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Preface

The structure of the thesis is as follows:

Part I We start by giving some background on the topics discussed in this thesis.
The main topic of the thesis is nonholonomic geometry. In Chapter 1 we give an

introduction of nonholonomic geometry in the context of geometric control theory. In
a brief exposition, we try to give an overview of the areas of sub-Riemannian and
sub-Lorentzian geometry, stating several of the most important results in this area. A
historical account concludes this chapter.
Chapters 2 and 3 consist of mathematical prerequisits for the later presented results.

However, these chapters mainly focus on certain selected facts, rather than trying to give
an overview of a whole topic. Chapter 2 contains some results from differential geometry
related to submersions and geodesic curvatures. Chapter 3 gives introductory remarks
on the convenient calculus of infinite dimensional manifolds.
Chapter 4, the last chapter in part I, gives a short presentation and summary of the

main results of the papers included in Part II. We first present the results of Paper
B, regarding sub-Riemannian and sub-Lorentzian geometry on the universal cover of
SU(1, 1). The results in Papers C, D and F are then considered, which concern the
nonholonomic dynamical system of two manifolds rolling on each other without twisting
or slipping. Finally, we present some results in infinite dimensional manifolds in Paper
A and Paper F. In particular, Paper F contains a generalization of sub-Riemannian
geometry to the infinite dimensional setting.
Part I ends with the bibliography of the 4 first chapters.

Part II Here, six papers are included, Papers A to F. Papers are listed in chronological
order according to their date of completion. Two of them are published, one is accepted
for publication and three are submitted.
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Introduction and background
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1. Optimal control theory and
nonholonomic geometry

This chapter considers sub-Riemannian and sub-Lorentzian geometry from the point of
view of geometric control theory. We will assume that the reader is familiar with topics
from standard differential topology, such as manifolds, fiber bundles, vector bundles and
metrics on them. Some typical references are [Lee02, Lee09, Ram05].
In this chapter, the term manifold means a smooth, finite dimensional manifold, that

is always assumed to be Hausdorff and second countable. If f :M → Q is a smooth map
between manifolds, then the tangent map or differential is denoted by f∗ : TM → TQ.
We write f |m : TmM → Tf(m)Q for the restriction to the tangent space at the point
m ∈M . The space of all such smooth function is denoted by C∞(M,Q) or just C∞(M),
if Q = R.
If X is a vector field on M , then we will write X|m rather than X(m), and we also

adopt this convention for other types of sections. Furthermore, for one-forms (and also
other tensors) we will in general write α(v) rather than α|m(v) if it is clear from the
context that v ∈ TmM .

1.1. Optimal control and the Pontryagin Maximum
Principle

There are many definitions and generalizations describing problems of optimal control.
The definition we will follow, can be found in [Agr08], although we will also use much of
the material from [AgSa04].
Let M and U be two manifolds of respective dimensions n and k, and let π : U →M

be a fiber bundle with fiber U . Let f be a fiber preserving map

U f
��

π
��

TM

prM��

M

.

The map prM : TM →M in the above formula, is just the natural projection. The pair
(U , f) is called a control system on M . If u is an element in U , we will alternate between
writing this element simply as u or as a pair (m,u) with its footprint π(u) = m. Which
one of these we choose will depend on the context. We will adopt this convention for the
rest of this thesis whenever we have points or curves in a fiber bundle. Consequently,
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if u : [0, τ ] → U is a curve in U , we will also write this curve as a pair t �→ (γu(t), u(t)),
where π(u(t)) = γu(t). Then (γu, u) is called an admissible pair, if γu is Lipschitz and for
almost every t,

γ̇u = f(γu(t), u(t)).

The space

Cτ = {u ∈ L∞([0, τ ],U) : (γu, u) is an admissible control} ,
is a Banach submanifold of L∞([0, τ ],U), with the latter being a Banach manifold modeled
on L∞([0, τ ],Rn+k).
A fixed-time optimal control system is a triple (U , f,Φ), where (U , f) is a control

system, and Φ : Cτ → R is a functional of the form

Φ(γu, u) =

∫ τ

0

ϕ
(
γu(t), u(t)

)
dt.

Here, ϕ is a smooth function on U . Φ is called the cost functional, while ϕ is referred to
as the cost function. It is called a free-time optimal control problem if τ is allowed to
vary.

We look at the following fixed-time optimal control problem. For a given pair of points
m0,m1 ∈M , let Cτ (m0,m1) be the elements in Cτ satisfying γu(0) = m0 and γu(τ ) = m1.
We look for an element (γû, û) ∈ Cτ (m0,m1), such that Φ(γû, û) ≤ Φ(γu, u) for any
(γu, u) ∈ Cτ (m0,m1). û is then referred to as an optimal control, while γû is called an
optimal trajectory. The main tool to solve such problems is the first order condition
given by the Pontryagin Maximum Principle (PMP).
We call an element H ∈ C∞(T ∗M) a Hamiltonian function. Corresponding to this, we

write �H for the Hamiltonian vector field on T ∗M , uniquely determined by the property
H∗(X̃) = σ( �H, X̃), where X̃ is any vector field on T ∗M and σ is the canonical symplectic
form on the same space. We have chosen to mark the vector field with a tilde, to
emphasize that it is defined on T ∗M rather than on M . We will use this convention on
all fiber bundles.
An element H ∈ C∞(U ×MT

∗M) is called a pseudo-Hamiltonian function. In order
to present the Pontryagin maximum principle in a more standard way, let us first assume
that U trivializes, such that we can identify U with M × U , and hence also identify
U ×MT

∗M and U × T ∗M . This always holds locally. We will later make the appropriate
changes to make the statement valid for more general control systems. For a pseudo-
Hamiltonian function, let �H be defined so that for a fixed u ∈ U , (m, p) �→ �H (m,u, p)
is the Hamiltonian vector field associated to the Hamiltonian (m, p) �→ H (m,u, p). Then
we have the following result.

Theorem 1. PMP for Optimal Control Problem with fixed time τ [AgSa04, Theorem 12.3]:
For a given value of τ , let (γû, û) ∈ Cτ (m0,m1) be a solution to the above problem. For
each ν ∈ R, consider a pseudo-Hamiltonian function defined by

H ν(m,u, p) = p(f(m,u)) + νϕ(m,u), u ∈ U, p ∈ T ∗
mM.

Then there exists a curve λ : [0, τ ] → T ∗M , and a number ν ≤ 0 such that
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(i) prM λ(t) = γû(t).

(ii) λ̇(t) = �H ν(γû(t), û(t), λ(t)) for almost every t,

(iii) H ν(γû(t), û(t), λ(t)) = max
u∈U

H ν(γû(t), u, λ(t)) for a.e. t ∈ [0, τ ].

Moreover, if ν = 0, then λ never intersects the zero section of T ∗M .

If ν < 0, then the solution is called normal. We can always normalize it to the case
when ν = −1. If ν = 0, the solution is called abnormal.

Remark 1. • For the problem of the maximum of Φ, the above theorem has the same
formulation, changing only the requirement ν ≤ 0 to ν ≥ 0.

• If we consider a free-time problem, then we also require H ν(γû(t), û(t), λ(t)) ≡ 0.

• If Hν(m, p) = maxu∈U H ν(m,u, p) is defined and if it is C2 on T ∗M \ 0(M), where

0 :M → T ∗M is the zero-section, then λ̇(t) = �Hν(λ(t)) [AgSa04, Proposition 12.1].

• We can also write this theorem without choosing a local trivialization of U . Consider
the projection

pr2 : U ×MT
∗M → T ∗M.

Then the requirement in (ii) must be replaced by

(pr∗2 σ)
∣∣∣
(û(t),λ(t))

(
X̃, λ̇

)
= (Hν)∗

∣∣∣
(û(t),λ(t))

(X̃),

for any vector field X̃ on U ×MT
∗M → T ∗M . In (iii), the maximum over all

elements in U must be changed to the maximum over all elements in Uγû .

1.2. The Orbit theorem

While the Pontryagin maximum principle might be the most useful tool for finding
optimal solution, the same can be said about the orbit theorem and its corollaries when
it comes to the question of controllability. Let Vect(M) be the collection of all vector
fields on M , and let F be a subset of Vect(M). For any vector field X, write ψX for the
(local) flow of X. For practical purposes, we will use the notation ψX

t (m) rather than
ψX(t,m). Then the orbit of F through m0 ∈M is given by

Om0 =
{
ψXl
tl

◦ ψXl−1

tl−1
◦ · · · ◦ ψX1

t1 (m) : tj ∈ R, Xj ∈ F, l ∈ N
}
, (1.1)

where each tj must be chosen such that the flow is well defined.
Let (U , f) be a control system and assume that any local section of π : U → M can

be extended to a global section. Let Γ(U) denote all global sections of π : U →M and
let F be its image under f . Given a point m0 ∈M , we are interested in all points in M
that can be reached from m0 by a curve γu such that (γu, u) is part of an admissible pair.
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These points form what is called the attainable set from m0, denoted by Am0 . This can
be defined similarly to the orbit, only adding the requirement that each tj is non-negative
in (1.1). We say that we have local controllability at m0 if there is a neighborhood of
m0 contained in Am0 , that is, m0 is in the interior of Am0 . A system (U , f) is called
controllable or completely controllable if Am0 =M for one (and hence any) m0 ∈M .
The attainable set from m0 coincides with the orbit of F through m0, if F = −F.

Orbits are easier to study, as they have nicer structure by the following theorem.

Theorem 2 (The orbit theorem). [Sus73]

• Om0 is a connected immersed submanifold of M .

