
244

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On a New Method for Derivative Free Optimization

Lennart Frimannslund

Department of Informatics

University of Bergen

Bergen, Norway

Email: lennart@ii.uib.no

Trond Steihaug

Department of Informatics

University of Bergen

Bergen, Norway

Email: trond.steihaug@ii.uib.no

Abstract—A new derivative-free optimization method for
unconstrained optimization of partially separable functions
is presented. Using average curvature information computed
from sampled function values the method generates an average
Hessian-like matrix and uses its eigenvectors as new search
directions. Numerical experiments demonstrate that this new
derivative free optimization method has the very desirable
property of avoiding saddle points. This is illustrated on two
test functions and compared to other well known derivative
free methods. Further, we compare the efficiency of the new
method with two classical derivative methods using a class of
testproblems.

Keywords-Generating Set Search, Derivative-Free Optimiza-
tion, Saddle points, Sparsity.

I. INTRODUCTION

Continuous optimization is an important area of study,

with applications in statistical parameter estimation, eco-

nomics, medicine, industry — simply put, anywhere a math-

ematical model can be used to represent some real-world

process or system which is to be optimized. Mathematically,

we can express such a problem as

min
x∈D⊆Rn

f(x), (1)

where f is the objective function, based on the model which

is defined on the domain D. These models can range from

simple analytic expressions to complex simulations. Well

known optimization methods such as Newton’s method use

derivatives to iteratively find a solution. These derivatives

must somehow be provided, either through explicit formu-

las/computer code, or, for instance, automatic differentiation.

Suppose, however, that the objective function is pro-

duced by some sort of non-differentiable simulation, or

that it involves expressions which can only be computed

numerically, such as the solution to differential equations,

integrals, and so on. In this case derivatives might not exist,

or they may be unavailable if the numerically computed

function is subject to some kind of adaptive discretization

and truncation and therefore is non-differentiable, unlike the

underlying mathematical function. In these cases derivative-

based methods are not directly applicable, which leads to the

need of methods that do not explicitly require derivatives.

For an introduction to derivative free methods the reader is

referred to [3].

Generating set search (GSS) methods are a subclass

of derivative-free methods for unconstrained optimization.

These methods can be extended to handle constraints, but

we will focus on the unconstrained case where the domain

D in the problem (1) is equal to R
n. A comprehensive

introduction to these methods can be found in [14]. In their

most basic form these methods only use function values

and do not collect any information such as average slope or

average curvature information. Computing this information,

however, can significantly speed up convergence, and this is

done in the methods presented in [4], [6].

In addition, information about the structure of the function

known a priori can also be useful. Suppose that the objective

function f can be written as a sum of element functions,

f =

m
∑

i=1

fi,

where each element function has the property that it is un-

affected when we move along one or more of the coordinate

directions. For example, we might have

f(x1, x2, x3) = f1(x1, x2) + f2(x2, x3). (2)

Then, the function is said to be partially separable [10] and

we say that fi has a large null space. If f is partially

separable and twice continuously differentiable, then its

Hessian matrix,

∇2f(x) =









∂2f

∂x2

1

· · · ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n









,

will be sparse. For the function (2) the Hessian element
∂2f

∂x1∂x3
will be zero. If the function (2) is not twice contin-

uously differentiable, then the matrix of the corresponding

finite differences, that is, the matrix with

245

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[

f(x1 + h, x2, x3 + k)− f(x1 + h, x2, x3)

−f(x1, x2, x3 + k) + f(x1, x2, x3)
]/

(hk) = 0, (3)

in position (i, j) = (1, 3) (and with similar expressions

for all other (i, j)-pairs) will be sparse for any x, and any

nonzero h and k, none of which have to be the same for

each (i, j)-pair. The sparsity structure is the same as for the
differentiable case, so that the expression (3) is identically

zero. This result can be extended to any partially separable

function, as proved in [7].

In [23], a GSS method which exploits such structure

is presented, which is applicable to the case where these

element functions are individually available.

In this paper, we present a GSS method which takes

advantage of the partially separable functions, without re-

quiring the element functions (which may or may not be

differentiable) to be available. It is an extension of the paper

[6]. We use the concept of average curvature introduced in

[6].

This paper is organized as follows. In section II, we

outline a basic framework for GSS, as well as the previous

work of the authors on which the present paper is based. In

Sections III and IV, we present the handling of partially

separable functions and the convergence to second order

stationary points. Section V contains a discussion of the

methods used in the comparison and Section VI specifies

the test functions. The main part of this paper is the

testing presented in Section VII. Here, we define region of

convergence and in the two sections VII and VIII we present

the numerical properties of the methods on the two test

functions. In Section IX, we show the efficiency of method

derived in this paper compared to two classical methods for

derivative free optimization. Concluding remarks are given

in Section X.

II. GENERATING SET SEARCH USING CURVATURE

INFORMATION

We restrict ourselves to a subset of GSS methods, namely

sufficient decrease methods with 2n search directions, the

positive and negative of n mutually orthogonal directions,

of unit length. These directions will in general not be the co-

ordinate directions. A simplified framework for the methods

we consider is given in Figure 1. The univariate function

ρ must be nondecreasing and satisfy limx↓0
ρ(x)
x

= 0.
For simplicity, increasing the step length can be thought

of as multiplying it by 2, and decreasing it as dividing

by 2, although these rules may be more advanced. For

the formal requirements on these rules, see [14]. Given

mild requirements on the function f the step length δ will

ultimately go to zero, and the common convergence criterion

for all GSS methods is that δ is smaller than some tolerance.

