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Abstract

I
n the visualization of flow simulation data, feature detectors often
tend to result in overly rich response, making some sort of filter-

ing or simplification necessary to convey meaningful images. In this
paper we present an approach that builds upon a decomposition of
the flow field according to dynamical importance of different scales
of motion energy. Focusing on the high-energy scales leads to a
reduction of the flow field while retaining the underlying physical
process. The presented method acknowledges the intrinsic struc-
tures of the flow according to its energy and therefore allows to
focus on the energetically most interesting aspects of the flow. Our
analysis shows that this approach can be used for methods based
on both local feature extraction and particle integration and we
provide a discussion of the error caused by the approximation. Fi-
nally, we illustrate the use of the proposed approach for both a local
and a global feature detector and in the context of numerical flow
simulations.

This article was published in Computer Graphics Forum, 30(3):771–780, 2011.
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1 Introduction

Fluid flow is one of the most common phenomena occurring in nature and in-
dustrial processes. One may think of air flow around vehicles, fluid flow through
turbines, blood flow in vessels, or weather phenomena driven by atmospheric
flows. Detailed numerical flow simulations and carefully executed experimen-
tal measurements provide accesses to high-quality, time-dependent vector field
data.

Even though today’s technology and tools, together with available computer
power, enable us to visualize large vector fields directly, it often is not inter-
esting, perhaps not necessary either, to visualize every detail one can find in
the data. Often, the aim is to find and extract certain features of flow fields
instead, using appropriate feature extraction techniques, as surveyed by Post
et al. [162].

As the availability of computational time and power increase, numerical sim-
ulations are steadily carried out for more complex configurations. For such
complex simulations, in general, feature extraction methodologies also produce
somewhat dense outputs, which makes interpretation of the data using visuali-
zation tools more difficult. Removal of the unimportant details enhancing the
complexity in our visualizations is, therefore, needed.

A number of different approaches concerning removal of the details and simpli-
fication of the output of feature detectors have been investigated extensively in
the past. Most of them have geometric measures (e.g., length, area, volume of
structures, or the reciprocal distance) as decision criteria [170, 21, 77]. These
methods are in the tradition of classical image processing [52]. The main draw-
back of these methods is associated with the fact that a proper assessment on
what is removed and what is actually retained in the data is very difficult to
perform. The relation between geometric filtering and intrinsic properties of
the flow is not clear at all.

Flow fields, in particular turbulent flows, are formed by different scales of mo-
tion. Exploring the properties of these scales are crucial in order to understand
underlying dynamics. The most common way of investigating these different
scales of motion is to characterize them by their turbulence kinetic energy.
This is due to the fact that turbulence essentially is a cascade of kinetic energy,
extracted from mean flow at the largest scales and dissipated into internal heat
at the smallest scales. Therefore, identifying and describing the scales carrying
significant amount of energy is important in order to enhance our ability to
understand, predict, and control turbulence.

Once the features connected to the large energetic scales are found, temporal
and spatial evolution of these features can be investigated. Even though there
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are several ways to find and visualize the large scales of motions, quantification
of the observations is found to be difficult. On the other hand, Proper Or-
thogonal Decomposition (POD), which is detailed in Sec. 3, is proven to be an
unbiased and mathematical way of describing turbulent scales of motion [123].
In this way, it is possible to describe the scales of motion, or the so-called
modes, and sort them according to their energy content. Decomposing the
flow field according to its inherent energy levels also guarantees a protection
against oversimplification when the removal of unimportant details is needed.

In fluid dynamics, POD is a well-established method, in particular within the
turbulence community, which originally was introduced to the field by Lumley
in 1967 [123]. One of the strengths of the method is its independence of user-
defined parameters and thresholds. The decomposition is solely data-driven
and does not require any prior knowledge about the different scales of motion
and their energy-scale relation.

Once the decomposition has been carried out, the original field can be rep-
resented as a combination of different orthogonal basis functions, which are
sorted according to the turbulence kinetic energy carried by each of these func-
tions. The reconstruction of the velocity field can be carried out for a chosen
subset of the basis functions, as well. In this case, the reconstruction can be
performed, for example, using the modes containing the largest amount of en-
ergy, if the purpose is to remove high frequency - low energy scales. This may
sound similar to low-pass filtering in one way, however, the cut-off chosen in
POD is purely physical and has no unwanted and unexpected effects on the
actual data. As recently discussed by Velte et al. [216], low-pass filters, due
to the convolution of system functions with the actual signal, affect both time
and length scales of the flow. This certainly is an undesirable situation.