• Define LieF as

LieF = {[Xl [Xl−1[· · · [X2, X1]] · · · ]] : Xj ∈ F, l ∈ N} ,
and define Liem F as the subset of TmM obtained by evaluating all elements from
LieF at m. Then

Liem F ⊆ Tm Om0 (1.2)

for any m ∈ Om0.

Remark 2. The actual orbit theorem is more general than the one we have presented
here. A good reference is [AgSa04, Chapter 5]. For the original formulation, see [Sus73].
Note that the latter reference also contains a formulation for the case when F consist of
only local vector fields, which means that it can be applied to control systems where it is
not possible to extend local sections of π : U →M .

As a corollary of this theorem, we come to a result that was already proved in the
late 1930s. We say that F is bracket-generating if Liem F = TmM for every m ∈M. In
particular, let D be a sub-bundle of the tangent bundle. We will say that D is bracket
generating if Γ(D), the space of all sections of D, is bracket generating. An absolutely
continuous curve γ is called horizontal or D-horizontal if γ̇(t) ∈ Dγ(t) for almost every t.
It is clear that (γu, u) is admissible with respect to the optimal control system (D, inc),
where inc : D → TM is just the inclusion, if and only if it is Lipschitz and D-horizontal.

Theorem 3 (Rashevskĭı-Chow Theorem). [Cho39, Ras38] If F is a bracket generating
family of vector fields, then for any m0 ∈M , we have Om0 =M .
In particular, if D is a bracket generating sub-bundle of TM , then any pair of points

can be connected by a piecewise smooth, immersed D-horizontal curve.

That we can choose the curve to be piecewise smooth follows from the definition of the
orbit. The inclusion (1.2), in general, only give us a lower bound on the dimension of the
orbit, but in some special cases, we are ensured equality. Let V be a C∞(M)-submodule
of Vect(M). Then V is called locally finitely generated, if any pointm has a neighborhood
N such that V |N is spanned by a finite number of vector fields (the span is over C∞(N)).

Theorem 4. Suppose F ⊆ Vect(M) is such that LieF is a locally finitely generated
C∞(M)-submodule of Vect(M). Then

Liem F = Tm Om0 for any m ∈ Om0 ,m0 ∈M.

11



1.3. Sub-Riemannian geometry and optimal curves in
finite dimensions

Here, we will introduce sub-Riemannian manifolds and discuss how minimal curves in
this geometry can be considered as solutions of an optimal control system.

Definition 1. A sub-Riemannian manifold is a triple (M,D,h), where M is a connected
n-dimensional manifold, D is a sub-bundle of TM and h is a metric tensor on D.

The pair (D,h) is called a sub-Riemannian structure on M . D is called the horizontal
sub-bundle or horizontal distribution. As we mentioned before, an absolutely continuous
curve γ is said to be horizontal or D-horizontal if γ̇(t) ∈ Dγ(t) for almost every t. In
order to be able to have a meaningful notion of distance in this geometry, we want that
every pair of points can be connected by a horizontal curve, i.e., we want the control
system (D, inc) to be controllable, where inc is the inclusion inc : D → TM . The most
common way to show that this indeed holds is to prove that D is bracket generating,
which gives a sufficient condition for controllability by the Rashevskĭı-Chow Theorem.
Sometimes, the requirement that D is bracket generating is even included in the definition
of a sub-Riemannian manifold. We will not follow this convention. For a necessary and
sufficient condition of controllability, see [SuJu72].

Remark 3. There is a generalization of sub-Riemannian manifolds called rank-varying
sub-Riemannian manifolds [ABS08]. Here, we still consider a general vector bundle
D with a metric h, but instead of the inclusion, we use a general linear bundle map
f : D → TM that need not be injective on fibers. The only requirement is that the map
f∗ : Γ(D) → Γ(TM) is injective. Note that E := f(D) can vary in rank. If f∗Γ(D) is
bracket generating, then the control system (D, f) is controllable.
The simplest nontrivial example of a rank varying sub-Riemannian manifold is the

Grushin plane. Let M = R2 with coordinates (x, y), and define D =M × R2, where we
use u1, u2 for the coordinates of the fibers. The metric is given by h|(x,y)(u1, u2) = u21+u

2
2.

Finally, we define f by

f(x, y, u1, u2) = u1∂x|(x,y) + u2x∂y|(x,y).

We will continue to construct a distance function relative to the sub-Riemannian
structure (D,h). For a pair of points m0,m1 ∈M, let ACD(m0,m1) denote the collection
of all horizontal absolutely continuous curves γ : I = [0, 1] →M with square integrable
derivative, that satisfy γ(0) = m0 and γ(1) = m1. Here, square integrability has to be
defined relative to the metric h, however, any other choice of metric on D gives us the
same set of curves. Hence, ACD(m0,m1) depends only on D. The associated distance
function on M corresponding to the sub-Riemannian structure (D,h) is given by

dC−C(m0,m1) = inf

{∫ 1

0

h(γ̇(t), γ̇(t))1/2 dt : γ ∈ ACD(m0,m1)

}
.

This distance is called the Carnot-Carathéodory distance. If this distance admits only
finite values, i.e., if ACD(m0,m1) is nonempty for every pair of points m0,m1 ∈M , then
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(M, dC−C) forms a metric space. The metric topology induced by the Carnot-Carathéodory
distance coincides with the manifold topology when D is bracket generating. However,
in contrast to usual Riemannian geometry, the map m �→ dC−C(m,m0) is not smooth in
general, and the Hausdorff dimension of the metric space (M, dC−C) can be greater than
the topological dimension n of the manifold.

Remark 4. The set ACD(m0,m1) is bigger than the set C1(m0,m1) defined relative to
the control system (D, inc) in Section 1.1, as we only require the derivatives to be in L2

rather than L∞. Since we want to ensure finite values of the cost functional with respect
to any cost function ϕ, L∞ is preferred for a general control system. However, we only
need L2 for a D-horizontal curve to have finite length. Some authors do, however, prefer
to require horizontal curves in sub-Riemannian geometry to be Lipschitz.

Sometimes we can extract the information of the Hausdorff dimension of dC−C from
the brackets of D. Assume that D is bracket generating. Let D1 = Γ(D) be the sections
of D. Iteratively, define the following collections of vector fields

Dj+1 = Dj + [D,Dj], j = 1, 2, . . .

and write Dj
m for the sub-space of TmM obtained by evaluating the elements from Dj

at m. The minimal integer r, such that Dr
m = TmM , is called the step of D at m. The

vector
(k1(m), . . . , kr(m)) := (rankD1

m, . . . , rankD
r
m).

is called the growth vector at m. A distribution is called regular if the growth vector is
independent of m.

Theorem 5 (Mitchell’s measure theorem). [Mon02, Theorem 2.17] Let (D,h) be a sub-
Riemannian structure, where D is a bracket generating, regular horizontal distribution
with growth vector (k1, . . . , kr). Then the Hausdorff dimension of dC−C is equal to
k1 +

∑r
j=2 j(kj − kj−1).

1.4. Sub-Riemannian length minimizers

Let us now look for sub-Riemannian length minimizers. We can view this as an optimal
control problem where we try to minimize the functional

Length(γ) =

∫ 1

0

h(γ̇(t), γ̇(t))1/2 dt.

Equivalently, we can consider minimizing curves with respect to the energy functional
E(γ) = 1

2

∫ 1

0
h(γ̇(t), γ̇(t)) dt. Let us apply Pontryagin Maximum Principle to this problem.

We will first look at the normal solutions corresponding to the pseudo-Hamiltonian
function

H −1(m,u, p) = p(u)− 1
2
h(u, u). u ∈ Dm, p ∈ T ∗

mM. (1.3)

Consider the unique linear bundle map β : T ∗M → D determined by the condition
p(u) = h(u, βmp) for any u ∈ Dm. Use this to introduce a cometic on T ∗M given by
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h∗(p1, p2) = p1(βmp2) for any p1, p2 ∈ T ∗
mM . Note that this metric degenerates on the

sub-bundle

Ann(D) = ker β = {p ∈ T ∗
mM : p(u) = 0 for any u ∈ Dm,m ∈M}.

Using this, we can rewrite (1.3) as H −1(m,u, p) = h(u, βmp − 1
2
u), which attains its

maximum for u = βmp. Define

HsR = H −1(m, βmp, p) =
1
2
h∗(p, p).

By Remark 1, we can look for integral curves corresponding to this Hamiltonian.

Definition 2. • HsR is called the sub-Riemannian Hamiltonian.

• Projections of solutions of the Hamiltonian system corresponding to HsR are called
normal minimizers or normal geodesics.

• Projections of solutions to the (time-dependant) Hamiltonian system corresponding
to H 0(m,u, p) = p(u) for some control t �→ u(t) satisfying the requirements of
Theorem 1 are called abnormal curves.

Notice in the case of abnormal curves, (γu, λ) must be in Ann(D) for almost all t in
order to satisfy (iii). We call a horizontal curve from m0 to m1 a length minimizer if its
length is equal to dC−C(m0,m1). It is called a local length minimizer if any sufficiently
short arc is a length minimizer. Any length minimizer is a normal geodesic or an abnormal
curve, but the converse does not hold in general.

Proposition 1. (a) Normal geodesics are always local length minimizers. For small
enough values of t0, γ is the unique length minimizer connecting γ(0) with γ(t0).
[Mon02, Theorem 1.14]

(b) A normal geodeisc is a smooth curve. [Ham90, Lemma 4.1]

(c) If D is bracket generating, then every m0 ∈ M has a neighborhood N , such that
there is a minimizing curve connecting m0 to any m1 ∈ N . [Mon02, Theorem 1.17]

(d) If D is bracket generating, and M is complete relative to the metric dC−C then any
two points can be joined by a length minimizer. [Mon02, Theorem 1.18]

Remark 5. Proposition 1(c) does not mention anything about the existance of a unique
geodesics locally. One might be misled by Proposition 1(a) to think that there are no
arbitrarily close points connected by more than one normal geodesic, but in fact, any
neighborhood N of a point m0 may contain points that can be connected by more than
one or even an infinite number of normal geodesics.

