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Abstract

I
n many cases, feature detection for flow visualization is structured
in two phases: first candidate identification, and then filtering.

With this paper, we propose to use the directional information con-
tained in the finite-time Lyapunov exponents (FTLE) computation,
in order to filter the FTLE field. In this way we focus on those
separation structures that delineate flow compartments which de-
velop into different spatial locations, as compared to those that
separate parallel flows of different speed. We provide a discussion
of the underlying theory and our related considerations. We derive
a new filtering scheme and demonstrate its effect in the context of
several selected fluid flow cases, especially in comparison with unfil-
tered FTLE visualization. Since previous work has provided insight
with respect to the studied flow patterns, we are able to provide a
discussion of the resulting visible separation structures.

This article was published in Topological Methods in Data Analysis and Visualization II,
Springer, pp. 237-253, 2012. In the original paper, the terms spatial and material strain
were interchanged on page 79. This has been corrected.
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74 1. Introduction

1 Introduction

The concept of flow plays a central role in many fields. Classical application
fields are the automotive and aviation industries. The visualization of data
gained from the simulation or measurement of flow processes is relevant for the
domain users, as visualization has the potential to ease the understanding of
complex flow phenomena.

For a good overall understanding of the flow, the identification of areas with
coherent flow behavior has proved to be useful. For steady flow, methods
based on vector field topology, as introduced to the visualization community by
Helmann and Hesselink [74], provide an expressive segmentation of the flow.
In the case of unsteady flow, a comparable theory is not readily available, even
though a number of promising approaches and methods have been worked out
in the past years. We refer to a related state of the art report [156] for an
overview of topology-based methods for the visualization of unsteady flow.

One of the promising directions leading to a semantic segmentation of unsteady
flow, are so-called Lagrangian methods. These methods focus on the motion
of massless particles in the flow. The most prominent methods are related to
finite-time Lyapunov exponents (FTLE). Haller [59, 60] shows the relation of
FTLE to Lagrangian coherent structures and its application to flow data.

Roughly speaking, the (maximum) FTLE gives the maximum separation rate
for nearby particles over a certain time-period. When interpreting separation
structures extracted from the FTLE field, such as ridges, this concept of sep-
aration, has to be kept in mind: Apart from the separation due to differences
in flow directions, FTLE will also detect separation due to differences in flow
magnitude. We illustrate this with a simple thought experiment:

We consider two particles that travel on straight parallel lines with constant
velocity, but the one velocity being larger the other. At a certain time, these
particles have a certain distance from each other. The distance between the
particles increases monotonically (due to the different particle velocities), but
their paths remain nonetheless parallel, leading the particles into the same area
(but at different times). Fig. 1 illustrates this situation.

This causes, for example, that a shear layer is a region with high FTLE values.
More generally, regions of particles with parallel paths but different speeds
will show this behavior. A separation concept that is not sensitive to such
differences in speed would therefore define particles as “staying close” if their
paths stay nearby. This concept of vicinity is called Poincaré or orbital stability.
Formally, a path line is Poincaré stable if for any given ε > 0, there is a δ > 0
such that a particle with starting distance δ to the path line stays in the ε-
tube around it [88]. Although well known in theory, the definition of Poincaré
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Figure 1: Two particles traveling along straight parallel lines at different speeds: we
see that the particles separate in the direction of the movement, but their paths are
at a fixed distance, and will hence traverse the same regions.

stability does not provide an intuitive quantification of distance (since it would
require to compare every single point on one path to all points on the other
path).

From the above mentioned thought experiment we infer that separation re-
sulting from differences in the velocity magnitude, occurs along the lines, i.e.,
in direction of the flow vector, while separations due to differences in flow
direction will occur at an angle to the flow direction. The analysis of the defor-
mation gradient tensor builds on the assumption of a linear mapping between
the difference of the particle positions before and after advection by the flow
and assumes hence that the distance between particles is locally describable
by straight lines [128]. Hence, our considerations are valid for arbitrary path
lines, as long as the general assumptions for the FTLE analysis are fulfilled.

