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Introduction

Concerns about rising levels of atmospheric greenhouse gases, has lead researchers
to propose several strategies for reducing CO2 emissions. One of these is to capture
CO2 at various industrial point sources, such as coal-�red power plants, and store
the gas underground. For instance, it has been suggested to inject captured CO2 into
oil and gas reservoirs, deep saline aquifers, and unminable coal beds. To investigate
potential risks associated with geological storage, numerical simulations is a useful
tool. However, it is a challenging task to include all relevant physical processes into
such simulations. In particular, the inclusion of geochemical reactions introduces
a number of modelling challenges and computational di�culties. Nevertheless, im-
portant e�ects can be lost by ignoring the reactive nature of the injected gas. CO2

dissolves into the aquifer brine and reacts chemically with the ambient rock, either
through dissolution or precipitation, possibly changing its porosity and permeabil-
ity. It has therefore been speculated that chemical reactions may compromise the
integrity of cap rock seals, causing leakage from the storage site. On the other hand,
mineral precipitation may also provide an additional trapping mechanism, increasing
the potensial for geological CO2 storage.

In this thesis, we show how the common equations for �ow in porous media can
be expanded to account for geochemical reactions. Furthermore, the complications
arising when solving the new equations numerically are described and explained.
Specialised methods that alleviate the di�culties are then introduced, and discussed
with respect to robustness and convergence properties. Much attention is directed
to ways of reformulating the equations, in order to make them more amenable to
numerical treatment. Also, the fact that chemical reactions introduce sti�ness to the
system is adressed. Diagonally implicit Runge-Kutta methods, which are commonly
used to combat sti�ness, are evaluated with respect to their usefulness in CO2 se-
questration simulations. Finally, we have applied the methods to several test cases,
some including complex mineralogies, to illustrate the strengths and weaknesses of
the di�erent numerical approaches.
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Chapter 1

Component Modelling

A geological formation suitable for CO2 sequestration, typically consists of a porous
rock layer �lled with brine, with an impermeable cap rock seal above. At the site
of injection, CO2 will partially displace the brine inside the rock pores, and slowly
start to migrate upwards due to density di�erences. For nonreactive simulations of
the process, it is su�cient to keep track of the gas volume fraction within the pores,
i.e., the saturation of the gas. Any simulation including reactions, on the other
hand, must keep track of the composition of the phases as well. In other words,
the concentration of chemical components within each phase, must be included as
primary variables. In this chapter, we will present the equations that are typically
used in component-based �ow models, and show how they can be extended to account
for chemical reactions. The model we present will be quite extensive, including, e.g.,
porosity changes and thermal e�ects. For many applications, such processes are
neglible. However, there are situations where they may be of importance, and we
want to show how to incorporate chemical reactions in these cases as well.

1.1 Choice of Primary Variables

The chemical species to be included in a mathematical model for CO2 storage, will
vary according to the e�ects one wishes to study. The simplest one-phase models
include only water and aqueous CO2, and are useful for studying convective den-
sity mixing within the aquifer brine. Such models are employed, for instance, by
[11, 66, 53]. More extensive one-phase models include chemical reactions between
the aqueous CO2 and the mineral phase, like the model used by [12]. Two-phase com-
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Figure 1.1.1: A component-based model of the pore �uid

ponent models also include a gaseous CO2 component, and are used to study CO2

plumes that migrate from an injection site towards the top of the aquifer. Complex
simulations, including both gaseous and dissolved CO2, as well as mineral reactions,
have been performed by [31, 64, 52, 41, 51], for instance.

In compositional models involving reactions, chemical species that exists in multi-
ple phases are commonly treated as separate components. We will follow the same
approach in the model we present. For instance, the amounts of gaseous and aque-
ous CO2 will be two di�erent variables in our formulation, and the relation between
them will be modelled as an instantaneous chemical equillibrium reaction. Thus,
by de�nition, every component will exist in a single phase only. This is somewhat
di�erent from what is common in nonreactive models. The black oil model, for in-
stance, de�nes pure and dissolved gas as a single component, even though it is spread
out between two phases. With the introduction of chemical reactions, however, the
individual treatment of pure and dissolved species appears to be a more natural ap-
proach. For instance, this formulation allows a simple and clean representation of
reaction rates.

The gaseous phase will in general contain water vapor that dissolve into the gaseous
phase. For most applications, the amount of water vapor will be very small, but
for high-temperature, low-pressure conditions, its importance may be signi�cant.
To keep a clear presentation, we will in this thesis assume that CO2 is the only
gaseous component. However, models with signi�cant amount of water vapor can
be easily treated within the same framework, by simply adding gaseous H2O as an
additional component. We also note that a third liquid CO2 phase may appear under
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certain low-pressure, low-temperature conditions. A non-aqueous liquid phase may
also be required for simulations where CO2 is used for enhanced oil recovery. In
our presentation, we will assume that there are only two phases in the model, which
is the most commonly occuring situation, but the extension to three-phase �ow is
straightforward.

1.1.1 Concentrations and Phase Volumes

We will use two di�erent notions to describe the concentration of the components.
The �rst is the bulk concentration, given by

ci = lim
Ω→x

Ni(Ω)

V (Ω)
,

where Ni(Ω) denotes the molar amount of the component i inside a region Ω of
the reservoir, and V (Ω) is the volume of Ω. The concentration is de�ned in the
limit where Ω approaches a single point x. In contrast, we de�ne the interphasial
concentration as

ĉi = lim
Ω→x

Ni(Ω)

V`(Ω)
,

where ` is the phase containing component i, and V`(Ω) is the volume of that phase
inside Ω. The relation between ci and ĉi is given by ci = ψ`ĉi, where

ψ` = lim
Ω→x

V`(Ω)

V (Ω)
.

That is, ψ` is the relative volume of the phase ` at a certain location. We will refer
to this quantity as the phase volume fraction. Alternatively, one can describe the
amount of phases present by using the porosity φ and the saturations Sl, Sg. These
variables are related by

φ = ψg + ψl

Sg = ψg/φ

Sl = ψl/φ,

where the subscripts g and l denote the gas and liquid phase, respectively. We will
use both sets of variables, depending on which choice is the most convenient.

We will choose the bulk concentrations c = (c1, . . . , cm)>, together with the pressure
p and the temperature T , as primary variables in our formulation. The interphasial
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concentrations and the phase volume fractions will be secondary variables, that are
calculated from the bulk concentrations whenever necessary. Of course, other choices
of primary variables are possible as well. Most notably, the saturations and the inter-
phasial concentrations are often used as primary variables in immiscible multiphase
models. However, we want a model that allows mass exchange between the phases,
i.e., heterogenous chemical reactions. In this case, the governing equations are sim-
pli�ed by expressing them in terms of the bulk concentrations.

1.1.2 Compressible Reservoirs

In the de�nitions above, it is assumed that the bulk volume of the reservoir is constant
during the simulation. We brie�y note that the volume of a reservoir region may
also be modelled as pressure-dependent. In this case, the bulk volume of a reservoir
region is often calculated by the relation

V (Ω, p) = [1 + α (p− p0)]V (Ω, p0) ,

where α is the rock compressibility factor, p the current pressure, and p0 the ini-
tial pressure. For compressible reservoirs, we de�ne the concentrations and volume
fractions by the relations

ci = lim
Ω→x

Ni(Ω)

V (Ω, p0)

and

ψ` = lim
Ω→x

V`(Ω)

V (Ω, p0)
.

The other de�nitions remain unaltered.

1.1.3 Calculating Phase Volumes

Since phase volume fractions are secondary variables in our formulation, we will
need to calculate their values from the primary variables. For a speci�c phase `, the
volume fraction is calculated by the simple relation

ψ` =
∑

ci/ρi, (1.1.1)

where ρi is the molar density of component i, and the sum ranges over all components
in the phase. The aqueous phase often contains components that has little in�uence
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on the phase volume, since their concentrations are vanishingly small compared to
the water component. These can safely be disregarded from (1.1.1). The molar
densities of the remaining components can be regarded as constant in this context,
except for the density of CO2, which should usually be determined from an equation
of state. For this purpose, the Peng-Robinson or Soave-Redlich-Kwong equation is
often used. In some applications, however, it may be safe to assume that the density
of CO2 is constant as well. This is especially true for deep saline aquifers, where the
pressure is high, and CO2 acts more like a liquid than a gas.

Naturally, we want the calculated phase volume fractions to sum up to 1, or 1 +
α (p− p0) in the case of compressible rocks. This constraint is known as the volume
balance equation,

m∑
i=1

ci
ρi

= 1 + α (p− p0) . (1.1.2)

There are two principal ways of enforcing volume balance during numerical simula-
tions. One way is to use the volume constraint to eliminate the conservation equation
for either water or CO2, which is useful when the system is solved by a fully coupled
numerical method. The other is to keep the volume balance as an additional gov-
erning equation, which is the usual choice for methods based on operator splitting.
We will follow the latter approach, as some form of operator splitting is normally
employed when including chemical reactions in the formulation.

1.2 The Pressure Equation

When keeping the volume balance as a primary equation, the governing equations
becomes a di�erential-algebraic system (DAE), that is, a combination of di�erential
and algebraic equations,

0 =V(p, T, c1, . . . , cm, t) (Volume balance)
∂ci
∂t

=Mi(p, T, c1, . . . , cm, t) (Mass balances) (1.2.1)

∂T

∂t
=T (p, T, c1, . . . , cm, t) (Energy balance)

The speci�c formulations for mass and energy balances are given later. We see that
the system contains no explicit mention of the pressure derivative with respect to
time. Therefore, the system must (at least partially) be solved implicitly. In addition,
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the volume balance equation is only weakly dependent on pressure, especially in
regions where no gas is present. Thus, the system has a near-singular Jacobian,
and is essentially an index-2 DAE. Such systems are di�cult to solve, as the usual
implicit integration methods require a nonsingular Jacobian to converge.

To alleviate this problem, it is common to construct a pressure equation, in which the
derivative of the pressure appears explicitly. This can be acheived, for instance, by
replacing the volume balance equation by its derivative. In general, such a procedure
is called index reduction of the di�erential-algebraic system. Let R be the departure
from volume balance,

R (p, T, c1, . . . , cm) =
m∑
i=1

ci
ρi
− 1− α (p− p0) , (1.2.2)

where we have included the rock compressibility for completeness. The pressure
equation is obtained by di�erentiating with respect to time, and using the chain
rule1,

∂R

∂t
=
∂R

∂p

∂p

∂t
+
∂R

∂T

∂T

∂t
+

m∑
i=1

∂R

∂ci

∂ci
∂t
. (1.2.3)

Here, the volume derivatives ∂R
∂p
, ∂R
∂T

and ∂R
∂ci

can be calculated directly from (1.2.2),

while the derivatives ∂T
∂t

and ∂ci
∂t

are replaced by the conservation equations (1.4.3)
and (1.3.1).

Physically, the pressure equation describes how the pressure must change in order
to maintain volume balance. The two last terms describe the rate of volume change
due to physical processes, and the left-hand side describes how the departure from
volume balance changes with time. It is tempting to set ∂R

∂t
= 0, since R = 0 at

the beginning of the simulation, and we want R to stay at this value. However, at
the beginning of a time step, we may have R 6= 0 due to numerical errors. Thus,
setting ∂R

∂t
= 0 will preserve the errors, leading to an unstable computation. Instead,

we want the discrepancy corrected, so that volume balance is acheived at the end of

1Equation (1.2.3) is sometimes derived di�erently in the oil and gas literature. In the in�uential
paper by Watts[61], for instance, the equation is derived by starting with the mass conservation
equations, multiplying with the volume factors ∂R

∂ci
, then summing the expressions, and �nally

interpreting the result as the derivative of the volume balance. In essence, the two derivations are
the same, only with steps reversed.
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each step. For this purpose, it is common to set

∂R

∂t
=
Rfinal −Rinitial

∆t
,

where Rfinal = 0 is the desired value at the end of the step, Rinitial is the actual
value of R at the beginning of the step, and ∆t is the time step length. This term
acts like a control variable, ensuring that the solution stays close to thermodynamic
equillibrium. It is interesting to note that this correction procedure bears close
resemblance to the Baumgarte stabilisation [5], a common technique for stabilising
index-reduced DAE systems.

Most chemical reactions will have neglible e�ect on the �uid volume, and can be
omitted from (1.2.3). The main exception is the transition from gaseous to aqueous
CO2, which is modelled as an equillibrium reaction. Since aqueous CO2 occupies less
space, dissolution of CO2 into water leads to a reduction in the total �uid volume.
Also, the reaction changes the saturations and the relative permeabilities of the
phases. The easiest way of including this e�ect into the pressure equation, is to
apply a formal change of variables. Let cg be the concentration of gaseous CO2, cd
the concentration of dissolved CO2 and ct = cg + cd the total CO2 concentration.
Using the phase equillibrium assumption, we can de�ne cg and cd as functions of ct.
Consequently, we can make the following replacement in the pressure equation,

∂R

∂cg

∂cg
∂t

+
∂R

∂cd

∂cd
∂t

=
∂R

∂cg

∂cg
∂ct

∂ct
∂t

+
∂R

∂cd

∂cd
∂ct

∂ct
∂t

=

(
∂R

∂cg

∂cg
∂ct

+
∂R

∂cd

∂cd
∂ct

)(
∂cg
∂t

+
∂cd
∂t

)
.

Since the total concentration cg+cd is una�ected by the phase transition reaction, we
have thus obtained a pressure equation without chemistry terms. In models where
water vapor is included, the same approach can be applied to the gaseous and liquid
water component.

The procedure outlined above is equivalent to treating gaseous and dissolved CO2

as one single component, which is precisely what we discouraged in Section 1.1. But
in this particular case, the total concentration is a natural variable of choice. Nev-
ertheless, we still want to keep two separate variables for the gaseous and dissolved
CO2, as this is more convenient for the rest of the equations we are considering.

For simple models where all the densities are constant, and the rock compressibility
is zero, equation (1.2.3) simpli�es to

∂R

∂t
=

m∑
i=1

1

ρi

∂ci
∂t
, (1.2.4)
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which is the incompressible pressure equation. When inserting the expression (1.3.1)
for ∂ci

∂t
, this becomes an elliptic equation for pressure, since the time derivative of the

pressure is not involved. Also, if there are no phase transitions, the volume constraint
(1.1.2) can be enforced explicitly during the solution procedure, so that no additional
stabilisation is required. Thus, one can use ∂R

∂t
= 0 without concern. Incompressible

models are especially relevant when studying CO2 storage scenarios where the gas
has been completely dissolved in the brine. In this case, the only mobile phase is
the incompressible aqueous phase. As (1.2.4) is easier to solve than (1.2.3), some
authors use incompressible models for multiphase simulations as well. One exam-
ple is the semi-analytical migration model of [42], another is the streamline-based
approach used by [43]. CO2 is a dense, supercritical �uid at reservoir conditions,
so the incompressibility approximation may be justi�ed. The relative importance
of CO2 compressibility is, however, problem-dependent. In particular, dissolution
of CO2 into brine may lead to a signi�cant overall volume change. Obi and Blunt
deals with this issue by assuming that dissolved CO2 has the same volume as gaseous
CO2. While this is clearly incorrect, the fraction of dissolved CO2 in brine is typi-
cally small. Their approximation may therefore be sound, especially if other kinds
of errors dominate.

1.3 Mass Balance

The mass conservation equations describe how the concentrations the chemical com-
ponents will change with time, due to physical processes within the �uid. In sum-
mary,

Rate of change = Advection + Dispersion + Reactions (1.3.1)

There will be one such equation for every component present. In the following, we
will give a mathematical description of each term in (1.3.1). The relative importance
of the terms depend on the component in question. For instance, the concentrations
of the aqueous ions CO3

2− and OH− are typically small, and their concentrations are
mainly determined by the chemical reactions. On the other hand, the concentration
of water is hardly a�ected by reactions at all, since the amount of water is very large
compared to the reaction scale.

Advection refers to the large-scale �uid movement caused by pressure di�erences and
boyancy forces. Let ` be the phase that contains component i, and let u` be the
volumetric �ow rate of that phase, often called the Darcy velocity. Mass change due
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to advection can then be conveniently expressed as

Advection = −∇ • (ĉiu`) , (1.3.2)

where ĉi = ci/ψ`. Of course, us = 0, since the solid phase is not moving. For the
�uid and gas phase, the Darcy velocity is given by Darcy's law,

u` = K
krel`

µ`
(∇p` + ρ`g) . (1.3.3)

Here, K is the permeability of the rock, krel` the relative permeability of the phase,
µ` the viscosity, p` the pressure, ρ` the density, and g the acceleration of gravity.
While it is common to set pg = pl = p, the pressures of the gas and liquid phases
are, in general, not equal. In cases where the discrepancy is important, we set pl = p
and pg = p+Pc. Here, Pc is the capillary pressure, which can be calculated from the
�uid composition. We refer to [19] for further details.

Usually, the permeability K is taken to be constant. However, precipitation and
dissolution of minerals may change the value of this parameter. To relate rock
permeability to change of porosity, the Kozeny-Carman equation is often used,

K = K0

(
φ

φ0

)3(
1− φ0

1− φ

)2

, (1.3.4)

where K0 and φ0 are the initial permeability and porosity, respectively. Laboratory
tests show that the permeability changes due to CO2 injection may be of signi�cant
importance for certain mineral assemblages[62, 40].

Dispersion is caused by small, turbulent currents occuring at the pore scale dur-
ing advection. The large-scale e�ects of dispersion is similar to that of molecular
di�usion, it causes mass to move from areas of high concentration, to areas of low
concentration. While di�usion is usually neglible in reservoir simulation models, dis-
persion may be of importance. A simple model of dispersion is provided by Fick's
law,

Dispersion = ∇ • (kD ‖u`‖∇ci) ,

where kD is the rock- and �uid-dependent dispersion coe�cient. It should be noted,
however, that many numerical solution methods create arti�cial di�usion, which
is usually of greater magnitude than the physical dispersion described by the term
above. When using a di�usive numerical scheme, one may thus neglect the dispersion
term altogether.
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Chemical reactions is the �nal process that may change the concentrations of the
components. While advection and dispersion only applies to the components in the
mobile phases, reactions may in�uence solid minerals as well. The speci�c mathe-
matical formulation of this term is model-dependent, and will be discussed later. At
present, we simply write

Reactions = Ri (p, T, c1, . . . , cm) ,

where Ri is the molar production rate of component i, per volume. The rate is often
strongly and nonlinearly dependent of other components at the same location, which
complicates the treatment of the mass conservation equation. On the other hand,
unlike advection and dispersion, the reaction term is spatially decoupled. That is,
the reaction rates are independent of the component concentrations at neighbouring
locations. This is an important feature that can be exploited for more e�cient
numerical integration.

