belt and metasedimentary rocks 

similar to the other two samples analysed here. The timing of Grenville-age orogenesis is 

constrained by isotopic disturbance in the Mesoproterozoic sediments and a prominent peak 

in the detrital age distribution in the Neoproterozoic sediment at 1090-1060 Ma. 

To summarise, while both areas experienced high-grade metamorphism at roughly the same 

time, no Australian fingerprint could be found in metasedimentary rocks of the Maud Belt and 

no indication of Kalahari-derived detritus was found in the Northampton Complex. A direct 

comparison between the zircon age spectra of both regions is even more decisive: samples 

from both regions show significantly different age distributions and the suggestion that they 

are part of the same sedimentary sequence should be abandoned. In light of the new 

geochronological data, a Western Australia-Kalahari connection within Rodinia appears 

unlikely. 

  

3.2 Apatite fission track and (U-Th)/He analyses and K/Ar illite dating of fault gouges in 

southwestern Norway 

The combination of low-temperature thermochronological methods with K/Ar illite dating of 

fault gouges proved successful in improving our understanding of the post-Caledonian 
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development of southwestern Norway. Apatite fission track and (U-Th)/He data suggest 

relatively constant cooling rates of ca. 2 °C/Ma during Permian to early Jurassic times and 

slower cooling (< 1°C/Ma) since the middle Jurassic. The data are equally compatible with 

surface exposure during the mid-late Jurassic but require mild reheating to 40-65 °C during 

the Cretaceous or Palaeogene in this case. Both fission track and (U-Th)/He ages are offset 

across faults and fault-bound blocks yielded cooling histories that are distinctly different from 

their neighbours. Both these observations are consistent with fault activity throughout the 

Mesozoic. This is borne out by the K/Ar illite ages from fault gouges, which define three 

periods of fault activity in Carboniferous-Permian, late Triassic-early Jurassic and 

Cretaceous-earliest Palaeogene times respectively. Each of these periods coincides with 

tectonic or magmatic events previously described in southwestern Norway and appears thus to 

be of regional significance. The record provided by all three applied methods ends in the late 

Cretaceous to earliest Palaeogene. The youngest uplift history could therefore not be 

constrained. While we could not yet solve the questions of the ICE hypothesis vs. 

peneplanation and tectonic uplift, the present study provides solid grounds for future 

investigations that, by customised sampling strategies and careful sample selection might 

push the limits of low-temperature thermochronology just far enough to capture this elusive 

latest event. 
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