Remark 6. Let us describe the sub-Riemannian Hamiltonian formulation locally. For any
vector field X, define the Hamiltonian function PX by PX : p �→ p(X|m), p ∈ T ∗

mM. Let
N be a neighborhood such that D trivialize over N , and pick an orthonormal frame of
vector fields X1, . . . , Xk of D.
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Then the sub-Riemannian Hamiltonian on N , from which the normal solutions can be
obtained, can then be written as

HsR =
1

2

k∑
j=1

P 2
Xj
.

An abnormal sub-Riemannian curve must be a solution to the system H 0(m,u(t), p) =∑k
j=1 uj(t)PXj

(p) for some control u(t) =
∑k

j=1 uj(t)Xj.

As can be seen from Proposition 1, normal sub-Riemannian geodesics have similar
behavior as Riemannian geodesics. We will next focus on abnormal sub-Riemannian
curves, and try to explain why they appear.

1.5. Abnormal curves

In order to give broader perspective of why there are abnormal curves in the sub-
Riemannian case, let us introduce some other types of “bad curves” that might occur on
M and on T ∗M .
Let ACD(m0) be the collection of all horizontal absolutely continuous curves γ : I =

[0, 1] →M , which are square integrable and satisfy γ(0) = m0. This is a Hilbert manifold
modeled on L2(I,Rk), where k is the rank of D (see [Mon02, Chapter 5.1] or [Mon95]).
ACD(m0,m1) can then be identified with the preimage (endm0)

−1(m1) of the mapping

endm0 : ACD(m0) → M
γ �→ γ(1)

.

Hence, if γ is a regular point of endm0 , by the implicit function theorem, ACD(m0,m1)
has the structure of a Hilbert submanifold of codimension n locally around γ. However,
for critical or singular points of the endpoint map, that is, points where the differential
is not surjective, this does not necessarily hold.

Definition 3. An absolutely continuous horizontal curve γ with γ(0) = m0 is called
singular, if it is a singular point of endm0.

As we can see from the definition, singular curves depend only on the sub-bundle D,
not on the metric h. When D = TM , there are no singular curves, and the space of all
absolutely continuous curves connecting two points is a Hilbert manifold. In general, this
does not hold.
We define another type of curves, which related to the fact that the canonical symplectic

form σ may degenerate when restricted to Ann(D). We say that an absolutely continuous
curve t �→ (γ(t), λ(t)) in Ann(D) is a characteristic of Ann(D) if it never intersects the
zero section and satisfies

σ(λ̇(t)), ṽ) = 0, for any t and any ṽ ∈ Tλ(t)(Ann(D)).

Hence, characteristics are curves that are horizontal to the sub-bundle of T (Ann(D))
formed by the kernel of the map ṽ �→ σ(ṽ, ·)|Ann(D).
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Theorem 6. [Mon02, Theorem 5.3, Proposition 5.7] The following are equivalent.

• γ is an abnormal curve.

• γ is a singular curve.

• γ is the projection of a characteristic of Ann(D) and its derivative is square
integrable.

Hence, we have three ways of viewing abnormal curve. Recall the definition of the step
of D found before Theorem 5.

Theorem 7. • D is called strongly bracket generating if, for any point m ∈M , and
any X ∈ D1 = Γ(D) that does not vanish at m, we have

TmM = Dm + [X,D1]|m.
If D is strongly bracket generating, then there are no abnormal curves. [Mon02,
Section 5.6]

• (The Goh condition) An abnormal curve is calledis called strictly abnormal if it is
not also normal. Let (γ, λ) be an abnormal solution to the optimal control problem,
such that γ is a strictly abnormal length minimizer. Then for any X1, X2 ∈ Γ(D),
λ must satisfy

λ(t)
(
[X1, X2]

∣∣
γ(t)

)
= 0.

Consequently, if D is bracket generating of step 2 at every point, there are no
strictly abnormal length minimizing curves [AgSa04, Chapter 20: 4.3, 5.2].

It is still an open question if all abnormal curves which are also minimizers, are smooth.
Some results in this direction can be found, e. g., in [CJT06, GoKa95]. For more on the
theory of singular curves, see [AgSar96, BrHs93, BoTr01, Mon02, Mon95].

1.6. Some examples of sub-Riemannian manifolds

Let us illustrate the theory of sub-Riemannian geometry with two examples. We omit
most of the calculations, explaining only the general ideas. In both examples, M = R3

with coordinates x, y, z.

Example 1. Introduce a group structure on M = R3 by the formula

(x, y, z) · (x0, y0, z0) =
(
x+ x0, y + y0, z + z0 +

1
2
(xy0 − yx0)

)
.

The resulting group is called the (first) Heisenberg group. A basis of left invariant vector
fields is given by

X = ∂x − 1
2
y∂z, Y = ∂y − 1

2
x∂z Z = ∂z.
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Let D be the span of X, Y and define h such that X and Y form an orthonormal basis
at each point. Since [X, Y ] = Z, D is bracket generating, regular, with growth vector
(2, 3) and is even strongly bracket generating. Hence, there are no abnormal curves, so
we only need to look for solutions of the system corresponding to the sub-Riemannian
Hamiltonian

HsR =
1

2

(
P 2
X + P 2

Y

)
.

Note that if {·, ·} denotes the Poisson bracket, then {PX1 , PX2} = −P[X1,X2]. If (γ, λ) is
a curve in T ∗M , then it can be written as

λ(t) = PX(t)αX |γ(t) + PY (t)αY |γ(t) + PZ(t)αZ |γ(t).
where PX(t) := PX(λ(t)), αX satisfies

αX(X) = 1, αX(Y ) = αY (Z) = 0,

and we use similar definitions when X is replaced by Y or Z. To find the integral curves
of HsR, we need to solve the system

γ̇(t) = PX(t)X|γ(t) + PY (t)Y |γ(t),
ṖX = −PY PZ , ṖY = PXPZ , ṖZ = 0.

Then the normal geodesic with initial condition (x(0), y(0), z(0)) = (x0, y0, z0) and
(PX(0), PY (0), PZ(0)) = (r cos θ, r sin θ, c) is given by

γ(t) = (x(t), y(t), z(t)),

x(t) =
r

c
(sin(ct+ θ)− sin θ) + x0, y(t) = −r

c
(cos(ct+ θ)− cos θ) + y0

z(t) =
r

2c
(rt− r

c
sin ct− y0(sin(ct+ θ)− sin θ)− x0 cos(ct+ θ)) + z0.

or if c = 0, by (x(t), y(t), z(t)) = (tr cos θ + x0, tr sin θ + y0, z0). Notice that for any
arbitrary small value of z1 > 0, there is an uncountable family of normal geodesics
connecting the point γ(0) = (0, 0, 0) with the point γ(1) = (0, 0, z1), which are obtained
by choosing r = 2

√
πz1 and c = 2π. Explicitly,

γ(t) =

√
z1
π

(
sin(2πt+ θ)− sin θ, cos(2πt+ θ)− cos θ,

√
πz1

(
t− 1

2π
sin 2πt

) )
.

Example 2. Let us consider D as the sub-bundle spanned by the vector fields

X = ∂x − 1
2
y2∂z, Y = ∂y.

This is called the Martinet distribution and it is bracket generating, but not strongly
bracket generating. It is not regular, since the growth vector is (2, 2, 3) at points where
y = 0, and (2, 3) otherwise. Ann(D) is spanned by the one-form

θ = dz − 1
2
y2dx.
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If we give Ann(D) coordinates by letting (x, y, z, p0) represent an element p that is on
the form p = p0θ|(x,y,z), then the Louville one-form ϑ on T ∗M restricted to Ann(D) is
simply p0θ. Hence, we have

σ|Ann(D) = −dϑ|Ann(D) = −dp0 ∧ θ − p0dθ.

and so

σ|Ann(D)(λ̇) = −ṗ0θ + (ż − 1
2
y2ẋ)dp0 − p0y(ẏdx+ ẋdy)

= y(p0ẏ +
1
2
yṗ0)dx− p0yẋdy + ṗ0dz + (ż − 1

2
y2ẋ)dp0.

We immediately observe that ṗ0 = 0 and ż − 1
2
y2ẋ = 0, the latter being the horizontality

condition. Furthermore, if y �= 0, then ẋ and ẏ must be equal to 0, which gives us just a
constant curve. If y = 0 along the curve, then ẏ(t) = 0 also, but there are no restrictions
to ẋ, so any abnormal curves can be written on the form

(x(t), 0, z0).

It actually holds that such a non-constant curve will be a local length minimizer relative
to (D,h), where D is the Martinet distribution and h is any metric on D, see [Mon02,
Theorem 3.3]

1.7. Sub-Lorentzian geometry

Let M be a connected manifold and let D be a sub-bundle of TM . We will still use the
term horizontal to refer to an absolutely continuous curve γ satisfying γ̇(t) ∈ Dγ(t). Then
we call the triple (M,D,h) a sub-Lorentzian manifold, if h is a pseudo-metric on D of
index 1. Such a metric divides D into 3 disjoint sets. We call an element v ∈ D,

• timelike if h(v, v) < 0,

• lightlike or null if h(v, v) = 0,

• spacelike if h(v, v) > 0,

• causal or nonspacelike if h(v, v) ≤ 0.