Given set of search directions Q, step length δ and an

initial guess x← x0.

While δ is larger than some tolerance

Repeat until x has been updated or all q ∈ Q have

been used:

Get next search direction q ∈ Q.
If f(x+ δq) < f(x)− ρ(δ)

Update x: x← x+ δq.
Optionally increase δ.

End if

End repeat

If no search direction provided a better function

value, decrease δ.
Optionally update Q.

End while

Figure 1. Simplified framework for a sufficient decrease GSS method.

As can be seen from the pseudo code in Figure 1, the

set of search directions can be periodically updated. In [6],

the authors present a method that computes average curva-

ture information from previously sampled points, assembles

this information in a Hessian-like matrix and uses the

eigenvectors of this matrix as the search directions, which

amounts to a rotation of the old search directions. Once this

rotation has been performed, the process restarts, and new

curvature information is computed, periodically resulting in

new search directions. It is shown that the efficiency of the

method can be greatly improved compared to just using the

coordinate directions as the search directions throughout.

A similar scheme, which aligns the basis to the average

direction the search progresses, appeared as early as 1960

in [24] and implemented in 1973 [16]. To illustrate the idea

of curvature information we use a quadratic model function

by assuming we are minimizing, say,

g(y) = φ+ bT (y − x) +
1

2
(y − x)TC(y − x),

where C is a symmetric matrix. The search directions are

positive and negative of the column vectors of the orthogonal

matrix Q, that is,

Q =
[

q1 q2 · · · qn
]

.

Since g is a quadratic function, we have

qTi Cqj =
g(x+ δiqi + δjqj)− g(x+ δiqi)− g(x+ δjqj) + g(x)

δiδj
.

For a general function f the computation of curvature

information can be done in the following way, which is

a slight modification of the methodology presented in [6].

Consider Figure 2, and assume that the current point is the

246

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a b

cd

q1

q2

Figure 2. Location of sampled points used for curvature computation.

Outcome Notes

SS The search along q1 moves the current best point
to b, and the search along q2 moves the current best
point to c. The function value at d must be computed
separately.

SF The search along q1 moves the current best point
to b, and the search along q2 computes the function
value at c, but does not move the current best point.
The function value at d must be computed separately.

FS The search along q1 computes the function value at
point b, but does not move the current best point. The
search along q2 computes the function value at point
d. The function value at point c must be computed
separately.

FF Neither the search along q1 nor q2 update the current
best point, but the function values at points b and d
are obtained. The function value at point c must be
computed separately.

Table I
THE FOUR POSSIBLE OUTCOMES WHEN SEARCHING ALONG TWO

CONSECUTIVE DIRECTIONS. S MEANS SUCCESS, F MEANS FAILURE.

point marked a, and that the next two search directions in

the repeat-loop in the pseudo code are the directions shown,

q1 and q2. When searching along two directions in a row,

there are four possible outcomes. Success-success (both the

search along q1 and q2 produce function values which satisfy
the sufficient decrease condition), success-failure (the search

along q1 produces a sufficiently lower function value, but

the search along q2 does not), failure-success, and finally

failure-failure. In all of these four cases, by computing the

function value at a fourth point, the function values at four

points in a rectangle can be obtained. The details are given

in Table I. The function values at four such points a, b, c
and d can be inserted into the formula

f(c)− f(b)− f(d) + f(a)

‖b− a‖ ‖d− a‖ . (4)

If the objective function is twice continuously differen-

tiable, then the next lemma will show that (4) is equal to

qT1 ∇2f(x̂)q2, where x̂ is some point within the rectangle

abcd. If the function is not twice continuously differentiable,
(4) captures the average curvature in the rectangle.

The rectangle lies in the plane spanned by the search

directions q1 and q2 since these were used consecutively. By
successively reordering how the “get next search direction”

statement considers the directions in Q, one can obtain cur-
vature information with respect to all the n(n−1)/2 possible
different combinations of search directions, in a finite and

uniformly bounded number of steps, which depends on n
since there are O(n2) elements of curvature information

which must be assembled. (For this reason, the method is not

suitable for n larger than about 30, but exploiting structure

can allow for much larger n, as will be explained in Section
III.)

The following lemma is a slightly modified version of [5,

Lemma 3.5] and can be found in calculus textbooks usually

as a part of showing that the Hessian matrix is symmetric

if the function is sufficiently smooth.

Lemma 1: Suppose the objective function f : Rn 7→ R is

twice continuously differentiable, assume we have given two

orthogonal search directions qi and qj , and have computed

f(x), f(x+ hqi), f(x+ kqj), and f(x+ hqi + kqj)

for some x and some scalars h and k. Let element ij, i > j
of the symmetric matrix CQ be

(CQ)ij =
f(x+ hqi + kqj)− f(x+ hqi)− f(x+ kqj) + f(x)

hk
.