The approach proposed in this paper leads to an energy-scale aware extraction
of features, by first breaking the field into its energy-components and then ap-
plying conventional feature extraction methods. This differs from the usual ap-
proach, which first extracts features directly from the flow, and then condenses
the output. Since the reduction in complexity in the proposed methodology in
this paper is realized according to the dynamical importance of different scales
and energy, it ensures that the feature detection essentially captures the char-
acteristic structures embedded into the whole field. Fig. 1 compares possible
pipelines following the standard procedure (left branch) to our approach (right
branch).

Since the analysis of time-dependent flow has recently received a significant
amount of attention, we investigate also some examples to demonstrate that
our approach is indeed applicable for not only local feature detectors, but also
to the methodologies based on particle integration.
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Figure 1: Comparison of the feature extraction pipeline following classical approaches
to the left and the pipeline according to our approach to the right

The main contributions of this paper are:

– Utilization of the of POD for flow visualization in combination with fea-
ture extraction,

– Detailed analysis of both local and integrative error of the condensed
fields,

– A way to link energy-scales and flow features.

The paper is structured as follows: first we give an overview of related work,
then we discuss the theoretical foundations of the POD. In the subsequent
sections we explain how POD can be used for energy-scale aware feature ex-
traction and present results along with an error analysis. Finally, we discuss
the results obtained and future work.

This paper is a cooperation between visualization researchers at the Univer-
sity of Bergen, Norway and ETH Zurich, Switzerland and physicists at the
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Applied Fluid Mechanics group at the Norwegian Defence Research Establish-
ment (FFI), Kjeller, Norway.

2 Related work

Proper orthogonal decomposition has been used extensively by the turbulence
community in order to break the flow into different scales of motion. The de-
composition results in a description of the flow field using a set of orthogonal
functions, which are called eigenfunctions (also called eigenmodes or basis func-
tions). POD is very efficient in extracting the characteristic scales of motions
according to their energy content. Furthermore, the result is optimal in the
sense that the first mode has the largest amount of energy, and second mode
contains the second largest amount of energy, and so on.

The successful application of POD dates back to the 1980s, when POD was
used to analyze a high Reynolds number, axis-symmetric mixing layer by
Glauser [48] and low Reynolds number turbulent pipe flow by Herzog [76].
It has been shown in these studies that the orthogonal decomposition was very
efficient at organizing the data such that the first POD mode contained about
40% of the turbulence kinetic energy, whereas the second and third POD modes
contain another 40% of the energy. Since then, POD has been extensively uti-
lized for different turbulent flows and configurations, as summarized by Tutkun
et al. [215]. In recent years, POD and its capability of capturing the essential
dynamics by the least possible number of scales have opened new research di-
rections, such as low-order dynamical system modeling, flow control, and data
compression/storage.

Most of the existing work on flow decomposition for visualization purposes fo-
cuses on the Helmholtz-Hodge decomposition. By this decomposition, a vector
field is split uniquely into an irrotational component which is orthogonal to the
boundary and a divergence-free component which is tangential to the boundary.
It is also possible to split off a third component which is both irrotational and
divergence-free. This methodology has been used in visualization for comput-
ing flow topology in both 2D [160] and 3D [209] and also for the 3D meshless
(SPH) case [153]. Wiebel et al. used the Helmholtz-Hodge decomposition in
order to analyze the deviations from a potential flow [228]. An overview of
partition-based flow visualization methods is given by Salzbrunn et al. [175].

The motivation for a simplification of vector fields can be either data compres-
sion or complexity reduction. Complexity reduction is usually done in order to
get a simpler and clearer visualization. In both cases, of course, an important
goal is to preserve the important structures within the field, while removing
the unnecessary details. There are two basic approaches to vector field sim-
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plification: The first one is based on mesh reduction techniques such as edge
collapses or vertex removals and the reduction of the point set in a meshless
representation. The second one, on the other hand, is based on modifying data
values, e.g., with local or global filtering.