In addition to the source terms described above, one can also include external mass
sources in the model, for instance, production and injection wells. If we denote this
additional term by QM , the total equation for mass conservation is given by

∂

∂t
ci = −∇ •

(
ci
ψ`

u`

)
+∇ • (kD ‖u`‖∇ci) +Ri (p, T, c1, . . . , cm) +QM . (1.3.5)

1.4 Energy Balance

The energy conservation equation is the last of the governing set of equations. For
most simulations of CO2 storage scenarios, the reservoir temperature may be re-
garded as constant, or at least time-independent. However, non-isothermal e�ects
can be signi�cant during the early injection period[65], or when considering leakage
of CO2 through abandoned wells[50, 10]. There are also instances where the heat
generated from chemical reactions may play an important role. For instance, it has
been theorised that exothermic geologic reactions might help sustain an optimal tem-
perature for in-situ carbonation[29]. To assess such questions, we need an equation
that describes the evolution of the reservoir temperature. As a starting point, we
use the principle of energy conservation,

Rate of energy change = Convection + Conduction

+Compression/Dissipation. (1.4.1)
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Note that the e�ects of chemical reactions is absent from this equation. While reac-
tions do in�uence the temperature of the reservoir �uid, they only cause a transition
from chemical to thermal energy, and do not a�ect the total internal energy per se.
To capture the thermal e�ects of reactions, we therefore need a relation between the
temperature and the energy. For each component i, the internal energy per mole is
given by

ei = ∆fE
	
i +

ˆ T

T	
Ci dT.

Here, ∆fE
	 is the standard energy of formation per mole, T	 the temperature in the

reference state, and C the molar heat capacity at constant volume. Strictly speaking,
the heat capacity is dependent on pressure as well, but this dependence is usually
small. Assuming no temperature di�erences between the phases, we get

Rate of energy change =
∂

∂t

m∑
i=1

eici

=
∂T

∂t

m∑
i=1

ciCi +
m∑
i=1

ei
∂ci
∂t
,

where we have summed over all the components. Using equation (1.3.5), we can
rewrite the last term as

ei
∂ci
∂t

= −ei∇ • (ĉiui) + eiRi.

As before, ĉi is the interphasial concentration of component i, and ui is the Darcy
velocity for the phase containing the component. We have ignored the dispersion
term, since its thermal e�ect is typically small for the applications we are considering.
Also, we have delayed the inclusion of the source term. With these simpli�cations,
we �nally arrive at

Rate of energy change =
∂T

∂t

m∑
i=1

ciCi −
m∑
i=1

ei∇ • (ĉiu`) +
m∑
i=1

eiRi.

Having established the link between temperature and energy change, we proceed to
de�ne the other terms of equation (1.4.1). First of all, the energy transport due to
convection is given by

Convection = −
m∑
i=1

∇ • (eiĉiui) . (1.4.2)



12 Component Modelling

Again, we can rewrite this term to emphasise its temperature dependence, giving the
equivalent expression

Convection = −
m∑
i=1

ei∇ • (ĉiui)−
m∑
i=1

ĉiCiui • ∇T.

The second term in equation (1.4.1) is conduction, which refers to heat transfer
caused by molecular vibrations. Its large-scale e�ect is to even out temperature
di�erences within the �uid. Conduction is usually modelled by Fourier's law, which
is similar to Fick's law of di�usion,

Conduction = ∇ • (kF∇T ) ,

where kF is called the thermal conductivity. If conduction is the only important
thermal e�ect, (1.4.1) is completely decoupled from the remaining model equations,
allowing the assumption of a constant temperature gradient. Thus, the energy equa-
tion is only useful when the other thermal e�ects are of comparable magnitude.

The last term in (1.4.1) is given by

Compression / Dissipation =
∑
`∈{g, l}

(−p`∇ • u` + τ `:∇u`) ,

where τ is the dissipation tensor, and the sum ranges over the mobile phases. This
expression describes the conversion between mechanical and internal energy, that
is, the heat generated from compression work and viscous dissipation. For typical
applications, both of these terms are much smaller than the other energy terms, and
can be disregarded[15].

As for the mass conservation equation, we can also include external energy sources
in our model, for instance due to injection and production wells. Denoting these
sources by QE, the �nal equation for energy conservation is given by

∂

∂t

m∑
i=1

eici = −
m∑
i=1

∇ • (eiĉiui) +∇ • (kF∇T ) +QE,

or, using the temperature as primary variable,

∂T

∂t

m∑
i=1

ciCi = −
m∑
i=1

ĉiCiui • ∇T −
m∑
i=1

eiRi +∇ • (kF∇T ) +QE. (1.4.3)
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1.5 Numerical Solution of the System

Having established the governing set of equations, we brie�y comment on how the
system can be solved. Our �nal system of equations is abstractly described as

∂p

∂t
=P(p, T, c1, . . . , cm, t) (Pressure equation) (1.5.1a)

∂ci
∂t

=Mi(p, T, c1, . . . , cm, t) (Mass balances) (1.5.1b)

∂T

∂t
= T (p, T, c1, . . . , cm, t). (Energy balance) (1.5.1c)

Usually, the system is �rst discretised in space, before integrating in time (the method
of lines). The computational domain is then divided into discrete grid blocks, and
the spatial di�erential operators are discretised accordingly. There is, of course, more
than one way of doing this. A multitude of di�erent discretisation schemes are found
in the literature, each with their own advantages. It is even possible to use adaptive
schemes, where the spatial grid is changed for every time step.

After discretisation, (1.5.1) becomes a set of ordinary di�erential equations. For sim-
ple models containing few chemical components (for instance, the black-oil model),
it is often feasible to solve this system directly, using an implicit integration method.
This is called a fully coupled, or fully implicit approach. It is a stable and robust so-
lution method, but very memory- and time-consuming if the number of components
is high. For two- and three-dimensional simulations, the di�culties are even more
severe.

An alternative approach is to solve the equations sequentially. For instance, one
can compute the pressure evolution within a time step by assuming that the �ow
determining parameters (e.g. the viscosities and relative permeabilities) are constant.
This way, the pressure equation is decoupled from the other equations, leaving a
smaller system to solve. Having determined the new pressure gradient, one can
solve the mass and energy conservation equations subsequently. Such a procedure is
illustrated in Figure 1.5.1.

Sequential solution methods introduce additional splitting errors because we assume
constant parameters when computing the pressure gradient. On the other hand, the
approach allows smaller step sizes to be used, since each step is faster to compute.
For systems with many components, this bene�t makes sequential methods more
attractive than fully coupled methods. We also note that many variants of sequential
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Figure 1.5.1: A simple splitting scheme

schemes exists. For instance, the pressure equation can be solved together with the
mass conservation equation for CO2 and water, to reduce the splitting errors. It is
also possible to use iterative schemes, in which the pressure equation is re-solved
after the mass and energy change is computed, to correct the splitting errors.

In this thesis, our main focus will be the mass conservation equation, since this is
the part of (1.5.1) that is mostly a�ected by introducing chemically reactive species.
Although the other two equations are a�ected as well, these can usually be solved
by the numerical techniques commonly used for nonreactive models. The mass con-
servation equation, on the other hand, must be solved in an entirely di�erent way
when chemistry is introduced.



Chapter 2

Structure of the Reactive Term

We have now formulated the di�erential equations used to describe reactive �ow
through a porous medum. As we have seen, an accumulation term corresponding
to chemical reactions shows up in both the mass and energy conservation equations.
In this chapter, we will take a closer look at the speci�c form of this term, and
present some geochemical models that are commonly used for simulations of reactive
transport in porous media. As these often give rise to strongly coupled nonlinear
equations, they can only be solved analytically for simple cases.

2.1 The Kinetic Mass Action Law

To begin our discussion, let us consider a single chemical reaction of the form

r1R1 + . . .+ rnRn → p1P1 + . . .+ pmPm, (2.1.1)

where R1, . . . , Rn are the reactants, P1, . . . , Pm the products, while r1, . . . , rn and
p1, . . . , pm are their corresponding stoichiometric coe�cients. In addition, we de�ne
a variable ξ, called the reaction progress variable, or the extent of reaction. This
may be thought of as a hypothetical reaction product, of which one mole is produced
every time the reaction event occurs. A common model for the reaction rate is the
kinetic mass action law,

dξ

dt
= k

(
n∏
i=1

a (Ri)
ri − 1

K

m∏
j=1

a (Pj)
pj

)
. (2.1.2)

15
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In this equation, k is the rate constant, K is the equillibrium constant and a denote
the activity of a component.

We will now give a brief description of each parameter in (2.1.2), how they can be
calculated, and how they depend on the �uid state. One must bear in mind, how-
ever, that neither of the models presented give an entirely accurate description of the
physical processes involved. Geochemical reaction modelling is a complex �eld, and
there exists numerous sources of modelling errors. As always when building a math-
ematical model, there will be a tradeo� between model accuracy and computational
speed. The very simplest models give unreliable results, while it often unnecessary
to use the most comprehensive and time-consuming approaches.

2.1.1 Activity of Gases

The activity of a gaseous component can be computed from its partial pressure ppart
as follows,

a =
ϕppart
p	

,

where p	 is a reference pressure (usually 1 bar), and ϕ is called the fugacity coe�cient.
This parameter can be calculated from the expression

lnϕ =

ˆ p

p0

Z − 1

p
dp,

where Z is the compressibility factor of the gas, and p0 is a pressure level where the
gas behaves ideally. For gaseous CO2 at typical reservoir conditions, the fugacity
coe�cient varies between 0.4 and 0.8.

2.1.2 Activities of Dissolved Species

For a component dissolved in the aqueous phase, the activity is calculated from its
interphasial concentration ĉ,

a = γ
ĉ

ĉ	
,

where ĉ	 is a reference concentration (usually 1 mol/dm3), and γ is the activity
coe�cient. The parameter γ is strongly dependent on the ionic strength I of the
solution, which is de�ned as

I =
1

2

∑
ĉiz

2
i .
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Here, zi is the charge number of component i, and the sum ranges over all the
dissolved species. There are di�erent models for calculating activity coe�cients from
the ionic strength. [20] suggests the Truesdell-Jones activity model, which is given
by

ln (γ) =
−Az2

√
I

1 + αB
√
I

+ βI,

where A and B are temperature- and solvent-dependent parameters, while α and β
are ion speci�c parameters. This model provides acceptable accuracy for the typical
ionic strengths of aquifer brines. Other alternatives include the similar B-dot model,
the simpler Davies equation, and the more accurate Pitzer equations[7].

At the ionic strengths encountered in typical aquifer brines, the activity coe�cients
of charged species are signi�cantly lower than 1. Monovalent species have activity
coe�cients of magnitude 0.6 - 0.9, divalent ions in the range 0.1 - 0.4. Multivalent
ions like Al3+ show even lower values, while the activities of nonpolar species (like
SiO2(aq)) are in the range 1.1 - 1.5.

Inaccurate calculations of activities may a�ect the apparent solubilities of the miner-
als, and is often a major error source in geochemical calculations. Thus, one should
always choose an activity model that re�ects the accuracy requirements of the other
parts of the simulation. To ensure precise activity predictions, it may be helpful
to couple the reactive transport code with an external program specialised for this
purpose. For instance, the widely used speciation program PHREEQC[46], which is
freely available, is designed to be easily integrated with other software.

2.1.3 Activities of Solids and Liquids

For ideally behaving systems, the activity of solids and liquid solvents (like water)
are set to 1. While the activity of water is reduced in solutions of high ionic strength,
the activity coe�cient is still close to 1 for typical aquifer conditions. For instance,
in sea water, H2O has an activity of 0.95. Consequently, the error of assuming ideal
activity is not as big for water as for aqueous ions. Details on how to predict the
activity of water more accurately may be found, for instance, in [7]. Such models are
also implemented in software like PHREEQC.
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2.1.4 The Equillibrium Constant

We �rst de�ne the ion activity product Q, which is given by the relation

Q =

∏n
i=1 a (Ri)

ri∏m
j=1 a (Pj)

pj .

The equillibrium constantK is the value of the ion activity product when the reaction
rate is zero. This value may be calculated from thermodynamic data, using the
relation

RT lnK = −∆H	 + T∆S	. (2.1.3)

Here, ∆H	 is the standard enthalpy change for the reaction, ∆S	 is the standard
entropy change, and R is the gas constant. The equillibrium constant is only negligi-
bly a�ected by pressure changes. This may seem counterintuitive, as the solubility of
CO2, for instance, increases signi�cantly with the pressure. However, this is mainly
due to the increased activity of the gaseous CO2 component. On the other hand,
K is clearly dependent on the temperature. If a tabulated equillibrium constant K0

at a certain reference temperature T0 is available, one may use (2.1.3) to calculate
K at a di�erent temperature, by assuming that ∆H	 and ∆S	 change little with
temperature. This is called the van 't Ho� equation,

ln (K/K0) = −∆H	

R

(
1

T
− 1

T0

)
.

For typical mineral dissolution reactions (see Table 2.1.2), ∆H	 varies between -
600 kJ/mol (highly exothermic) and 30 kJ/mol (slightly endothermic). Temperature
changes can have a large impact on the equillibrium constant if the reaction enthalpy
is large. For instance, if ∆H	 = −600 kJ/mol, a temperature increase from 80 ◦C to
100 ◦C may reduce the equillibrium constant by a factor of 10−5. As a consequence,
minerals that are stable in one region of the reservoir, may be unstable in another
region, even if the composition of the pore �uid is equal at both locations.

The dissolution of CO2 into water is also a temperature-dependent process, with
∆H	 = −20 kJ/mol. Thus, the solubility of the gas decreases with increasing tem-
peratures. As the CO2 dissolution process is often important to model accurately,
CO2 solubility has been tested experimentally for large ranges of pressure, tem-
perature and salinity conditions. Such data have been used to construct accurate
expressions for the solubility of CO2, which may be applied independently of the
chosen activity and fugacity models (see, for instance, [9]).
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Figure 2.1.1: Temperature dependence for some equillibrium constants
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Figure 2.1.2: Temperature dependence for some rate constants
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2.1.5 Equillibrium State Expression

From (2.1.2), it is clear that the reaction rate is zero whenever Q = K. However,
since concentrations never can be negative, the reaction rate may also be zero if any
of the reactants are absent from the system. For instance, if the brine is subsaturated
with respect to a certain mineral, the mineral will dissolve until either saturation is
acheived (which corresponds to Q = K), or until the amount m of mineral present
have reached zero. Thus, the equillibrium condition can be expressed as

Q = K, m > 0 ∧ m = 0, Q < K.

Here, it is assumed that the mineral appears on the left-hand side of (2.1.1). Kräutle[33]
showed that this condition can be expressed compactly as one single equation,

min (m, K −Q) = 0. (2.1.4)

Thus, whenever a mineral reaction satis�es (2.1.4), the dissolution/precipitation rate
is zero, and chemical equillibrium has been attained. When �nding equillibrium
concentrations numerically, we will use a slightly di�erent form of this expression,

min (m, lnK − lnQ) = 0, (2.1.5)

since the two arguments m and ln (K/Q) are then of the same magnitude.

2.1.6 The Rate Constant

A common model for the rate constant k is the Arrhenius equation,

k = Ae−Ea/RT ,

where Ea is the apparent activation energy of the reaction, andA is the pre-exponential
factor, both of which are determined experimentally. For a dissolution or precipita-
tion reaction, A is proportional to the mineral surface area, which is usually taken
to be a simple function of its volume fraction. For instance, one may set

A = A0 + A1c, (2.1.6)

where c is the mineral's bulk concentration, A1 is the reactive surface area per mole,
and A0 is the �minimal� reactive area per volume. This is a very crude model,
since surface areas change in complex ways during dissolution and precipitation. In
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particular, it is di�cult to estimate the �reactive surface� for a mineral which is not
initially present. Nevertheless, as few alternatives exists, the simple relation (2.1.6)
is commonly used.

Often, rate constants for mineral reactions are tabulated at a certain reference tem-
perature. Rearranging Arrhenius' equation, these values can be used to calculate
rate constants at di�erent temperatures as well,

ln (k/k0) = −Ea
R

(
1

T
− 1

T0

)
.

Here, k0 is the reference rate, and T0 the reference temperature. For typical disso-
lution reactions, Ea varies between 20 kJ/mol and 90 kJ/mol (see Table 2.1.2). To
illustrate the temperature e�ects on reaction rates, consider the dissolution rate of
quartz relative to that of kaolinite. At 70 ◦C, the rate constant for kaolinite is 40
times larger than the quartz rate. If the temperature is increased to 130 ◦C, however,
the kaolinite reaction becomes 5 times faster, while the rate of the quartz reaction
increases by a factor of 100. Thus, at 130 ◦C, both rate constants are nearly equal.

2.1.7 Rates of Composite Reactions

The kinetic mass action law (2.1.2) is designed to work well for chemical reactions
that occur in a single reaction step. However, dissolution and precipitation reactions
are often composed of several substeps. For instance, the dissolution of calcite

CaCO3 → Ca2+ + CO3
2−, (2.1.7)

may for instance occur by the following sequence of intermediate substeps,

CaCO3 + H+ → Ca2+ + HCO3
− (2.1.8)

HCO3
− → H+ + CO3

2− (2.1.9)

According to [47], this is the dominant dissolution mechanism in acid solutions with
low CO2 content. Here, H+ acts like a catalyst to the composite reaction (2.1.7).
Consequently, the concentration of H+ will in�uence the reaction rate. Instead of
including intermediate substeps in the mathematical model, one may choose to retain
only the overall reaction formula, and add some extra terms to the reaction rate to
account for catalysing species. The expression most commonly used for this purpose,
is the one suggested by [58] (slightly simpli�ed),

dξ

dt
= k

(
q∏
i=1

a (Ti)
ti

)(
1− Q

K

)
. (2.1.10)
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Again, k is the rate constant, K is the equillibrium constant, and Q is the ion
activity product. The species T1, . . . , Tq are the ones that catalyse the reaction, and
t1, . . . , tq are empirically determined powers.

To illustrate the use of formula (2.1.10), suppose that (2.1.8) is the rate determining
step of the calcite dissolution reaction (2.1.7). A reasonable reaction rate model is
then

dξ

dt
= k · a (CaCO3) · a

(
H+
)(

1−
a
(
CO3

2−) · a (Ca2+)

K · a (CaCO3)

)
. (2.1.11)

Here, the species participating in the overall reaction (2.1.7) are used to calculate
the ion activity product Q, while the species on the left hand side of (2.1.8) are
used to determine the catalytic factor. If we assume that the second step (2.1.9) is
an equillibrium reaction, equation (2.1.11) is actually equivalent to the kinetic mass
action law (2.1.2), applied to the rate determining step (2.1.8).

It is important to note that changes in the �uid composition and temperature can
favor other intermediate reactions, causing a di�erent set of species to become cat-
alytic. For instance, if the aqueous CO2 content is high, the reaction occurs by the
mechanism

CaCO3 + H2O + CO2(aq)→ Ca2+ + 2HCO3
−

HCO3
− → H+ + CO3

2−

HCO−3 + H+ → H2O + CO2(aq).