We will use the same terminology for horizontal curves, in the sense that a horizontal
curve γ is called timelike (resp. light like, space like, causal) if γ̇(t) is a timelike (resp.
light like, space like, causal) vector for almost every t.
A time-orientation on M is a chosen vector field Z ∈ Γ(D), such that Z|m is timelike

for every m ∈M . Not every sub-Lorentzian manifold permits a time-orientation. This is
possible if and only if the space

{v ∈ D : v is timelike},
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has two components. A causal vector v ∈ TmM is called future directed if h(Z|m, v) < 0,
and past directed if h(Z|m, v) > 0. We use similar definitions for horizontal curves.
For a given point m0 ∈ M , we define sets of casual and timelike futures and pasts

relative to the metric h. The timelike future I+(m0,h) (resp. the timelike past I−(m0,h))
of m0 is the set of all points m1 ∈ M , such that there is a horizontal, timelike future
directed (resp. past directed) curve γ, with γ(0) = m0 and γ(1) = m1. Similarly, the
causal future J +(m0,h) or causal past J −(m0,h) consist of all points which can be
reached by a future or past directed causal curve, respectively.
We define the length of a horizontal causal curve γ : [0, 1] →M by

Length(γ) =

∫ 1

0

|h(γ̇(t), γ̇(t))|1/2 dt.

The sub-Lorentzian distance is defined by

d(m0,m1) =

{
sup
γ

Length(γ), if m1 ∈ J +(m0,h),

0, otherwise.

The supremum is taken over all horizontal future directed causal curves from m0 to m1.
Similarly to the Lorentzian distance, the sub-Lorentzian distance satisfies the reverse
triangle inequality, and may not be very well behaving. For instance, if there is a timelike
loop trough a point m ∈M , then d(m,m) = ∞.
A curve γ : [0, 1] → M is called a length maximizer, if Length(γ) = d(γ(0); γ(1)).

Similarly, a curve γ is called a relative maximizer with respect to an open set N in M , if
γ([0, 1]) ⊆ N and length(γ) = supγ̃ �(γ̃), where the supremum is taken over all horizontal
future directed causal curves contained in N , connecting γ(0) and γ(1).
By using the maximum principle, for D bracket generating, we know that all relative

maximizers are either abnormal in the sense of Section 1.5 and normal sub-Lorentzian
geodesics [Gro04], and that the relative maximizers always exist locally. By normal
sub-Lorentzian geodesics γ we mean projections of solutions to the Hamiltonian system
with Hamiltonian function HsL(p) =

1
2
h∗(p, p), where h∗ is the cometic of h, defined

similarly as in Section 1.4. If N is a neighborhood such that there exist local vector fields
X1, . . . , Xk−1 along with the time orientation Z form an orthonormal basis for H |N , then
HsL can be written as HsL = −1

2
P 2
Z + 1

2

∑k
j=1 PXj

, locally on N .
It is much more complicated to obtain general results about the existence of length

maximizers in sub-Lorentzian geometry, than for length minimizers in Riemannian or sub-
Riemannian geometries. The most common sufficient condition for the global existence
of maximizing curves is the following

Definition 4. A sub-Lorentzian manifold (M,D,h) is called globally hyperbolic if

• (M,D,h) is strongly causal, that is, any point m has a neighborhood N , such that
any timelike curve that leaves N never returns.

• for any m0,m1 ∈M , J +(m0,h) ∩ J −(m1,h) is compact.

If (M,D,h) is globally hyperbolic, then for any pair of points m0,m1 ∈ M with
0 < d(m0,m1) <∞, there exists a length maximizer from m0 to m1.
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1.8. Historical notes

The Maximum Principle in control theory was the results of an effort by a group in
automatic control at the Steklov Mathematical Institute headed by Lev Semenovich
Pontyagin. It was first published in [PBGM61], and later translated into English in
[PBGM62]. Being part of the Steklov Institue mission at the time to deliver applied
research, in particular results that could be useful for aircraft dynamics, the Maximum
Principle has since then been considered as the birth of modern optimal control theory.
It is still one of the most important results for applications of mathematics to real world
problems (see e.g. [CLS03, GCFT08, SeSy87]).
Control systems were originally described through differential equations, but a geometric

point of view has in later years been very fruitful. One of the most important papers
for introducing geometry to a wider class of control systems is by Roger W. Brockett
[Bro84] called quasi-Riemannian control system. Later, Robert S. Strichartz introduced
sub-Riemannian geometry [Str86, Str86cor], which corresponds to input linear systems
without drift, that is systems locally on the form

γ̇u =
k∑

j=1

ujfj|γu(t). (1.4)

Here, fj are linearly independent vector fields and k is generally less than the dimension
of our state space M . Strichartz, in his original definition, also required that the
distribution spanned by the vector fields f1, . . . , fk should be bracket generating, which
was already known to be a sufficient condition for controllability of this optimal control
system by earlier results obtained independently by Wei-Liang Chow [Cho39] and Petr
Konstantinovich Rashevskĭı [Ras38].
A geometric interpretation of systems where the vector fields f1, . . . , fk in (1.4) are

not linearly independent can be found in [ABS08], where a definition of rank-varying
sub-Riemannian manifolds can be found. Also, input linear systems with a drift term,
that is systems that can locally on the form

γ̇u =
k∑

j=1

ujfj|γu(t) + f0|γu(t),

can be considered in the sub-Lorentzian framework, where we let the drift term f0
represent the time-orientation. For details, see [Gro09, Section 6].
In addition to the interest from the point of view of control theory, part of the motivation

for sub-Riemannian geometry comes from a result in 1967 by Lars Hörmander which
connects bracket generating property and hypoellipticity. Let us consider a collection of
k vector fields f1, . . . , fk and an associated second order operator

Δ =
k∑

j=1

f 2
j + L,
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where L is some first order differential operator. Then, if F = span{f1, . . . , fk} is bracket
generating, Δ is hypoelliptic [Hör67, Theorem 1.1]. It was hoped that the relationship
between sub-Riemannian geometry and the “sub-Laplacian” Δ might be similar to that
of Riemannian geometry and Laplacians. It was indeed shown by Rémi Léandre that if
pt(m1,m2) is the heat kernel corresponding to the operator (∂t −Δ), then, if the limit
exists, we have

− lim
t→0+

2t log pt(m1,m2) = dC−C(m1,m2),

where dC−C(m1,m2) is the Carnot-Carathéodory distance. See [Léa97a] for the upper
bound and [Léa87b] for the lower bound.
An intrinsic formulation for the sub-Laplacian associated to a sub-Riemannian structure

was not formulated until [ABGR09], where the heat kernel in terms of eigenfunctions was
given for a wide class of sub-Riemannian structures on Lie groups. There also exist integral
representations of heat kernels in some special cases (see e.g. [BGG00, BaBo09, Bon11]),
but no general approach is known so far.
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2. Selected topics of differential
geometry

This chapter we will deals with selected topics of differential geometry, which will become
useful when presenting the results in Chapter 4. All manifolds in this chapter are finite
dimensional and we will continue the notation and conventions from the previous chapter.
In what follows, we will deal with several types of connections. We will reserve the

term affine connection on M for a map ∇ : Γ(TM) × Γ(TM) → Γ(TM), which is
C∞(M)-linear in the first coordinate, R-linear in the second and satisfies the Leibnitz
condition ∇XfY = X(f)Y + f∇XY, for f ∈ C∞(M), X, Y ∈ Γ(TM).
For more details on this material, see [Jos05, Sha97] and [Spi99].

2.1. Submersions and Riemannian submersions

Consider a submersion π : Q→M between (finite dimensional) manifolds Q andM , that
is, a map such that π∗|q is surjective for any q ∈ Q. The vertical bundle corresponding to
this submersion is defined as V = ker π∗. An Ehresmann connection H is a sub-bundle of
TQ, such that

TQ = H⊕V .
Relative to H, we can define horizontal lifts since the map π∗|Hq : Hq → Tπ(q)M is
invertible. A horizontal lift of a vector v ∈ TmM to q ∈ π−1(m), which we will denote by
hqv, is the unique vector in Hq that is projected to v under π∗. Also, for any vector field
X on M , the horizontal lift hX is given by

hX|q = hqX|π(q).

Finally, we say that γ̃ is a horizontal lift of an absolutely continuous curve γ if γ̃ is
H-horizontal and is projected to γ by π. Clearly, this curve is uniquely determined by
its initial condition.
The connection form corresponding to H is the projection prV to V with respect to

the splitting H⊕V . For any section X̃, Ỹ ∈ Γ(H), the curvature of H is determined by

R(X̃, Ỹ ) = prV [X̃, Ỹ ] (some authors prefer to define the curvature as the negative of this
expression). The definition is usually extended to all vector fields on Q by the formula

R(X̃, Ỹ ) = prV [prH X̃, prH Ỹ ]. Notice the relation

[hX, hY ] = h[X, Y ] +R(hX, hY ) for any X, Y ∈ Vect(M).
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Consider the case when Q and M are furnished with respective Riemannian metrics g̃
and g. We require that H and V are orthogonal with respect to g̃. Then π : (Q, g̃) →
(M,g) is called a Riemannian submersion, if

g̃(ṽ1, ṽ2) = g(π∗ṽ1, π∗ṽ2) for any ṽ1, ṽ2 ∈ Hq .

or equivalently

g(v1, v2) = g̃(hqv1, hqv2) for any v1, v2 ∈ TmM, q ∈ π−1(m).

Let us use ∇̃ and ∇ for the respective affine Levi-Civita connections of g̃ and g. Then
for any X, Y ∈ Vect(M), we have [O’Ne66]

∇̃hXhY = h∇XY +
1

2
R(hX, hY ).

In particular, a curve γ is a (Riemannian) geodesic on M , if and only if, any horizontal
lift is a Riemannian geodesic in Q that is also H-horizontal.