Dey et al. [23] proposed a method, based on vertex removal and Delaunay trian-
gulation, to simplify the underlying mesh. They allow simplification steps con-
trolled by an pointwise error threshold. Instead of such a numerical pointwise
error treshold method, a topological criterion is often chosen for guiding sim-
plification. De Leeuw and van Liere [19] proposed to compute the set of critical
points and to collapse groups of them to single critical points. Simplification in
their method is possible if the group lies within a small neighborhood and the
removed points consists of pairs of saddles and non-saddles. After collapsing the
critical points, a new vector field is synthesized in the respective neighborhood.
Tricoche et al. [210] presented a similar approach, where a cancellation of pairs
of critical points is conducted instead of collapsing a neighborhood. Their sim-
plification criterion is the existence of a common separatrix, connecting the two
critical points. Theisel et al. [198] defined an importance criterion for critical
points by their persistence under iterated Laplacian smoothing. This is then
used for applying edge collapse operations under the constraint that important
critical points and separatrices are not removed. Laney et al. [104] show how
discrete Mores theory and combinatorial vector fields can be used to achieve
topological simplification in the context of scalar fields. This simplification is
based on a measure called persistence (which differs from the work of Theisel
et al. discussed above). Morse theory is also applicable to vector field topology.
Recently Reininghaus et al. [164] presented an approximative algorithm that
removes the previously limited applicability to real live data. In the context of
vector field topology, it is important to mention that this is a streamline-based
view on the flow and that if the extraction of additional features is desired, it
still would have to be based on the original field.

One important class of features in the context of fluid dynamics are vortical
structures. Cucitore et al. [16] review Eulerian detectors (Hunt’s Q, λ2, swirl,
and others) and suggest a non-local measure of swirl, based on trajectories
to extract vortices. Jiang et al. [82] search for trajectories rotating about a
common axis to verify the existence of a vortex, while Sadarjoen and Post
[167] compute curvature centers of trajectories. The method introduced by
Lugt [122] requires a vortex to be a portion of the fluid moving around a
common axis. As an indicator for such a structure, the author proposes closed
or spiralling pathlines. Haller [61] describes vortices through the stability of
manifold structures which are related to fluid trajectories. The Mz criterion
[61] can be considered as an accumulation of a local measure, which is based
on the strain tensor along a trajectory. Haller [61] (see also Sahner et al. [173])
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therefore adds up all time steps along the trajectory at which the particle is
classified to belong to a vortex.

Another class of interesting features in flows is separation and coherent mo-
tion structures. The finite-time Lyapunov exponent (FTLE), as described by
Haller [60], can be used to measure separation of trajectories in time depend-
ent flows and to extract the Lagrangian Coherent Structures (LCS). Sadlo and
Peikert [168] extract ridges from 3D FTLE fields efficiently. Garth et al. [42]
present an efficient approximation and show as that 3D FTLE might be ap-
proximated by 2D FTLE in selected cross-sections. Green et al. [53] discuss
the application of Lyapunov exponents for the extraction and visualization of
vortices.

In recent work by Olcay et al. [138], the influence of noise and the spatio-
temporal resolution of the velocity field on the extracted LCS is investigated.
The authors show that a coarse resolution can significantly influence the loca-
tion of a LCS. Smoothing the field is shown to have the same effect. Spatial
noise can have a significant effect on single realizations of the LCS, but the
mean location remains near the LCS extracted from the unperturbed field. La-
grangian smoothing has been shown to be better than a purely steady analysis
by Shi et al. [186] and by Fuchs et al. [41].

3 The proper orthogonal decomposition

The Proper Orthogonal Decomposition is based on the two-point correlation
tensor. Lumley’s original formulation [123] is usually referred to as the clas-
sical POD, which is both time- and space-continuous. Data sets that are ob-
tained through numerical simulations are usually studied using snapshot POD
methodology, which can be considered as time-discrete formulation of the classi-
cal POD, introduced by Sirovich [189]. We restrict ourselves to the presentation
of this method. Let

u(x, t) (1)

denote the velocity field and

un(x) = u(x, tn) (2)

the n-th snapshot of the field. Then the POD of the function space spanned
by N snapshots is an orthonormal basis (ONB) formed of N functions σi ∈ L2

