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Abstract

W
ith the increasing use of numerical simulations in the fluid mechanics
community in recent years flow visualization increasingly gains impor-

tance as an advanced analysis tool for the simulation output. Up to now, flow
visualization has mainly focused on the extraction and visualization of struc-
tures that are defined by their semantic meaning. Examples for such structures
are vortices or separation structures between different groups of particles that
travel together.

In order to deepen our understanding of structures linked to certain flow phe-
nomena, e.g., how and why they appear, evolve, and finally are destroyed, also
linking structures to semantic meaning that is not attributed to them by their
very definition, is a highly promising research direction to pursue.

In this thesis we provide several approaches on how to augment structures
stemming from classical flow visualization techniques by additional semantic
information originating from new methods based on physics and statistics. In
particular, we target separation structures, the linking of structures with a local
semantics to global flow phenomena, and minimal representation of particle
dynamics in the context of path line attributes.
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Chapter 1

Introduction

T
he concept of flow plays a crucial role in many processes in nature and
industrial processes. One of the classic application areas of fluid mechan-

ics is aerodynamics, both for the aviation and automotive industries. A design
that avoids or produces certain flow phenomena can, e.g., reduce the fuel con-
sumption of a vehicle, or increase its stability and steerability.

The underlying principles are the same in numerous other situations. Examples
are fluids in and around pipe-like structures, like exhaust systems, or flexible
geometries, like the human vascular system, weather phenomena and currents
in the oceans, to mention but a few.

The foundation for all of those phenomena is fluid mechanics, i.e., the branch
of physics concerned with the description of the motion of liquids and gases. A
good understanding of their behavior is of great importance for many practical
problems.

Historically, investigations concerning the above described phenomena have
been carried out by experiment or direct mathematical analysis of the equations
describing fluids in motion (Navier-Stokes equations [128]).

Experiments are one of the backbones of modern physics, but have the draw-
back of being usually rather costly. This is especially true for fluid mechanics.
Small changes in the problem formulation can result in drastic changes in the
experimental setup. For example, every change in the geometry of a vehicle in
a wind tunnel experiment will require changing, or even rebuilding, the model.
For complex situation this is a challenging task on its own.

The purely analytical investigation of fluid dynamics, on the other hand, is
notoriously difficult. As a matter of fact, no proof (or counter-example) of the
existence and smoothness of the solutions of the Navier-Storkes equations has
been found yet (one of the Millennium Prize Problems announced by the Clay
Mathematics Institute) [10]. In order to overcome the mathematical difficulties
inherent to the governing equations, namely that closed solutions can usually
not be found, analytical investigations often involve drastic simplifications in
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4 1. Semantic information for flow visualization

both model and initial conditions, e.g., dimension reductions, or assumptions
on irrotationality and incompressability1.

With the advances of modern scientific computing, numerical simulation has
established itself as a compelling third possibility to study fluids in motion.
In contrast to experiments and analytical solutions, numerical simulations can
describe almost arbitrarily complex geometries and initial conditions, and can
be modified fast. Currently, numerical methods are inferior to experimental
methods when highly turbulent flows around large objects should be considered
(high Reynolds numbers), due to the inherent requirements on grid resolution2.

Numerical simulations have, on the other hand, clear advantages in the study
of highly time-dependent flows, i.e., flow fields with a velocity field that changes
rapidly over time. Such rapidly changing fields are hard to capture in experi-
ments due to limited time-resolution of measurement instruments.

The ability to simulate flows that change over time represents an important step
towards more realistic descriptions and predictions of the underlying phenom-
ena, and consequently the understanding of their nature. These advantages,
together with the advances in high performance computing, make it highly
likely that computational fluid dynamics will gain further importance in the
future [84].

The shift towards computational modeling and numerical simulations in the
fluid mechanics community emphasizes also the importance of the field of flow
visualization on the informatics side. Results are not any more directly ob-
servable like in experiments or a closed formula as in analytic modeling. New
means of visualizing and analyzing the, now digital, results of modeling and
simulation are needed in order to fully exploit the opportunities of computa-
tional investigations. In this context, special attention has to be paid to the
requirements of visualizing time-dependent flows.

1 Semantic information for ow visualization

In its widest sense, the term semantics is equivalent to meaning, and hence the
semantics a visualization of fluid flow has to convey, is its physical interpre-
tation. When using classical flow visualization techniques inspired by exper-
imental physics, the physical interpretation is inherent to the representation.
Examples for such visualization techniques with inherent semantic interpreta-
tion are arrow plots of the velocity field or particle traces. On the other hand,

1Examples for this practice are potential flow and stream functions, among others. Details
about these solution methods can be found in Mase’s textbook [128]

2Roughly speaking, the required grid resolution is proportional to the Reynolds number.
Details can be found in the book by Durbin and Petterson Reif [30]
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such techniques capture usually only an aspect of the physical process, for
example instantaneous velocity and advection for the visualization techniques
described above.

One of the most interesting aspects of flow visualization compared to classic
experiments, is the ability to combine visual representations that are in the
tradition of experimental fluid mechanics, and hence with clear interpretation,
such as the ones just mentioned, with physical quantities that are not directly
observable in an experiment, such as stress states or turbulence kinetic energy.

This possibility to add semantic meaning to the visualization has great potential
to increase our understanding of the underlying physical phenomena as a whole,
combining multiple aspects.

Additional semantic information for flow visualization can be derived in var-
ious ways, among others from the broad spectrum of physical quantities de-
rived from theoretical considerations from continuum mechanics and statistical
methods from experimental fluid mechanics.

Using the continuum mechanics toolbox [128], one has usually the possibility to
choose two different view points on the physical quantities using a grid-based
or particle-based description. In continuum mechanics this two concepts are
referred to as Eulerian and Lagrangian description [128].

While theoretically describing the same physical process, one description may
be more advantageous to capture certain aspects of the dynamics than the
other. A simple example is acceleration, which is simply the time derivative of
the velocity in the Lagrangian description, but becomes the material deriva-
tive in Eulerian description [128]. Classically, fluid mechanics uses Eulerian
descriptors, but the increasing interest in time-dependent phenomena in flow
visualization has shifted the focus towards particles, which are, in turn, the
heart of the Lagrangian description of flow.

Combining appropriate Eulerian and Lagrangian representations has therefore
the potential to provide semantic information that one representation only may
fail to convey.