Here, CO2(aq) is the major catalytic species. Often, rate laws for di�erent mecha-
nisms can be added to give an expression valid for broader ranges of temperature
and �uid composition.

2.1.8 Compilations of Kinetic Data

To simulate a realistic scenario of geochemical processes, one needs thermodynam-
ical and kinetic data for a range of di�erent minerals. Compilations of such data
are sometimes found in the literature, see Table 2.1.1 and Table 2.1.2 . Curiously,
the kinetic data in these compilations may sometimes di�er signi�cantly, even when
they are citing the same primary sources. For instance, the activation energy of the
kaolinite dissolution reaction is reported to be 29.8 kJ/mol by [27], and 62.8 kJ/mol
by [63]. While the source of the discrepancies remain unclear, they re�ect the level
of uncertainty underlying dissolution and precipitation models. When geochemistry
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Reference Name of simulator

Hellevang [20] ATHENA
Xu et al. [63] TOUGHREACT

Johnson et al. [27] NUFT
Palandri [44] (none)

Table 2.1.1: Compilations of kinetic data

is coupled to a transport solver, it is also common to use very simple expressions
for the reaction rates (e.g., expression (2.1.10) without catalytic terms). This adds
another layer of uncertainty. Thus, the reaction paths predicted from such models
may not be entirely trustworthy. However, the end results are usually determined by
equillibrium parameters, which are independent of the reaction model chosen. Equi-
llibrium data can be calculated directly from the thermodynamical properties of the
species involved, and are therefore more reliable that the kinetic parameters used in
the rate laws. Parameters for equillibrium calcuations are also more readily available
than kinetic data. For instance, [3] contains a comprehensive list of thermodynamic
parameters for a range of di�erent minerals.

2.2 Chemical Reaction Networks

We have now seen how the rate of an individual reaction may be calculated. However,
the molar production rate of a component may be a�ected by a number of di�erent
chemical reactions at once. To illustrate, we consider a small reaction network,

A→ B (2.2.1a)

2B → C. (2.2.1b)

Here, the species A, B and C are connected by two simple chemical reactions. Let r1

and r2 be the rates of the individual reactions, and RA, RB, RC the production rates
of the components. The reaction rates are the derivatives of the reaction progress
variables, r = d

dt
ξ, and the component production rates are the derivatives of the

concentrations, R = d
dt
c. The relation between them is linear, given by

RA = −r1

RB = r1 − 2r2

RC = r2.



24 Structure of the Reactive Term

ρ/ mol
dm3 kmax/

mol
yr dm3 Ea/

kJ
mol

∆H	/ kJ
mol

log10K

Calcite + CO2(aq) + H2O � Ca2+ + 2HCO−
3 27.08 equillibrium - -16.0 -4.50

Magnesite + CO2(aq) + H2O � Mg2+ + 2HCO−
3 35.58 3.16× 10−1

62.8 -34.8 -4.05

Siderite + CO2(aq) + H2O � Fe2+ + 2HCO−
3 34.18 3.16× 10−1

62.8 -22.8 -6.54

Dawsonite + 3H+ �

Na+ + Al3+ + HCO−
3 + 2H2O

16.81 2.36× 100 62.8 -68.6 3.66

Albite + 4H+ � Na+ + Al3+ + 3SiO2(aq) + 2H2O 9.99 2.76× 10−3
80.3 -44.1 2.08

K− Feldspar + 4H+ �

K+ + Al3+ + 3SiO2(aq) + 2H2O
9.20 6.24× 10−4

51.7 -16.2 -0.96

Quartz � SiO2(aq) 43.77 1.88× 10−5
87.7 32.9 -4.00

Chalcedony � SiO2(aq) 43.27 1.36× 10−2
87.7 31.4 -3.73

Kaolinite + 6H+ � 2Al3+ + 2SiO2(aq) + 5H2O 10.07 1.58× 10−2
29.0 -136.3 5.44

Clinochlore + 16H+ �

5Mg2+ + 2Al3+ + 3SiO2(aq) + 12H2O
4.77 1.18× 10−2

88.0 -596.9 65.87

Daphnite + 16H+ �

5Fe2+ + 2Al3+ + 3SiO2(aq) + 12H2O
4.49 1.18× 10−2

88.0 -492.1 49.78

Muscovite + 10H+ �

K+ + 3Al3+ + 3SiO2(aq) + 6H2O
7.10 3.94× 10−3

22.0 -220.0 11.53

Phlogopite + 10H+ �

K+ + Al3+ + 3Mg2+ + 3SiO2(aq) + 6H2O
6.71 1.58× 10−2

29.0 -302.8 36.76

Annite + 10H+ �

K+ + Al3+ + 3Fe2+ + 3SiO2(aq) + 6H2O
7.91 1.58× 10−2

29.0 -252.2 28.79

Labradorite + 32
5

H+ �

2
5

Na+ + 3
5

Ca2+ + 8
5

Al3+ + 12
5

SiO2(aq) + 16
5

H2O
9.93 5.19× 10−1

42.1 -219.9 21.14

Gibbsite + 3H+ � Al3+ + 3H2O 30.13 8.64× 10−2
53.0 -95.1 6.97

The rate constant k is calculated as k = kmaxV , where V is the mineral's volume fraction.

It is assumed that none of the aqueous species act catalytically. All parameters are reported

at a reference temperature of T	 = 298.15K.

Table 2.1.2: Kinetic parameters used in the ATHENA simulator
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Using matrix notation, we can express this as RA

RB

RC

 =

 −1 0
1 −2
0 1

[ r1

r2

]
,

or simply
R = S>r. (2.2.2)

The matrix S is called the stoichiometry matrix. Each row in this matrix represents
a reaction, each column a species. Note how the stoichiometric coe�cients of (2.2.1)
reappear in the matrix. For every row, negative entries correspond to reactants,
positive entries to products, and the zeros are components that do not participate
in the reaction.

2.2.1 Reaction Paths for Closed Systems

For a closed chemical system (i.e., no �uid transport), the evolution of the compo-
nents participating in a reaction network is given by the di�erential equation

dc

dt
= S>r(c). (2.2.3)

Here, the number of equations equals the number of components. The solution of
this equation is called a reaction path. For very simple rate expressions only, reaction
paths can be found analytically. As an example, we consider the system

A→ C (2.2.4a)

B → C (2.2.4b)

with the reaction rates

r1 = k1 (cA − cC/K1)

r2 = k2 (cB − cC/K2) ,

where K1, K2 are equillibrium constants, and k1, k2 are kinetic constants. This gives
a linear system of equations,

d

dt

cAcB
cC

 =

 −k1 0 k1/K1

0 −k2 k2/K2

k1 k2 − k1
K1
− k2

K2

cAcB
cC

 ,
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which can be solved by standard methods of eigenvalue decomposition. For instance,
if K1 = 1

2
, K2 = 1

3
, and k1 = k2 = 1, the solution to the equation is

cAcB
cC

 =
1

6
(cA0 + cB0 + cC0)·

23
1

+e−6t

30
(−cA0 − cB0 + 5cC0)·

−2−3
5

+e−t

5
(−3cA0 + 2cB0)·

−11
0

 ,

where cA0, cB0 and cC0 are the initial concentrations of species A, B and C, re-
spectively. We see that the �rst fundamental solution is the equillibrium solution,
which is approached as t→∞. The other fundamental solutions correspond to two
composite reactions,

2A+ 3B
2r1+3r2−−−−→ 5C (2.2.5a)

A
r1−r2−−−→ B, (2.2.5b)

that decouple the system. Both of these are linear combinations of the original two
reactions, as indicated, and neither of them in�uences the reaction rate of the other.
Reaction (2.2.5a) is 6 times faster than (2.2.5b), as evident from the eigenvalues. A
dimensionless plot of the solution for di�erent initial values is shown in Figure 2.2.1.
For both sets of initial conditions, we see that the solution is dominated by the
fast reaction at �rst. Eventually, the slower reaction begins to in�uence the system,
which then gradually approaches equillibrium.

2.2.2 The Thermal Reactive Term

Recall that the temperature conservation equation (1.4.3) contains a reactive term
of the form

m∑
i=1

eiRi,

where ei is the speci�c internal energy for the component i, and Ri is the production
rate of i due to chemical reactions. Using vector notation and equation (2.2.2), this
term can be rewritten as

m∑
i=1

eiRi = e •R

= (Se)> r.



2.2 Chemical Reaction Networks 27

 

 

A
B
C

(a) First set of initial conditions
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(b) Second set of initial conditions

Figure 2.2.1: Sample reaction paths for (2.2.4)
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Here, the term Se is actually equivalent to the vector of reaction energies. Thus, for
a speci�c reaction j, we may set

(Se)j = ∆Ej ≈ ∆E	j ≈ ∆H	j .

While the reaction energy ∆E is not precisely equal to the standard reaction en-
thalpy ∆H	, the di�erence is small. At most, they are of the same magnitude as
the dissipation and compression terms which we have already excluded from (1.4.3).
Therefore, it is common to simply use ∆H	, which is readily available in thermody-
namical tables.

2.2.3 Reaction Paths for Open Systems

We now turn to the question of how to couple chemical reactions with �uid transport.
Recall from Section 1.3 that the mass conservation of a species i is given by

∂ci
∂t

= L (p, T, ci) +Ri (p, T, c1, . . . , cm) ,

where we have omitted the external source term for simplicity, and expressed disper-
sion and advection abstractly by the transport operator L. If we assume that the
mass conservation equation is decoupled from the temperature and pressure equa-
tions by operator splitting, as depicted in Section 1.5, it su�ces to indicate the
concentration dependence only,

∂ci
∂t

= L (ci) +Ri (c1, . . . , cm) .

Using vector notation, this is equivalent to

∂c

∂t
= L (c) + S>r (c) . (2.2.6)

Alternatively, one can solve the temperature and mass conservation equations si-
multaneously, which will give a combined equation of roughly the same structure as
(2.2.6). In that case, L will be expanded to include the temperature conduction and
convection terms, and S will include an extra column corresponding to the reaction
enthalpies.

To illustrate how �uid �ow may interact with chemical reactions, let us once again
consider a simple example that is analytically solvable. Speci�cally, let us calculate
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SiO (aq)2Water

Figure 2.2.2: Flushing of a quartz sample

the concentration of SiO2(aq) within a one-dimensional, quartz dominated core sam-
ple, as the sample is �ushed with pure water at a constant rate (Figure 2.2.2 ). The
mineral dissolution reaction is simply

Quartz→ SiO2(aq),

with the reaction rate
r = k (1− a/K) ,

where a is the activity of SiO2(aq), K is the equillibrium constant, and k is the
kinetic rate constant. Recall that the activity is given by

a = φγc,

where φ the porosity, γ is the activity coe�cient, and c the bulk concentration. The
equillibrium concentration of SiO2(aq) is thus readily seen to be

ceq =
K

φγ
.

Let us assume that φ and γ are constants, as well as the darcy velocity u. The
evolution of c is then given by

∂c

∂t
= −u

φ

∂c

∂x
+

k

ceq
(ceq − c) .

If we assume that SiO2(aq) is in equillibrium with quartz initially, the analytical
solution is given by the method of characteristics,

c(t, x)

ceq
=

{
1− exp

(
− kφ
cequ

x
)

if xφ < ut

1 if xφ > ut.

The dimensionless parameter D = kφL
cequ

= kφ2γL
Ku

, where L is the length of the sample,
determines the shape of the solution. This parameter describes the time scale of the
advection relative to reaction, and is often called the Damköhler number.
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Figure 2.2.3: Flushing of a quartz sample

For the quartz dissolution reaction, D is strongly dependent on temperature. To
illustrate, let us assume that φ = 0.25, γ = 1, L = 1 m and u = 1 cm/day. Then, we
can use the thermodynamic parameters in Table 2.1.2 to �nd D in the range 50 ◦C
to 300 ◦C:

D T

0.013 50 ◦C
0.21 100 ◦C
1.7 150 ◦C
9.0 200 ◦C
103 300 ◦C

Table 2.2.1: Damköhler numbers for the �ushing of quartz

A plot of the �nal-state concentration distribution for this range of Damköhler num-
bers is shown in Figure 2.2.3. For high temperatures, D is large, and the process is
dominated by chemistry. Consequently, most of the �uid is in chemical equillibrium
with the quartz. With decreasing temperatures, D decreases as well, and the process
becomes dominated by advection instead. In this case, the dissolution rate is not
su�ciently fast to replenish the SiO2(aq) that is �ushed out by water injection, and
the sample becomes �lled with pure water instead.



Chapter 3

Sti�ness of Reactive Systems

In Section 2.2.1, we calculated the reaction path for a simple reaction network. Dur-
ing the solution procedure, we identi�ed two di�erent time scales that characterised
the system, one six times larger than the other. For realistic chemical systems,
the slowest and fastest solution modes often di�er by many orders of magnitude, a
property called sti�ness. It is well-known that sti� systems are challenging to solve
numerically, and that implicit integration methods must be used to gain su�cient
numerical stability. In this chapter, we will try to give the reader an intuitive feeling
for the kind of di�culties that may arise. Furthermore, we will discuss a class of
Runge-Kutta methods that are well suited to cope with sti�ness.

3.1 Sources of Sti�ness

For a di�erential equation system of the form

dy

dt
= f(y),

the time scales of the solution can be identi�ed by considering the eigenvalues of the
system's Jacobian matrix,

J =
∂f

∂y
.

Speci�cally, the ratio of the largest to the smallest time scale is the ratio of the
largest to smallest nonzero eigenvalue1 of −J. This quantity is called the sti�ness

1If any of the eigenvalues are negative or complex, absolute values are used.

31
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ratio of the system. In this section, we will be concerned with the sti�ness ratio of
the mass conservation equation. For nonreactive models, the equation is nonsti� as
long as no di�usion is included in the model. Even with di�usion, the equation is
only mildly sti�, and can be solved by stabilised explicit approaches like the Runge-
Kutta-Chebyshev[60] methods. When chemistry is introduced, the sti�ness quickly
becomes so severe that implicit methods are the only viable solution alternative. In
general, there are four main chemistry-related factors that may contribute to a large
sti�ness ratio. We will now describe each of these separately, and illustrate their
e�ect by using analytically solvable examples.

3.1.1 Rate Constants

If a chemical system includes reactions with very di�erent rate constants, this will
obviously in�uence the dominating time scales of the system. To illustrate this,
consider a closed system (i.e., no mass transport) of three components A, B and C,
connected through the chemical reactions

A→ B

B → C.

Let the reaction rates be given by

r1 = k1 (cA − cB)

r2 = k2 (cB − cC) .

Here, cA, cB and cC are the concentrations of each component. The equillibrium
constants of both reactions are 1, while the reaction rates are given by the parameters
k1 and k2. Since no mass transport is involved, the concentrations change with time
according to

d

dt

cAcB
cC

 =

−k1 k1 0
k1 −k1 − k2 k2

0 k2 −k2

cAcB
cC

 .
The Jacobian of this system is singular, so one of the eigenvalues is 0. The other two
are given by

−λ1 = k1 + k2 −
√
k1

2 − k1k2 + k2
2

−λ2 = k1 + k2 +
√
k1

2 − k1k2 + k2
2
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If k1 = k2, we have λmax/λmin = 3, and the system is nonsti�. However, if k1 � k2,
the sti�ness ratio is approximately 2k1

k2
+ 1, which may be arbitrarily large. This

shows that di�ering rate constants can indeed be a source of sti�ness in a reactive
system. As evident from Table 2.1.2, this is a commonly occuring situation when
simulating geochemical reactions.

3.1.2 Equillibrium Concentrations

The equillibrium constants determine the ratio between species concentrations when
chemical equillibrium has been attained. Sti�ness can be introduced to the system
if the magnitude of these concentrations are very di�erent. We can show this by
considering a closed three-component system once again. This time, we de�ne the
reactions

A→ C

B → C,

with the reaction rates

r1 = cA − cC/K1

r2 = cB − cC/K2.

Here, the rate constants are both equal to 1, while the equillibrium constants are
given by K1 and K2. The evolution of the concentrations is given by

d

dt

cAcB
cC

 =

−1 0 1/K1

0 −1 1/K2

1 1 − 1
K1
− 1

K2

cAcB
cC

 ,
and the nonzero eigenvalues of the system are simply

−λ1 = 1

−λ2 =
1

K1

+
1

K2

+ 1.

Thus, if the equillibrium concentration of C is small compared to either A or B, the
eigenvalue ratio is large, and the system may be sti�. Large di�erences in equillibrium
concentrations is a commonly occuring situation. For instance, in an aqueous solution
saturated with CO2, the equillibrium concentration of CO2(aq) is about 10 times as
high as the concentration of CO2−

3 . Despite this large concentration di�erence, is is
important to retain both species in the model, as the reaction rates of the system
are greatly in�uenced by changes in their concentrations.
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A B

Figure 3.1.1: A simple reaction-advection system

3.1.3 Advection

If a reaction system is open, that is, if the system can exchange mass with the
surroundings, yet another time scale is introduced. We illustrate this by considering
a simple reaction between two species,

A→ B,

occuring in a tank that is �ushed with pure water (see Figure 3.1.1 ). The reaction
rate is given by

r = k (cA − cB) .

Despite this being a zero-dimensional system, it gives rise to a system of ordinary
di�erential equations that resemble a spatial discretisation of the mass conserva-
tion equation. If u is the volumetric out�ow rate, scaled by the tank volume, the
concentrations in the tank are described by the equation

d

dt

[
cA
cB

]
=

[
−u− k k

k −u− k

] [
cA
cB

]
.

This time, the eigenvalues are given by

−λ1 = u

−λ2 = u+ 2k.

The eigenvalue ratio is 2 k
u

+ 1, which is large if the reaction rate is much faster
than the �ow rate. This is a commonly occuring situation as well. For instance,
gaseous CO2 that has gathered beneath an impermeable cap rock, may dissolve into
the aquifer brine below, and set up slowly migrating convective currents. In this
context, the rate of many mineral reactions will be much faster than the �ow rate.
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3.1.4 Nonlinearity

The last source of sti�ness we will demonstrate, is the e�ect of nonlinear reaction
rates. For this purpose, we once again consider the system depicted in Figure 3.1.1.
This time, we let the reaction between them be slightly di�erent,

A→ 2B,

with the reaction rate
r = k

(
cA − cB2/K

)
.

Also, we let the tank be �ushed by a solution where the concentrations of A and B
are in equillibrium. Then the concentrations in the tank will eventually approach
the concentrations of the incoming �uid. We already know that sti�ness may be
introduced to the system if equillibrium concentrations are widely di�erent. To
eliminate this e�ect, we set cA = cB = K at the in�ow boundary.