The direction of the main separation can be found by analyzing the gradient of
the flow map (in a more general setting referred to as the deformation gradient
tensor [128]). For this purpose we use singular value decomposition (SVD).
We show in section 3 that our approach is directly derived from the geometric
approach to FTLE as provided by Haller [59]. The examination of the angle
between this main separation direction and the direction of the path line gives
us a measure for the spatial separation that is represented by the respective
FTLE values. Filtering the FTLE field with this measure then yields the
separation structures representing a separation inspired by Poincaré stability.
One needs to be aware of this different stability – and hence, separation –
concept, and assess its meaningfulness in the case under investigation.

Accordingly, the main contribution of this paper is a new filter, to be used as a
filtering step after the computation of FTLE values in unsteady flow fields, that
allows to focus on those regions within the flow that lead to spatial separation.

The remainder of this paper is structured as follows: First we discuss related
work. Then we introduce our proposed filtering approach, deriving it from the
known theory. In the subsequent section we present results from analyzing
several flow cases, applying our filtering to four simple analytical examples, the
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well-known “double gyre” example by Shadden et al. [184], and a CFD data
set demonstrating what results we can achieve. We then discuss computational
aspects of the estimation of the deformation gradient tensor and the extraction
of the main separation direction. Finally we discuss results and point out future
work.

2 Related work

The visualization of flow is an active research field. Topological methods were
first introduced to the scientific visualization community by Helman and Hes-
selink [74, 75] for both 2D and 3D steady flow fields, under the notion of vector
field topology (VFT). Globus et al. [49] showed the practical relevance of VFT
for computational fluid dynamics data. For a detailed survey of VFT for two
and three dimensions we refer to Asimov’s tutorial [2].

From the theoretical point of view, the applicability of VFT for unsteady
flow has been questioned, among others, by Perry and Chong [151]. They
conclude that classical VFT is only applicable to nearly steady fields. Later
Shadden [184] and Wiebel et al. [227] showed this by specific examples. Very
recently, Fuchs et al. [39] proposed an extended critical point concept which
allows them to apply vector field topology in the case of unsteady flow.

Theisel et al. [207] introduce flow topology based on path lines. Path lines are
the paths of massless particles that are advected by the flow. Therefore, they
are inherently well suited to gain an understanding of unsteady flow.

The seminal paper of Haller [59] introduces FTLE to the analysis of flow fields.
The concept of Lagrangian coherent structures (LCS) is discussed and its con-
nection to FTLE is revealed. LCS are – to a certain degree – the unsteady
analogon of separatrices in VFT. In a follow-up paper [60], Haller showed that
LCS correspond to ridges of the FTLE field. Sadlo et al. [170] and Shi et
al. [187] compare LCS to VFT and conclude that the information conveyed
by FTLE is only partial as compared to VFT, missing out, for example, on
vortices.

The standard algorithm for the computation of the FTLE field involves the
seeding of a large number of particles in the flow and the calculation of their
path lines (flow map). This is computationally challenging since it requires a
high precision integration for every particle. Sadlo and Peikert [168] use adap-
tive mesh refinement in their ridge extraction to avoid unnecessary evaluations
of the flow map. As shown by Shadden [184], LCS are “nearly” material lines.
This can be exploited to speed up the algorithm. Sadlo et al. [169] present
a method to extract LCS using grid advection, exploiting the temporal co-
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herency of LCS. Lipinski and Mohseni [115] present a ridge tracking algorithm
for FTLE fields that uses both temporal and spatial coherency of LCS, and give
an error estimator for the difference between the advected ridge and the and
actual LCS. Both approaches give great speed-up compared to the standard
algorithm.

As the computation of ridges usually involves the computation of higher-order
derivatives, the computation will be sensitive to noise. Furthermore, some
types of solvers used to simulate the flow, e.g., spectral element methods [218],
may introduce discontinuities in higher-order derivatives.