As many other physical phenomena, fluid flow has both local and non-local
aspects. A local aspect is, for example, point-wise velocity, while an example
for a global aspect is its transport properties. Local and global aspects are
interlinked, as this examples also show. The path of a particle is, for exam-
ple, defined by all velocities in the spatial locations it resides during advection.
Classical flow visualization techniques target usually either local or global prop-
erties. The relation between local phenomena and the non-local process they
are associated with, can also be used to provide additional semantics for local
features of the flow fields.
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Another possibility to add semantic information is the consideration of addi-
tional information to the flow visualization that is not captured in the under-
lying flow field. This situation can be seen as a particle carrying additional
attributes. When storing this information for each particle for several time
steps during its advection, we produce data sets that are in many ways more in
the tradition of information visualization and tabular data than flow visualiza-
tion and vector field data. Hence, a combination of techniques from both fields
is a promising option. Such a hybrid solution of techniques in the tradition of
classical flow visualization and information visualization might be referred to
interactive visual flow analysis, i.e., a combination of interactive visual analysis
as a general information visualization tool with flow visualization [100, 27].

Among the three just described possible ways to add semantic meaning, i.e.,
the combination of representations, the linking of local features to non-local
phenomena they are associated with, and path line attributes, only the last
one has been explored to some extent up to this point. The exchange with
our collaboration partners has led to the conclusion that these are promising
research directions to pursuit.

Path line attributes are already used in flow visualization, but previous experi-
ence has shown that a systematic approach to how to the selection of attributes
and how to deal with large attribute sets is still missing and needed. This fa-
cilitates further exploitation of this exiting technique.

2 Overall contributions

Within the scope of this thesis, we have addressed the three options of adding
semantic information for flow visualization outlined above. In particular, we
have investigated

– Adding physical semantics to flow visualization based on finite-time Lya-
punov exponents, by combining it with directional information. FTLE
is associated to the Lagrangian perspective on fluid mechanics, while the
directional information used by us is in the Eulerian frame. This work
addresses therefore the combination of different representations.

– A simplification and extraction scheme that makes use of the inherent
energy structure of the flow. By this technique we are able to extract
features that are linked to certain dynamic processes in the overall flow.
Hence, this work is along the lines of linking local- and non-local phe-
nomena

– A condensation of a the basic set of path line attributes by statistical
tools. This work is to facilitate adding semantics by path line attributes
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A thorough description of the open questions addressed and the contributions
made can be found in the respective sections of Ch. 3. The papers can be found
in full text in part II of this thesis.

Accordingly, this thesis is structured as follows: the first part is a summary
and synthetisation of the finding published in the papers worked out within
the scope of this thesis’ author’s Ph.D. project. These papers are included in
full text in part II of this thesis. They are included in their published form,
but adapted to the general layout of the thesis. The respective bibliographies
have been collected and updated. In Paper B we corrected an interchange of
terminology3.

The remainder of part I is structured as follows: First we review related work,
based on our state of the art report (Paper A in part II) and Paper 1. Then
the contributions of this thesis are discussed in more detail in Ch. 3. Next, we
demonstrate the usefulness of our approaches by selected case studies. Finally,
conclusions from this thesis are drawn in the concluding chapter of part I.

3This is commented on in more detail on the cover sheet for paper B in part II.





2

Chapter 2

Related Work

T
his chapter discusses the related work for this thesis in a summative fash-
ion. For a much more thorough discussion, we refer to the state of the art

report as included in part II (Paper A) and the related work sections in the
respective papers.

In general, the aim of visualization is to convey a mental image of a phenomenon
of interest by means of a visual representation and appropriate mechanisms of
interaction. Although direct visualization, i.e., the immediate translation of
all data items into corresponding visual elements, of all data might be possible
in some cases, the level of detail in such a visualization can easily distract
from the actually important information. This is especially true in the case of
flow visualization, where single velocity vectors carry little information about
behavior that is not observable in an isolated, point-wise fashion.

It is often much more informative to identify coherent structures. Such struc-
tures may be both certain regions of the computational domain, as it is the
case for vortices, or particle groups that behave the same in some sense, e.g.,
asymptotically.

As the name already indicates, coherent structures are characterized by one or
more common properties shared by all space points, or particles, that belong
to them. Although similar in concept, the terminology for visualization meth-
ods based on coherent spatial structures and coherent particle group are quite
different.

The first class is commonly referred to as feature-based visualization [162], while
the latter has been referred to as visualization based on Lagrangian coherent
structures1 (LCS) [59]. From a computational point of view, the most in-
teresting difference is that methods for the extraction of LCS usually involve
non-local processing of the data, most prominently particle tracking. Feature-
based visualization as described above, on the other hand, is usually based on
local processing.

1This difference in terminology resembles loosely the distinction between Eulerian and La-
grangian representation in continuum mechanics [128].

9



10 1. Visualization based on features and Lagrangian coherent structures

1 Visualization based on features and Lagrangian
coherent structures

Due to the definition of features through their properties, they are usually phys-
ically interpretable, for example resembling shock waves or separation lines.
Hence, the detection of the features is often the most critical part of the visu-
alization pipeline. For a thorough discussion of feature-based visualization
techniques, we refer to the dedicated survey of this topic by Post et al. [162].

An important, but especially difficult feature class are vortices. Notably, there
is no agreed-upon definition of vortical structures available, which is a well-
known problematic in the fluid mechanics community [122], and has resulted
in numerous different vortex detection schemes proposed over the years [83].

Roughly speaking, there are two different classes of methods [83]: those which
detect vortices as regions in space, so-called vortex regions, and those which
aim for the detection of the vortex core line, i.e., the centerline of the rotational
motion.

Popular vortex region detectors are, for example, vorticity thresholding, Hunt’s
Q criterion [80], the so-called Δ criterion [14], and the λ2 criterion [81].
For a discussion of the relations between these different methods we refer to
Chakraborty et al. [13].

Largely used vortex core detectors are the classic methods by Levy et al. [110]
and Sujudi and Haimes [193], as well as their extension for unsteady velocity
fields by Fuchs et al. [40], or the “cores of swirling motion” by Weinkauf et
al. [221]. Lately, two methods based on acceleration have been proposed, as
well [39, 92].

When aiming at a complete classification of the flow domain (or particles), the
boundaries between the distinct regions are sufficient to represent the partition.
Methods yielding such partitions are often referred to as topological methods2.