such that each σi fulfills

σi = arg max
σ∈L2\〈σ1,...,σi−1〉

1
N

N∑
n=1

〈σ, un〉
2 (3)
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〈f , g〉 =
∫

Ω
〈f(x), g(x)〉

R3 dλ3(x) denotes the usual scalar product on L2 func-
tion space (quadratically Lebesgue-integrable functions). Notice that the max-
imum values in the previous expression are descending as i increases. The
obtained basis functions are usually referred to as modes. Given such an or-

thonormal basis (ONB)
(
σi
)N

i=1
, the single snapshots have the following repre-

sentation in this new basis

un(x) =
N∑

i=1

〈
un, σi

〉
σi(x) (4)

The square of this coefficient represents the amount of energy of the flow field
in “direction” of σi at time tn. The total amount of energy in a time step
can be obtained by summing over the index i. Further details can be found in
Pedersen’s thesis [144].

The strength of the POD is that it is a parameter-free method. The basis
functions (and hence any linear combination of them) always fulfill the given
boundary conditions and inherit the properties of the original field, such as
divergence-freeness (cf. Berkooz [4] and Berkooz et al. [5]).

The flow is a T-junction, together with some of its POD modes is shown in
Fig 2. One inlet is in horizontal direction, another one in vertical direction.
An obstacle is placed under the vertical inlet. The fluid flows through the
horizontal inlet first, while the inflow from the top begins after some time. The
data set consists of 35781 vertices organized in a Cartesian grid. We decompose
the field using POD based on all 100 snapshots. To the left the instantaneous
flow in a cross section is shown, the color of the background reveals the velocity
magnitude. The picture in the middle shows the first mode of the POD. We
see a clearly simplified flow pattern, revealing structures that have not been
so clearly visibly in the original flow field. To the right, the 6th mode of the
same POD is shown. As it is explicitly visible, the complexity increases with an
increasing mode number, such as the enhancement of small vortical structures.
Of course, the importance of the mode decreases as its order increases. This
can be seen by the color code on the background of each of these figures. The
color is assigned by the pointwise norm of the terms used in a reconstruction.
The first POD mode, shown in the middle, recovers almost everything shown in
the left figure, which is the full field. The 6th mode does not have a significant
contribution. All arrows are scaled according to the respective vector norm.

It is worthwhile keeping in mind that the single POD modes are static fields,
i.e., only limited information about the temporal dynamics of the system can
be retrieved directly from them.
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3.1 Practical computation

The defining equation (3) for the POD is reformulated as an eigenvalue prob-
lem of the dimension of the number of grid cells (cf. [144]). Since this number
is typically several orders of magnitude bigger than the number of available
snapshots, we use an alternative formulation that leads to an eigenvalue prob-
lem of the dimension of the number of snapshots [144]. This reduced eigenvalue
problem is then given by

N∑
m=1

Cn,ma(i)
m = λ(i)a

(i)
n with Cn,m =

1
N

〈un, um〉 (5)

The modes can be computed as follows

σi =

∑N
n=1 ai

nun

||
∑N

n=1 ai
nun||

(6)

Notice that this formulation requires the reordering of the σi according to the
associated λi-values in order to guarantee the descending energy content. The
fulfillment of the ONB condition follows directly from the algorithm. The
relative energy content of the ith mode with respect to the total energy is given
by

λi∑N
i=1 λi

(7)

3.2 Global ow eld approximation using POD

The original velocity field can be reconstructed using the basis functions ob-
tained by solving the POD equation. Since the recovery of the full field can be
performed by summing the relevant basis functions and their associated coef-
ficients, an approximated velocity field can be constructed using, for instance,
only the modes with large amount of energy. This is achieved by choosing the
maximal index ip such that (

∑ip

i=1 λi)/(
∑N

i=1 λi) ≤ p for a desired p. Hence,

up(x, t) =
ip∑

i=1

〈
ut, σi

〉
σi(x) (8)

is an approximation to the original field, based on the ip most dominant motion
energy-scales that capture p · 100 percent of the total turbulence kinetic energy
for the full field.
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4 Energy-scale aware feature extraction

In order to focus on energetically important features, instead of applying the
feature detector to the flow field in the first place and then coping with the
unfocused output, we propose the following approach:

1. Decomposition of the original flow field using POD,
2. Reconstruction of the field by selecting the most dominant modes in terms

of energy using eq. (8),
3. Utilization of a feature detector.