2.2. Principal Ehresmann connections

Let π : Q → M be a principal G-bundle, where the action of the Lie group G is on
the right. Denote this action by ra for a ∈ G. We again denote the vertical bundle by
V = ker π∗. It is spanned by the vector fields corresponding to the infinitesimal action
of the Lie algebra g of G. These vector fields are defined such that for any A ∈ g, the
associated vector fields is given by formula

υ(A)|q = d

dt

∣∣∣∣
t=0

rexp(At)(q).

An Ehresmann connection H on π : Q→M is called principal, if it is invariant under
the action of G, that is, ra∗|q Hq = Hqa. The corresponding principal connection form ω,
is the g-valued one-form determined uniquely by the two properties

kerω = H, and ω(υ(A)|q) = A for any A ∈ g, q ∈ Q.

It allows us to define a corresponding curvature form as the two-form by Ω(X̃, Ỹ ) :=

dω(X̃, Ỹ ) + [ω(X̃), ω(Ỹ )], or alternatively Ω(X̃, Ỹ ) = −ω(R(X̃, Ỹ )), where R is the
curvature of H defined as in Section 2.1.

2.3. Cartan’s moving frame

For two finite dimensional vector spaces V and V̂ , we will use the notation GL(V, V̂ ) for
the space of all invertible linear maps between these vector spaces. For an n-dimensional
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manifold M , define the frame bundle F(M) →M as the principal GL(n)-bundle, such
that the fiber over m ∈M , is

Fm(M) = GL(Rn, TmM).

Any map f ∈ GL(Rn, TmM) can be identified with a choice of basis {f1, . . . , fn} of TmM .
The correspondence is given

f(0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
1 in the j-th coordinate

) = fj. (2.1)

Let us choose a principle Ehresmann connection H on the principal bundle π : F(M) →
M. The correspondence is given by declaring the curve t �→ f(t) in F(M) to be H-
horizontal if f1(t), . . . , fn(t) is a parallel frame along γ(t) = π(f(t)). Because we have
more structure on the frame bundle than on a general principal bundle, we also have a
special Rn-valued one-form θ called the solder form or tautological one-form. It is defined
by

θ|f (ṽ) = f−1(π∗ṽ), ṽ ∈ Tf F(M).

Hence, we have two one-forms θ and ω on F(M) that have kernels V and H respectively.
They are connected by the equations

Θ = dθ + ω ∧ θ, Ω = dω + ω ∧ ω.

The two-form Θ is called torsion.

2.4. Geodesic curvatures

Let (M,g) be a Riemannian manifold of dimension n and let γ : [0, τ ] →M be a curve
of class Cn+1. We say that γ is Ck-regular, where 1 ≤ k ≤ n, if for every t,{

γ̇(t),
D

dt
γ̇(t), . . . ,

Dk−1

dtk−1
γ̇(t)

}
.

Here, D
dt

is the covariant derivative along γ with respect to the Levi-Civita connection
on M . Assume that γ is C1-regular. Then a reparametrization of γ with respect to arc
length will still be of class Cn+1. Let us, therefore, assume that γ is parametrized by
arc length. We can then define the Frenet frame and geodesic curvatures of γ(t) by the
following procedure.

• Define the unit vector field v1(t) = γ̇(t) along γ(t), and let κ1(t) = g
(
D
dt
v1(t),

D
dt
v1(t)

)1/2
.

• Assuming κ1(t) never vanishes, there is a unique unit vector field v2(t) along γ(t)
satisfying D

dt
v1(t) = κ1(t)v2(t).
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• Inductively, assume that κi(t) and vi+1(t) are well defined for i < j, where j ≤ n is
fixed. Denote

κj(t) = g
(
D
dt
vj + κj−1(t)vj−1,

D
dt
vj + κj−1(t)vj−1

)1/2
If κj(t) never vanishes, define vj+1 to be the unit vector field along x(t) satisfying

D
dt
vj(t) + κj−1(t)vj−1(t) = κj(t)vj+1(t). (2.2)

It is easy to check that g(vi(t), vj(t)) = δi,j for all i, j.
The unit vector field vj(t) in (2.2) is called the j-th Frenet vector field of γ. The

function κj(t) is called the j−th geodesic curvature of γ. Clearly, the j-th Frenet vector
field is well defined, if and only, if γ is Cj-regular.
If M is orientated, we can define all Frenet vectors along γ, only requiring that the

curve is Cn and Cn−1-regular. We keep the definition of geodesic curvatures κ1, . . . , κn−2

and the Frenet vector fields v1, . . . , vn−1 defined above. However, for the last Frenet
vector field, we define vn as the unique unit vector field such that v1(t), . . . , vn(t) is a
positively oriented orthonormal basis for every t. The last geodesic curvature κn−1 is
subsequently defined as

κn−1(t) = g
(
vn(t),

D
dt
vn−1(t) + κn−2(t)vn−2(t)

)
.

This curvature may admit both positive and negative values. An advantage of this
definition is that it includes the orientation of M into the definition, since the sign of κn
changes if we switch orientation. For this reason, we will use the term oriented geodesic
curvatures, when we use this definition.
Given an initial point m0 in a manifold M and geodesic curvatures (κ1, . . . , κn−1), a

curve in M is uniquely determined by the starting point m0, the curvatures and an initial
configuration of the Frenet frames. Given any choice of initial conditions, a curve with
the given curvatures always exists for a short time, and for all time if M is complete.
Furthermore, we have the following result

Theorem 8. [Spi99, Corollary 4]) Let M be a complete, simply connected manifold of
constant sectional curvature. Then the geodesic curvatures κ1, . . . , κn−1 determine a
curve in M uniquely up to isometry.

If we pick an orientation of M and use it to define oriented geodesic curvatures, then
they define a curve up to an orientation preserving isometry.
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3. Infinite dimensional manifolds and
the convenient calculus

The introduction of convenient vector spaces to have a well defined calculus on a wider
class of infinite dimensional locally convex vector spaces, is an idea proposed by Andreas
Kriegl and Peter W. Michor. The entire calculus is based on the following two ideas

• The concept of a differentiable curve γ : R → V into a locally convex vector space,
is without any difficulties.

• The convergence of the limit

lim
h→0

γ(t+ h)− γ(t)

h
,

really depends on the bornology of the vector space, that is the collection of its
bounded sets.

Constructing their calculus on smooth curves, they where able to introduce the convenient
calculus, which generalizes the concepts of Banach and Frechét spaces.
An overview of most of the aspects of the theory is found in [KrMi97b]. For shorter

introductions to the theory, see [KrMi97a] or [Mic06].

3.1. Convenient vector spaces

Let K denote either R or C. A topological vector space V over K is called locally convex
if it is Hausdorff, addition and scalar multiplications are continuous, and 0 has a basis of
absolutely convex absorbent sets. A set B in V is called bounded, if any neighborhood
U of 0 absorbs B. This means that for every U there is some scalar λ ∈ K such that
B ⊂ λU .
A curve γ : R → V is called smooth if all its derivatives exist and are continuous.

We write C∞(R, V ) for the space of all smooth curves on V . This set depend on the
bornology of V rather than the topology, in the sense that if we change the topology of
V to a different one with the same bounded sets, the same curves into V are smooth
[KrMi97b, Chapter I, Section 1.2].

Definition 5. [KrMi97b, Chapter I, Theorem 2.14] A locally convex vector space is called
convenient or c∞-complete if the following equivalent definitions hold.

(i) For any curve γ : R → V , the Riemann integral
∫ 1

0
γ(t) dt exists in V .
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(ii) For any γ1 ∈ C∞(R, V ), there is a curve γ2 ∈ C∞(R, V ) satisfying γ̇2 = γ1.

(iii) V is c∞-closed (see definition below) in any locally convex vector space.

(iv) Let V ∗ be the space of continuous functionals on V . Then a curve γ : R → V is
smooth if and only if α ◦ γ : R → R is smooth for any α ∈ V ∗.

(v) A sequence {vn} is called Mackey-Cauchy if there is some sequence tnm → ∞ such
that tnm(vn − vm) → 0. Any such sequence converges in V .

A convenient vector space remains convenient if we change the topology to a different
topology with the same bornology. One of the possibilities is the c∞-topology which is
the finest topology such that the maps in C∞(R, V ) remain continuous. If V is a Frechét
space, then the usual topology and the c∞-topology coincide. In general, this is not the
case, and it may even happen that V with the c∞-topology is not a topological vector
space. An alternative is the bornologification, which is the finest locally convex topology
on V with the same bounded sets.
Let V and W be two convenient vector spaces. If U is a c∞-open set in V , then a

function f : U → W is smooth or C∞, if for any γ ∈ C∞(R, U) we have f◦γ ∈ C∞(R,W ).

Proposition 2. (a) In the case of Frechét spaces, this definition of smoothness coincides
with the definition given by the Gâteaux derivative.

(b) Multilinear maps are smooth if and only if they are bounded.

(c) If U is a c∞-open subset of V and f : U ⊆ V → W is a smooth map, then the
derivative f∗ : U × V → W and the mapping f∗ : U → L(V,W ) are smooth. Here,
L(V,W ) is the space of all bounded linear maps from V to W .

(d) The chain rule holds.

(e) C∞(U,W ) is also a convenient vector space. The structure is given by the inclusions

C∞(U,W ) →
∏

γ∈C∞(R,U)

C∞(R,W ) →
∏

γ∈C∞(R,U),α∈W ∗
C∞(R,R)

f �→ (f ◦ γ)γ �→ (α ◦ f ◦ γ)γ,α
.