For steady velocity fields, dynamical systems theory provides an elegant math-
ematical framework for the partitioning of phase curves according to their be-
havior [1]. This classification is based on the analysis of equilibria in the dynam-
ical system and can be found already in the late 19th century in the works of
Poincaré [159]. Helmann and Hesselink introduced this concept to the flow visu-
alization community under the notion of vector field topology (VTF) [73, 75].

For a comprehensive discussion of VFT for two- and three-dimensional steady
vector fields, we refer to Asimov’s tutorial [2] and Perry and Chong [150, 151].
Essential for most visualization techniques based on VFT is the extraction of

2Note that these methods are not topological in a set theoretic sense. The actual geometry
of the boundaries has to be considered [66].
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the so-called topological skeleton, i.e., the equilibrium points, together with
the respective invariant manifolds (separatrices), and periodic orbits as well
as other critical structures. These structures constitute the boundaries of the
aforementioned partition. Flow visualization techniques based on VFT have
been a popular research direction and a considerable amount of literature is
available on the topic. For further reading we refer the reader to Sec. 2 in
Paper A and the dedicated surveys of Scheuermann and Tricoche [182] and
Laramee et al. [106].

As already mentioned, VFT is based on the analysis of equilibrium points (often
also critical points). This analysis assumes isolated critical points in systems of
autonomous ODEs, e.g., the equations defining trajectories in flow fields. These
assumptions make it inapplicable to time-dependent velocity fields, since they
are non-autonomous, or, when looking at the problem in (n + 1) dimensions3,
have no isolated critical points. Practical examples for the deficiencies of VFT
when applied to unsteady flows have been given recently [184, 227].

Nevertheless, VFT is still an important inspiration since an optimal solution for
unsteady flow fields should lead to comparable results. One of the most promi-
nent properties of the segmentation obtained from VFT is the extraction of
lines or surfaces representing the stable and unstable manifolds, so-called sep-
aratrices. These separatices confine regions of phase curves with homogeneous
properties with respect to their asymptotic behavior. The analogous structures
for non-autonomous dynamical systems are referred to as Lagrangian coherent
structures (LCS) [58].

Although the concept of LCS as boundaries of particle groups with similar be-
havior is rather intuitive, no strict mathematical definition is available. One
of the most prominent ways to define LCS is related to finite-time Lyaponov
exponents (FTLE), a separation measure inspired by stability theory [50].
More precisely, ridges of this scalar separation measure have been proposed
as LCS [60, 184].

Ridges of the FTLE field act asymptotically as transport barriers in the flow
and are crossed by a small amount of particles only. This amount is inversely
proportional to the integration time, i.e., ridges converge to material lines [184].
Hence, FTLE ridges can be seen as a weak analogon of invariant manifolds for
autonomous systems. This property makes the use of such ridges appealing for
the purpose of unsteady flow visualization and a considerable amount of effort
has been made to efficiently compute and extract them (cf. Sec. 4 and 6 in
Paper A). It is worth noting, however, that recent work of Haller [62] shows
that LCS and FTLE ridges can not be identified, giving examples of dynamical

3The spatial dimensions and time. The transformation from an non-autonomous system to
an autonomous system in higher dimensions is achieved by canonical lifting (cf. Sec. 5 in
Paper A).
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systems where observable LCS are not FTLE ridges and vice versa [62]. Also
examples given in Paper B show that FTLE can fail to identify observable
separation structures.

Further details about the computation of FTLE and related maps are pro-
vided in Sec. 1 of Ch. 3, along with a more detailed description of the physical
interpretation.

2 Interactive visual analysis in the context of ow
analysis

VFT-based visualization methods are usually automatic methods, i.e., the re-
sult is dependent on the data and the chosen algorithm only. This means that
the user has little influence on the output. One of the advantages of such
methods is that the visualization is consistent, independent of the proficiency
of the user. In the case of flow visualization, on the other hand, we usually
deal with expert users. Hence, allowing for an interactive integration of their
knowledge about fluid dynamics in general, and the data set under examina-
tion in particular, in the process of generating the visualization is a promising
complementary approach.

The concept of interactive visual analysis (IVA) combines automated analysis
steps with the user knowledge in a feedback loop, allowing for iterative result
optimization [94]. IVA is quite common in fields like economics, but by no
means restricted to them, as recent results in flow visualization show [29, 100,
131, 105]. Besides the fact that domain knowledge is exploited, the main appeal
of this approach is the possibility to obtain a flexible segmentation that can
be adjusted to the situation the specific data set describes, taking also other
information than just the velocity field itself into account.

Even though data sets describing flow phenomena are usually two- or three-
dimensional (plus time, in the case of unsteady velocity fields), other infor-
mation (e.g., pressure, density, temperature, . . .) needs to be exploited, when
available. Even if the velocity field is given alone, often derived fields are calcu-
lated to analyze the flow (vorticity, λ2, . . .), especially in the context of feature
extraction described above.

This yields data sets with high dimensionality that need to be analyzed. As
already outlined above, the automatic analysis of these additional dimensions
has the drawback that the knowledge of a domain expert operating the visu-
alization tool is not exploited. Additionally, it is often unclear how such an
automated analysis should look like.
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IVA is a theoretical visualization framework based on the idea to depict mul-
tiple dimensions in multiple view, using, e.g., histograms and scatter plots.
These views, showing the data consistently but in different representations and
different dimensions of them, are dynamically linked and selecting a certain
data range in one view highlights the corresponding data values in the other
views. Multiple selections in all views can be combined and related to each
other by logical “and” and “or” connection. In this way, complex queries can
be formulated for the data and interactively refined. In the context of flow visu-
alization, usually a three-dimensional view of the physical domain is included
to ease the spatial location of the investigated properties. For the description
of a IVA framework for flow analysis in general, and the framework this ph.d.
project has been carried out in, in particular, we refer to Doleisch [24].

Bürger et al. [7] use IVA to analyze vortical motion. One of the challenges in
the task of identifying vortical motion is that no agreed-upon mathematical
definition of such motion exists. They authors show how the combination of
multiple vortex detectors in an IVA framework can both enhance and robustify
the identification of vortices. Furthermore, they use additional measures to
distinguish, e.g., slowly rotating vortices from fast rotating.

In the context of time-dependent velocity fields, the analysis can be conducted
adopting a Lagrangian perspective on the flow. Computing particle trajectories,
both global properties of the trajectory itself (average velocity, winding angle,
arc length,. . .) and other values along the trajectory (curvature, torsion, particle
velocity) can yield interesting insight in the dynamical behavior. Shi et al. [186]
describe the use of IVA in this context. They investigate a large number of path
line attributes, finding that for most questions investigated the examination of
a rather small subset of those seems sufficient. A formal definition of path line
attributes is provided in Sec. 1 of Ch. 3.