The main advantage of using this method is related to the fact that the ex-
tracted features are the features which are associated with the dynamically
most important scales of motion in the flow.

Since the proposed approach is based on an approximation of the whole field, it
is necessary to quantify the error as induced by the truncation that is applied
during the reconstruction. In the context of feature detection, both local errors,
and integrative (or global) errors need to be addressed. It is important to point
out that POD operates in L2, i.e., there is no guaranteed bound for the local
error. This means that, in theory, even an approximation that contains almost
100% of the energy, can have comparably large local errors. The situation for
the integrative error is even less clear, since we know from theory that small
local error along the integration path can accumulate to a large error in the
final particle position [57].

5 Results

In this section we illustrate the utilization of the POD methodology for energy-
scale aware feature extraction on one local (vorticity) and one integration based
method (Finite-time Lyapunov exponent - FTLE).

Vorticity thresholding: This is a classic method to detect vortical flow be-
havior. Vorticity ω is defined as the curl of the flow field v, i.e. ω = ∇ × v.
Vorticity has the appeal that it is a Galilean invariant measure and simplic-
ity used in a number of other vortex detectors [83]. Hence, investigating the
impact of POD on vorticity gives indications regarding its applicability and
implications for a whole class of vortex detectors.

Finite-Time Lyapunov Exponent: Let v be any flow field and ϕT
t0

its flow
map defined by ϕT

t0
(x0) := x(T ), provided that x is the solution of the initial
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(a) Energy and error statistics for n-th order approximation
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Figure 3: (a) The relative energy and precision gain of the i-th order approximation
compared to the (i − 1)st approximation. The precision is calculated using the time
averaged relative L2-error of the respective approximations. (b) The function graph
of the L2-error plotted against time for several approximations

value problem ẋ(t) = v(x, t), x(t0) = x0. Then the (maximum) finite-time
Lyapunov exponent (FTLE) λ is defined as λ := ln ||∇ϕT

t0
(x)||/|T − t0|.

We apply these methods on two different data sets from numerical flow simu-
lations: The simulation of flow in a T-junction and the direct numerical simu-
lation (DNS) of turbulent channel flow.

5.1 Flow in a T-junction

We apply the proposed approach to the simulation of a flow in a complex T-
junction with two inlets and one outlet. See Sec. 3 and Fig. 2 for descriptions of
the data set and flow geometry, respectively. The red curve in Fig. C.3(a) shows
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Figure 4: Vorticity method: Both figures show the same threshold, but the scalar vor-
ticity field has been computed from the original field (top) and the 5th approximation
(bottom), respectively. We see a strong reduction of the structures in the back of the
top picture when taking the most dominant modes only. In the outflow, the vorticity
field based on the most dominant modes reveals one instead of two vortices. This
effect is called vortex braiding. For further discussion we refer to the text.

the relative energy gain in adding the ith mode to the approximation based on
i−1 modes. The blue curve in teh same figure shows the relative precision gain
with increasing number of modes used in the approximation. The precision is
computed as the time-averaged relative L2 error of the approximation and is
plotted against the number of modes used for the approximation. The bumps
in the function graph indicate modes with the same order of energy. Including
just one of them will increase the error since it means splitting an energy scale.
The gaps in the graph indicate zero gain, which can not be plotted due to the
logarithmic scale on the y-axis. The rather strong fluctuations indicate that
we are touching upon the boundaries of numerical accuracy for this dataset.
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Vorticity thresholding: First, we examine the relative L2-error of the recon-
struction per time steps. Fig. C.3(b) shows the error curves for approximations
based on the i most dominant modes.

The vorticity field is derived from the approximations using the first 5 modes
(accounting for 88 percent of the motion energy), in addition to the original
field. We confine ourselves to the demonstration of the impact of the usage of
POD-based approximations. Therefore, we choose a threshold for the original
field and apply it to the field derived from the approximation (The choice
of a suitable threshold value is a subject by itself and not covered herein).
Fig. 4 shows the respective fields. Not surprisingly, rather strong vortex regions
are present in the vicinity of the vertical inlet. Even though these features
are present in both fields, we see that we have a reduced response for the
approximation. On of the most interesting observations is that the two vortices
in the outflow, present in the original field, become one, when focusing only on
the largest energy-scales. The center of the vortex is in the middle of the two
previously detected ones. This can be attributed to vortex braiding, which is
due to spiraling of these two vorticies around each other [17]. This also shows
that our proposed method captures features which cannot be obtained by post
filtering. This is simply due to the fact that this structure was not detectable
in the original output at the first place.