Then,

(CQ)ij = qTi ∇2f(x̂)qj ,

where x̂ = x+ τhqi + σkqj for some τ, σ ∈ [0, 1].
The matrix CQ contains qTi ∇2f(x̂)qj in positions (i, j) and
(j, i), which is curvature information with respect to the

coordinate system defined by the n directions q1, . . . , qn in

Q. Note that the point x̂ is different for each (i, j)-pair. Also
note that both qi ∈ Q and −qi ∈ Q. The diagonal elements
of CQ must be computed separately, for instance when

the step length is reduced, since the preceding repeat-loop,

combined with the current f -value then gives the function

values at three equally spaced points on a straight line for

all n search directions.

Once the matrix CQ is complete, it is subjected to the

rotation

C = QCQQ
T , (5)

where Q is the matrix with the n unique search directions

as its columns, ordered so that they correspond to the

ordering of the elements in CQ. C now contains curvature

information with respect to the standard coordinate system.

The search directions in Q are then replaced with the

positive and negative of the eigenvectors of C.
To build up CQ in a systematic fashion we need to specify

one way to choose the order. For instance, for n = 4 and one
wants to compute (CQ)21, (CQ)31, (CQ)24, and (CQ)34,
then one can let the order of the directions be:

q1, q2, −q1, q3, −q2, q4, −q3 −q4 .

Here, the search along q1 and q2 enables us to compute

(CQ)21. The directions −q1 and q3 provide us with (CQ)31,

247

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and so on. A discussion and analysis of ordering are found

in Macklem [17].

We now investigate the relationship between C and

∇2f(x). The search directions are the orthogonal directions
q1, . . . , qn and assume that the elements (CQ)ij of the

symmetric m × m matrix CQ have been computed at the

points
{

xij , xij + hijqi, xij + kijqj , xij + hijqi + kijqj
}

,
(6)

for all (i, j), i ≥ j and (CQ)ji set to be equal to (CQ)ij .
Let N be the union of all such points and let

δ = max
z,y∈N

‖z − y‖, (7)

and

N =

{

x ∈ R
n | max

y∈N
‖x− y‖ ≤ δ

}

. (8)

Lemma 2: Assume that f is twice continuously differen-

tiable and ∇2f is Lipschitz-continuous in N
‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, for all x, y ∈ N .

Let the n× n symmetric matrix CQ be computed with the

points (6). Then any x ∈ N satisfies

‖QCQQ
T −∇2f(x)‖ ≤ nLδ. (9)

The proof can be found in [6] and we will in the next

section prove a more general result. In case of a quadratic

function L = 0, the exact Hessian matrix is recovered. The

second derivative is only required to be locally Lipschitz

with respect to N .

III. EXTENSION TO SEPARABLE FUNCTIONS

Suppose the function f is partially separable. As men-

tioned in the introduction, the Hessian will be sparse if f is

twice continuously differentiable, and if the Hessian is not

defined, the matrix of average curvature information will

be sparse [7]. Let r be the number of nonzero elements in

the lower diagonal of these curvature matrices. Then, even

though the matrix C can be restricted to have this sparsity

pattern, the matrix CQ cannot be assumed to be sparse, since

we cannot expect the finite differences (4) to be zero for

arbitrary search directions Q. However, sparsity can still be
exploited.

Given two matrices A ∈ R
m×n and B ∈ R

r×s, the

Kronecker product A⊗B is a mr× ns block matrix given
as

A⊗B =







A11B · · · A1nB
...

...

Am1B · · · AmnB






. (10)

The Kronecker product is useful in the present context

because of the relation

AXB = C ⇔ (BT ⊗A)vec(X) = vec(C). (11)

Here vec(X) and vec(C) are vectors containing the entries
of the matrices X and C stacked row-wise [13].

Using (10) and (11) the rotation (5) can be written

implicitly as

(QT ⊗QT)vec(C) = vec(CQ). (12)

Since we impose a sparsity structure on C as well as

symmetry, all the entries in the upper triangle, as well as

all the zero entries of vec(C) can be removed from (12),

resulting in the overdetermined equation system

(QT ⊗QT)Pcvec(C) = vec(CQ), (13)

where the vector vec(C) contains the r elements of C to

be determined, and the n2 × r 0-1 matrix Pc adds together

the columns corresponding to upper and lower diagonal

elements Cij and Cji for all off-diagonal elements, and

deletes the columns corresponding to zero entries in C. For
example, if C is to be tridiagonal and is of size 3× 3, that
is,

C =





× ×
× × ×

× ×



 ,

then it has one zero element and five nonzero elements in

the lower triangle, so that Pc has size 9× 5 and reads:

Pc =





























1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1





























. (14)

Since the equation system (13) is overdetermined, we can

select r rows from the coefficient matrix and the right-hand

side, resulting in the r × r equation system

Prow(QT ⊗QT)Pcvec(C) = Prowvec(CQ), (15)

where Prow is an r × n2 0-1 matrix which selects r rows.

Prow will be the first r rows of a permuted n2 × n2

identity matrix. The resulting equation system (15) will be

significantly smaller than its counterpart (12) when a sparsity

structure is imposed on C, and the corresponding effort

required to compute the right-hand side is similarly smaller.

If there are only O(n) elements to be determined, then the

number of steps needed to compute the entire right-hand side

Prowvec(CQ) does not depend on n, which does away with
the practical limit on dimension discussed in the previous

section.