With these assumptions, concentrations evolve according to

d

dt
cA = −u (cA −K)− k

(
cA − cB2/K

)
(3.1.1a)

d

dt
cB = −u (cB −K) + 2k

(
cA − cB2/K

)
. (3.1.1b)

Since the reaction rate is nonlinear, the Jacobian of the system is no longer a constant
matrix. Thus, the characteristic time scales of the system are dependent on �uid
composition, and may also change with time. Indeed, the Jacobian is given by

J =

[
−u− k 2kcB/K

2k −u− 4kcB/K

]
,

and its eigenvalues are

−λ1 = u

−λ2 = k + u+ 4kcB/K.

Assuming that the time scales of reaction and advection are equal (i.e., u = k),
the sti�ness ratio is 2 + 4cB/K. As the solution is approaching equillibrium (cB →
K), the ratio approaches 6, and the equation is nonsti�. However, if the original
concentration of B in the tank is much larger than K, the equation may be sti�
during the �rst part of the solution period. In a simulation of CO2 migration, this
situation frequently occurs, since the equillibrium concentrations of many aqueous
species change by orders of magnitude if a reservoir region is �ushed with CO2.
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3.2 Sti� Instability

To demonstrate why explicit integration methods have trouble integrating sti� equa-
tions, we try to solve an advection-reaction equation numerically. Consider once
again the system shown in Figure 3.1.1, with the reaction rate given in Section 3.1.4.
Furthermore, assume that the in�ow concentrations of both species are zero, and
that the initial tank concentrations are both equal to K. Thus, the main source of
sti�ness in our system is the relation between the reactive and advective time scale.

Scaling the concentrations by their initial values, we get the following system of
di�erential equations,

d

dt
cA = −ucA − k

(
cA − cB2

)
(3.2.1a)

d

dt
cB = −ucB + 2k

(
cA − cB2

)
. (3.2.1b)

Furthermore, we choose an integration interval of [0, 1
u
], which matches the time

scale of the advection. Although we can not solve the system analytically, it can be
partially solved by observing that

d

dt
(2cA + cB) = −u (2cA + cB) ,

which has the exact solution
2cA + cB = 3e−ut.

This relation can be substituted into (3.2.1), and we are left to solve either of the
one-dimensional equations

d

dt
cA = −ucA − k

(
cA −

(
3e−ut − 2cA

)2
)

(3.2.2a)

d

dt
cB = −ucB + k

(
3e−ut − cB − 2cB

2
)
. (3.2.2b)

3.2.1 Explicit Euler Method

As there are no simple ways of solving (3.2.2) analytically, we must proceed by
numerical means. First, we try to solve the equation using the explicit Euler method.
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Figure 3.2.1: Explicit solution with u = k

For a di�erential equation d
dt
y = f(y, t), one explicit Euler step of length ∆t is given

by
yn+1 = yn + ∆t f (yn, tn) .

For each time step, the algorithm �nds the next function value by a linear extrapola-
tion, based on the current slope. The resulting step value will not lie on the correct
solution curve, since the true solution is curving. Nevertheless, if the equation is
nonsti�, the slopes of neighbouring solution curves are almost the same as for the
true solution. Thus, the error stays bounded throughout the integration interval.

In �gure 3.2.1, Equation (3.2.2b) is solved with k = u, using 5 explicit Euler steps.
The true solution and neighbouring solution curves are also shown. In this case, the
reaction rates are of the same magnitude as the advection velocity, and the equation
is nonsti�. We clearly see that the slopes of neighbouring curves are similar to that of
the true solution, and the method therefore experiences no problems. If we increase
the reaction rate, however, the slopes are changing much more rapidly, and we may
be forced to reduce the step length to avoid instabilities. This is clearly seen in Figure
3.2.2, where we have solved the equation for k = 10u, using increasingly larger steps.
As long as the step length is chosen to match the smallest time scale of the system
(the reaction scale), the explicit method integrates the equation accurately. But
if the step length is increased slightly above this level, the computed solution will
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Figure 3.2.2: Explicit solution with k = 10u

quickly diverge in an oscillating fashion.

The argument presented above applies to higher-order explicit methods as well, as
they are all based on extrapolation of some kind. We note that problems with strict
accuracy requirements have to be integrated with small time steps regardless of the
problem's sti�ness ratio. Therefore, large eigenvalue di�erences is only a problem
when error tolerances are crude, and when the integration interval is determined by
the magnitude of the largest eigenvalue.

3.2.2 Implicit Euler Method

Now, let us test the performance of the implicit Euler method on (3.2.2b). Recall
that one implicit Euler step is given by

yn+1 = yn + ∆t f (yn+1, tn+1) ,

when applied to an equation of the form d
dt
y = f(y, t). Since the step value yn+1

appears on both sides of this equation, it must be found using an iterative algorithm
designed for nonlinear equations. Roughly speaking, the implicit Euler method tries
to �nd a step value yn+1 such that a backward linear extrapolation from yn+1 is equal
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Figure 3.2.3: Implicit solution with k = u

to the value yn at the beginning of the time step. For nonsti� equations, the algo-
rithm requires just as many time steps as its explicit counterpart, as shown in 3.2.3 .
Since an implicit time step is computationally costly, the explicit method clearly has
the best performance in this case. However, this �gure changes dramatically with
increasing sti�ness. While sti�ness restricts the time steps of explicit methods, it
permits implicit methods to take even larger steps. For instance, if k = 10u, the
equation is solved with acceptable accuracy by a single implicit step, as shown in
Figure 3.2.4.

3.2.3 Linear Stability Analysis

To explain the di�erence in stability properties for the implicit and explicit Euler
method, we will make use of the di�erential equation

dy

dt
= λy, y0 = 1, (3.2.3)

known as Dahlquist's test equation. This equation is often used to measure the stabil-
ity performance of a numerical method, since it is simple to analyse. Furthermore,
the performance on (3.2.3) carries on to more complicated problems as well. All
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Figure 3.2.4: Implicit solution with k = 10u

multidimensional linear equations can, for instance, be decoupled into several one-
dimensional test equations. For each of these, the parameter λ will correspond to
an eigenvalue of the coe�cient matrix. Similarly, nonlinear equations may be locally
decoupled by the eigenvalues of the system's Jacobian matrix. Many of the stabil-
ity results on (3.2.3) are therefore valid for the nonlinear case as well. One must,
however, be aware of certain phenomena that complicate the analysis of nonlinear
problems. Finally, we note that non-autonomous di�erential equations can be cast
into autonomous form by introducing an extra variable ∂u

dt
= 1 to the system. This

allows them to be analysed within the same framework as autonomous equations.

Now, consider an arbitrary one-step method, applied to the test equation. Let y1

be the computed value after one time step of length ∆t. It turns out that y1 is
dependent on the dimensionless, complex-valued quantity z = λ∆t only. Thus we
can write y1 = R(z), which is called the stability function. For the exact analytical
solution operator, given by R(z) = ez, we have |R(z)| < 1 whenever the real part of
λ is negative. This is not always the case for a numerical method.

Let us calculate the stability function of Euler's method, which performed badly on
the sti� equation. One time step, applied to the test equation, is given by

y1 = 1 + λ∆t,
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so we have
R(z) = 1 + z.

Here, we see that a λ with a large negative real part may actually cause the numerical
solution to grow, even if the true solution is decaying. To ensure stability, we must
require |1 + z| < 1. This is exactly the phenomenon we observed in Section 3.2.1.
There, we tried to solve an equation where the magnitude of one eigenvalue was large
compared to the integration interval. This forced the time step to be reduced below
the accuracy requirement level, to avoid exponential error growth.

In Section 3.2.2, we observed that the implicit Euler method integrated the sti�
equation without problems. If we apply the method to the test equation, we get

y1 = 1 + λy1∆t,

and the stability function is readily seen to be

R(z) =
1

1− z
.

Here,|R(z)| < 1 for all z with negative real part, just like the exact solution operator.
That is, if the true solution is decaying, the numerical solution will decay as well.
The step length can therefore be determined by the required accuracy, instead of
stability considerations. This is the reason of why the implicit method performed so
well.

The region region of the complex plane for which |R(z)| < 1, is called the region
of absolute stability for the numerical method. The analysis above shows that the
explicit Euler method has a bounded stability region, which is why it performs badly
on sti� equations. On the other hand, the stability region of the implicit Euler
method covers the entire left half of the complex plane. This property, called A-
stability, allows the implicit method to use large time steps, even though some of the
system's eigenvalues are large compared to the integration interval.

Often, A-stability is not su�cient to ensure proper behaviour when applied to sti�
equations. For instance, consider the stability function of the trapezoidal method

R(z) =
1 + 1

2
z

1− 1
2
z
,

which is readily seen to satisfy the stability criterion for all z values with a nega-
tive real part. However, the trapezoidal method has the undesirable property that
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Figure 3.2.5: Trapezoidal and implicit Euler method with k = 10u

|R (z)| → 1 as z →∞. Thus, solution components with a large z value are damped
out very slowly. Figure 3.2.5 shows the trapezoidal method applied to (3.2.2b), with
a step length of 1

5u
, and with an initial value slightly below the equillibrium value.

We see that the numerical errors decay very slowly, since R(z) is close to 1 for the
fastest solution component. On the other hand, the stability function of the im-
plicit Euler method satis�es limz→∞ |R(z)| = 0, just like the exact solution operator.
Methods with this property, that are also A-stable, are called L-stable. As evident
from Figure 3.2.5, the L-stable Euler method has no problems integrating past the
initial transient solution.

3.3 Implicit Runge-Kutta Methods

While the implicit Euler method is very robust, it is only �rst-order accurate with
respect to the step length. Fortunately, it is possible to derive higher-order integra-
tion methods that are equally well suited to handle sti� equations. If the integration
interval is long, the solution smooth, and the error tolerances strict, methods of the
multistep type give the best performance[18]. For this reason, multistep methods are
popular for simulating batch reactor systems, which are reactive systems that do not
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involve �uid �ow. For instance, the widely used batch reactor simulators KINSIM[4],
COPASI[24] and CHEMKIN[28] are all based on multistep integration methods.

However, these methods may not be the best choice for complex reaction problems
involving �ow. As such problems are usually solved by operator splitting, the integra-
tion intervals are small, and the splitting errors destroy the high accuracy of multistep
methods. A better alternative is to use one-step methods, which we will consider in
this section. Speci�cally, we will focus on implicit Runge-Kutta methods, which have
been successfully applied to other reaction-convection problems[56, 35, 30]. Other
alternatives include the Rosenbrock methods, which have been recommended for
certain atmospheric chemistry problems[55], or the extrapolation methods[18].

3.3.1 De�nitions

In general, a Runge-Kutta method is an integration rule that can be written in the
form

g1 =yn + ∆t
∑

a1jf (gj)

g2 =yn + ∆t
∑

a2jf (gj)

...

gN =yn + ∆t
∑

aNjf (gj)

yn+1 =yn + ∆t
∑

bjf (gj) ,

when applied to an ordinary di�erential equation

dy

dt
= f(y).

In (3.3.1), g1, . . . , gN are called internal stages. The coe�cients used in (3.3.1)
are speci�c to each Runge-Kutta method. Often, the coe�cients are displayed in a
so-called Butcher tableau,

c1 a11 · · · a1N
...

...
...

cN aN1 · · · aNN
b1 · · · bN ,
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where the leftmost column is de�ned by ci = ai1 + . . . + aiN . The Butcher tableaus
of several di�erent Runge-Kutta methods are shown in Table 3.3.1.

3.3.2 Newton's Method

For some of the schemes in Table 3.3.1, the upper triangular part of the tableau is
zero, which means that all the internal stages in (3.3.1) can be calculated explicitly.
The other methods are implicit, and must be coupled with an iterative nonlinear
equation solver. Hairer and Wanner[18] points out that the �x-point iteration algo-
rithm, which is commonly used to solve nonlinear equations, is not suited to solve
(3.3.1) when the Runge-Kutta method is applied to sti� systems. The reason is that
this destroys the stability properties of the method, which is the reason of why we
want to use an implicit method in the �rst place. Instead, they recommend the use
of Newton's method to �nd the internal stage values.

Recall that one Newton iteration, applied to a nonlinear equation F(x) = 0, improves
an approximate solution xn by solving the equation

∂F

∂x

∣∣∣∣
xn

(xn+1 − xn) = −F (xn) . (3.3.2)

Here, xn+1 is the improved solution estimate, and ∂F/∂x is the Jacobian matrix.
If the initial solution estimate x0 is close to the true solution, the convergence of
Newton's method is of second order. When applied to the system (3.3.1), it is
reasonable to choose yn as an initial guess for the stage values, as these are known
to be close when the time step is small. If this initial guess is to far from the true
solution, the step length ∆t can be reduced until convergence is acheived.

If the number of variables in (3.3.2) is very large, one Newton iteration requires the
solution of a large system of linear equations, which is computationally costly. In
this case, it is better to employ the simpli�ed Newton's method, which is de�ned by
the iteration formula

∂F

∂x

∣∣∣∣
x0

(xn+1 − xn) = −F (xn) . (3.3.3)

The only di�erence from (3.3.2), is that the Jacobian is evaluated at the initial value
only. The method still converges, provided that x0 is close to the true solution, but
the convergence is only linear. On the other hand, the computationally demanding
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Table 3.3.1: Some Runge-Kutta methods
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step of (3.3.2) is the factorisation of the Jacobian matrix. This only needs be done
once if formula (3.3.3) is used. The simpli�ed approach can therefore be faster,
even though more iterations are required. However, if the Jacobian is sparse and
unstructured, (3.3.2) is most e�ciently solved using iterative algorithms that do not
require matrix factorisations. In this case, the pure Newton's method is the best
choice.

3.3.3 Consistency, Order and Stability

To be consistent, the coe�cients of a Runge-Kutta method must satisfy the condition∑
i

bi = 1.

If this requirement is ful�lled, the accuracy of the method is at least �rst order.
Higher order methods can be constructed by adjusting the coe�cients to ful�ll certain
order conditions, which can be derived by comparing (3.3.1) with the Taylor series
of f . To acheive second order convergence, for instance, the coe�cients must satisfy∑

i

bici =
1

2
,

and to acheive third order convergence, the coe�cients must in addition satisfy∑
i

bic
2
i =

1

3∑
i, j

biaijcj =
1

6
.

The number of conditions is rapidly increasing with order, so Runge-Kutta methods
of order higher than 5 are seldom used.

The stability function of a Runge-Kutta method is also determined by its coe�cients.
A direct application of (3.3.1) to the test equation (3.2.3), reveals that the stability
function is given by

R(z) = 1 + z b> (I− zA)−1
1,

where b> =
[
b1, b2, · · · bN

]
, 1 =

[
1, 1, · · · , 1

]>
and

A =

a11 · · · a1N
...

...
aN1 · · · aNN

 .
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We can also write this expression in terms of determinants as

R(z) =
det
(
I− zA + z1b>

)
det (I− zA)

.

In Figure 3.3.1, we have shown a complex contour plot of the stability functions
for the methods in Table 3.3.1. The shaded areas correspond to the regions of
absolute stability. We clearly see that the stability regions of the explicit methods
are bounded. For explicit schemes, the upper triangular part of A is zero, and
the stability function thus reduces to a polynominal expression in z. The stability
function is therefore unbounded for z values with a large negative real part, which
are typical for sti� equations. On the other hand, the stability function of implicit
methods are rational functions of z. This is the reason of why they can be constructed
such that |R(z)| < 1 even though the magnitude of z is large.

3.3.4 DAE Systems and Singular Perturbation Problems

Recall that a di�erential-algebraic system of equations (DAE) is a system of the form

M
dy

dt
= f(y), (3.3.4)

where the mass matrix M is singular. We will mainly be interested in DAE systems
of index 1, which means that the Jacobian matrix ∂f/∂y is invertible in the null
space of M. If this condition does not hold, the system is a higher-index DAE, and
must be solved using other kinds of numerical methods.

Di�erential-algebraic systems are of interest to us, since the mass conservation equa-
tion (1.3.5) becomes a DAE if any of the chemical reactions are modelled as equi-
llibrium reactions. Also, if the sti�ness of an ODE becomes very large, it behaves
almost like a DAE, and must be treated the same way. Let us take a moment to
illustrate how this can happen. Consider the system described in Section 3.1.2, and
suppose K1 = K2 = K for simplicity. Furthermore, let us scale the concentrations
by their equillibrium values, using x = cA, y = cB and z = cC/K. The system is
then described by

d

dt

xy
z

 =

1
1

1
K

−1 0 1
0 −1 1
1 1 −2

xy
z

 ,
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Figure 3.3.1: Stability regions
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or, equivalently,

d

dt

1
1

K

xy
z

 =

−1 0 1
0 −1 1
1 1 −2

xy
z

 . (3.3.5)

Now, if K is very small, the mass matrix becomes near-singular, and the sys-
tem behaves as a DAE. Often, such �near-DAE� systems are called singular per-
turbation problems (SPP). We can solve (3.3.5) approximately by setting K = 0,
z = (x+ y) /2, which leads to the nonsti� system

d

dt

[
x
y

]
=

[
−1

2
1
2

1
2
−1

2

] [
x
y

]
.

While this approach is a stable and robust one, it may not be as straightforward to
carry out for practical applications. First of all, since the reaction rates are usually
nonlinear, it may be di�cult to express the near-algebraic variables explicitly in terms
of the di�erental variables. Secondly, a variable that is near-algebraic in one part of
the simulation, can act like a normal di�erential variable elsewhere. For instance, if a
reservoir region is �ooded with CO2, the chemistry of the region changes completely.
This may cause equillibrium concentrations to change by orders of magnitude, slow
reactions may become fast reactions, and so on. To use the approach outlined above,
one must therefore use di�erent sets of equations during the course of the simulation.

An alternative is to apply an integration scheme that can handle singular mass
matrices. For instance, A-stable Runge-Kutta methods where the stability function
satis�es ∣∣∣ lim

z→∞
R(z)

∣∣∣ < 1,

can be used on equations like (3.3.4) without reformulating the system. Methods
that are in addition sti�y accurate, are of special interest. Sti� accuracy simply
means that the computed step value yn+1 is equal to the last internal stage gN . For
instance, all the implicit methods of Table 3.3.1 are sti�y accurate, since the last two
rows of their Butcher tableaus are equal. Methods with this property can compute
the algebraic variables of DAE systems with the same accuracy as the di�erential
variables. Otherwise, one may experience an order reduction in the algebraic compo-
nents, as discovered by Prothero and Robinson[49]. To use a sti�y accurate method
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on problems of the form (3.3.4), the internal stages are computed according to

Mg1 =Myn + ∆t
∑

a1jf (gj)

Mg2 =Myn + ∆t
∑

a2jf (gj)

...

MgN =Myn + ∆t
∑

aNjf (gj) .

Finally, the solution is advanced by setting yn+1 = gN .