Lež et al. [112] show how a multi-step analysis can be used to speed up path
line-based IVA of unsteady velocity fields. They propose to seed particles on
a relatively coarse grid first and identify possibly interesting areas in this path
line data set, before starting the full resolution path line analysis in this regions
only. Additionally to the selection of certain path lines by their attributes, the
authors propose direct path line brushing (i.e., “marking up” of certain path
lines), using projection views.

3 Chapter summary and conclusions

We see that flow visualization has, up to the current point, to a large extent
dealt with detecting and visualizing structures with a clear predefined semantic
meaning, as vortices or LCS. The reverse process, namely visualization tech-
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niques that provide a semantic interpretation that are not per definition associ-
ated with the extracted structure, is a currently not very extensively explored
research direction.

The research direction of path line attributes is perhaps the most visible in
this context. While clearly a considerable amount of good work has been done
in this direction, the crucial aspect of the selection of attributes has not been
addressed yet.

These two observations can be seen as a starting point and motivation for the
research presented in the following chapters of this thesis.
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Chapter 3

Physics- and Statistics-based Semantics

I
n this chapter we discuss the contributions of this ph.d. work in a detailed
manner. We introduce briefly the problems we address, and discuss our work

on the problem on a conceptual level. Technical details are left to the respective
full papers in part II.

Before the actual discussion of the contributions in Sec. 2, a short outline of
some of the fundamental concepts for this work is given.

1 Foundations

For the time being, we assume to have a flow given by its velocity field. This
velocity field is discrete and stored on a grid covering the computational do-
main. For all data sets used in this thesis, those velocity fields originate from
numerical simulations or are originally analytic and sampled on a grid. Hence,
the data is given as two- or three-dimensional vectors, stored in specific space
point, and possibly also varying in time. If not defined otherwise, we denote
the velocity field by

v : (x, t) �→ v(x, t) (3.1)

where x and t are specific points in space and time, respectively.

1.1 Path lines and ow map

A path line is the trajectory of a massless particle, advected by the velocity
field. Formally, the path line x of a particle that resides in the position x0

at time t = t0 is given by the following initial value problem of the ordinary
differential equation

dx

dt
(t) = v(x(t), t), x(t0) = x0 (3.2)

15
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Figure 3.1: Illustration of the concept of the flow map. The exact path of the particle
between start and end point is not captured in the mapping.

or, in integral form,

x(t) = x0 +
∫ t

t0

v(x(τ), τ)dτ (3.3)

which gives the position of the particle at time t.

The function that maps a particle’s position at time t0 to its position at time
t is usually referred to as flow map and denoted by

ϕt
t0

: x0 �→ x0 +
∫ t

t0

v(x(τ), τ)dτ (3.4)

It is worthwhile noticing that no information on the path between x0 and
ϕt

t0
(x0) is contained in the mapping1. Fig. 3.1 illustrated the concept.

1.2 Flow map gradient, Cauchy-Green strain tensor

Given a fixed integration time and the respective flow map, the classification
of the particles into coherent groups can be of interest. The boundaries of such
groups are often referred to as Lagrangian coherent structures (LCS). According
to whether or not particles are converging or diverging from those boundaries,
they are said to be attracting or repelling.

The relative converging or diverging behavior of particles can be interpreted
as deformation of the continuum between them, and is therefore related to the

1ϕ − id is also known as the displacement field.
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material deformation gradient known from continuum mechanics. The material
deformation gradient is indeed the gradient of the flow map

Fij =
∂ϕi

∂xj

(3.5)

As every non-singular symmetric tensor, we may use the so-called polar decom-
position to isolate rotation and stretching. If we are interested in the strain
in the direction with respect to the undeformed material, we choose the right
polar decomposition, i.e., stretching first and then rotation2.

Every rotation is isometric, therefore the relevant information for convergence
and divergence is contained in the stretching. This stretching information is
captured in the so-called Cauchy-Green strain tensor

Cij =
∑

k

FkiFkj (3.6)

or in matrix notation, using F = RS, where R is the rotation and S the
stretching matrix described above, we get the following equality

C = FT F = (RS)T
RS = ST RT RS = ST S (3.7)

While the polar decomposition is not needed for the actual calculation, it shows
that the Cauchy-Green strain tensor indeed disregards the rotational informa-
tion. Intuitively, the tensor describes the deformation of a infinitesimal small
sphere around a particle.

For a more thorough discussion of the material deformation gradient, Cauchy-
Green strain tensor, and related concepts we refer the reader to Mase’s text
book on continuum mechanics [128].

1.3 Finite-time Lyapunov exponents

As explained in the previous section, the Cauchy-Green strain tensor is related
to the deformation of a infinitesimal small sphere. If only the distinction be-
tween divergent and convergent behavior is of interest, we have to consider
only the magnitude, not the direction of the relative stretching. The maximal
rate of deformation the sphere undergoes is given by the largest eigenvalue of

2The decomposition in reversed order is also possible. In that case the stretching of the
material is represented in the so-called spatial, or Eulerian reference system. The differ-
ence between spatial and material reference system are discussed in more detail in the
discussion section of Paper B in Sec. 2 of this chapter. For additional reading on the topic
we refer to Mase’s textbook on continuum mechanics [128]
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the Cauchy-Green strain tensor. Assuming that the size of an infinitesimal
displacement dx grows exponentially over time with a constant rate, i.e.,

||ϕt
t0

(x + dx) − ϕt
t0

(x)|| ∝ exp (ε(t − t0)) ||dx|| (3.8)

we get the maximal rate of deformation as

ε =
1

|t − t0|
log

(
max

||dx||=1

||ϕt
t0

(x + dx) − ϕt
t0

(x)||
||dx||

)
=

=
log (||F||op)

|t − t0|
=

log
(√

λmax (C)
)

|t − t0|

(3.9)

where || − ||op is the operator norm and λmax(−) the maximal eigenvalue of
a tensor. ε is usually referred to as the (maximal) finite-time Lyapunov expo-
nent (FTLE). The equalities in eq.(3.9) follow directly from expanding ϕ in a
Taylor series and the definition of the operator norm [51]. Details can be found
in Paper B, Sec. 3.

FTLE is a popular detector for LCS. For details we refer to Haller [59], who
proposed FTLE for the detection of LCS first, and Shadden et al. [184].