Exactly which rows Prow should select in order to create

a well-conditioned coefficient matrix is nontrivial, and is

sometimes called the subset selection problem in the liter-

ature (see e.g., [9]). One suitable solution procedure is to

248

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

determine these rows by computing a strong rank-revealing

QR factorization of the transpose of Prow(Q
T ⊗ QT) and

selecting the rows chosen by the theory and algorithms of

Gu and Eisenstat, presented in [11]. An implementation of

this selection procedure can be found in [21].

IV. CONVERGENCE THEORY

The method presented so far, being a sufficient decrease

method with 2n search directions which are the positive

and negative of n mutually orthogonal directions, adheres to

the algorithmic framework and convergence theory of Lucidi

and Sciandrone [15]. We can therefore state the following

theorem, without proof.

Theorem 3: Suppose f is continuously differentiable,

bounded below and the level set L(x) = {y | f(y) ≤ f(x)}
is compact. Then, the method converges to a first-order

stationary point.

We now prove that if f is twice continuously differen-

tiable, then the computed curvature matrix C converges to

the true Hessian in the limit.

Define

A = Prow(Q
T ⊗QT)Pc.

Let f be twice continuously differentiable and Hessian

Lipschitz-continuous in the sense that

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖. (16)

Define r pairs of vectors p(k), q(k) k = 1, . . . , r, all of unit
length, such that the kth row of A is equal to

(

p(k)T ⊗ q(k)T
)

Pc. (17)

This means some of these vectors will be equal, but the pairs

will be unique. In addition let r points xk, k = 1, . . . , r, be
such that element k of Prowvec(CQ),

(Prowvec(CQ))k = p(k)T∇2f(xk)q(k).

Let η be such that

max
i,j
‖xi − xj‖ = η.

Let N be the neighborhood of points such that

N =
{

x | ‖x− xk‖ ≤ η, k = 1, . . . , r
}

.

For convenience, let us restate (15), as

Avec(C) = Prowvec(CQ). (18)

Lemma 4: Assume A is invertible. Let C be the symmet-

ric n×n matrix constructed from the solution of (18). Then,

there exists an x ∈ N such that

‖∇2f(x)− C‖ ≤ ‖A−1‖nLη.

Proof. Let us rewrite the contents of Prowvec(CQ):

(Prowvec(CQ))k

= p(k)T∇2f(xk)q(k)

= p(k)T
(

∇2f(x) +∇2f(xk)−∇2f(x)
)

q(k)

=
[

p(k)T∇2f(x)q(k)
]

+
[

p(k)T (∇2f(xk)−∇2f(x))q(k)
]

. (19)

Then, and in addition defining h = vec(∇2f(x)), equation
(18) can be written as

Avec(C) = Ah+ ǫ. (20)

Here (Ah)k is the expression in the first parenthesis of (19),

and ǫk is the expression in the last parenthesis of (19). If

we consider the norm of a single element in ǫ, this is

|ǫk| ≤ ‖p(k)‖ ‖∇2f(xk)−∇2f(x)‖ ‖q(k)‖
≤ Lη, (21)

using (16) and the fact that p and q have unit length. When

solving (18), we get

vec(C) = h+A−1ǫ.

If we consider a single element of vec(C) and h we can

write

|(vec(C))k − hk| ≤ ‖A−1‖|ǫk|,

which can also be written

|Cij − (∇2f(x))ij | ≤ ‖A−1‖|ǫk| (22)

Using the property of the 2-norm that

‖A‖2 ≤ nmax
i,j
|aij |,

as well as (21) we can extend (22) to

‖C −∇2f(x)‖ ≤ ‖A−1‖nLη,

which completes the proof. �

We must now prove that there always exists a matrix A with

rank r, and that the term ‖A−1‖ is uniformly bounded. Since
A is made up of the rows of the matrix (QT ⊗QT)Pc, there

will be a choice of rows which imply full rank if the matrix

(QT ⊗QT)Pc has rank r.
Lemma 5: For any orthogonal matrix Q and any sparsity

structure to be imposed on C, the matrix (QT ⊗ QT)Pc

has full rank r, and its smallest singular value σr satisfies

σr ≥ 1.
Proof. Since Q is orthogonal, so is QT , and also

(QT ⊗QT). For any sparsity structure, right-multiplying

(QT ⊗ QT) with Pc either adds together two columns, or

deletes columns. Consequently, the columns of the resulting

matrix (QT ⊗ QT)Pc are orthogonal (which implies full

rank), and have either length one or length
√
2. It then

249

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

follows that the singular values are equal to the length of

the column vectors, either 1 or
√
2. �

If we consider (14) and the corresponding (QT ⊗ QT)Pc,

the norm of first column of (QT ⊗QT)Pc is 1 and the norm

of the second column is
√
2.

Lemma 6: Prow can be chosen such that for a given n,
the smallest singular value of A is uniformly bounded below,

and consequently that ‖A−1‖ is uniformly bounded.
Proof. This result follows from the theory and methods of

Gu and Eisenstat [11], which guarantee that the rows of A
(or equivalently the columns of AT , as is done in [11]) can

be selected from the rows of (QT ⊗QT)Pc in such a way

that the smallest singular value of A is larger than or equal

to the smallest singular value of (QT ⊗QT)Pc, divided by

a low order polynomial in n and r. Since n and r are given
and the smallest singular value of (QT ⊗QT)Pc is always

larger than or equal to 1, the result follows. �

Finally, we show that η goes to zero as the GSS method

converges to a stationary point.