3.3.5 Error Estimation

Runge-Kutta methods are often equipped with an error estimator of the form

ŷn+1 = yn + ∆t
∑

b̂jf (gj) ,

which is a lower-order approximation to the solution at the end of the time step. We
can use this value to obtain a crude estimate for the error of the integration rule.
Let p and q be the global accuracy orders for yn+1 and ŷn+1, respectively. For small
values of ∆t, we have

|y (tn + ∆t)− yn+1| < |y (tn + ∆t)− ŷn+1| ≈ |yn+1 − ŷn+1| .

Thus, we can use ε = |yn+1 − ŷn+1| as a crude error estimate for yn+1. If the order
of accuracy for ŷn+1 is p, we expect the error estimate to satisfy

lim
∆t→0

ε

∆tp+1
= C (3.3.6)

for some constant C. This relation can be used to adjust the step size to match a
prescribed error tolerance Tol. Speci�cally, if one time step of length ∆tn has been
successfully computed, and the error has been estimated to εn, we expect that a step
length of

∆tn+1 = ∆tn

(
Tol

εn

)1/p+1

(3.3.7)

will bring the error of the next step closer to the tolerance level.

Expression (3.3.7) is commonly used for calculating step lengths of nonsti� equations.
For sti� equations, however, we would like to use steps that are much larger than
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the shortest time scale of the system. Thus, the asymptotic formula (3.3.6) may not
be reliable. For reasons that we will not cover here, a step size controller of the form

∆tn+2 =
(∆tn+1)2

∆tn

(
Tol · εn
(εn+1)2

)1/p+1

(3.3.8)

is more appropriate in this case[17]. This expression uses the step sizes and error
estimates from two previous steps, and is derived using techniques from control
theory. If only a single previous time step is available, one can set ∆tn+1 = ∆tn and
εn+1 = εn. Although (3.3.8) is more reliable than (3.3.7), it does sometimes suggest
time steps that results in errors signi�cantly above the tolerance level. Whenever
this happens, the usual approach is to halve the time step and restart integration.

3.3.6 Diagonally Implicit Runge-Kutta Methods

Some Runge-Kutta methods have coe�cient matrices where all the entries are nonzero.
These are sometimes called fully implicit Runge-Kutta methods (FIRK). If a FIRK
scheme is used to solve an ODE of size m, each time step involves the solution of
a nonlinear system in m · N variables, where N is the number of internal stages.
Although the covergence orders of these methods are large, the computational cost
of a time step is large as well, since all the internal stages are coupled. An alternative
is provided by the diagonally implicit Runge-Kutta methods (DIRK)[1], where the
coe�cient matrix A is a lower triangular matrix. For these methods, the internal
stages can be computed in sequence. Therefore, a DIRK time step is both easier to
implement and faster to compute. Another advantage of the DIRK methods, is that
every internal stage gi is a �rst-order approximation to the solution at t = tn + ci∆t.
Therefore, after an internal stage has been computed, one can use extrapolation tech-
niques to �nd a good estimate for the next stage value. Such stage value predictors
can then be used as a starting value for the Netwon iteration instead of yn, reducing
the number of iterations required.

The coe�cient matrix A of many DIRK methods are designed such that the entries on
the diagonal are equal. These methods are called singly diagonally implicit (SDIRK).
Three examples of such methods are shown in Table 3.3.2, where simple low-order
error estimators have been added as additional stages. To see why equal diagonal
elements is desirable, let us consider the structure of the nonlinear systems that must
be solved for a DIRK method. Observe that each internal stage is computed from
an expression of the form

gi −∆t aiif (gi) = yn + ∆t (ai,1f (g1) + . . .+ ai,i−1f (gi−1)) . (3.3.9)
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In Section 3.3.2, we stated that it is often advantageous to solve (3.3.9) using sim-
pli�ed Newton iterations. In this case, the Jacobian is given by

I−∆t aii
∂f

∂g

∣∣∣∣
yn

.

If the diagonal elements aii are equal, the Jacobian is the same for all stage equations.
Thus, the matrix need only be factorised once every time step, which may shorten
the computational time signi�cantly for large systems.

Yet another class of DIRK methods are the ESDIRK methods[36, 2], which are
singly diagonally implicit schemes with an explicit �rst stage. Similar to the SDIRK
methods, the diagonal entries of the coe�cient matrix A are equal, except for the
�rst entry, which is equal to zero. In other words, the �rst internal stage g1 is equal
to yn, the function value at the beginning of the step. In Table 3.3.1, one example
of this design (TR-BDF2) is shown. ESDIRK methods require the same amount
of implicit stages as the SDIRK methods, to acheive the same order of accuracy.
The additional advantage is that the Butcher tableau of ESDIRK methods have a
larger amount of parameter values, compared to SDIRK methods of the same order.
Thus, we have more degrees of freedom when constructing ESDIRK methods, and
we are able to tune the parameters to suit special interests. For instance, Kværnø[36]
was able to construct a family of L-stable ESDIRK methods where the second last
internal stage is used as an L-stable free error estimator, see Table 3.3.3. This is
not possible for SDIRK methods, at least not without adding implicit stages (as in
Table 3.3.2), or sacri�cing the stability of the error estimator. In addition, every
internal stage gi of the methods in Table 3.3.3 is a second-order approximation to
y (tn + ci∆t), that is, the methods have a stage order of 2. This fact can be exploited
to construct e�cient stage predictors for the Newton iterations. For SDIRK methods,
the maximum possible stage order is 1.
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Chapter 4

Numerical solution strategies

In the previous chapter, we presented a family of Runge-Kutta methods that were
suitable for solving the reactive mass conservation equation. We now turn to the
question of how to express the equation such that numerical integration methods are
more easily applied. First, we investigate the possibilities of splitting the convective
and reactive part of the equation, solving each of them in a sequential fashion.
Secondly, we discuss how di�erent changes of variables can increase the stability and
speed of the solution process.

4.1 Operator Splitting

We have already stated (in Section 1.5) that the pressure, temperature and mass
conservation equations are usually solved in a sequential manner when chemical
reactions are involved. This procedure, called operator splitting, divides every time
step into several substeps, each describing separate physical processes. Sometimes,
it is feasible to employ operator splitting on the substep level as well. In particular,
consider again the mass conservation substep, which may be abstractly described as

∂c

∂t
= L (c) + R (c) .

55
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Here, L is the convective term, and R the reactive term1. One splitted time step,
with a step length of h, can then be written as

∂v

∂t
= L(v) v(0) = cn (4.1.1a)

∂w

∂t
= R(w) w(0) = v(h) (4.1.1b)

cn+1 = w(h), (4.1.1c)

where v andw are auxillary internal variables. The scheme approximates the solution
by taking one internal step involving only convection, and then a second internal step
involving only reaction.

The main advantage of this approach, is that separate, specialised numerical solvers
can be applied for each substep. For instance, the transport step can be solved ex-
plicitly, using a method that minimizes numerical di�usion. Also, the reaction step
can be solved using parallel computation, since the chemical reactions in a single
grid block do not a�ect the concentrations at other locations. As we have seen, the
reaction step must be solved implicitly for stability reasons, which is usually a com-
putationally intensive procedure. Fortunately, since the the reactions are spatially
decoupled, the size of the implicit system to solve is small. If the mass conservation
equation is solved without splitting, one must use the expensive implicit approach
on the system as a whole, which may be particularly time-consuming for two- and
three-dimensional simulations. In addition, one loses the opportunity of solving the
transport step using a di�usion-minimizing method.

There are, however, problems with the sequential approach as well. These issues are
related both to the accuracy of the solution, and to the numerical stability. In this
section, we will explore the problems that may arise, and consider some improved
schemes that may alleviate them.

4.1.1 Splitting Errors

Consider at �rst the simple splitting scheme (4.1.1), and suppose a one-step method
is used to solve each of the subequations. The overall scheme will then converge to
the correct solution as h → 0. In general, however, the approximation will only be
�rst order accurate, even if exact solvers are used in each substep. This is because an

1As remarked in Section 2.2.3, the temperature equation has the same overall structure. Thus,
the methods described in this section applies to the temperature equation as well.
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additional splitting error is introduced to the solution. To highlight this phenomenon,
we investigate the linear equation

du

dt
= Au + Bu, t ∈ [0, T ], u(0) = u0.

which has the exact solution

u(T ) = e(A+B)Tu0.

Using Taylor series expansion, we may also express this as

u(T ) =

(
I + T (A + B) +

1

2
T 2
(
A2 + AB + BA + B2

)
+ . . .

)
u0. (4.1.2)

Now, let us solve the di�erential equation by using the splitting scheme (4.1.1), with
a splitting interval of h. Using exact subsolvers, a single time step will have the form

un+1 = eBheAhun,

or, using Taylor series expansion,

un+1 =

(
I + hB +

1

2
h2B2 + . . .

)(
I + hA +

1

2
h2A2 + . . .

)
un.

Adding the time step increments up to T = hN and simplifying, we arrive at

uN =

(
I + hN(A + B) +

1

2
h2N2

(
A2 +

N − 1

N
AB +

N + 1

N
BA + B2

)
+ . . .

)
u0.

Let us compare this answer to the known exact solution (4.1.2). We see that the �rst
Taylor terms agree, but there is a slight discrepancy in the second order term:

u(T )− uN =
1

2
hT (AB− BA)u0 +O

(
h2
)
.

If the matrices A and B commute, i.e., AB = BA, all the Taylor terms agree, and the
splitting error is zero. For noncommuting matrices, however, the overall method is
only �rst order accurate, even though the subsolvers are exact. A similar analysis
may also be carried out for nonlinear equations using the Lie operator formalism,
e.g., along the lines of [38, 26].
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4.1.2 Strang Splitting

From analyses of the splitting error, di�erent splitting schemes can be devised,
with improved convergence behaviour. One of the simplest was �rst proposed by
Strang[59], and is called the Strang splitting. The idea is to introduce an additional
internal stage into the splitting scheme,

∂v

∂t
= L(v) v(0) = cn (4.1.3a)

∂w

∂t
= R(w) w(0) = v(h/2) (4.1.3b)

∂z

∂t
= L(w) z(0) = w(h) (4.1.3c)

cn+1 = z(h/2). (4.1.3d)

This new arrangement is equivalent to two half steps of (4.1.1), with reversed se-
quences. The symmetry causes �rst order splitting errors to cancel out for small val-
ues of h. Since the Strang splitting is simple to implement, it is quite commonly used.
Similar schemes can also be devised for equations with several operators involved.
Even higher-order splittings can be constructed, based on the same principles. These
are plagued by stability problems, however, and are therefore rarely used. We refer
to [26] for more details.

4.1.3 Iterative Splitting

Another way of reducing splitting errors is iterative splitting. This method is com-
monly used by the hydrology community, where it is referred to as SIA, Sequential
Iterative Approach. Using the same notation as before, the iterative splitting scheme
can be expressed as

∂v(i)

∂t
= L

(
v(i)
)

+ R
(
w(i−1)

)
v(i)(0) = cn

∂w(i)

∂t
= L

(
v(i)
)

+ R
(
w(i)

)
w(i)(0) = cn (4.1.4)

cn+1 = w(final)(h).

Here, i indicates the iteration index. The operators L and R are still decoupled,
even though they appear simultaneously in both equations. In the �rst substep, the
function w is considered known, so the step is a di�erential equation for v only. The
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step is equivalent to a pure transport step, only with R acting as a known mass
source at each location. Likewise, the second step corresponds to a pure reaction
step with a known convective mass source. To reduce splitting errors, we can now
iterate upon this scheme, using the newly calculated function w in the �rst substep.
Indeed, the overall structure of the algorithm resembles the Gauss-Seidel method
for solving systems of linear equations. To start the iteration, we will need a �rst
guess for w. For the mass conservation equation, it is natural to choose w(0) such
that R

(
w(0)

)
= 0, i.e., chemical equillibrium. When using iterative splitting, the

order of the splitting error is equal to the number of iterations, a very attractive
feature[13]. In practice, the iterations are usually stopped when a speci�ed tolerance
limit is met. The number of required iterations can also be used to guide the choice
of step length. According to [13], an iteration count above three usually suggests a
step length reduction.

4.2 Linear Recombination Methods

In Section 2.2.3, we saw that the mass conservation equation can be described by

∂c

∂t
= L (c) + S>r (c) , (4.2.1)

where S is the stoichiometry matrix, and r are the reaction rates. While this is
a perfectly valid formulation of the equation, it might not be suited for numerical
computations. Since the equation is sti�, it must be solved by implicit methods, and
we must therefore require that the Jacobian of the system is well-conditioned. This is
not the case if any of the reactions are fast compared to the time scale of interest, or
the concentrations di�er widely in magnitude, both of which are commonly occuring
situations. To alleviate this, the equation can be multiplied by a carefully designed
matrix M,

M
∂c

∂t
= ML (c) + MS>r (c) , (4.2.2)

such that the fast and slow modes of the equation are partially decoupled prior to
integration. This corresponds to a linear recombination of the original mass conser-
vation equations. If the matrix is designed such that the condition number of the Ja-
cobian is low, M itself may be near-singular. This is no problem, as the transformed
equation can be easily solved using a Runge-Kutta method that handles singular
mass matrices. Sometimes, it will also be advantageous to reformulate the equation
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in terms of a di�erent set of variables. For instance, if N is a well-conditioned matrix,
we can de�ne c = Nv and express (4.2.2) in terms of v,

MN
∂v

∂t
= ML (Nv) + MS>r (Nv) . (4.2.3)

This may reduce the condition number of the Jacobian even more. In addition, this
approach allows us to construct variables that are una�ected by reactions, which are
then decoupled from the reactive variables.

4.2.1 Scaling the Equation

To allow meaningful discussions of stability and conditioning, we must scale the
mass conservation equation according to typical concentrations and reaction rates.
However, it is well-known that scaling of reaction-advection systems is a di�cult task,
since the concentrations and rates may change by orders of magnitude within short
periods of time. When lacking better alternatives, we will usually choose to scale
the concentrations by their initial values, and the reactions by their rate constants.
Frequent rescaling may, however, be necessary during the course of the simulation.

Let c0 and r0 be the chosen concentration and reaction scales, respectively. Fur-
thermore, let C and R be diagonal matrices with the entries of c0 and r0 on their
respective main diagonals. A scaled version of (4.2.1) is then

∂y

∂t
= L (y) + Tq (y) , (4.2.4)

where Cy = c, q(y) = R−1r (Cy) and T = C−1S>R. This equation will be the basis
for our study of the di�erent recombination methods.

4.2.2 Condition Number of the Jacobian

As described in Section 3.3, the application of an implicit integration method to
(4.2.4) results in a number of nonlinear equations that must be solved with Newton's
method. Recall that the iteration matrix used for this purpose is given by

J = I− γ∆t
∂f

∂y
,
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where ∆t is the step length, γ is a method-speci�c parameter, and f is the ODE
function,

f(y) = L (y) + Tq (y) .

Let us illustrate how the sti�ness of the system can cause J to become ill-conditioned.
For this purpose, consider the advection-reaction system analysed in Section 3.1.4.
For simplicity, let the in�ow concentrations be zero. When scaling the concentrations
by their initial values, this system is given by

f

([
y1

y2

])
= −u

[
y1

y2

]
+

[
−k
2kβ

] (
y1 − y2

2
)
,

and the Jacobian is
∂f

∂y
=

[
−u− k 2ky2

2kβ −u− 4kβy2

]
,

where k is the rate constant, u is the advection velocity, y1 and y2 are the scaled
component concentrations, and β is the initial A concentration divided by the initial
B concentration. Thus, J for this system is given by

J =

[
1 + ũ+ k̃ −2k̃y2

−2k̃β 1 + ũ+ 4k̃βy2

]
,

where ũ = uγ∆t and k̃ = kγ∆t. There are a number of ways this matrix can become
ill-conditioned:

1. Concentration di�erences: If β � 1, the last row is much larger than the �rst
one, leading to a condition number of order O (β).

2. Nonlinearity: If y2 � 1, the last column is much larger than the �rst one,
leading to a condition number of order O (y2)

3. Fast reactions: If k̃ � 1, the two rows are almost parallel, leading to a condition

number of order O
(
k̃
)

All of these situations can be alleviated by reducing the time step, as lim∆t→0 J = I.
A better way, however, is to multiply the system (4.2.4) with a mass matrix M prior
to integration, and possibly use another set of variables v = N−1y. The system is
then given by

MN
∂v

∂t
= ML (Nv) + MTq (Nv) ,
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and the Newton iteration matrix is

J = MN− γ∆tM

[
−u− k 2ky2

2kβ −u− 4kβy2

]
N.

For instance, let

M =

[
0 κ
1 1

2β

]
,

κ =
1

1 + ũ+ k̃ + 4βk̃y2

and

N =

[
− 1

2β
1

1 0

]
.

This results in

J =

[
1 −2κβk̃
0 1 + ũ

]
.

Unless βk̃y2 � 1 and βk̃ � 1 at the same time, the condition number of this matrix
is bounded for all parameter values. Thus, the transformed system can be stably
integrated using long steps regardless of the system's sti�ness.

4.2.3 Reaction Invariants

Before we address the question of how to construct M and N, we highlight another
feature that can be obtained by reformulating the equations: It is often possible
to construct M and N such that some of the variables in v = N−1y are invariant
of reactions. The requirement is that the stoichiometry matrix S has a nontrivial
null space. This is true if the number of components is larger than the number of
reactions, which is nearly always the case. For instance, consider the system given
in the previous section. After reformulation, the new system is given by[

κ 0
0 1

]
dv

dt
= −u

[
κ 0
0 1

]
v +

[
2kβκ

0

](
v2 −

v1

2β
− v1

2

)
.

Evidently, the variable v2 is not a�ected by reactions, and is therefore called a reaction
invariant.
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To see how such reaction invariants can be identi�ed, let us partition M into

M =

[
M1

M2

]
.

Furthermore let us construct M and N such that M2T = 0 and M2N =
[
0 I

]
, and

de�ne v2 = M2Nv. The reformulated system is then of the form

M1N
∂v

∂t
= M1L (Nv) + M1Tq (Nv) (4.2.5a)

∂v2

∂t
= M2L (Nv) . (4.2.5b)

It is now possible to use an IMEX scheme on (4.2.5), solving for the �rst equation
implicitly, and the second explicitly. This way, the number of equations that must
be solved implicitly is reduced. In addition, Kräutle[33] showed that M2 can be
constructed such that M2 and L commute, obtaining further decouplings.

4.2.4 Recombination by LU Factorisations

We now turn to the question of how to create the recombination matrices. A simple,
but popular way is by using LU factorisation on T. Recall that this procedure
factorises the matrix into

PT =

[
L1

L2

]
U,

where P is a permutation matrix, L1 is invertible and lower triangular, and U is upper
triangular. The decoupling is then obtained by the matrices

M1 =
[
I 0

]
P

M2 =
[
−L2L

−1
1 I

]
P

N = M−1.