1.4 Path line attributes

Another recurring term in this thesis is path line attribute. Such a path line
attribute is a mapping that depends a specific path line x(t) and its time param-
eterization. Path line attributes describe properties of the respective particle
over time, and are hence most conveniently formulated in the Lagrangian or
material frame of reference. Formally, we can express any (scalar of vector
valued) path line attribute A as

A : (x0, t) �→ A(x0, t) (3.10)

where x0 is the position of a certain path line at seeding time, and hence an
unique identifier of the path line.

In this context, it is a known problem that adding too many attributes to
investigate may actually make the analysis more challenging. Hence, the orig-
inally present information should be expressed in an as compact as possible
manner. In other words, a minimal attribute set describing the flow dynamics
is of particular interest.
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0t 1t 2t

Figure 3.2: Illustration of the concept of the flow map. The exact path of the particle
between start and end point is not captured in the mapping.

2 Contributions

After the introduction of some basic concepts and mappings, we now discuss
the contributions of this thesis. The chapter is organized according to the type
of contribution, as outlined in the introduction.

2.1 Combination of representations

Problem Statement

As already explained in Sec. 1 of this chapter, the FTLE field gives only in-
formation on the maximal rate of stretching, disregarding the direction of this
maximal stretching. It is intuitive that particles moving in different directions
will induce high FTLE values. However, particles moving in the same direction
with different speeds, like it occurs in shear layers, are also associated with
high FTLE values. To illustrate this, we use a simple thought experiment (the
same as in Paper B).

We consider two particles that travel on straight parallel lines with constant
velocity, but the one velocity being larger than the other. At a certain time,
these particles have a certain distance from each other. The distance between
the particles increases monotonically (due to the different particle velocities),
but their paths remain nonetheless parallel, leading the particles into the same
area (but at different times).

Fig. 3.2 illustrates the described separation. In general, all particles traveling
along locally parallel paths, but at different speeds, introduce high FTLE val-



20 2. Contributions

ues. Informally, we may speak of separation due to different velocity directions
and different velocity magnitudes.

Contributions

Within the scope of Paper B, we propose a measure that enables the distinc-
tion between high FTLE values due to the two different “types” of separation
captured by high FTLE values, described in the problem statement.

Intuitively, the qualitative difference between the separation due to different
velocity directions and velocity magnitudes is the direction relative to the path
line in which the separation occurs. This information is not contained in the
FTLE value. The Cauchy-Green strain tensor, on the other hand, also includes
a directional information of the stretching. This stretching information is,
however, with respect to the unrotated state at the seed point of the particle
x0, i.e., the material before the deformation, and not related to the spatial
configuration of the deformed object or the direction of the path line.

If we want to quantify the stretching in the deformed material, i.e., the spatial
directions of the of the strain, the deformation can be written as rotation first
and then stretching. This is formally equivalent to the left polar decomposition
of the material deformation gradient, or flow map gradient, i.e,

F = TR (3.11)

where R is a rotation, and T represents stretching as described earlier. It is
important to notice that this stretching is not the same as the one in Eq. (3.7).
Fig. 3.3 illustrates this. Finally, we can extract the spatial strain direction
associated with the FTLE value as the eigenvector associated with the largest
eigenvalue of FFT 3. This direction is with respect to the particle after advec-
tion, and can be compared to the direction of the path line.

The direction of the path line in x := ϕt
t0

(x0) is the velocity v(x, t). Hence,
the angle between the spatial strain direction associated with the FTLE value,
and the path line velocity is a good measure for how much of the “separation”
occurs along the path line. We propose the integral over the unsigned cosine
of the angle as a measure for the diverging behavior from a given path line.

By a carefully chosen sample rate and a correction factor for isotropic strains
we are able to robustify our measure. The final measure is given by Eq. (11)
in Paper B.

3Alternatively to the polar decomposition, one may also use the singular value decompo-
sition (SVD) to derive the same geometric intuition. From this decomposition it is also
clear that C and FFT have the same eigenvalues, but, as already derived, not the same
eigenvectors. The derivation in Paper B follows these lines, and is equivalent to the here
given.
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We show by analytical examples and data sets from computational fluid dy-
namics that our measure is indeed able to distinguish between the two types of
separation described in the problem statement. We are also able to show that
there are observable separation structures that are not detectable by FTLE (in
situations with constant FTLE fields), but our separation measure is able to
detect. This result suggests that the identification of high FTLE values and
separation is not correct. Recent results by Haller [62] suggest this as well.

It is worthwhile noticing that both the Cauchy-Green strain tensor C = FT F

and FFT describe the same strain involved in the deformation given, but in
different reference frames. The first expresses the strain with respect to the
particle configuration at seeding time t0, which is commonly referred to as the
material axes, and is hence a Lagrangian descriptor of the strain. The latter,
on the other hand, expresses the strain with respect to the current particle
configuration at time t, which is usually referred to as the spatial axes. This
makes it an Eulerian descriptor of the stain.

Our measure is an example of how the combination of Lagrangian descriptor
of the deformation, namely the material deformation gradient, or flow map
gradient, combined with an Eulerian representation of strain involved in this
deformation, namely the principal spatial strain direction, and can be used to
add further semantic meaning to the FTLE field.

The details about the derivation and exact formulation of the separation meas-
ure and its practical computation can be found in Paper B included in part II
of this thesis.

2.2 Linking of local and non-local phenomena

Problem Statement

One of the properties that make numerical simulations so compelling is that, if
enough computation power is available, the flow can be quantified to the finest
level of detail. This gives the opportunity to investigate the behavior of the
flow at these scales, instead of using models.

For general extraction methods targeting coherent structures, data sets con-
taining such complex, fine scale flow configurations tend to produce somewhat
dense outputs. This can, in turn, cause difficulties to interpret the data making
use of visualization tools. Therefore, methods able to remove details that are
adding complexity to the visual output, while being unimportant under certain
aspects, are of great use.

In general, the problem can be approached from two sides. Either we extract
all coherent structures according to a certain detection scheme and remove
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some of them afterwards, or we simplify the velocity field and apply feature
extraction afterwards.

The first approach is usually applied in the context of feature-based flow visuali-
zation. The criteria for discarding a feature are typically of a geometric nature,
like length, area and volume of features, or their reciprocal distance [170, 77].
This approach obviously serves the purpose of reducing the visual clutter well.
On the other hand, it is unclear how the visual output refers to the original
velocity field. Hence, semantic information extracted from these visualizations
may not correspond to the semantics of the original field.