(f) If Uj ⊆ Vj, j = 1, 2 are c∞-open subsets, then identification

C∞(U1, C
∞(U2,W )) ∼= C∞(U1 × U2,W ),

is a linear diffeomorphism of convenient vector spaces.

(g) Any linear map f : V1 → C∞(U2,W ) is smooth (which is equivalent to bounded by
(b)), if and only if, evv ◦ f : V1 → W is smooth for every v ∈ U2, where evv is the
evaluation map.

We remark that (f) is sometimes referred to as the exponential law, which is fundament
for variational calculus, as it allows us to identify a smooth curve s �→ γs into the space
C∞(R,W ) with an element (t, s) �→ γs(t) in C∞(R2,W ).
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3.2. Manifolds modeled on infinite dimensional vector
spaces

We consider manifolds M modeled on c∞-open subsets of convenient vector spaces,
defined similarly to finite dimensional manifolds in terms of charts and atlases. By this
we mean the following. Let M be a set.

• For some subset U ⊆ M , a chart (ξ, U) is a bijective map ξ : U → ξ(U) ⊆ VU ,
where VU is a convenient vector space, and ξ(U) is a c∞-open subset of VU .

• A C∞-atlas is a collection of charts (ξα, Uα) such that {Uα}α cover M , and the
mappings

ξβ ◦ ξ−1
α : ξα(Uα ∩ Uβ) → ξβ(Uα ∩ Uβ),

are smooth.

• Two C∞-atlases are equivalent if their union is also an C∞-atlas. An equivalent
class of C∞-atlases is called a smooth structure. M furnished with a smooth
structure is a manifold.

• A map f :M → Q between two manifolds is called smooth if for any chart (ξ, U)

on M and (ξ̃, Ũ) on Q the map ξ̃ ◦f ◦ ξ−1 is smooth. From this definition, it follows
that f is smooth if and only if f ◦ γ is a smooth curve in Q for any γ ∈ C∞(R,M).

We introduce a topology on M by requiring all charts to be homeomorphisms. We also
want to require M to be Hausdorff. However, there are three concepts of a Hausdorff
space, that coincide in finite dimensions, but not necessarily in an infinite dimensional
manifold.

(a) The diagonal is closed in the manifold M ×M (the topology induced from the
product manifold structure can be weaker than the product topology).

(b) M is a Hausdorff topological space, that is, the diagonal is closed in the product
topology on M ×M .

(c) Elements in C∞(M,R) separate points.

We have implications (a) ⇐ (b) ⇐ (c). We will assume that manifolds satisfy property
(c) which is called smoothly Hausdorff. All infinite dimensional manifolds that we will
work with, will be of this type.

Let TM denote the tangent bundle consisting of equivalence classes of smooth curves
constructed similarly as in finite dimensions. This bundle is sometimes referred to as the
kinematic tangent bundle, due to the fact that we will get a different, in general larger,
bundle, if we construct a tangent bundle from the point of view of derivations of function
germs. See [KrMi97b, Chapter VI, Section 28] for details.
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3.3. Regular Lie groups

We will use the term Lie group, for a (finite or infinite dimensional) manifold Gmodeled on
c∞-open sets in convenient vector spaces, with a group structure such that multiplication
and inversion are smooth. Use 1 for the group identity. Note that for infinite dimensional
manifolds, it still holds true that if Xi is f -related to Yi for i = 1, 2, then [X1, X2] is
f -related to [Y1, Y2]. Hence, brackets of left- and right-invariant vector fields remain
respectively left- or right-invariant. Since these types of vector fields are uniquely
determined by their value at 1, we can use either the left- or the right-invariant vector
fields to induce a Lie algebra structure on g := T1G. We will use the left-invariant
structure, as is most common.
A difficulty one has when working with manifolds modeled on c∞-open subsets of

convenience vector spaces, is that it is not always possible to define a local flow of a
vector field. Because of this, we cannot be sure that we have a well defined exponential
map. We therefore need an addition requirement for the Lie group G.
We use the symbol �a to denote the left multiplication by an element a ∈ G. Associated

to the left multiplication, we define a g-valued one-form on G. This one-from is called
the left Maurer-Cartan form κ	, given by the formula

κ	(v) = (�a−1)∗ |av, v ∈ TaG.

To any smooth curve γ : R → G we associate a smooth curve u ∈ C∞(R, g) given by

u(t) = κ	(γ̇(t)), t ∈ R .

called the left logarithmic derivative of γ. If the correspondence also goes the other way
around, that is, if any curve u ∈ C∞(R, g) can be integrated to a smooth curve in G, we
call the group regular

Definition 6. [KrMi97a, Section 5.3] [Mil84, Definition 7.6] A Lie group G is called
regular if

(a) Any smooth curve u ∈ C∞(R, g), is the left logarithmic derivative of some curve
γ : R → G, with γ(0) = 1,

(b) The mapping
C∞(R, g) → G

u �→ γ(1)

is smooth. Here γ is a solution to the equation κ	(γ̇(t)) = u(t), t ∈ R with the
initial data γ(0) = 1.

So far, there has been no known examples of non-regular Lie groups. We remark the
following about the definition of regular Lie groups.

• In any Lie group, not necessarily regular, a solution to the initial value problem

κ	(γ̇(t)) = u(t), γ(0) = a, (3.1)
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is unique, if it exists. Hence, the mapping in Definition 6 (b) is well defined.
Clearly, (a) holds if and only if (3.1) always has a solution, since we can use left
multiplication by a to move the solution starting at the identity.

• Here we have used the left multiplication to define regular Lie groups. However,
we could have used right multiplication ra and the right Maurer-Cartan form
κr(v) = r−a∗|av instead. The definition we then obtain is equivalent to the one
using left multiplication.

• By identifying elements of g, with the constant curves in C∞(R, g), we always know
that there is a smooth exponential map expG : g → G in regular Lie groups by (b).
However, the exponential map is not necessarily locally surjective, and it does not
need to satisfy the Baker-Campbell-Hausdorff formula.

We list some properties of regular Lie groups

Theorem 9. (a) Let G and H be Lie groups with Lie algebras g and h, respectively.
Let L : g → h be a Lie algebra homomorphism. Then, if G is connected, then there
exist at most one group homomorphism f : G → H with f∗|1 = L. If G is also
simply connected and H is regular, then there is exactly one group homomorphism.
[Mil84, Lemma 7.1, Theorem 8.1]

(b) A Lie group which is connected, simply connected and regular, is uniquely determined
by its Lie algebra. However, not every Lie algebra on a convenient vector space
is the Lie algebra of some Lie group. Furthermore, if G is a Lie group with Lie
algebra g, then there may be Lie sub-algebras of g that do not correspond to any
sub-group of G. [Mil84, Corollary 8.2, Warning 8.3 and 8.5]

Remark 7. The term “regular Lie groups” was first used for groups modeled on Fréchet
spaces in a series of seven papers by the four authors Hideki Omori, Yoshiaki Maeda,
Akira Yoshioka, and Osamu Kobayashi from 1980 to 1985. The definition appeared in
the fourth paper [OMYK82], (see also [KAMO85]). The definition was somewhat stricter
than the one presented here, but it ensures that we were able integrate any curve in the
Lie algebra to the Lie group. It was realized by John Milnor [Mil84] that many of the
same properties hold for Lie-Fréchet groups satisfying the definition we have presented
here. Regular Lie groups in the framework of groups modeled on convenient vector spaces
were first considered in [KrMi97a].
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4. Presentation of main results

4.1. Paper B: Nonholonomic geometry on SU(1, 1) and
its universal cover

Motivation

Although, as we have mentioned, sub-Riemannian geometry was started in 1986, it is still
quite a young topic. Many of the results deal mainly with sub-Riemannian structures on
nilpotent groups, in particular the Heisenberg group. We wanted to look at a concrete
example where the underlying manifold is a semi-simple Lie group. A Lie algebra g is
called simple if it is not abelian and contains no proper, nontrivial ideals. g is called
semi-simple if it is a direct sum of simple Lie algebras. A Lie group is semi simple if it is
connected and has a semi-simple Lie algebra. We want to consider a noncompact Lie
group G, by the following reason.
A Lie algebra is semi-simple if and only if the Killing form

Kil(X, Y ) = tr (ad(X) ◦ ad(Y )) , X, Y ∈ g

is a non-degenerate bilinear form. If the Lie group is noncompact (or more precisely, if
the group quotiented out by its center is noncompact), then we can choose a maximal
sub-space p ⊆ g, such that the restriction of the Killing form to this subspace is positive
definite. A distribution obtained by left translation of p will always be bracket generating
of step 2, so there are no abnormal minimizers. For more details on this topic, see [Kna96,
Chapter IV.2] and [BCG02, Appendix A].
The simplest choice of G in the previously mentioned case, is the noncompact semi-

simple SU(1, 1). This is a real sub-group of GL(2,C) of matrices

g =

(
z1 z2
z̄2 z̄1

)
, det g = 1.

We also have that SU(1, 1) (or more precisely its universal cover group) with the metric
induced by the Killing form is a Lorentzian manifold which in physics is known as the
Anti-de Sitter space. If we restrict this metric to the appropriate distribution, we get a
sub-Lorentzian manifold which is not globally hyperbolic.

Summary

Consider SU(1, 1) with the metric ρ induced by the Killing form on the Lie algebra.
This is a bi-invariant Lorentzian metric. As this space contains timelike loops, it is
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better to consider the universal cover group of S̃U(1, 1), with the lifted metric ρ̃. We
pick two left invariant distributions D̃ and Ẽ of rank 2. The sub-bundle D̃ is a left
invariant sub-bundle on S̃U(1, 1) such that the restriction of ρ to D̃ is positive definite,
while E is chosen so that ρ|Ẽ is a sub-Lorentzian metric. We study the sub-Riemannian
and sub-Lorentzian geometry with respect to the structures (D̃, ρ̃) and (Ẽ, ρ̃). Both
distributions are strongly bracket generating, so there are no abnormal curves.
We want to describe the structure of the (normal) sub-Riemannian geodesics. As the

distribution is left invariant, it is sufficient to do this at the identity 1̃. We obtain the
following results.