Lemma 7: Assume that the step length expansion factor

is uniformly bounded by, say, M . Then, as the step length

δ go to zero, so does η.
Proof. That the step length δ goes to zero is an integral part
of the convergence theory of GSS methods and is proved

in e.g. [14]. η is the diameter of neighborhood of points

N . Since all the points in N lie within the rectangles of

points used in the formula (4), it follows that η must be

smaller than maximum possible distance between the first

and the last points used for computing C (the corner points

of the rectangle abcd in Figure 2). Suppose, that when the

computation of C is started the step length is δmax, and

that the maximum possible number of step length increases

before C is computed is t. Then we have

η ≤
t

∑

k=0

δmaxM
k−1.

The only variable in this expression is δmax, and we know

it goes to zero as the method converges. Consequently, so

must η. �
This allows us to state the following theorem:

Theorem 8: Assume that f is twice continuously differ-

entiable, bounded below and that the level sets L(x) are

compact. Then, as the method converges, C converges to

the true Hessian.

The proof follows from the preceding Lemmas. This result,

together with the preliminary numerical results in this paper

allows us to conjecture that the method actually converges

to second-order stationary points.

V. TESTING DERIVATIVE FREE OPTIMIZATION METHODS

The purpose of the following sections is to report on

numerical experiments on two unconstrained optimization

problems where methods risk terminating at a saddle point,

avoiding a nearby strict local minimizer. For visualization

purposes we have chosen problems with two unknowns.

The first problem is a modification of a problem suggested

by Wolfe [26]. In its unmodified form this problem has been

used to show that gradient based methods tend to converge

to a saddle point. The modification will make the function

bounded below and introduce a local minimizer but not

change the region where gradient based methods converge

to the saddle-point. The second example is a modification of

a function presented in [1], which has a very narrow cone

of negative curvature. Again the modification will make the

function bounded below and introduce local minimizers.

Generating set search methods described in the previous

sections are shown to converge to stationary points and the

set of search directions in the limit will be the eigenvalues

of the Hessian matrix at the solution. If the Hessian matrix

at the stationary point has a negative eigenvalue, one of the

search directions will be a descent direction. A generating

set search should therefore not experience convergence to

the saddle points of the two test functions. A generating set

search method is compared with two methods which do not

have the same property to generate descent at a saddle point.

In the second part of the experiments we compare the

efficiency of GSS-CI with two classical derivative free

methods on a class of test problems.

A. The methods

The three methods primarily used in testing, are GSS-CI,

NEWUOA and NMSMAX. We will briefly discuss two

additional methods, MDSMAX and fminsearch.

1) GSS-CI: This is the method presented in the previous

sections and [8], [2], and is based on the method of [6]. Since

the method gathers average slope information the method

can consequently perform Newton-like steps at regular in-

tervals.

The initial search directions are chosen to be the pos-

itive and negative coordinate vectors. Each pair of search

directions (e.g. ±qi, where qi is a search direction) has a

step length δi associated with it. In our experiments these

are initially set to the same value, 0.2‖x0‖1, but they will

be increased or decreased individually depending on the

success or failure of the search along the corresponding

pairs of search directions. A search is deemed successful

it it produces sufficient decrease, that is, if

f(x+ δiqi) < f(x)− ρ(δi),

where ρ : R 7→ R is nondecreasing function satisfying a few

technical requirements, outlined in [14]. In our implemen-

tation we use

ρ(δ) = 10−4δ2.

The termination criterion is that the product of all the step

lengths should be less than or equal to a tolerance. In our

250

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

experiments this is
n
∏

i=1

δi ≤
(

10−4‖x0‖1
)n

.

B. NEWUOA

NEWUOA [22] is an interpolation method, where the

number of interpolation points can be determined by the

user. The remaining degrees of freedom are taken up by

minimizing the Frobenius norm of the difference between

one Hessian approximation and the next.

An initial vector x0 ∈ R
n, the number m of interpolation

points, and the initial and final values of a trust region radius,

namely ρbeg and ρend must be provided by the user. The

number of interpolation points m is a fixed integer from the

interval n+2 ≤ m ≤ 1
2 (n+1)(n+2). It is recommended to

usem = 2n+1 for efficiency. The initial interpolation points
xi, i = 0, 1, 2, . . . ,m, have the property that ‖xi − x0‖2 =
ρbeg, i = 1, 2, . . . ,m, unless m > 2n + 1, in which case

this distance is
√
2ρbeg. The termination criterion is related

to the radius ρend.

C. NMSMAX

NMSMAX [12] is an implementation by Nicholas J.

Higham of the classical Nelder-Mead simplex method [20].

The user can choose whether the initial simplex is right-

angled or regular (with sides of equal length). The initial

simplex size is not input by the user, but taken to be the order

of max(‖x0‖∞, 1). The method terminates when either the

maximum number of function evaluations is reached, or

when the relative size of the simplex, is below a certain

threshold. That is,

1

max(1, ‖v0‖1)
max
1≤i≤n

‖vi − v0‖1 ≤ tol.

Here v0 and vi, i = 1, . . . , n are the vertices of the simplex.

In our experiments we use tol = 10−6‖x0‖1.
D. The methods MDSMAX and fminsearch

We also included a brief test of the methods MDSMAX,

which is an implementation by Nicholas J. Higham of the

multidirectional search method due to Virginia Torczon [25],

and fminsearch [18], which is the Matlab implementation of

the Nelder-Mead method.