Similar approaches have been used for the simplification of topological skele-
tons, where critical points have been collapsed if their reciprocal distance is
small [19], they cancel each other [210], or are not persistent over time [198].

Simplifying the velocity field directly, avoids the problem of correspondence
between the semantics conveyed by visual output and the semantics of the
underlying data. However, manipulating the velocity vector values is not un-
problematic. It is, for example, known that simple low pass filtering (i.e.,
smoothing) affects both time and length scales of the flow [216]. In other
words, low pass filtering changes the semantics of the flow field in question.
The same is true for methods based on vertex removal or edge collapsing as
the one proposed by Dey et al. [23]. Those methods are local, in the sense that
they take only velocity information in a small neighborhood in consideration,
and neglect the connection to larger-scale characteristic patterns in the flow
field.

A extraction scheme for coherent structures, that allows for simplification, while
capturing the semantics of the simulated (or measured) flow at a chosen sim-
plification level is missing.

Contributions

Within the scope of Paper C, we propose a physics-based simplification scheme
for velocity fields for both feature- and LCS-based flow visualization techniques.
Furthermore, we discuss the impact of the simplification on particle advection,
which is the base of many classic flow visualization techniques, like path lines.

Conceptually, simplification can be seen as removal of details that are below
a certain “significance threshold”. In image processing, for example, this may
translate in the removal of small objects. In order to perform the removal in
this example, we need to identify the objects and estimate their importance, in
this example size, first.

In the same fashion as an image may be though of consisting of different object,
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Figure 3.4: Vorticity based feature extraction based on the original field (top) and as
simplified field (bottom), respectively. We see a strong reduction of the structures
in the back of the top picture when taking the most dominant modes only. In the
outflow, the vorticity field based on the most dominant modes reveals one instead of
two vortices. For further discussion we refer to Paper C.

flow fields, in particular turbulent flows, consist of different scales of motion.
These scales range from flow patterns that drive the large scale motion of the
fluid to the finest scales where the kinetic energy is dissipated to internal heat.
It is important to notice that these scales are of global nature, i.e., all of them
influence the whole flow domain. In fact, the flow field is a superposition of the
different scales of motion [144], which are velocity vector fields themselves.

As in the image processing example, simplification can be achieved by removing
objects, in this case scales of motion, that are considered “unimportant”. The
contribution of the single scales to the flow field in total can be characterized
by the amount of energy they carry. The different scales of motions are in fact
connected to the so-called turbulence energy cascade, i.e., the different stages
of the dissipation of kinetic energy from the mean flow to the finest scales. The
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turbulence kinetic energy (TKE) contained in every scale of motion is therefore
a canonic measure of the “dominance” of a scale in the flow [123]. Due to
this inherent relation between the scales of motion and the turbulence energy
cascade, these scales are often also referred to as energy-scales.

In order to extract the different energy-scales and their TKE, we make use of
the proper orthogonal decomposition (POD). The theoretical background, the
practical computation, and properties of the POD are discussed in Sec. 3 in
Paper C. The most important property for our purpose is that any time step
of the original flow field has a unique representation as a linear combination of
the energy-scales, which allows us to easily remove unimportant energy-scales
from the time step.

According to this outline, our simplification and extraction scheme consists of
the following steps:

1. Computation of the energy-scales
2. Simplification of the flow field, removing scales with low TKE content
3. Application of a standard extraction scheme

We investigate the impact of our proposed scheme by applying it different
standard extraction schemes and data sets. We see that we are able to

– Achieve considerable reduction of the visual clutter in the output while
preserving dominant structures

– Uncover features that are “hidden” by low TKE energy-scales
– Achieve a denoising effect for LCS extraction based on FTLE

Fig. 3.4 illustrates the first two effects on the example of vorticity thresholding.
The data set describes flow through a T-junction with an internal obstacle with
inlet from the top and left. The result from the standard extraction is shown
in the top image and the result from our proposed extraction scheme in the
bottom. For further description of the data set, the vorticity thresholding and
discussion of the results, we refer to Paper C.

In order to explain the third effect, we investigate the error introduced by
the simplification on particle advection. We find that the error is of an order
of magnitude that allows the combination of POD-based simplification and
integration without considerable loss of precision. The same deblurring effect
observed by us, has also been described by Kourentis and Konstantinidis [102]
in parallel to the here presented work.

Our focusing on energy-scales that are associated with large scale motion yields
also a semantic information not deductible from the original structures, namely
their role in the overall dynamics of the flow. Our extraction scheme links the
visible structures directly to the energy-scales they live on.
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Figure 3.5: The Figure illustrates the idea behind the condensation of the set of path
line attributes. We single out representative path line attributes with the help of
statistical tools. The reduced path line attribute set is then used for the interactive
visual flow analysis. For the discussion of the benefits of such a reduced path line
attribute set, we refer to Sec. 2.3 in this chapter.

Further detail about the algorithmic details, discussion of local error of the
simplification, integrative error and the results can be found in Paper C.

2.3 Condensation of path line attributes

Problem Statement

As noted in the introduction, the enrichment of particle traces with additional
attributes and the analysis of these so-called path line attributes by means of
interactive visual analysis (IVA) has great potential to yield a better semantic
of the flow field than the analysis of the particle traces alone. This has been
shown in work by Bürger et al. [7], Shi et al. [186], and Lež et al. [112], among
others.

While the results of previous works are more than convincing, the actual selec-
tion of appropriate attributes is an unanswered question, although this question
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is crucial for a successful application of path line attributes. In the context of
IVA it is known, that a systematic exploration of data sets gets more and more
challenging, the more dimensions (in our case attributes) have to be considered.
Hence, the selection of an as small as possible attribute set, is an important
task to enable efficient analysis. Therefore, the adding of further path line
attributes has to be considered carefully.

Roughly speaking, we can distinguish between additional attributes that are
directly derived from the flow field in question (e.g., vorticity, acceleration,. . .),
and attributes related to additional quantities of importance for the simulated
situation (e.g., density, temperature,. . .). The latter type of attributes is in
general not available, also because these effects are not always of importance,
for example for incompressible flows. In other situations, like combustion pro-
cesses, they may play an important role.