• We give a complete description of the number of geodesics and the number of
them connecting a given point g̃ ∈ S̃U(1, 1) and 1̃ (Paper B, Proposition 2). We
connect these results to the conjugate locus, that is, the critical points of the
sub-Riemannian exponential map (Paper B, Proposition 3).

• We give a formula for the Carnot-Carathéodory distance on S̃U(1, 1) and on SU(1, 1)
(Paper B, Corollary 1 and 2).

When it comes to the sub-Lorentzian structure, things become more complicated.
We manage to give a complete description of the number of (normal) sub-Lorentzian
geodesics connecting an arbitrary point g̃ with 1̃, but the results are quite complicated
(Paper B, Proposition 5). However, we remark that there are points that can be connected
to 1̃ by a sub-Lorentzian geodesic, that cannot be connected to 1̃ by a Lorentzian geodesic
and vice-versa (compare with Paper B, Proposition 6).
In addition to discuss the geodesics, we find the time-like future of 1̃ with respect

to the sub-Lorentzian (and Lorentzian) structure (Paper B, Proposition 7). We give no
result on the sub-Lorentzian distance, as it is difficult to find a restriction to a globally
hyperbolic set, which would allow us to compute the distance from the geodesics.

4.2. Papers C, D and E: Rolling without twisting or
slipping

Motivation

Sub-Riemannian geometry can be seen as dynamics in a Riemannian manifold where
we have nonholonomic constraints given by a sub-bundle D. One classical example of
a nonholonomic dynamical system, is a sphere rolling on a plane without slipping or
twisting which can be traced as far back as Euler, see [Cha1903, Introduction]. An
intrinsic definition for two general 2-dimensional manifolds rolling on each other without
twisting or slipping can be found in [BrHs93, Section 4.4] or [AgSa04, Chapter 24]. Here,
it is proven that we have local controllability if the connecting points have different
Gaussian curvature. Hence, the system where a sphere rolls on the plane is completely
controllable, while this is not the case when a cylinder rolls on the plane.
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There has lately been an interest in rolling manifolds in higher dimension, in particular
from the engineering community. Part of the reason is the possibility of using rolling
without twisting or slipping as a tool in interpolation theory, see [HüSi07]. We want to
consider this problem from the point of view of geometric control theory.

Definition of rolling without twisting or slipping

If we generalize the intrinsic definition given in two dimensions, we obtain the following
formulation. Let us first adopt the convention, that in the rest of Section 4.2, whenever we
write Rn, it will always come furnished with the standard orientation and the Euclidean
metric. For an n-dimensional oriented Riemannian manifoldM , define the oriented frame
bundle F (M) as the principal SO(n)-bundle, whose fiber over m ∈M is the space of all
linear orientation preserving isometries

Fm(M) = SO(Rn, TmM).

An element f ∈ SO(R, TmM) can be considered as a choice of a positively oriented
orthonormal frame f1, . . . , fn by the correspondence (2.1).

LetM and M̂ be two connected, n-dimensional oriented Riemannian manifolds. Define
a fiber bundle over M × M̂ , by

Q := (F (M)× F (M̂))/ SO(n) =
{
q ∈ SO(TmM,Tm̂M̂) : m ∈M, m̂ ∈ M̂

}
.

Here, the quotient is taken with respect to the diagonal action of SO(n) on F (M)×F (M̂).

In general, Q→M × M̂ is not a principal bundle for n > 2.
The space Q can be thought of as the space of all ways that M can lie tangent to M̂ .

An element q : TmM → Tm̂M̂ then represents a configuration where M at a point m lies
tangent to M̂ at m̂, and the way the tangent spaces at m and m̂ connect is given by q.
Define the natural projections

π : Q→M, π̂ : Q→ M̂, π : Q→M × M̂.

Then a rolling without twisting or slipping is a curve in Q, satisfying the following
properties.

Definition 7. Consider an absolutely continuous curve q : [0, τ ] → Q, and write

π(q(t)) = m(t), π̂(q(t)) = m̂(t).

Then q(t) is called a rolling without twisting or slipping if it satisfies the following
conditions for almost every t

(i) (no slipping-condition) ṁ(t) = q(t) ˙̂m(t).

(ii) (no twisting-condition) for any vector field Z(t) along m(t), we have

q(t)
D

dt
Z(t) =

D

dt
q(t) ˙̂m(t).
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In (ii), D
dt

is the covariant derivative along m(t) or m̂(t) respectively, corresponding to
the Levi-Civita connection of the respective manifolds. An equivalent way of formulating
(ii) is to require that q(t) sends parallel vector fields to parallel vector fields.

Summary: Paper C

The first thing we need to do in order study this problem, is to justify our the previous
definition. Before Paper C, it had only previously appeared in literature for 2 dimensional
manifolds. There did exist a definition for higher dimensions [Sha97, Appendix B], but
only for manifolds embedded into Euclidean space. The main achievement of Paper C is
splitting the definition of “the embedded rolling” into two parts, one intrinsic and one
extrinsic (Paper C, Proposition 1). The intrinsic part satisfies our previous definition and
uniquely determines the extrinsic part up to initial condition (Paper C, Theorem 2).

Summary: Paper D

The purpose of this paper is to address the question of controllability of the system of
two n dimensional manifolds M and M̂ rolling on each other without twisting or slipping
for the case n > 2. Our main goal is to find a way to answer this question in terms of the
curvature of the manifolds involved, similar to the result in [BrHs93, Section 4.4] and
[AgSa04, Chapter 24] for the 2 dimensional case.
First of all, we make the observation that rather than considering our rolling q(t) as a

curve in the configuration space Q, we can lift it to the product of oriented orthonormal
frame bundles F (M)× F (M̂) by the following result.

Theorem 10 (Paper D, Corollary 1). Let q(t) be an absolutely continuous curve in Q,
with

π(q(t)) = (m(t), m̂(t)).

Then q(t) is rolling without slipping or twisting if and only if there exists a curve

t �→ (f(t), f̂(t)) in F (M)× F (M̂), satisfying

• prM f(t) = m(t), pr
̂M f̂(t) = m̂(t),

• q(t) = f̂(t) ◦ f−1(t),

• (no slipping-condition) f−1(t)(ṁ(t)) = f̂−1(t)( ˙̂m(t)).

• (no twisting-condition) fj(t) is parallel along m(t) and f̂j(t) is parallel along m̂(t)
for any 1 ≤ j ≤ n.

Let D be the distribution of dimension n on Q formed by the tangent vectors of all
rollings without twisting or slipping (see Paper C, Proposition 3). Write D for the n

dimensional distribution on F (M)×F (M̂) formed by tangent vectors of curves (f(t), f̂(t))
satisfying the previous theorem. It turns out that we can determine if D is bracket
generating (and thereby show controllability) by computing brackets of D. This simplifies
calculations, leading to the following sufficient conditions.
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Let R be the usual curvature tensor on M defined by

R(Y1, Y2, Y3, Y4) =
〈(∇Y1∇Y2 −∇Y2∇Y1 −∇[Y1,Y2]

)
Y3, Y4

〉
,

where ∇ is the affine Levi-Civita connection on M corresponding to the Riemannian
metric 〈·, ·〉. Define R̂ similary on M̂ .

Theorem 11 (Paper D, Theorem 3). Let q : TmM → Tm̂M̂ be any element of Q. Then
we have local controllability at q if for one (and hence any) orthonormal basis v1, . . . , vn
of TmM , the determinant

det
(
R(v1, v2, vα, vβ)− R̂(qv1, qv2, qvα, qvβ)

)1≤α<β≤n

1≤i<j≤n
,

does not vanish. Here, (i, j) is the row index and (α, β) is the column index.

Corollary 1 (Paper D, Corollary 4). For any 2-dimensional plane L in Dq, that is, an
element of Gr2(Dq), define an operator κq by

κq(L) = κπ(q)(π∗L)− κ̂π̂(q)(π̂∗L).

Here, κm and κ̂m̂ is the sectional curvature at m ∈M and m̂ ∈ M̂ respectively. Then, if
κq never vanishes for any L, we have local controllability at q.

Summary: Paper E

Let q(t) be a rolling (an intrinsic one) without slipping or twisting, and consider curves

m(t) = π(q(t)) and m̂(t) = π̂(q(t)) in respectively M and M̂ . Then, by the following
theorem, m̂(t) is uniquely determined by m(t) up to an initial condition.

Theorem 12. Let [0, τ ] �→M, t �→ m(t) be a curve in M with m(0) = m0. For a given
point m̂0, let q0 be a given orientation preserving linear isometry

q0 : Tm0M → Tm̂0M̂.

(a) For sufficiently short time, there exists a unique rolling q(t) satisfying q(0) = q0 and
π(q(t)) = m(t). [Sha97, Proposition 2.4]

(b) If M̂ is complete, then such a solution exists for all time t ∈ [0, τ ]. (Paper D, Lemma
6)

We want to understand how the geometric properties of m(t) affect the curve m̂(t).
Let us first assume that m(t) is parametrized by arc length and is Cn and Cn−1-regular.