VI. THE FUNCTIONS

The two functions are in two variables, are twice contin-

uously differentiable and bounded below.

A. Function I – A Narrow Positive Cone

The function (23) is a modification of a test function in

[1]:

f(x, y) = (9x− y)(11x− y) +
x4

2
. (23)

It has a saddle point at the origin, and two local minimizers

at (x, y) = ±(1, 10). Level curves for this function can be

seen in Figure 8.

x

y

−4 −3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3. Level curves for the function (24).

B. Function II – Modified Wolfe Function

The second function (24) is a modified version of a test

function due to Wolfe [26]:

f(x, y) =
x3

3
+

y2

2
− 2

3
(min[x,−1] + 1)3, (24)

It has a saddle point at the origin and a minimum at (x, y) =
(−2 −

√
2, 0). Level curves for this function are shown in

Figure 3. The original function (not bounded below) is given

by f(x, y) = x3

3 + y2

2 .

VII. NUMERICAL EXPERIENCE

Region of Convergence: The region of convergence of

a stationary point is the set of starting points for which a

given method terminates close to the stationary point. In

addition to the input parameters for the methods we need to

specify the tolerance (or distance between) the terminating

point and the stationary point. A globally convergent method

on a sufficiently smooth function is characterized by for all

starting points, the method will for any ε > 0 generate an

iterate xk so that ‖∇f(xk)‖ ≤ ε. However, the stopping

criteria of the implementation may be based on changes

in the function values or on the difference between two

iterates. Even the case ‖∇f(xk)‖ ≤ ε will in general not

guarantee that the distance between the stationary point and

xk is small. We can thus expect that even if the methods

terminate successfully, the distance to a stationary point

will not be smaller than the tolerance for some starting

points. For simplicity we say that a method terminates at

a stationary point when it terminates at a point that satisfies

the tolerance.

A. Function I

For this function we generate starting points in the fourth

quadrant {(x, y)|x ≤ 0, y ≥ 0}. The minimizers of the

function are in the first and third quadrants, so we expect

the methods to terminate successfully at the minimizers

251

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if started in these quadrants. This is confirmed in the

preliminary numerical testing. Furthermore, because of the

symmetry of the function we can choose either the second

or fourth quadrants, at least for GSS-CI and NEWUOA.

GSS-CI: We discretize the area [−8, 0]× [0, 10], into a
201 × 201 grid of points, and start the method with initial

step length 0.2‖x0‖1 for all directions, and the termination

criterion is that the product of all the step lengths should

be less than or equal to (10−4‖x0‖1)n. (If x0 = 0 then

nonzero values are used.) The results are given in Figure 4.

In the figure, a blue color means that the method terminated

Figure 4. GSS-CI on the function f = (9x1−x2)(11x1−x2)+
1

2
x4

1
. The

initial step length is 0.2‖x0‖1 for all directions, and the termination crite-
rion that the volume of the ellipsoid defined by the scaled search directions
should be proportional to 10−4‖x0‖1, that is,

∏
i δi ≤ [10−4‖x0‖1]n.

(The discretization is 201 × 201.)

close to (x, y) = (1, 10) for the corresponding starting point,
red color means termination close to (x, y) = (−1,−10).
As one can see, the method does not terminate close to

the saddle point for any of these starting points. When

starting at the origin, setting a nonzero step length results in

convergence to a minimizer.

NEWUOA: We generate starting points on a 1001 ×
1001 discretization of the region [−8, 0] × [0, 10], and

run NEWUOA with parameters ρbeg = 0.2‖x0‖1, and
ρend = 10−5‖x0‖1. (Once again, if x0 = 0 then nonzero

values are used.) The results are visualized in Figure 5. As

before, blue color means that the method terminated close

to (x, y) = (1, 10) for the corresponding starting point, red

color means termination close to (x, y) = (−1,−10). In
addition, green means termination close to the origin, and

orange means none of the above. As one can see, the method

does terminate close to the saddle point for some starting

points, and these points make up a small region on the

border between the basins of attraction of (x, y) = (1, 10)
and (x, y) = (−1,−10).

Figure 5. Plot of basins of attraction for NEWUOA on
f = (9x1 − x2)(11x1 − x2) +

1

2
x4

1
, with ρbeg = 0.2‖x0‖1 and

ρend = 10−5‖x0‖1. (The discretization is 1001 × 1001.)

To check if the basins of attraction are sensitive to the

termination criterion we repeat the experiment, but this time

with ρend = 10−6‖x0‖1. The results are given in Figure 6.

As we can see in this figure, the starting points for which

the method terminates at the saddle point are still wedged

between the red and blue regions, but the green region is

now much smaller.

Figure 6. Decreasing ρend in NEWUOA to 10−6‖x0‖1 will basically
not change the region of convergence for the local minimizers, but the
region of convergence to the saddle-point gets smaller, squeezed between
the regions of convergence to the local minimizers. (The discretization is
1001 × 1001.)

Similarly, we test what happens with a looser convergence

criterion, namely ρend = 10−4‖x0‖1. The results are in

252

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. For this convergence criterion the green region is

Figure 7. Increasing ρend in NEWUOA to 10−4‖x0‖1 will force many
starting points not to be accepted as close to a stationary point. The regions
are basically the same, but the region of convergence for the saddle-point
is larger. (The discretization is 1001 × 1001.)

much larger, and there are also large orange regions, which

correspond to termination no closer to any of the stationary

points than 0.2.