5.2 Turbulent channel ow

This data set is a direct numerical simulation (DNS) of a fully developed turbu-
lent channel flow at frictional Reynolds number Reτ of 180. The flow domain
is bounded by two infinitely large parallel solid walls, and the flow is driven by
constant mean pressure gradient in the in the streamwise (x) direction. . The
boundary conditions are non-slip on the solid walls and periodic else. The data
are produced by a Spectral Element Method (SEM) solver developed at The
Norwegian Defence Research Establishment (FFI) [219]. The dataset consists
of 2146689 vertices arranged in a rectilinear grid. We decompose the field using
POD with 11 snapshots (all time steps), the red curve in Fig. C.5(a) shows the
energy gain adding the i-th mode to the approximation using of order i − 1.
The blue curve shows the precision gain, showing by how much the error de-
creases adding the i-th mode. The error is the relative error between original
flow field and the approximation with respect to the L2-norm, averaged over
all time steps.

Vorticity: As in the previous data set, we examine the relative L2-error of
the reconstruction per time step first. Fig. C.5(b) shows the error curves for
approximations based on the i most dominant modes. We see that for a higher
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Figure 5: (a) The relative energy and precision gain of the ith order approximation
compared to the (i − 1)st approximation. The precision is calculated using the time
averaged relative L2-error of the respective approximations. (b) The function graph
of the L2-error plotted against time for several approximations. (c) Box plot of the
integrative error of the 8-th order approximation. The groups represent particles
seeded at all cell centers and advected for n · dt, dt being the constant time-sampling
distance of the data set.
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Figure 6: Vorticity: Both figures show the scalar vorticity field, using the same color
scale, but the fields has been computed from the original field (top) and the 4-th
approximation (middle), respectively. The bottom row shows the original and the
approximated field on the back-facing clipping plane, to the left and right, respec-
tively. On of the most interesting observations is the behavior of the three features
in the bottom right corner. For discussion of this and further features we refer to the
text.
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number of modes the approximation quickly converges to the total reconstruc-
tion using all modes. The relative L2-error is already for an approximation
using only the first 4 modes of the order of 10−2, i.e., 1%

We obtain the vorticity from the original field and the approximations using 4
modes, accounting for approximately 93 percent of the motion energy. Fig. 6
displays a subsection of the flow domain bounded by two clipping planes, one
orthogonal to the mean flow (yz-plane) and one normal to this first plane and
the solid walls (xz-plane). In order to assess the impact of the use of different
approximations, we applied the same color coding to the scalar vorticity fields
derived from original field and the approximation. On the stream-aligned clip-
ping plane we see a clear reduction of structures of high scalar vorticity. Vortex
tubes emerging from the wall have better spacial coherence. The two planes
in the bottom row are the fields on the first clipping plane for the original
field (left) and the approximation (right). On these planes we observe how
single features disappear (left lower corner, upper right corner). In the bottom
right corner only one of three apparently equally strong features of the original
field turns out to be kinetically important. Other structures, as the horizontal
feature in the middle upper part of the cross section, consist unchanged.

Finite-Time Lyapunov Exponent: We examine the integration error, seeding
a particle per vertex and advecting them over the whole time span the data set
is defined. Every time the integration time is a multiple of the time interval
corresponding to the distance between two time steps we compare the particle
position from advection in the original field with the particle position obtained
from advection in the approximated field. Every multiple of this time interval is
represented as one group in the box plot in Fig. C.5(c). The lines in the middle
of the single boxes represents the median of the group, where the box itself
is the interquartile range. The whiskers give information about the tail-shape
in the distribution, showing the maximum/minimum sample value that is not
considered an outlier, i.e., within median ±2.7 × (standard deviation). For
normal distributed data this corresponds to approximately 99% of the sample
points [132]. We see that the median is of order 10−3 to 10−2, and the upper
whisker reaches at most to a height roughly corresponding to 0.05. Given
that the local error is on average of order 10−2 as seen in Fig. C.5(b), we can
conclude that the loss of precision induced by integration is sufficiently small.
This certainly ensures an accurate and effective usage of POD for integration
based feature detectors as well. This is an interesting result, since local errors
usually grow exponentially when integrated.