Theorem 13 (Paper E, Lemma 2 and Theorem 2). If m(t) is a Cn curve, that is Cn−1-
regular and parametrized by arc length, with oriented geodesic curvatures κ1, . . . , κn1,
then there exists a rolling q(t) with

π(q(t)) = m(t), π̂(q(t)) = m̂(t),

if and only if, m̂(t) is also a Cn curve which is Cn−1-regular, parametrized by arc length
and whose length and oriented geodesic curvature coincide with the ones of m(t).
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If m(t) is Cn and Cn−1-regular, but not parametrized by arc length, then we need
to add the requirement that m̂(t) has the same speed as well. However, we argue a
rolling without twisting or slipping preserves even more structure than can be detected
by geodesic curvatures. In order to do this, we have to make sense of the term “local
structure” for the general absolutely continuous curve.

Definition 8. For a given absolutely continuous curve in M, t �→ m(t), an absolutely
continuous curve y(t) in Rn with y(0) = 0 is called an anti-development of m(t), if there
is a curve f(t) in M , with prM f(t) = m(t), each fj is parallel along m(t) and

ṁ(t) = f(t)(ẏ(t)),

for almost every t. The curve m(t) is called a development of y(t).

Clearly, any anti-development is defined uniquely up to rotation. By (Paper D, Corollary
1), an anti-development curve is nothing more than the result of rolling M on Rn along
m(t). Conversely, we obtain a development by rolling Rn on M along y(t). Since we can
split any rolling into an anti-development and a development, a rolling exists between
two curves if and only if they have the same set of anti-developments (Paper E, Corollary
3).
We argue that an anti-development can be seen as a generalization of the oriented

geodesic curvatures, because of the following properties. If the oriented geodesic curvatures
of m(t) are well defined, they, along with the speed of m(t), are encoded into its anti-
development, which will have the same oriented geodesic curvatures and speed. A
development of a given curve y(t) inM is uniquely determined up to the initial conditions
of m(t) and f(t). It always exists for short time and for all time if M is complete. Finally,
if M is a complete, simply connected manifold of constant sectional curvature, then an
anti-development determines the curve uniquely up to an orientation preserving isometry
(Paper E, Corollary 4). Compare this with the properties of the geodesic curvatures given
in Section 2.4.

4.3. Papers A and F: Infinite dimensional
sub-Riemannian geometry

Motivation

The main idea underlying geometric control theory, is that one can get information of
the control system by using geometric tools. For many mechanical systems, the optimal
curves are geodesics on Riemannian or sub-Riemannian manifolds. For example, the
motion of a force-free rotating rigid body is governed by a left-invariant Riemannian
metric on the Lie group SO(3). We have just discussed how optimal curves of rolling
without twisting or slipping can be seen as geodesics in a sub-Riemannian manifold.
In 1966, Vladimir Igorevich Arnol’d proved that Euler’s equations on a compact

Riemannian manifold M can be considered as geodesics in the infinite dimensional Lie
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group of volume preserving diffeomorphisms, thereby showing that geometric intuition
could also be applied to fluid dynamics and other mechanical systems involving PDEs
[Arn66]. This was later generalized in [EbMa69] to compact manifolds with boundary.
There has since been several results connecting PDEs to different infinite dimensional
Riemannian manifolds (see e.g. [MiRa98, Anc08]).
It has also become interesting to study infinite dimensional geometry for other reasons,

in particular for finding good metrics to measure the distance between two infinite
dimensional objects. Two particular topics of interest has been geometry on the space of
all Riemannian metrics on a manifold [Ebi70, ClRu11] and the space of shapes [MiMu07].
In light if the success of Riemannian geometry in the infinite dimensional setting, we

want to be able to have an appropriate definition for the sub-Riemannian geometry as
well.

Summary Paper A

Let Diff+ S
1 denote the Lie-Frechét group of orientation preserving diffeomorphisms of

the unit circle S1. By a result of Aleksandr Aleksandrovich Kirillov [Kir87], we can
identify the symmetric space Diff+ S

1/RotS1 with the space of normalized univalent
functions F0. Here, RotS1 is the subgroup of rotations, while F0 is the space of all
injective, holomorphic functions f : D → C with smooth extensions to the boundary,
normalized by requirements f(0) = 0 and f ′(0) = 1.
The Lie algebra of Diff+ S

1 is the space VectS1 of vector fields on S1 with brackets
[x∂θ, y∂θ] = (x′y − xy′)∂θ. This space VectS1 can be identified with C∞(S1). For any
f ∈ F0, we can identify Tf F0 with the space of all holomorphic functions F : D → C

that have a smooth extension to the boundary and satisfy F (0) = F ′(0) = 0. Let φ be
an element of Diff+ S

1 and let rφ be the right multiplication by φ. Use π : Diff S1 → F0

for the projection. Then the map (π ◦ rφ)∗|idS1 , has the formula [Kir98],

x �→ if 2If [x], π(φ) = f, x ∈ C∞(S1).

If [x](z) =
1

2π

∫
S1

(
ζf(ζ)

f ′(ζ)

)2
x(arg ζ)

f(z)− f(ζ)
dζ.

We extend the definition of If to a map from the space Lipα(S
1) of α-Hölder continuous

functions, α ∈ (0, 1), into the space of holomorphic functions F : D → C whose
extension to the boundary satisfy F |S1 ∈ Lipα(S

1). We prove that the kernel of this is
one-dimensional, and describe it explicitly (Paper A, Theorem 1).
Let g : D− → C be an injective holomorphic map from the exterior of the unit disk

D− which satisfies g(∞) = ∞. Then g is said to match f ∈ F0 if the boundaries of f(D)
and g(D−) coincide. For any f , such a function g exist and is unique up to a rotation
on the right by the Riemann mapping theorem. As a corollary of Paper A, Theorem 1
we describe how this function can be obtained as a solution of a first order differential
equation, depending on f and the kernel of If . We give some concrete examples of this.
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Summary Paper F

We define an infinite dimensional sub-Riemannian manifold in the following way.

Definition 9. A sub-Riemannian manifold is a triple (M,H,h), where
• M is a connected (smoothly Hausdorff) manifold modeled on c∞ open subsets of
convenient vector spaces.

• H is a splitting sub-bundle of TM , that is, there exist another sub-bundle V such
that

TM = H⊕V .
• h is a (weak) metric on H.

We use the term ‘weak metric’ as we do not require that the map v �→ h(v, ·) ∈ H∗
m

to be surjective, only injective. We consider horizontal curves as smooth curves (not
absolutely continuous) that are tangent to H.
Our previous definition of abnormal curves or “bad points” in the space of curves,

can not be used any longer. The reason is that we no longer have an inverse function
theorem, which means that we cannot search for “bad curves” by looking for singular
points of the endpoint map. Instead, we introduce a new class of curves called semi-rigid.
See Paper F, Section 3.3 for the definition. These curves are always abnormal when M is
finite dimensional.
We are not ready to describe a general theory for finding geodesics in infinite dimensional

sub-Riemannian manifolds, but we describe a particular case. By a sub-Riemannian
geodesic, we mean a critical value of the sub-Riemannian energy functional E(γ) =∫ 1

0
h(γ̇(t), γ̇(t)) dt. We can no longer use the Pontryagin’s Maximum Principle to find

these, but we can use calculus of variation. Let us view any bundle chart of the tangent
bundle defined on a neighborhood U ⊂M ,

TU → U × V, v ∈ TmU �→ (m, θ(v)),

as a V valued one-form on U , where V is a convenient vector space. For a sufficiently
small neighborhood, we can pick a bundle chart such there is a splitting V = H0 ⊕V0,
satisfying

θ−1(H0) = H∩TU, θ−1(V0) = V ∩TU.
Furthermore, assume that there is an inner product 〈·, ·〉, such that H0 and V0 are
orthogonal with respect to this inner product and h(v1, v2) = 〈θ(v1), θ(v2)〉, for any
v1, v2 ∈ Hm,m ∈ U. Extend this sub-Riemannian metric to a Riemannian metric g by
the same formula, and assume that there exist sa map a� : Vθ × Vθ → Vθ, satisfying

〈dθ(v1, v2), u〉 = 〈θ(v1), a�(θ(v2), u)〉.

Assuming some additional minor technical conditions, we have the following result.
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Theorem 14 (Paper F, Theorem 1). Assume that γ is a sub-Riemannian geodesic. Then
either γ is semi-rigid or there is a curve λ ∈ C∞(I,V0), such that γ satisfies

θ(γ̇) = u, u̇ = − prH0
a�(u, u+ λ) λ̇ = − prV0

a�(u, u+ λ). (4.1)

All solutions to (4.1) are sub-Riemannian geodesics.

All finite dimensional manifolds can be described this way, and γ satisfies (4.1) if and
only if it is a normal geodesic (Paper F, Proposition 2). All finite and infinite dimensional
Lie groups with a left or right invariant sub-Riemannian structure can be described this
way if ad(x) has an adjoint for any x ∈ g (this is non-trivial in infinite dimensions).

In particular, let us choose θ to be the left Maurer-Cartan form κ	 on a Lie group G,
giving us a global bundle chart. Assume furthermore that V0 is the Lie algebra of some Lie
group K. Let us define a Riemannian metric by left translations of an Ad(K)-invariant
inner product on the Lie algebra of G, and construct a sub-Riemannian metric by
restricting it to H. Then, any solution to (4.1) is of the form γsR(t) = γR(t) expG(−λt),
where γR is a Riemannian geodesic and λ := prV0

κ	(γ̇R(t)) is a constant (Paper F,
Theorem 4).
We give a concrete example by considering G = Diff+ S

1 and K = RotS1. We also
consider a sub-Riemannian structure on the Virasoro-Bott group. In spite of the fact
that there is no Rashevskĭı-Chow Theorem in infinite dimensions, we are able to prove
complete controllability in these cases. We also write down the equations for the normal
sub-Riemannian geodesics.
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