NMSMAX: For NMSMAX, we discretize the region

[−10, 10]× [−10, 10] into a 201 × 201 grid. We choose a

right-angled initial simplex. The size of the initial simplex

is not determined by the user, but we set the termination

criterion to be a simplex size of 10−6‖x0‖1. The results, as
well as level curves of the function are given in Figure 8. As

one can see, for about half the fourth quadrant the method

terminates at the saddle point, even though the convergence

criterion is quite strict. In addition, termination at the saddle

point occurs for points close to the negative y-axis, and along

Figure 8. Level curves of the function (23), and starting points for which
NMSMAX terminates at the saddle point at the origin, marked in black.

Figure 9. Level curves for the function (24) as well as starting points for
which NEWUOA terminates at the saddle point at the origin, marked in
black.

the line y = −x.
It is also interesting to note that in this case, the behavior

in quadrants two and four are not the same.

B. Function II

For this function we discretize the region [−4, 2]× [−2, 2]
into a 601× 401 grid.

GSS-CI: Using the same parameter settings as for

function I, GSS-CI once again terminates at the (single)

minimizer, so an attraction basin plot would simply be

the region filled with one color. (When x0 = 0, nonzero
step lengths are used, and the method converges to the

minimizer.)

NEWUOA: For this function we also use the same

parameter values as before, namely ρbeg = 0.2‖x0‖1 and

ρend = 10−6‖x0‖1. The results are in Figure 9. As one can
see, there is a relatively large collection of points in the first

and second quadrants, for which the method terminates at

the saddle point at the origin.

To see if the cause of this behavior was the number of

interpolation points (2n + 1 in this case), we also tried

a full quadratic model, by using six interpolation points.

The results for this case are in Figure 10. As one can see,

the black region now has a different shape, but is located

approximately in the same position, and is of similar size.

NMSMAX: For this function, NMSMAX terminates at

the saddle point for a few starting points on the y-axis only.

VIII. TESTING THE METHODS MDSMAX AND

FMINSEARCH

MDSMAX: The results are reported in Figures 11 and

12 and Figures 13 and 14. For the function (24) termination

close to the saddle points rarely occurs, and when it does

the corresponding starting points lie along straight lines, one

at the upper right corner of Figure 14, and one on the y-axis
close to the bottom of the figure using right angled simplex.

253

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Level curves for the function (24) as well as starting points
for which NEWUOA terminates at the saddle point at the origin, marked
in black. Number of interpolation points m = 6.

However, MDSMAX has serious problems with stagnation

on the function (23), as can be seen in Figures 11 and 12.

fminsearch: This method has few problems on these

functions, except when the starting points lie on one of

the axes. For the function (23), 208 of the 40401 starting

points result in termination close to the saddle point, 201 of

these 208 points being on the x-axis. For the function (24),
890 of the 241001 starting points result in termination close

to the saddle point, all of these on or immediately next to

the y-axis. These results were obtained using the standard

convergence tolerances. Tightening the convergence criteria

gives an even more favorable result.

Figure 11. MDSMAX on the function f = (9x − y)(11x − y) + x4

2
.

Red means termination close to (x, y) = (1, 10), blue means termination
close to (x, y) = (−1,−10), green termination close to the saddle point
at the origin, and orange means stagnation. Regular simplex.

Figure 12. MDSMAX on the function f = (9x − y)(11x − y) + x4

2
.

Red means termination close to (x, y) = (1, 10), blue means termination
close to (x, y) = (−1,−10), green termination close to the saddle point
at the origin, and orange means stagnation. Right-angled simplex.

Figure 13. MDSMAX on the function f = x3

3
+ y2

2
− 2

3
(min[x,−1] +

1)3. Blue means termination close to the minimum at (x, y) = (−2 −√
2, 0), red means termination close to the saddle point at the origin.

Regular simplex.

IX. EFFICIENCY

Moré and Wild [19], benchmarked different derivative-

free optimization solvers on 53 smooth problems. In this

test we use the same set of problems and two of the

same solvers (NEWUOA and NMSMAX) as Moré and

Wild [19]. We run the three methods on each problem, and

declare a success if a method uses less than 5000 function

evaluations, and the gradient corresponding to the solution

satisfies ‖∇f(x)‖ ≤ 10−2, where this gradient is computed

with finite differences. The corresponding data profile is

254

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. MDSMAX on the function f = x3

3
+ y2

2
− 2

3
(min[x,−1] +

1)3. Blue means termination close to the minimum at (x, y) = (−2 −√
2, 0), red means termination close to the saddle point at the origin. Right-

angled simplex.

shown in Figure 15. The horizontal axis is number of

equivalent gradient evaluations, i.e. one equivalent gradient

is n function evaluations. As one can see from the figures

NEWUOA solves the most problems if one has a tight

computational budget, and GSS-CI solves the most problems

if one has as moderate computational budget. NMSMAX

performs the weakest among the methods on these functions.