The first type of attributes, i.e., those derived from the velocity field, are usu-
ally well-known feature detectors. Feature detection and extraction has been
a very active research topic in both the physics and flow visualization com-
munity, and hence a large number of possible interesting attributes derivable
from the velocity vector field is available [162, 83, 186, 174]. Many of them
target, however, the same semantic (most prominently, vortical flow and vor-
tex detectors, cf. [83]), which introduces possible redundancy when considering
all of them. Apart from the redundancy in information, considering multiple
descriptors that essentially target the same behavior can also introduce a large
overhead in computation time and storage.

These considerations imply that the condensation of the set of possible at-
tributes is a promising approach for the attributes derived from the flow field.
The restriction of the condensation to this first type of attributes is also neces-
sary, in order to yield a generally usable condensed attribute set for interactive
flow analysis. Fig. 3.5 illustrates the concept of the condensation.

Contributions

Within the scope of Paper D, we propose a set of path line attributes, that
captures the underlying physical properties of the flow field with as little re-
dundancy as possible.

In order to identify such an path line attribute set, we compute first a large
number of different path line attributes that have been used successfully in
the literature. Then we apply a statistical dimension reduction technique,
namely exploratory factor analysis (EFA) [190] in order to identify the intrinsic
dimensionality of the space spanned by the path line attributes.

EFA yields not only the dimensionality of the space, but also how the original
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variables are related to the (unknown) statistical variables that span the space,
called factors. In this way, we are able to single out a set of the attributes that
represent the whole attribute space best possible. The choice of the statistical
tool and further algorithmic choices in the analysis are detailed in Sec. 1 and
Sec. 3 of Paper D, respectively.

Since we are aiming at finding a set of path line attributes that is generally
usable for interactive flow analysis, this procedure is performed for several
CFD data sets and an analytic vortex model. These data sets span a variety of
different geometries, simulation types, and application areas in order to make
sure that recurring patterns in the representative path line attributes are not
induced by the specific simulation setting, but indeed more general.

We find that on average six factors are needed to represent the whole data set,
and identify the path line attributes related to these factors. The attributes
found are:

– Quadratic statistical invariants [116]
– λ2 [81]
– Velocity
– Average speed along the path line
– Particle position
– Start to end distance of the path line

An overview over the outcome of the statistical analysis for every single data
set can be found in Table 1 in Paper D.

A confirmatory statistical analysis shows that these attributes account on av-
erage for 95% of the data complexity. It is worthwhile noticing that the first
attribute refers to the shape of the particle path4, while the second is related
to swirling motion. The remaining attributes are related to the dynamic be-
havior of the particles. This may yield additional intuition during the analysis.
The attribute set is self-contained in the sense that all quantities are derivable
without the computation of auxiliary attributes, like vorticity.

For details about how we identify the characteristic attributes we refer the
reader to Paper D.

4The quadratic statistical invariants are indeed shape descriptors of space curves and used
for shape recognition [116]
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Chapter 4

Demonstration

T
his chapter exemplifies the application of the techniques described in the
previous chapter by selected case studies. The examples are organized

according to the type of semantic enhancement they are related to. For further
examples we refer the reader to the demonstration sections in the respective
papers.

1 Combination of different ow representations

As explained in Sec. 2.1 of Ch. 3, there are two different types of particle sepa-
ration that FTLE captures: separation due to differences in velocity direction
and differences in velocity magnitude. We will give two examples of situations
where our separation measure can be used so gain a better understanding of
the semantics of the underlying velocity field.

1.1 Filtering of FTLE elds by the separation measure

If we want to neglect FTLE values that are due to differences in particle speed,
our separation measure can be used as a threshold-type filter. In the IVA
framework we use, this filtering is easily accomplishable by brushing the desired
data range in an appropriate data view, e.g., a histogram or a scatter plot.

We apply this technique to the simulation of a breaking dam illustrated in
Fig. 4.1. The main flow currents are illustrated in Fig. 4.1(a), Fig. 4.1(b) shows
a FTLE field where values under a certain threshold are rendered transparently.

We can identify several structures that are to be expected from the main cur-
rents, e.g., in front of the obstacle, separating flow that passes the obstacle and
flow that recirculates in front of it. The large region of high FTLE values in
the upper left, on the other hand, is possibly due to shearing.

In Fig. 4.2 we see a close-up of the region in question. The top image shows the
unfiltered field, while the bottom images shows the field after removing regions

29
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(a) Schematic overview (b) FTLE field

Figure 4.1: (a) Schematic overview over the flow domain, z being the streamwise
direction. (b) A FTLE field of a simulation of a bursting dam. The FTLE values
lower a certain threshold are rendered transparently. We see that we can identify
expected structures around the obstacle. The upper rear part of the flow domain
shows large regions with high FTLE values, presumably induced by shearing.

where our separation measure is lower than a certain threshold. Path lines
have been added to confirm that we really remove values which represent no
spatial separation (cf. region A), and leave regions with high spatial separation
untouched (cf. region B).

For further examples of the application of our technique, we refer to Paper B.

1.2 Application to regions of constant FTLE

We give an example of an analytically defined two-dimensional vector field with
constant FTLE field, but a clear spatial separation. The field is given by

v : (x, y) �→ (x − 1, 1)T (4.1)

Obviously, all particles seeded at positions with an x-coordinate smaller than
1 travel to the left, while those seeded at positions where the x-coordinate
is larger than 1 travel to the right. Since the FTLE field is constant, the
separation line at x = 1 can not be detected by this method. Our proposed
separation measure, on the other hand, is able to capture this behavior, as
shown in Fig. 4.3.

2 Linking of local- and non-local features

In the previous chapter we have discussed that the removal of scales with less
turbulent kinetic energy allows us to focus on structures that are related to the
dominant scales of motion. The knowledge about this link to certain scales of
motion helps us to better understand the semantic meaning of those structures.

We apply our simplification and feature extraction scheme to FTLE computa-
tion in the direct numerical simulation of a turbulent channel flow at frictional
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(a) FTLE field

(b) filtered FTLE field

Figure 4.2: A cross section of the (a) FTLE and (b) filtered FTLE field. The ellipse
(A) shows a region where the filter has a strong impact. We see that the path lines
are locally parallel and show little to no spatial separation. In contrast, we see that
the structure below the ellipse separates path lines moving from the left to the right
(above) from those moving in the opposite direction (below). In the same fashion,
the ellipse (B) indicates a structure that separates particles coming from the left and
passing over the obstacle, from those moving back to the left end of the flow domain.
This structure is persistent under our proposed filter. For details about the parameter
settings in the FTLE calculation and the filtering we refer to Paper B.