Application of the proposed approach to feature extraction based on finite-
time Lyapunov exponents (FTLE), introduced by Haller [59] is also studied as
follows. Fig. 7 shows the FTLE field for the original flow on top and the FTLE
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Figure 7: FTLE: As in for the local methods, we keep the color map unvaried for
all three figures, but the FTLE field visualized has been computed from the original
field (top), the 2nd (middle) and the 4th approximation (bottom). Observe that the
focusing on the energetically most dominant scales of motion energy yields a more
crispy and detailed output with finer lobes. Adding two more modes does not chance
the output, even though just two modes where used for the first approximation. This
indicates that the dissipative scales have to be interpreted as “noise” in the context
of integration-based feature extraction. We refer to the text for further discussion.
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field for the approximation based on 2 modes in the middle. The first 2 modes
capture approximately 79% of the energy. We see that certain features increase
its visibility and are more crisp. Furthermore the focusing on the energetically
most relevant scales reveals finer lobes that appear to be a single one in the
FTLE field based on the original flow. An interesting observation is that taking
the approximation from 2 to 4 modes does not change the output significantly.
This can heuristically be explained by the fact that FTLE is due to its definition
strongly dependent on the transport properties of the underlying flow. These
properties are in turn dominated by the large motion energy-scales. We see
that structures related to high FTLE values are highly energetic per se. Here,
the reduction achieved through POD is a reduction of noise.

6 Discussion and future work

This paper presents a new methodology for energy-scale aware feature extrac-
tion, which is based on the POD of the flow field. We show that the proposed
approach is applicable for both local and integration-based methods. The ap-
plication to the integration-based FTLE method verifies the fact that particle
motion is mainly due to large energy-scales. This indicates that low energy-
scales should be considered as noise in this context. Indeed, FTLE of the
approximated field shows finer detail than FTLE of the original field.

It is worthwhile to note that POD of the velocity field is essentially not com-
patible with the widely used λ2 criterion by Jeong and Hussain [81]. The
main reason for this is that POD extracts the large scales, containing signifi-
cant amount of energy. In terms of the wavenumber space, these scales are in
the low-wavenumber region. On the other hand, λ2 is mostly related to small
scale vortical structures. They are, in turn, related to the high wavenumber
region [217]. This implies that, computing λ2 over the field reconstructed using
just first few POD modes, corresponds to computing λ2 on a field which does
not have small scale vortical structures. Therefore, λ2 may just show numerical
noise, if only the first few modes are used in the approximation.

On the other hand, POD can also be applied to the vorticity field instead of
the velocity field. The modes, or structures, of the flow will be ordered by POD
according to their enstrophy, which is directly linked to the energy dissipated
at the smallest scales of motions [137]. As suggested by Kostas et al. [101],
dominant vortical structures in a flow can be more effectively extracted by
constructing the POD using vorticity. Therefore, the next step in this work
will be to implement vorticity into our POD solver and proposed methodology
described herein.

In this paper, we studied turbulent channel flow driven by constant pressure
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gradient. The turbulence kinetic energy and energetic scales were the main
interests here and the problem was isolated accordingly. Even though different
flows, such as flows under the influence of adverse pressure gradient, spatially
developing boundary layers, thermal boundary layer or free shear flows, show
different characteristics, the proposed method is in general applicable to any
situation, because it has already been shown that application of POD on these
different flows is possible and effective. Impact of these different conditions and
different geometries on the proposed method will certainly be subject of future
studies.

7 Acknowledgments

The authors want to thank Carl Erik Wasberg from the Norwegian Defence
Research Establishment (FFI) for providing the DNS data set of the turbulent
channel flow. The CFD simulation of a flow in a T-junction is courtesy of AVL
List GmbH, Graz, Austria. The project SemSeg acknowledges the financial
support of the Future and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the European Commission,
under FET-Open grant number 226042.