Variants of this approach is used by [23, 58, 46, 7, 54], to name a few. We see at once
that M2T = 0 and M2N =

[
0 I

]
, so the transformed system will be of the form (4.2.5),

with v2 = M2y as reaction invariants. It is interesting to note that with this choice of
recombination matrices, v1 = M1y will actually be a subset of y. Many authors use
the term secondary species for these components. This terminology makes most sense
when all the chemical reactions are equillibrium reactions, as the secondary species
can then be eliminated from the system of equations. Also, some authors use the
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term total concentrations for the reaction invariants v2. Historically, such variables
were often created using physical intuition, letting for instance v2 correspond to the
total concentration of chemical elements (say, C, O, Na, H etc.), or the total charge.
As these variables are not a�ected by reactions, they are natural choices for reaction
invariants, and are still used by some authors (see [41], for instance). However, the
less intuitive reaction invariants found by LU factorisation are equally valid, and may
also have improved stability properties.

LU factorisation is unique up to the choice of P, which is often called the row pivoting
matrix. P can not be chosen entirely freely, since we must require that the upper
part of PT is invertible. The best numerical stability is gained when P is chosen
such that the condition number of N is low. Typically, this corresponds to letting v1

contain the species with the smallest concentrations, as is also observed by Saaltink
et al.[54]. Modern algorithms for LU factorisation can choose P automatically, which
is usually the more reliable approach. However, to my knowledge, the literature only
considers manual row pivoting for choosing primary and secondary species.

The matrix design outlined above generates the maximum number of reaction in-
variants, which is determined by the null space of T>. It also reduces high condition
numbers if they are caused by large concentration di�erences, but not if they are
caused by fast reactions. An improved scheme is given by the following choice,

M1 = D
[
L−1

1 0
]
P

M2 =
[
−L2L

−1
1 I

]
P

N−1 =

[
I 0

−L2L
−1
1 I

]
P.

Here, D is a diagonal matrix constructed as follows: Let an element of U be denoted
by uij. The diagonal elements of D are then given by

dii =
1

max (1, maxj |uij|)
.

This scheme allows both the concentrations and reaction rates of the model to be
widely di�erent, without having adverse e�ects on the system's condition number.
An even better result is obtained if the reactions are sorted in descending order
according to their typical rates.
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4.2.5 Other Factorisation Methods

Another way of forming the recombination matrices, is by QR factorisation. This
is similar to the method used by Friedly and Rubin[14], which is based on Gram-
Schmidth orthogonalisation. In short, this factorisation decomposes the stoichiome-
try matrix according to

T =
[
Q1 Q2

] [R
0

]
,

where the matrix Q =
[
Q1 Q2

]
is orthogonal, and R is upper triangular. From this

decomposition, we can construct the recombination matrices

N = Q

M1 = DQ>1

M2 = Q>2

The matrix D is constructed the same way as in the previous section, only with R

used in place of U. With this choice, the conversion between v and the scaled con-
centrations y is done via the orthogonal matrix Q, which has the optimal condition
number of 1. On the other hand, the computational cost of computing a QR factori-
sation is larger than for the LU factorisation. This method also performs best if the
reactions are sorted according to their rates.

A third way of making recombination matrices, is by a singular value decomposi-
tion (SVD). This is numerically equivalent to the method used by Kräutle[33], who
describes it in terms of the generalized inverse of the stoichiometry matrix. After
applying the SVD algorithm, the scaled stoichiometry matrix is decomposed as

T =
[
U1 U2

] [E
0

]
V>.

Here, the matrices U =
[
U1 U2

]
and V are orthogonal, and E is a positive semidef-

inite diagonal matrix. Using this factorisation, we can choose the recombination
matrices as

N = U

M1 = DU>1

M2 = U>2 ,

similar to what we did for the QR factorisation. The D matrix is this time computed
using E instead of R. If this method is used, it is not necessary to sort the reactions,
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since an automatic reordering is provided by the algorithm. However, the cost of
computing an SVD decomposition is even a bit larger than for the QR factorisation.

4.2.6 Eliminating Equillibrium Reactions

For a typical reaction network, the rate of some reactions are so fast that they are
best described as equillibrium reactions. In this case, the actual rate of the reactions
are considered unknown, thus becoming additional variables in the mass conservation
equation. Speci�cally, let the reaction rate vector be given by

q (y, qeq) =

[
qeq

qkin(y)

]
,

where qeq are the unknown equillibrium rates, and qkin(y) are known expressions
describing the scaled kinetic rates. Also, we partition the stoichiometry matrix and
the equillibrium constant vector accordingly,

S =

[
Seq
Skin

]
T =

[
Teq Tkin

]
K =

[
Keq

Kkin

]
.

To close the system, we add an expression describing chemical equillibrium,

Q(y) = lnKeq − Seq ln a (y) = 0. (4.2.6)

The function a(y) denotes the activities of the species. If any of the equillibrium
reactions are inhomogenous, the expression must be modi�ed as explained in Section
2.1.5.

In total, this gives the following system for describing mass conservation,

0 = Q(y) (4.2.7a)
∂y

∂t
= L (y) + Teqqeq + Tkinqkin (y) . (4.2.7b)

Unfortunately, (4.2.7) is a di�erential-algebraic system of index 2, which is di�cult
to solve numerically. In addition, the system is larger than the ones we have pre-
viously encountered, because of the extra variables included. However, we can use



4.3 Ensuring Positivity During Integration 67

techniques similar to the ones used in Sections 4.2.4 and 4.2.5, to eliminate the un-
known equillibrium rates and reduce the size and index of the system. For instance,
consider an LU factorisation of Teq,

PTeq =

[
L1

L2

]
U.

We can use this decomposition to construct an elimination matrix of the form

M1 =
[
I 0

]
P

M2 =
[
−L2L

−1
1 I

]
P

N = M−1.

This results in the system

0 = Q(Nv) (4.2.8a)

M1N
∂v

∂t
= M1L (Nv) + L1Uqeq + M1Tkinqkin (Nv) . (4.2.8b)

∂v2

∂t
= M2L (Nv) + M2Tkinqkin (Nv) , (4.2.8c)

where v2 = M2Nv is the lower part of v. Now, we can remove (4.2.8b) from the
system, obtaining an index-1 DAE where the number of variables equals the number
of components. Thereafter, we can apply the methods of Sections 4.2.4 and 4.2.5 to
(4.2.8c), to identify reaction invariants and reduce the condition number. Finally, if
the activity coe�cients can be regarded as constant during the time step, (4.2.8a) can
be solved explicitly for v1, and substituted into (4.2.8c). This reduces the number
of equations even further.

4.3 Ensuring Positivity During Integration

The chemical rate functions are often ill-behaved or unde�ned when the concentra-
tions of aqueous components are nonpositive. For instance, in the rate law (2.1.10),
the concentrations of aqueous reactants appear in the denominator. Also, in the equi-
llibrium expression (4.2.6), the logarithms of the concentrations are involved. Thus,
it is vital to ensure that the concentrations of aqueous components always stay pos-
itive, not only in the �nal solution, but also during intermediate calculations. As we
have seen in Chapter (3), integration of the mass conservation equation by implicit
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methods leads to nonlinear equations that must be solved by Newton's method. Be-
cause of the nonlinear nature of the equations, Newton's method frequently produces
intermediate iterates with negative concentrations, which may cause the iteration to
fail, diverge, or even converge to a nonphysical solution. This behaviour becomes
even more di�cult to control when a change of variables is used, as we have done
in the previous sections. Since the entries of the transformed variable v can be
both positive and negative, it is not immediately clear how to prevent intermediate
v iterates that correspond to negative concentrations. In this section, we present
techniques that can be used to deal with this problem.

To illustrate how negative concentrations can appear during Newton iterations, con-
sider the simple reaction A→ B, with the scaled reaction rate q = 10− 10

y
, where y

is the concentration of A. The evolution of y is then described by

dy

dt
= −10 +

10

y
.

Let us integrate this equation using, say, the implicit Euler method. Using a step
length of 1, we have

yend = yinit − 10 +
10

yend
, (4.3.1)

where yinit and yend are the values at the beginning and end of the time step, respec-
tively. This is a quadratic equation for yend, whose positive solution is in the range
[1, 2] if yinit is in the range [1, 7]. Let us now apply Newton's method to �nd yend.
With x0 = yinit as a starting value, a single iteration gives the result

x1 = x0 +
−10x2

0 + 10x0

x2
0 + 10

.

If yinit happens to be in the range [3, 7], however, this step would produce a negative
value. If the iteration is allowed to continue further from this point, the iterative
algorithm would converge to a nonphysical negative solution. Although a positive
solution of (4.3.1) do exist, the Newton algorithm is not able to detect it.

The simplest way of avoiding the situation described above, is to reduce the length
of the integration step every time a negative concentration occurs. This will bring
the value of yend closer to yinit, and the algorithm will then converge to the physically
correct solution. For the problems we are considering, however, error tolerances are
crude, and long time steps are preferred. There are two alternative ways of forcing
the intermediate Newton steps to become positive. The �rst one, recommended by
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Bethke[7], is to use partial Newton steps whenever a full step leads to negative con-
centrations. The method requires that the nonlinear equation is formulated in terms
of the concentrations c or the scaled concentrations y. For instance, let the equa-
tion be de�ned by the equation f(y) = 0. Bethke's scheme, adapted for simpli�ed
Newton iterations, is then given by

J =
∂f

∂y

∣∣∣∣
y0

(4.3.2a)

∆yn = J−1f (yn) (4.3.2b)

1/δ = max

(
1,

1

1− γ
· ∆yn

yn

)
(4.3.2c)

yn+1 = yn − δ∆yn, (4.3.2d)

where the fraction of vectors ∆yn/yn means element-wise division. With this setup,
the entries of y are at most reduced by a factor of γ each step, so the algorithm will
never produce any negative concentrations. Bethke suggests a parameter value of
γ = 0.5, but a smaller value (e.g. γ = 0.1) often allows faster convergence without
sacri�cing stability. The parameter may even be set to a di�erent value for each
species. For instance, it makes sense to set γ = 0 for mineral species, since kinetic
reaction rates are well-de�ned also when the amount of minerals present is zero.

Bethke's algorithm can be modi�ed to be used with the transformation techniques
described in the previous sections. If any of these are applied, the mass conservation
equation is formulated in terms of a linear combination of concentrations, v = N−1y.
Thus, the nonlinear equations arising from an implicit integration step, will be of the
form f(v) = 0. In this case, we can apply (4.3.2) to the composite equation f(N−1y).
After some simpli�cations, this results in the scheme

J =
∂f

∂v

∣∣∣∣
v0

∆vn = J−1f (vn)

1/δ = max

(
1,

1

1− γ
· N∆vn
Nvn

)
vn+1 = vn − δ∆vn.

A second strategy is to reformulate the nonlinear equation using logarithms. The
idea is to substitute v with ` = ln (Nv), and solve the equation f

(
N−1e`

)
= 0 with



70 Numerical solution strategies

respect to `. This results in the scheme

J =
∂f

∂`

∣∣∣∣
`0

`n+1 = `n − J−1f
(
N−1e`n

)
,

or, equivalently,

J =
∂f

∂v

∣∣∣∣
v0

(4.3.3a)

∆vn = J−1f (vn) (4.3.3b)

yn = Nvn (4.3.3c)

∆yn = N∆vn (4.3.3d)

yn+1 = yne
−∆yn/y0 (4.3.3e)

vn+1 = N−1yn+1. (4.3.3f)

If the value of ∆yn is small compared to yn, the iteration schemes (4.3.2) and (4.3.3)
give approximately equal results. If ∆yn is large and positive, the logarithm for-
mulation may lead to unstable computations and failed steps. On the other hand,
if ∆yn is large and negative, (4.3.3) often provides faster convergence than (4.3.2).
Overall, we have found the logarithm formulation to be the most e�cient way of
ensuring positivity during integration. For gaseous CO2, the use of logarithms is not
as natural, since the gas may become completely dissolved in the water phase during
integration. The same line of reasoning applies to the solid minerals, which may also
dissolve completely. For these components, algorithm (4.3.2) with γ = 0 should be
used.



Chapter 5

Results

In the preceding chapters, we have presented several di�erent ways of solving the
mass conservation equation in the presence of chemically reactive components. In
this chapter, we will test the behaviour of the methods most commonly used in
practice, with respect to accuracy, e�ciency and stability. In particular, we will
investigate the interplay between di�erent sources of numerical errors, related to
splitting, discretisation and temporal integration. Some of the tests will be performed
on a one-dimensional case, as one-dimensional examples are easier to analyse when
several methods are to be compared. Also, we tested the most promising methods
on a two-dimensional example, with a more complicated mineralogy.

5.1 The Stability of Dawsonite

The �rst test case we consider, is based on the data in [21]. Here, the stability of
the mineral Dawsonite is investigated, when the amount of CO2 within a reservoir is
declining. For high CO2 concentrations, Dawsonite is stable, and the precipitation of
Dawsonite provides an increased potensial for CO2 storage. However, these elevated
amounts of CO2 will only be sustained during the injection period. Thus, it is
important to know how fast the mineral dissolves when injection is terminated, and
the concentration of aqueous CO2 near the injection point starts to fall. If the
dissolution process is fast, carbon that is captured within the mineral will be released
into the brine once again. In this case, the mineral capture mechanism is only a
temporary one.

71
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The test problem simulates a one-dimensional core sample, �lled with brine, that
has a high CO2 concentration initially. During the course of the simulation, water
with low CO2 content is injected into the sample at a constant rate. This resembles
the situation that will occur in a storage reservoir after CO2 injection is terminated,
in which gaseous CO2 rises from the injection point due to boyancy forces, and is
replaced by brine with a lower CO2 concentration.

We have chosen a one-dimensional test example for several reasons. First of all, one-
dimensional simulations are important in their own right. Since they are easier to
solve, one can often include a more accurate geochemical model in a one-dimensional
model without sacri�cing stability and computational speed. For instance, the widely
used geochemical simulator PHREEQC includes support for one-dimensional trans-
port only. Also, even multidimensional problems can be solved as a a collection
of one-dimensional problems if streamline-based methods is used to model the �ow
(see, for instance, [43]). Finally, the results emerging from a one-dimensional simula-
tion is easier to interpret, and is therefore suitable for comparing di�erent numerical
methods against one another.

The initial and in�ow concentrations of the components used in the test case are
shown in Table 5.1.1, whereas the reactions and their rates are shown in Table 5.1.2.
The relevant equillibrium constants are calculated by assuming that the initial brine
composition is in equillibrium with the minerals present.

Compared to [21], we have simpli�ed the mineralogy slightly. First of all, we have
assumed that the concentration of Na+ is constant. Since the amount of Na+ initially
present is very large, it is not signi�cantly a�ected by chemical reactions. Secondly,
we have also assumed that the concentration of SiO2(aq) is constant. This is justi�ed
by the fact that SiO2(aq) stays in approximate equillibrium with quartz, which is also
assumed to be present in the sample. Finally, we have used the common assumption
that the activity coe�cient of a single aqueous component is determined by the ionic
strength. This allows us to assume that the activity coe�cients are constant, since
the ionic strength is mainly determined by the concentrations of Na+ and Cl−, which
are approximately independent of the reactions.

5.1.1 Mathematical Formulation

We choose to order our model components as follows,(
H+, HCO−3 , CO2(aq), Ca2+, Al3+, Calcite, Albite, Dawsonite

)
.
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Components Initial
concentrations

In�ow
concentrations

H+ 1.76× 10−5 8.79× 10−7

HCO−3 5.37× 10−2 3.46× 10−3

CO2(aq) 5.26× 10−1 7.82× 10−4

Ca2+ 3.03× 10−2 2.32× 10−2

Al3+ 1.77× 10−8 7.00× 10−8

Na+ 9.46× 10−1 9.46× 10−1

Cl− 9.68× 10−1 9.68× 10−1

SiO2(aq) 5.71× 10−4 5.71× 10−4

(a) Aqueous components

Minerals Initial volume fraction

Calcite 0.06
Dawsonite 0.1
Albite 0.003

Other minerals 0.587

(b) Mineral components

Table 5.1.1: Initial and in�ow concentrations

Reactions kmax/[mol/dm3 yr]

CO2(aq) + H2O � HCO−3 + H+ equillibrium
Calcite + H+ � Ca2+ + HCO−3 6.7× 10−1

Dawsonite + 3H+ � Na+ + Al3+ + HCO−3 + 2H2O 1.0× 10−2

Albite + 4H+ � Na+ + Al3+ + 3SiO2(aq) + 2H2O 3.6× 10−3

Table 5.1.2: Reactions and reaction rates
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Our stoichiometry matrix is given by

H+ HCO−
3 CO2(aq) Ca2+ Al3+ Calcite Albite Dawsonite

S =


1
−1
−3
−4

1
1
1
0

−1
0
0
0

0
1
0
0

0
0
1
1

0
−1
0
0

0
0
0
−1

0
0
−1
0


,

where the order of the reactions are the same as in Table 5.1.2. We can divide the
matrix into four parts as follows,

S =

[
Seq
Skin

]
=
[
Saq Smin

]
=

[
Saqeq Smineq

S
aq
kin Sminkin

]
.

The upper part consists of one row, namely, the equillibrium reaction, whereas the
other rows describe the mineral reactions. Likewise, the 5 leftmost columns cor-
respond to the aqueous species, while the 3 rightmost columns correspond to the
mineral species.

Since we have assumed chemical equillibrium initially, it is reasonable to scale the
concentrations by their initial values. We also choose to scale the reaction rates by
the the rate constants kmax from Table 5.1.2, times the initial volume fractions from
Table 5.1.1. Using the notation from Section 4.2.1, let T be the scaled and trans-
posed stoichiometry matrix, y the scaled concentrations, and q the scaled reaction
rates. As with the stoichiometry matrix, we partition T, y and q according to aque-
ous/mineral components and kinetic/equillibrium reactions. With these de�nitions,
the evolution of the �uid composition is given by the mass conservation equation and
the equillibrium condition,

0 = Saqeq lnyaq (5.1.1a)

∂y

∂t
= −u

φ
· ∂y
∂x

+ Teqqeq + Tkinqkin(y). (5.1.1b)

The dot operator (·) denote element-wise multiplication, and u is a vector of the
form

u = u ·
[
1 1 1 1 1 0 0 0

]>
,

where u is the darcy velocity of the aqueous phase. Observe that the entries corre-
sponding to the immobile mineral species are set to zero. The kinetic reaction rates
qkin are modelled using (2.1.10), assuming no catalytic species, as is done in [21]. In
terms of y, the rates are given by

qkin(y) = ymin · (1− exp (Saqkin lnyaq)) , (5.1.2)
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with the Jacobian matrix

∂qkin
∂y

=
[
−D (ymin) · exp (Saqkinyaq)S

aq
kin, D (1− exp (Saqkin lnyaq))

]
,

where D(v) symbolises a diagonal matrix with the entries of v on its main diagonal.
As long as the concentrations stay fairly close to their initial values, the entries of
this Jacobian are of the same magnitude, and no further rescaling will be required.