X. DISCUSSION

The simplex method [20] is one of the most used

derivative free optimization methods. In this note we have

used the implementations NMSMAX and fminsearch of

the simplex method. The other three methods discussed

in the paper represents different approaches of derivative

free optimization. We have shown that GSS-CI solves the

most problems if one has as moderate computational bud-

get compared to NEWUOA and NMSMAX. The methods

NEWUOA, NMSMAX, and fminsearch may terminate close

to the saddle point while GSS-CI will not converge to

the saddle point for these two examples. This supports the

observed convergence properties of GSS-CI. The regions of

convergence are dependent on the input parameters and the

results presented are typical behavior of the methods.

ACKNOWLEDGEMENTS

The authors would like to thank Mike Powell and

Nicholas J. Higham for helpful comments on the experi-

ments and on an earlier version of the section on basin of

attraction. The authors would also like to thank Marielba

Rojas for the help on rank revealing QR.

The first author gratefully acknowledges partial funding

from The Norwegian Research Council, Gassco and Statoil.

Figure 15. Data profile for the smooth functions of the test set of Moré
and Wild [19].

REFERENCES

[1] M. A. Abramson. Second-order behavior of pattern search.
SIAM Journal on Optimization, 16(2):315–330, 2005.

[2] M. A. Abramson, L. Frimannslund, and T. Steihaug. A
subclass of generating set search with convergence to second-
order stationary points. To be submitted, 2011.

[3] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction
to Derivative-Free Optimization. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2009.

[4] I. D. Coope and C. J. Price. A direct search conjugate
directions algorithm for unconstrained minimization. The
ANZIAM Journal, 42(E):C478–C498, 2000.

[5] C. H. Edwards. Advanced Calculus of Several Variables.
Academic Press, 1973. ISBN 0–12–232550–8.

[6] L. Frimannslund and T. Steihaug. A generating set search
method using curvature information. Computational Opti-
mization and Applications, 38(1):105–121, 2007.

255

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] L. Frimannslund and T. Steihaug. Sparsity of the average
curvature information matrix. PAMM, Proc. Appl. Math.
Mech., 7:1062101–1062102, 2007.

[8] L. Frimannslund and T. Steihaug. A new generating set search
algorithm for partially separable functions. In Proceedings
ADVCOMP 2010: The Fourth International Conference on
Advanced Engineering Computing and Applications in Sci-
ences, pages 65–70. The International Academy, Research
and Industry Association (IARIA), 2010. ISBN:978-1-61208-
000-0.

[9] G. H. Golub and C. F. van Loan. Matrix computations. Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[10] A. Griewank and Ph. L. Toint. On the unconstrained opti-
mization of partially separable functions. In M. Powell, edi-
tor, Nonlinear Optimization 1981, pages 301–312. Academic
Press, 1982.

[11] M. Gu and S. C. Eisenstat. Efficient algorithms for computing
a strong rank-revealing QR factorization. SIAM Journal on
Scientific Computing, 17(4):848–869, 1996.

[12] N. J. Higham. The Matrix Computation Toolbox.
http://www.ma.man.ac.uk/˜higham/mctoolbox.

[13] R. A. Horn and C. R. Johnson. Topics in matrix analysis.
Cambridge University Press, Cambridge, United Kingdom,
1991.

[14] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by
direct search: New perspectives on some classical and modern
methods. SIAM Review, 45:385–482, 2003.

[15] S. Lucidi and M. Sciandrone. On the global convergence of
derivative-free methods for unconstrained optimization. SIAM
Journal on Optimization, 13(1):97–116, 2002.

[16] M. Machura and A. Mulawa. Algorithm 450 Rosen-
brock function minimization. Communications of the ACM,
16(8):482–483, 1973.

[17] M. Macklem. Low Dimensional Curvature Methods in
Derivative-free Optimization on Shared Computing Networks.
PhD thesis, Computer Science, Dalhousie University, Halifax,
Nova Scotia, Canada, 2009.

[18] The MathWorks, Inc., Natick, Massachusetts, USA. MATLAB
Optimization Toolbox User’s Guide, 2010.

[19] J. J. Moré and S. M. Wild. Benchmarking derivative-free
optimization algorithms. SIAM Journal on Optimization,
20(1):172–191, 2009.

[20] J. A. Nelder and R. Mead. A simplex method for function
minimization. The Computer Journal, 7:308–313, 1965.

[21] S. R. Pope. Parameter Identification in Lumped Compartment
Cardiorespiratory Models. PhD thesis, North Carolina State
University, Raleigh, North Carolina, USA, 2009.

[22] M. J. D. Powell. Large-Scale nonlinear optimization, vol-
ume 83 of Nonconvex Optimization and its applications, chap-
ter The NEWUOA software for unconstrained optimization
without derivatives, pages 255–297. Springer US, 2006.

[23] C. P. Price and Ph. L. Toint. Exploiting problem structure
in pattern search methods for unconstrained optimization.
Optimization Methods and Software, 21(3):479–491, 2006.

[24] H. H. Rosenbrock. An automatic method for finding the
greatest or least value of a function. The Computer Journal,
3(3):175–184, Oct. 1960.

[25] V. Torczon. Multi-Directional Search: A Direct Search
Algorithm for Parallel Machines. PhD thesis, Department
of Mathematical Sciences, Rice University, Houston, Texas,
1989. Available as Tech. Rep. 90-07, Department of Compu-
tational and Applied Mathematics, Rice University, Houston,
Texas 77005-1892.

[26] P. Wolfe. Convergence conditions for ascent methods. II:
Some corrections. SIAM Review, 13(2):185–188, 1971.