Reynolds number Reτ = 180. We extract the FTLE field from both the original
velocity field and for simplified fields based on the two and four most dominant
scales of motion.

When extracting the FTLE from the two most dominant scales of motion only,
we get more crisp structures. Low turbulence kinetic energy scales seem to add
noise to the computation, while not carrying additional information. Adding
two more scales, on the other hand, does not change the output of the FTLE
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Figure 4.3: Our separation measure in a vector field of constant FTLE values. The
path lines show a clear spatial separation of the particle seeded to the left and to the
right of the line x = 1. This illustrates that there are observable separation structures
that FTLE is not able to detect. Our separation measure, on the other hand captures
this structure. For further details and additional examples we refer to Paper B.

computation. Hence, we can conclude that those structures are indeed linked
to the very largest scales of motion only.

Since FTLE is based on particle advetion, which is in turn driven by the scales
responsible for the transport in the flow, this is in full accordance with the
physical intuition behind the turbulence energy cascade. Similar conclusions
have also been drawn by Kourentis and Konstantinidis [102]. The authors apply
a similar simplification scheme to FTLE computations for experimental data.

3 Condensation of path line attributes

In order to demonstrate that interactive visual flow analysis based on the re-
duced path line attribute set proposed by us is equally expressive as the analysis
based on the full attribute set, we compare results from a previously published
case study by Lež et al. [112] to the results our analysis can achieve on the
same data set.

The target application in this case study is the design of an exhaust manifold
system. More precisely, the occurrence (and possibly, origin) of back pressure
in the exhaust pipes is investigated. Back pressure is known to affect the
performance, in particular power and fuel consumption, negatively. Detecting
this behavior is a first step towards optimizing the design.

Fig. 4.5 gives an overview of the geometry and path line behavior for this case
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Figure 4.4: FTLE for the direct numerical simulation of a turbulent channel flow.
The FTLE field visualized has been computed from the original field (top), the two
(middle) and the four most dominant scales of motion (bottom). Observe that the
focusing on the energetically most dominant scales of motion energy yields a more
crispy and detailed output with finer lobes. Adding two more modes does not chance
the output, even though just two modes where used for the first approximation. This
indicates that the dissipative scales have to be interpreted as “noise” in the context
of integration-based feature extraction. We refer to Paper C for further discussion.



34 3. Condensation of path line attributes

Figure 4.5: Path lines in a exhaust manifold. All displayed path lines are seeded in
the vicinity of the middle inlet pipe. The color encodes integration time (yellow to
red). Particles moving away from the outlet (lower right corner) first are associated
with back pressure.

study. All displayed path lines are seeded in the vicinity of the middle inlet
pipe. The color encodes integration time (yellow to red). Particles moving away
from the outlet (lower right corner) first are associated with back pressure.

In order to be able to compare results, we define analytically a set of “target
path lines”. Then we attempt to detect these path lines with both the path line
attribute combinations proposed by Lež and the general path line attribute set
proposed by us.

The comparison between our results and the previously published ones is based
on the seeding position of the target path lines. We observe that the previous
proposed path line attribute combinations systematically fail to detect path
lines originating from the region highlighted in Fig. 4.6(a). Our method, on
the other hand, shows a much better correspondence with the reference seed
points, as Fig. 4.6(b) shows. The inset in both figures show the reference
seeding points.

For further explanation of how exactly the analysis has been carried out, we
refer to Sec. 4.2 in Paper D.

We infer that results based on the condensed path line attribute set proposed
match, and to some extent even overgo, the reference results in previous pub-
lished work.
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Chapter 5

Conclusions and Future Work

U
nderstanding the governing principles for fluids in motion, especially tur-
bulence, is still one of the grand challenges in physics and engineering [12].

A complete understanding of the underlying principles, also on an intuitive
level1, presents a canonic first step towards prediction and control of fluid flow
phenomena of all types.

The phenomena we need to understand are both of local and global type, and
often these two types of phenomena interact. The same phenomenon, on the
other side, can usually be described in different manners2, while each of the
descriptions may have different strengths to capture a certain aspect of the
semantical meaning of the phenomenon in question. Finally, other quantities
that are not strictly related to the flow itself, may play an important role in
more engineering type of applications.

With these considerations as a background, we identified the enrichment of
classic flow visualization techniques by further semantic meaning, stemming
from different aspects of the phenomena they originally describe, as a promising
research topic.

Within the scope of the ph.d. work this thesis is the result of, we investigated
ways to exploit physical and statistical tools to provide additional aspects of
the semantics of phenomena in question. Furthermore we worked also on the
enabling of incorporation of additional semantics by path line attributes. The
latter opens for a broader application of interactive visual fluid analysis, espe-
cially in engineering.

In particular we provided a way to refine the semantic interpretation of the
separation measure finite-time Lyapunov exponents (FTLE). FTLE has been
a major research direction in the visualization of time-dependent flows over
the last years, especially for the identification of Lagrangian coherent struc-
tures [157]. Understanding the exact semantic meaning of structures identified

1The governing equations have been known for a long time, but most of the intuition on fluid
motion stems from experimentation and, recently, from direct numerical simulations [84].

2The Eulerian and Lagrangian reference frame being an example for different descriptor of
the same phenomenon.
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from FTLE fields is therefore of great importance for further research along
these lines, and our research represents a step in that direction.

Our work on the flow field simplification and extraction on coherent features
allows inherently for the identification of connections between local features
extracted at a certain simplification level and their semantic meaning for the
fluid in motion as a whole. This information can serve as a starting point for
investigations about the mechanisms that drive the formation and destruction
of the identified structures.

This first two research lines address chiefly the area of basic research in fluid
mechanics as a user domain, and hence the immediate impact on the work of
analysts dealing with more engineering-type of problems might be limited. To
address the different requirement of the engineer-type of user, especially in the
context of analysis based on path line attributes, we focused on the condensa-
tion of the attribute set which yields easier interaction with the data and gives
the expert user more freedom to add descriptors that are of importance for the
specific questions she or he wants to answer.

Possible lines of future work, resulting from the here presented work, are further
investigation and systematic classification of different types of separation and
their relation to classical separation measures, a more general framework to
simultaneously treat Eulerian and Lagrangian representation of flow phenom-
ena, especially for usage with path line attributes, and further incorporation of
non-local flow properties in the extraction of coherent structures, e.g., enstro-
phy [137], to mention but a few.
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Scienti c Results
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