5.1.2 Elimination of Equillibrium Reactions

We can use any of the techniques described in Section 4.2 to eliminate the equillibrium
reaction from (5.1.1). To keep a clear presentation, we use LU factorisation with
manual pivoting, letting H+ be the secondary species. Then, the matrix used for
eliminating the equillibrium rates becomes

M = C−1


1
−1 1
1 1

. . .
1

C,

where only the nonzero elements are shown. C is the concentration scaling matrix
introduced in Section 4.2.1. Let M1 be the �rst row of M, and M2 the other rows,
such that

M =

[
M1

M2

]
.

Using M2 to eliminate the equillibrium rates, we obtain the reduced system

0 = Saqeq lnyaq (5.1.3a)

M2
∂y

∂t
= −M2

(
u

φ
· ∂y
∂x

)
+ M2Tkinqkin(y). (5.1.3b)

We can write this system of equations more compactly as

E
∂My

∂t
= −u

φ
F
∂My

∂x
+ Rq(y),
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where we have de�ned the diagonal matrices E and F as

E =


0

1
. . .

1



F =



0
1

1
1

1
0

0
0


,

the matrix R as

R =

[
I 0

0 M2Tkin

]
,

and the function q as

q(y) =

[
Saqeq lnyaq
qkin(y)

]
.

Finally, the most compact form of (5.1.3) is obtained by using the substitution
v = My, which results in the equation

E
∂v

∂t
= −u

φ
F
∂v

∂x
+ Rq

(
M−1v

)
. (5.1.4)

At this point, we could have chosen to apply the techniques of 4.2 to reduce the
condition number of the system's Jacobian matrix. However, for this test problem,
the reaction rates are of similar magnitude, and the concentration di�erences are not
too large. Thus, for the crude error tolerances we are considering, the integration
algorithms converge satisfactorily if a simple row scaling of the Jacobian is used
during integration.

5.1.3 Simple Operator Splitting

We �rst choose to solve the equation using a simple operator splitting scheme, where
(5.1.4) is split into one pure transport step, and one pure reactive step. Applied to
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our problem, the transport step is then given by

∂v

∂t
= −u

φ
F
∂v

∂x
,

and the reactive step is

E
∂v

∂t
= Rq

(
M−1v

)
.

There is no need to apply the mass matrix E to the transport step, as the algebraic
variable is not a�ected by this step anyway.

To solve the �rst substep, we use the upwind method for spatial discretisation, and
the explicit Euler method for temporal integration. This results in the scheme

v
n+1/2
i = vni +

u∆t

φ∆x
· F
(
vni−1 − vni

)
,

where subscripts denote the grid cell, superscripts denote the iteration index, and ∆t
is the step length. The dimensionless quantity C = u∆t/φ∆x is called the Courant
number. Since our problem has a constant advection velocity, we can actually solve
the step exactly by choosing ∆t such that C = 1. With this choice, the method
reduces to

v
n+1/2
i = (I− F)vni + Fvni−1.

For the reaction substep, we choose the implicit Euler method. Since this substep is
spatially decoupled, we can solve for each grid block separately,

Evn+1
i = Ev

n+1/2
i + ∆tRq

(
M−1vn+1

i

)
. (5.1.5)

This is an implicit relation for vn+1
i , and must therefore be solved using iterative

techniques. In grid cells where advection causes large concentration changes, the
number of iterations will be large, but in cells where the change is small, only a few
iterations is required. On parallel computers, the integration of each grid cell can
be performed on separate processing units. In that case, the computational cost for
this step is limited by the cell that requires the largest number of iterations.

We used the scheme described above, with a spatial resolution of 50 grid points,
to simulate the evolution of the system for 20 years, given an advection velocity of
u = 0.1 m/yr. In Figure 5.1.1, the distributions of CO2, Dawsonite and Albite are
shown at three di�erent times, scaled by their respective initial concentrations. As
evident from the �gure, Dawsonite starts to dissolve once water with a low CO2

concentration is introduced to the system. This causes Dawsonite-bounded carbon
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to be released into the in�ltrating brine, rising its CO2 content. On the other hand,
some of the dissolved Dawsonite re-precipitates as Albite behind the front. These
results are consistent with the �ndings of [21], from which this test case is constructed.
The discrepancies that exist, are most likely due to the simpli�ed mineralogy and
activity model.

5.1.4 Numerical Di�usion

In our test problem, the di�erence between the initial concentrations and the in�ow
concentrations is large for some of the species. This is a commonly occuring situa-
tion in reaction-advection systems, and causes sharp concentration fronts to develop
where the in�ltrating �uid displaces the �uid originally present. It is well-known
that sharp fronts are di�cult to resolve numerically. In Section 5.1.3, we circum-
vented this problem by using an exact solution operator for the transport step. If the
upwind discretisation scheme is used for non-constant velocities, however, the step
length must be chosen such that C < 1 in all grid cells, for stability reasons. Thus,
in many regions of the computational domain, C will be signi�cantly smaller than
1. This introduces arti�cial di�usion to the solution, which destroys the solution
accuracy near the front.

To illustrate the signi�cance of numerical di�usion, we re-solved (5.1.4) using the
same scheme as in the previous section, but with smaller time steps, corresponding
to Courant numbers smaller than 1. The result is shown in Figure 5.1.2, along with
the nondi�usive solution. We clearly see that the sharp CO2 front is largely smeared
out, even when the Courant number is close to 1. The concentration of Dawsonite,
however, is not nearly as much a�ected, partially because the true solution of this
concentration component is smoother than for CO2.

One way of improving the resolution of the discontinuous front, is to use a second
order discretisation scheme. For instance, consider the Lax-Wendro� scheme, which
is given by

v
n+1/2
i = vni +

C

2
· F
(
vni+1 − vni−1

)
+
C2

2

(
vni+1 − 2vni+1 + vni−1

)
.

This scheme is, however, known to introduce nonphysical oscillations to the solution.
A straightforward application of this method may therefore cause the computed
solution to become negative in some parts of the computational domain. Since the
rate functions are unde�ned for negative concentrations, we must use a logarithm
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Figure 5.1.1: Evolution of the concentrations



80 Results

 1 m  2 m  3 m  4 m  5 m  6 m  7 m  8 m  9 m 10 m

0.2

0.4

0.6

0.8

1

 

 

CO
2

Dawsonite
Albite

(a) Courant number = 0.1

 1 m  2 m  3 m  4 m  5 m  6 m  7 m  8 m  9 m 10 m

0.2

0.4

0.6

0.8

1

 

 

CO
2

Dawsonite
Albite

(b) Courant number = 0.8

Figure 5.1.2: Arti�cial di�usion, upwind scheme
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transformation to apply the method. Speci�cally, we use the change of variables
` = lnM−1v. The transport substep is then simply given by

∂`

∂t
= −u

φ
F
∂`

∂t
,

and the Lax-Wendro� discretisation can be applied directly. In Figure 5.1.3, the
result of this approach is shown, along with the reference solution. We see that the
front has become sharper, but some nonphysical oscillations are forming behind the
front.

If we consider the concentration of Dawsonite speci�cally, the Lax-Wendro� scheme
performs better than the upwind scheme for small Courant numbers, but the errors
are of the same magnitude when the Courant number is larger. Since the Lax-
Wendro� method is a second order scheme, it will invariably perform better than
the upwind scheme when the grid resolution is increased. To demonstrate this, we
re-solved the equation with increasing grid resolutions, with both the upwind and
Lax-Wendro� discretisation, and measured the error of the Dawsonite component.
As a reference, we solved the equation with a grid resolution of 256 points, using the
exact solver for the transport substep. The results are shown in Figure 5.1.4. We
remark that the upwind method gives the best performance for sparser grids, since
the logarithm transformation is not required. At higher resolutions, however, the
second order method is the most accurate.

5.1.5 Strang Splitting

In the previous sections, we solved the mass conservation equation using a simple
sequential splitting scheme. As described in Section 4.1.2, it may be better to solve
the mass conservation equation using the symmetric Strang splitting. With this
procedure, the equation is solved using one half transport step, one full reaction
step, and then yet another half transport step. To illustrate how this scheme can
improve the accuracy of the solution, we solved (5.1.4) with a time step of ∆t = 2.5 yr.
Thus, the splitting interval is large, and the nature of the splitting errors becomes
clearly visible. We used an exact solver for the transport step, and the implicit Euler
method for the reaction substep, just as in Section 5.1.3. The computed solution with
and without symmetric splitting is shown in Figure 5.1.5, along with the reference
solution. Since the splitting interval is so large, both solutions have a jagged shape.
Just behind the front, the dissolution rate of Dawsonite is large, and the amount of
dissolved mineral is overestimated by the splitting algorithm. The opposite e�ect is
seen at the in�ow end, where the dissolution rate is slower.
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Figure 5.1.3: Arti�cial di�usion, Lax-Wendro� scheme
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Figure 5.1.4: Numerical di�usion error for C = 0.8

Both the symmetric and nonsymmetric splitting schemes perform better in the pres-
ence of moderate numerical di�usion, as this smears out the jagged shape of the
solution curves. To illustrate, we replaced the exact transport solver with the dif-
fusive upwind scheme, using a time step corresponding to C = 0.8. The result is
shown in Figure 5.1.6, where the improved accuracy is evident. Also, we repeated this
procedure for di�erent splitting intervals, and calculated the error of the Dawsonite
concentration in each case. In Figure 5.1.7, the average grid cell error is plotted
against the splitting interval. We see that the symmetric scheme yields the best
performance, although the convergence is of �rst order for both methods, except at
small splitting intervals. This is consistent with the �ndings of Sportisse[57], who
discovered that the Strang splitting scheme may be of only �rst order when applied
to sti� equations.

5.1.6 Integration of Sti� Terms

Until now, we have only chosen to integrate the reactive term using the implicit Euler
method. As we have seen in Section 3.3, implicit integration methods of higher order
also exists. To quantify the errors associated with choosing a low order integration
scheme, we solved our test problem with the same basic setup as in Section 5.1.3,



84 Results

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

 

 

Dawsonite
CO

2

Albite

(a) Simple splitting

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

 

 

CO
2

Dawsonite
Albite

(b) Strang splitting

Figure 5.1.5: Splitting errors, exact transport step
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Figure 5.1.7: Splitting error for Dawsonite

but with di�erent discretisation schemes for the reactive term. Instead of integrating
the term using a single step, we subdivided the reaction step into several smaller
integration intervals, increasing the accuracy. Also, we solved the step using both
the implicit Euler method and the higher-order SDIRK methods from Table 3.3.2,
disregarding their error estimation stages. In Figure 5.1.8, the resulting errors for
the Dawsonite component is shown. The SDIRK4 method was used as a reference,
and is not present in the �gure. We see that the errors for the Euler method is of the
same magnitude as the splitting and spatial discretisation errors. Also, the accuracy
of the Euler method increases only slightly if more steps are used. The errors are
much smaller for the other methods. For instance, it would require approximately
100 Euler iterations to acheive the accuracy of a single SDIRK2 step. However,
this level of accuracy might not be needed, as other parts of the numerical solution
introduce errors that are of greater importance.

5.1.7 Fully Coupled Solution

In all the previous sections, we have solved (5.1.4) using a sequential approach, solv-
ing for transport and reaction separately. We now try and measure the performance
of the coupled approach. To do this, we �rst discretise (5.1.4) in space without
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Figure 5.1.8: Reactive term error for Dawsonite

removing the reaction term. This results in the DAE system

d

dt


E

E
. . .

E



v1

v2
...
vN

 =
u

φ∆x



−F
F −F

. . . . . .
F −F



v1

v2
...
vN

+


Fv0

0
...
0




+


R

R
. . .

R



q (M−1v1)
q (M−1v2)

...
q (M−1vN)

 (5.1.6)

where the subscripts once again denote the grid cell number, and v0 is the value
of v at the in�ow boundary. We can now solve the system directly using any of
the implicit integration methods from Chapter 3. The computed solution will be
plagued by numerical di�usion, however, since the transport part is solved implicitly.
In Figure 5.1.9, the solution is shown for a grid resolution of 50 cells, along with
the reference solution computed by operator splitting. It is evident that numerical
di�usion dominates the error of the solution. As we have seen, numerical di�usion
can be partially combated by increasing the spatial grid resolution. In Figure 5.1.10,
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Figure 5.1.9: Implicit solution, 50 grid points

we have plotted the error of the Dawsonite component for di�erent grid resolutions,
using a step length of ∆t = 1.2 yr. Only results for the Euler and SDIRK2 methods
are shown, as the results for SDIRK3 and SDIRK4 were similar to that of SDIRK2.
We clearly see that the errors are reduced when the higher-order integration schemes
are applied. However, the accuracy improvement is not as large as in Figure 5.1.8,
since the di�usion error dominate in the solution.

Compared to the sequential solution methods, the nonlinear systems that must be
solved when using the coupled approach, are very large. This disadvantage is, how-
ever, not as severe as it may seem. From equation (5.1.6), it is clear that the Jacobian
of the system will be sparse and banded. Therefore, the systems are solved quite
e�ciently if sparse techniques are used in a clever way. Also, the increased stability
of the coupled method allows larger time steps to be taken, and faster convergence of
the Newton iterations. Whether or not the coupled method can compete with oper-
ator splitting, therefore depends on a lot of di�erent factors, such as the smoothness
of the solution, the e�ciency of the sparse solver, the possibilities for parallelisation,
and the programming environment in which the algorithms are implemented. A di-
rect comparison is not possible without doing a range of optimised benchmark tests.
We will therefore not pursue this topic any further.



5.1 The Stability of Dawsonite 89

50 100 200 400

0.01

0.007

0.02

0.014

Grid resolution

1−
no

rm
 e

rr
or

 o
f d

aw
so

ni
te

 

 
EULER
SDIRK2

Figure 5.1.10: Convergence of the coupled method

5.1.8 Condition Number of the Jacobian

In Section 4.2.2, we stated that linear recombinations of the mass conservation equa-
tions could ease the condition number of the system's Jacobian matrix, which is
important if the equation is to be solved implicitly. To demonstrate this, we calcu-
lated the condition number of the Jacobian before and after these techniques were
used. Speci�cally, we considered the Jacobian for the implicit Euler method, applied
to the fully coupled mass conservation equation (5.1.6), which is given by

J = −


E

E
. . .

E

+
u∆t

φ∆x


−F
F −F

. . . . . .
F −F



+ ∆t


R

R
. . .

R



∂q1

∂v1
...

∂qN

∂vN

M−1.

To demonstrate the e�ect of sti�ness on the condition number, we let the value
of u vary, and set the integration time scale to match the advection. That is, we
adjust the time step such that u∆t always stays at the same value as in the previous
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section. For large values of u, the system is dominated by advection, and for small
u values, the reaction term is dominant. The resulting condition numbers of J,
for u between 10 m/yr and 0.01 m/yr, are shown in Figure 5.1.11. We see that the
condition numbers become large very quickly. Indeed, if no methods are used to
reformulate the system, J may be so ill-conditioned that the implicit integration
methods are unable to converge. A simple row scaling, where the rows of J are
scaled according to their maximum norm, is a great aid, and reduces the condition
number to within acceptable limits. Even better conditioning is obtained if any of
the reduction methods of Section 4.2 are used. In the �gure, the result of using the
automatically pivoted LU method is shown. This time, the condition number of the
matrix is almost una�ected by the sti�ness, and stays below 100 for the majority of
the test interval. The results for the QR and SVD reduction techniques are similar,
but slightly better.

5.2 The Utsira Mineralogy

To explore the behaviour of the numerical codes on a more complex scenario, we
constructed another test case, involving an extensive mineralogy, and two-phase,
two-dimensional �ow. Speci�cally, we wanted to investigate how the codes performed
when simulating a bouyantly migrating CO2 plume. For this purpose, we used the
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Mineral Initial volume fraction

Calcite 0.039
Magnesite minimal
Siderite minimal

Dawsonite minimal
Albite 0.02

K-Feldspar 0.085
Quartz 0.488

Chalcedony minimal
Kaolinite minimal

Chlinochlore 0.003
Daphnite 0.003
Muscovite 0.006
Phlogopite minimal
Annite 0.006

Labradorite minimal
Gibbsite minimal

Table 5.2.1: Initial volume fractions
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open-source Matlab Reservoir Simulation Toolbox (MRST) developed at SINTEF
ICT and available at http://www.sintef.no/Projectweb/MRST/. We used an initial
distribution of CO2 as shown in Figure 5.2.1, and assumed that no �uid could pass
through the boundaries of the computational domain (Neumann conditions). The
pressure at the top of the reservoir was set to a constant value of 100 bar. In a more
realistic case, the reservoir would extend much further in the lateral direction, and
the CO2 plume would have originated from a well source. However, our intention is
not to calculate the plume propagation accurately, but rather to test the interaction
between numerical codes for chemistry and advective transport. In this respect, the
test case described above is very illustrative.

As explained in Section 1.2, the volume of a two-phase CO2/brine mixture is sig-
ni�cantly decreased when gaseous CO2 dissolve into the brine. Also, the volume
of gaseous CO2 is in�uenced by pressure changes. Thus, theory suggests that we
should use the pressure equation for compressible �uids (1.2.3) to �nd the advection
velocities. Since accurate advection velocities are not important for us, however, we
use the approach of Obi and Blunt[43], and de�ne the gaseous CO2 phase as incom-
pressible. We then obtain a simpler set of equations that is faster to solve. The
density of the gas phase is set to 0.23 kg/m3, and the density of the aqueous phase is
set to 1 kg/m3 +cCO2(aq) ·dm3/mol ·0.01 kg/m3, where cCO2(aq) is the concentration of
CO2 dissolved in the brine. We let the relative permeabilities of the gas and aqueous
phase be given by the simple analytical expressions

krelg =
1

2
(0.7−min(S, 0.7))2

krell = S2,

while the rock permeability is set to 10 mD uniformly across the reservoir. If we
were to calculate the plume migration speed more accurately, we could have used
experimentally determined expressions like the ones found in[6], but approximate
values are su�cient for our purposes. The viscosity of the aqueous and gaseous
phase was set to 1 cP and 0.03 cP, respectively. Alternatively, these values could
have been calculated from an equation of state.

The geochemical reactions that we include in the model, are the same as those
described in Table 2.1.2. The initial mineral concentrations are taken from [22], and
are echoed in Table 5.2.1 for easier reference. �Minimal� volume fractions correspond
to a bulk concentration of 0.001 mol/dm3, at which the dissolution rate was assumed
to be zero. The mineral assemblage resembles that of the Utsira formation, into which
Statoil has injected captured CO2 since 1996[32]. For simplicity, we assume constant
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activity coe�cients for all the species in the model. In particular, we assume that
noncharged species have unit activity coe�cients, monovalent ions have an activity
coe�cient of γ = e−0.5, divalent ions have γ = e−2 and trivalent ions have γ = e−4.5.
This is a crude activity model, so the we expect the concentrations we calculate to
be somewhat inaccurate. Nevertheless, the convergence properties of the numerical
methods will be the same as if more precice values where used.

5.2.1 Evolution of the System

We solved the system depicted above using a spatial resolution of 32×32 grid blocks.
The �ow equations were solved in a sequential manner. First, we solved for pressure,
obtaining a pressure gradient that was used to calculate the advection velocities.
Secondly, the mass conservation equation was solved, using Strang splitting to sep-
arate reaction from advection. The advective part of the equation was solved using
a simple explicit upwind scheme, while the reaction part was solved using the ES-
DIRK32 scheme from Table 3.3.3. To be able to integrate this very sti� geochemical
system, we also used the SVD reduction technique that was introduced in Section
4.2.5. Finally, the temperature was assumed to be constant and equal to 80 ◦C during
the entire simulation period.

For the �rst 5 years of the simulation, we used a splitting interval of 0.25 years. The
gas plume migration pattern during this period is shown in Figure 5.2.1. In this
period, bouyancy forces act on the CO2 plume, pushing it towards the top of the
aquifer. While migrating upwards, the CO2 plume dissolves into the aquifer brine, as
shown in Figure 5.2.2. After approximately 5 years, the gas plume becomes immo-
bilised due to residual trapping. Thus, we observe very few changes in the saturation
from this point onwards, and the splitting interval can be increased. Continuing the
simulation another 200 years, we see that the CO2-rich brine begins to sink down
towards the bottom of the reservoir, due to bouyancy e�ects. This slower migration
process helps distribute the CO2 over a larger area. At the same time, precipitating
minerals capture some of the CO2 that has been injected.

5.2.2 Mineral Reaction Paths

Signi�cant changes in the mineral composition is seen in the grid cells approximately
1 year after CO2 has been introduced. In Figure 5.2.3, we have displayed how the
concentrations of di�erent minerals will typically evolve. The �gure is obtained by
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Figure 5.2.1: Saturation of CO2(g)
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simulating a grid cell that has the initial mineralogy of Table 5.2.1, but is then
�ooded by gaseous CO2 at a pressure of 100 bar. To illustrate how the temperature
may in�uence the chemical kinetics, we performed the calculation three times, using
di�erent temperatures. At 80 ◦C, we see that a signi�cant amount of CO2 becomes
trapped by precipitation of Magnesite and Dawsonite, within a time frame of 50-
100 years. If the temperature is increased to 120 ◦C, precipitation is faster, but the
amount of stable Dawsonite is smaller than at 80 ◦C. At 200 ◦C, neither Magnesite
nor Dawsonite are stable, and the initial amount of Albite is quickly dissolved, re-
leasing more carbonate into the brine. This calculation illustrates that temperature
changes can a�ect the stability of the minerals, as well as the time frame in which dis-
solution and precipitation occurs. Thus, temperature e�ects may be important when
considering storage sites with a signi�cant temperature gradient, or when considering
the injection of CO2 with higher temperature than the reservoir brine.

5.2.3 In�uence of Chemical Reactions on Flow

The chemical reaction that has the biggest impact on advection velocities, is the
dissolution of gaseous CO2 into brine. This reaction alters the saturations of the
mobile phases, which in turn changes their relative permeabilities. The other reac-
tions in the system may in�uence this process implicitly, by transforming dissolved
CO2 into other chemical species. This leaves room for more gaseous CO2 to dissolve.
However, since the mineral dissolution reactions are slow, we do not expect them to
signi�cantly in�uence the gas saturation during the period where the gas plume is
mobile. To test this hypothesis, we performed additional two-dimensional tests, one
including only the equillibrium reactions, and another where all chemical reactions
were disregarded. The results are shown in Figure 5.2.4. As we can see, the gas
migration speed is practically unchanged when the kinetic reactions are removed.
On the other hand, if the equillibrium reactions are removed as well, the plume is
migrating much too fast. Thus, for most CO2 injection scenarios, mineral reactions
can probably be disregarded during the initial phase of the simulation. If this is
done, the �rst years of the simulation can be computed within a fraction of the time
that must be used otherwise. The equillibrium reactions, however, must be retained.
Otherwise, the saturations and advection velocities are greatly a�ected.

Another way of which chemical reactions may potensially change the advection ve-
locities, is by increasing or decreasing the porosity of the rock, due to dissolution
or precipitation of minerals. To quantify this e�ect for the mineralogy we are con-
sidering, we calculated the permeability change according to the Kozeny-Carman
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Figure 5.2.3: Mineral evolution after a sudden CO2 �ooding
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Figure 5.2.4: Plume migration patterns
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equation (1.3.4), for the grid cell considered in Section 5.2.2. The simulation was
repeated for three di�erent temperatures, and the result is seen in Figure 5.2.5.
For high temperatures, more minerals dissolve, and the permeability increases. For
lower temperatures, the increased CO2 concentration causes minerals to precipitate,
thereby decreasing the permeability. For the mineralogy we are considering, how-
ever, the changes are relatively small. Disregarding porosity e�ects may therefore be
justi�ed, as the uncertainty of other �ow parameters is of greater importance.

5.2.4 Instabilities due to Transient Behaviour

For the complicated mineralogy we are considering in this example, stability is a ma-
jor issue during integration of the reactive term. As evident from Figure 5.2.2, the
area which is �ooded with CO2 increases during the entire integration interval. When
CO2 is introduced to a new region of the computational domain, the chemical prop-
erties of that region changes abruptly, and the concentrations of the aqueous species
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Figure 5.2.6: Typical evolution of concentrations when using Strang splitting

may change by orders of magnitude. Thus, it is di�cult to choose a proper scaling
for the variables involved, which a�ects the performance of the implicit methods.
Since the concentration values at the end of the time step are so far from their initial
values, the simpli�ed Newton iteration may diverge, or require an excessive number
of iterations. Therefore, integrating the reactive term in a single step, as we did in
Section 5.1.3, is out of the question. In line with the recommendations of Hairer
and Wanner[18], we chose to abort integration and reduce the time step whenever
more than 10 iterations was required for convergence. Furthermore, we chose the
initial time step to match the time scale of the fastest reaction. For every successful
time step, we estimated the error of the ESDIRK32 method using the second last
stage, which is an L-stable second-order approximation to the solution. We remark
that even though the last stage of this method is implicit, it is cheap compared to
the others. This is because the LU factorisation of the Newton iteration matrix is
already available, and the second stage value can be used as a close starting value for
the iteration. After a successful step, the next time step length was calculated based
on (3.3.8), with a relative tolerance limit of 10−3, and absolute tolerance limit of
10−5, which is well below the experimental uncertainty level for typical geochemical
parameters. A rescaling was performed whenever the change in concentrations or
time step length was large. Otherwise, the algorithm failed to converge.
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We performed a thorough analysis of the grid cells that required the most number
of iterations for convergence. It was revealed that the concentration evolution in
these cells often showed a curious transient behaviour, as in Figure 5.2.6. Here, we
have plotted the calculated concentrations for four di�erent metal ions in a single
grid cell. The cell contains much CO2 initially, but in the previously calculated
transport step, it has been in�ltrated with brine that has lower CO2 content. Thus,
at the beginning of the reactive step, the concentrations of the metal ions are far
from their equillibrium values. Already within fractions of a second, the aluminium
concentration starts to converge towards a value that represents equillibrium with
the minerals and the higher-concentration ions. At this point, kinetic reaction rates
are small compared to the time scale (10−15 days). Therefore, the metal ions with
higher concentrations are not signi�cantly a�ected.

Since the change in aluminium concentration is very large, small time steps must
be taken to ensure convergence. After aluminium has equillibrated, the concentra-
tions remain constant for some period, until the step length has reached about 10−2

days. At this time scale, the rates of the mineral reactions are so large that the
concentrations of iron and potassium are a�ected. These quickly attain equillibrium
with the minerals, and the sudden concentration drop requires the step length to
be greatly reduced, resulting in a lot of failed steps. We also see that when the
concentrations of iron and potassium changes, the equillibrium level for aluminium
changes as well. Finally, after about 1 day, the concentration of magnesium starts
to rise due to dissolution reactions. This a�ects the equillibrium values of potassium
and aluminium, leading to large changes in these concentrations during the last part
of the integration interval.

To summarise, the splitting scheme we have chosen, disturbs the initial chemical
equillibrium of the cell during the transport substep, by introducing chemical species
from neighbouring cells. To re-establish the equillibrium state, the cell undergoes a
complex reaction path, which forces the integration algorithm to use many, small time
steps in order to converge. This makes the solution of the reactive step extremely
time-consuming.

Since the instabilities observed above are caused by �instantly� �ushing the cell with
components from neighbouring locations, we might try to alleviate the situation by
�ushing the cell �gradually� during the reactive step. This can be obtained by using
a variant of the iterative splitting technique of Section 4.1.3, instead of the Strang
splitting. Speci�cally, we �rst solve for advective transport,

∂c

∂t
= L(c), c(0) = c0
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Figure 5.2.7: Number of LU factorisations per reactive step

using the explicit Euler method and upwind discretisation, as before. The di�erence
between the initial and �nal concentrations, ∆c = cfinal − c0, is then used as a
constant source term for the reactive step,

∂c

∂t
=

∆c

∆t
+R(c), c(0) = c0.

After this step, integration is stopped. Thus, it corresponds to iterative splitting
with only one iteration used. Not only does this scheme resemble the true physical
situation more closely than the Strang splitting, the reactive step is much more stably
computed as well, since the initial conditions correspond to chemical equillibrium.
With this new scheme, the concentrations converge monotonically to their respective
equillibrium values, and the time steps can be chosen much larger.

5.2.5 Integrating Over Discontinuities

We re-solved the equation using the new splitting scheme, and noticed a big im-
provement in the computational requirements. In Figure 5.2.7, we have shown the
number of required LU factorisations per reaction step after 1 year, using both of the
splitting techniques. However, there are still some cells that require a large amount
of iterations. Analyses shows that the problem in this case is related to the integra-
tion of discontinuous functions. For instance, consider a cell that is gradually �ushed
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with CO2. Initially, the problem is well-behaved, and the variables are increasing
or decreasing monotonically as CO2 is introduced. At this point, the amount of
the gaseous CO2 component itself is at zero, since the gas is immediately dissolved.
However, when the concentration of aqueous CO2 reaches a certain point, the cell
becomes saturated, and the amount of gaseous CO2 starts to rise. This creates a
discontinuity in the derivative of the solution.

As the integration methods we are using assumes that the problem is smooth, we
will have big di�culties integrating past the discontinuity. First of all, the simpli�ed
Newton iterations may diverge, since the Jacobian matrix may be very di�erent
at saturated and subsaturated conditions. Secondly, the error estimation and step
size control mechanism depend on the smoothness of the solution. Therefore, we
experience a large number of unnecessary step rejections at the discontinuity.

As a �rst remedy to handle this problem, we switched from simpli�ed to true Newton
iterations, and disabled the error estimation device, whenever a lot of consecutive
step rejections occured. Since the step length near the discontinuity is reduced to
very small values, this approach does not contribute signi�cantly to the numerical
error of our solution. However, it is not an ideal solution, as the computational cost
becomes very large whenever this situation occurs. A better way is to use some kind
of event detection algorithm. For instance, one can use the discontinuity locking
method, as described in [45].

We will brie�y outline the idea behind the method. First, we remark that the function
expressions used at one side of the discontinuities of our problem, is mathematically
well-behaved (although physically incorrect) at the other side as well. For instance,
consider a cell that is being �ushed with gaseous CO2. Let cg and cd be the concen-
trations of gaseous and dissolved CO2, respectively. Initially, the correct expression
describing chemical equillibrium is cg = 0, that is, all the gas is dissolved into the
brine. As CO2 is introduced into the system, the level of cd is rising, but cg stays
at zero. After saturation is reached, the physically correct equillibrium expression is
cd = csat, where csat is the maximum concentration of CO2 the brine can dissolve.
When applying a discontinuity locking mechanism, the initial equillibrium expres-
sion cg = 0 is retained even after saturation has been reached. Thus, the calculated
concentrations varies smoothly, although they attain unphysical (supersaturated)
values past the saturation point. After the algorithm has sucessfully integrated past
the discontinuity, interpolation techniques are then applied to locate the exact point
where saturation was reached. The integration is then aborted, and restarted at the
saturation point using the physically correct equillibrium expression.
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5.2.6 Performance of Higher-order Methods

It is possible that higher-order integration schemes perform better than the ES-
DIRK32 method we have used this far. To test this hypothesis, we compared the
performance of the ESDIRK methods of Table 3.3.3 on the situation that we have
found to cost the most number of iterations, namely, the �ushing of a grid cell with
gaseous CO2. To avoid complications arising from discontinuities, we only compared
the performance on the smooth interval, prior to the saturation point. The results
are shown in Table 5.2.2a. It is clear that the lower-order method perform best in
this case, with respect to all the parameters. Another striking result of Table 5.2.2a
is the large number of failed steps, for all the methods tested. The reason for the
failed steps is the large change of concentrations seen when introducing CO2 into a
reservoir region. Thus, the step size is restricted by the convergence of the Newton
iterations, rather than the accuracy of the solution. Since the lower-order method is
also the most stable one, ESDIRK32 comes out ahead. The situation changes if the
accuracy requirement is increased. To illustrate this, we re-solved the problem with a
relative tolerance level of 10−6 and absolute tolerance of 10−8, and printed the results
in Table 5.2.2b. The higher order methods now requires the least number of function
evaluations and LU factorisations to acheive a solution within the error tolerance.
This high level of accuracy is not needed for geochemical simulations, however, since
the uncertainty of geochemical parameters are usually of some percents or more.
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ESDIRK32 ESDIRK43 ESDIRK54

LU factorisations 64 82 96
Failed steps 24 33 40
Successful steps 40 49 56
Function evaluations 575 868 1435
Solutions of linear systems 593 896 1470

(a) RelTol = 10−3, AbsTol = 10−5

ESDIRK32 ESDIRK43 ESDIRK54

LU factorisations 563 328 313
Failed steps 261 163 160
Successful steps 302 165 153
Function evaluations 3757 3003 4071
Solutions of linear systems 3829 3087 4177

(b) RelTol = 10−6, AbsTol = 10−8

Table 5.2.2: Performance of di�erent integration schemes
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Chapter 6

Summary and Conclusions

In this thesis, we have shown how to include chemical reactions in the common
equations for multi-component, multi-phase �ow in porous media. As we have seen,
three major modi�cations must be made:

1. A source term must be added to the mass conservation equations, describing
the transition from one component to another due to chemical reactions.

2. Since the components have di�erent formation energies, a chemical reaction
can rise or lower the temperature of the �uid. This can be described by adding
a term to the temperature equation.

3. Reactions may change the saturations and the total volume of the pore �uid,
thus a�ecting the pressure gradient and advection velocities. This e�ect can
be captured by small modi�cations to the pressure equation.

The modi�cation that poses the greatest numerical di�culties, is the �rst one. With-
out reactions, the mass conservation equations are easily scalable, and can be solved
quickly by explicit integration methods. When chemistry is introduced, however,
we face a number of challenges. First of all, the number of equations are usually
greatly increased, since we will have to consider the concentrations of components
that is present in small amounts only. Since the reaction speeds and the involved
concentrations are of very di�erent magnitudes, the chemistry term is sti�, and must
be solved with implicit integration methods. Such methods require a system of equa-
tions to be solved iteratively in each time step. As we have seen, the rate equations
are strongly nonlinear, which often require small time steps to be taken in order to
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ensure convergence. In addition, it is di�cult to scale the equations properly, since
the magnitudes of the concentrations are changing rapidly when a reservoir region is
�ushed with gaseous CO2. Thus, the system must be frequently rescaled in order to
keep it well-conditioned.

We have introduced a number of techniques to deal with these issues. To integrate
the sti� equations, we utilised implicit Runge-Kutta methods, which were able to
integrate the chemical terms e�ciently and stably. As the error tolerances for geo-
chemical simulations are crude, due to large uncertainties in the parameters used,
lower-order methods often show the best performance. We have also shown that
linear recombinations of the mass conservation equations may be necessary in order
to reduce the condition number of the Jacobian matrix used for implicit calculations.
When complex mineralogy is involved, such reformulations are necessary in order to
acheive a numerically stable integration. In addition, frequent rescalings may also
be necessary.

We have also shown that decoupling advection and reaction by operator splitting may
be computationally e�cient. Not only is each step computed faster than with coupled
methods, the approach also allows explicit methods to be used for the advection
operator, minimising numerical di�usion. Decoupled reactive steps may be computed
in parallel, since the grid cells are spatially decoupled when it comes to reactions.
However, as we have seen, simple splitting schemes may cause instable behaviour
when complex mineralogy is involved. Speci�cally, splitting schemes may disturb
the initial chemical equillibrium of the grid cells prior to integration of the reactive
term. To avoid this situation, we have proposed a variant of iterative splitting that
seems to solve the problem.

Mineral changes are observed in the reservoir approximately one year after the in-
troduction of CO2. As we have seen, mineral reactions may have a large impact
on the brine's ion composition, but they do not necessarily in�uence the velocity of
the migrating CO2 plume. Within the time frame of plume migration, the porosity
changes are small, and the reactions do not in�uence the dissolution of CO2 signif-
icantly. Thus, it is possible that mineral reactions may be disregarded during the
initial phase of CO2 injection into a reservoir.

Finally, we have observed that the integration methods we are using, may require
an excessive amount of steps to be able to integrate over discontinuities caused by
phase appearances and disappearances. Further work is required to identify suit-
able algorithms for stopping and restarting the integration at the location of the
discontinuity.



Nomenclature

Lowercase letters

a Activity
c (Bulk) concentration
ĉ Interphasial concentration
e Molar internal energy
kF Thermal conductivity
krel Relative permeability
kD Dispersion coe�cient
k Chemical rate constant
p Pressure
q Scaled chemicar reaction rate
r Chemical reaction rate
t Time
u Flow velocity, Darcy velocity
y Scaled concentration

General variable designation

Uppercase letters

D Damköhler number
E Internal energy
Ea Apparent activation energy
H Enthalpy
K Equillibrium constant

Rock permeability
N Molar amounts
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R Molar production rate of a component due to chemical reactions
Gas constant

S Saturation
T Temperature
V Volume

Greek symbols

α Rock compressibility
φ Porosity
ϕ Fugacity coe�cient
γ Activity coe�cient
λ Eigenvalue
µ Viscosity
ψ Phase volume fraction
ρ Density
ξ Extent of reaction
Ω Reservoir region

Blackboard bold symbols

0 Zero matrix
1 Vector of ones
A Butcher tableau of Runge-Kutta methods
I Identity matrix
J Jacobian matrix
M Mass matrix
N Change-of-variables matrix
S Stoichiometry matrix
T Scaled and transposed stoichiometry matrix
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Calligraphic symbols

L Convective term of mass conservation equation
M Mass conservation equation
P Pressure equation
R Reactive term of mass conservation equation
T Temperature equation
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