Garth et al. [42] avoid the computation of ridges using a volume rendering
approach. The authors show also that 3D FTLE might be approximated by 2D
FTLE in selected cross-sections. Furthermore, the authors present an efficient
approximation to FTLE fields.

Kasten et al. [91] introduce the notion of localized FTLE (L-FTLE). The main
idea of this approach is to exchange the deformation gradient tensor with a
matrix that accumulates the separation behavior along a path line. Haller and
Sapsis [63] show that also the smallest FTLE is related to LCS, and can be
used to compute the attracting LCS from forward standard FTLE (and vice
versa). This makes computing both forward and backward FTLE obsolete and,
hence, saves costly computations.

To the best of our knowledge, no attempts have been made yet to use the direc-
tional information inherent to the definition of FTLE in visualization. Ober-
maier et al. [136] use iteratively deformed ellipsoids to visualize volume defor-
mation along trajectories. The deformation in every iteration step is analyzed
using Singular Value Decomposition (SVD), which also our approach makes use
of. It is worthwhile noticing that their approach imposes divergence-freeness.

3 The ltering scheme

In the following, we show how the main separation direction can be computed
from the directional information that is inherent to the definition of FTLE and
how it can be easily derived from it.

Definition of FTLE and its geometric interpretation: The concept of
finite-time Lyaponov exponents (FTLE) is an adaptation of the concept of
the classical Lyapunov exponents to the situation of a vector field which is
defined over finite time only. Those fields are of practical relevance since both
simulations and measurements of unsteady flow will typically yield this type
of fields. Roughly speaking, the FTLE is the maximum deformation of a small
neighborhood advected by the flow over a certain time-interval. This maximum
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deformation can be computed from the maximum eigenvalue of the (right)
Cauchy-Green tensor [128, 59].

In the original paper [59], Haller gives an alternative, geometric reasoning to
motivate the interpretation of the FTLE field, which yields the same formula
as the standard formulation. We will use this reasoning as a starting point for
our own considerations: Let v be a time-dependent vector field and

ϕT
t0

(x0) = x(T ) (1)

the solution of the initial value problem

ẋ(t) = v(x(t), t) x(t0) = x0 (2)

evaluated at t = T . ϕT
t0

is called the flow map. Hence, the difference in position
between two particles that are seeded at a small distance δx at time t0 at time
t = T is given by

ϕT
t0

(x0 + δx) − ϕT
t0

(x0). (3)

Now, we apply a Taylor series expansion and get

ϕT
t0

(x0 + δx) − ϕT
t0

(x0) = ϕT
t0

(x0) + ∇ϕT
t0

(x0)δx + R1 − ϕT
t0

(x0) (4)

with R1 being an error term with ||R1|| ∈ O(||δx||2). Hence, in a small sphere
around x0 we have the following approximation

ϕT
t0

(x0 + δx) − ϕT
t0

(x0) ≈ ∇ϕT
t0

(x0)δx. (5)

The gradient of the flow map ∇ϕT
t0

(x0) is a linear operator. The maximal
stretching of a δ-sphere around x0 is therefore

max
||δx||≤δ

(
||∇ϕT

t0
(x0)δx||

||δx||

)
= max

||δx||=1

(
||∇ϕT

t0
(x0)δx||

)
= ||∇ϕT

t0
(x0)||op (6)

|| · ||op being the operator norm with respect to the usual Euclidian norm [51].
Assuming exponential growth and scaling by the integration length we get

FTLE(x0) =
1

|T − t0|
ln

(
||∇ϕT

t0
(x0)||op

)
(7)

The equivalence of this formulation to the standard formula found in most
papers is easy to check using basic properties of the operator norm [51, 59].

We see that the impact of the gradient of the flow map tensor on the unit
sphere is the crucial aspect in the analysis of local separation using FTLE. The
singular value decomposition (SVD) is a useful tool to examine this action on
the unit sphere. It is well known that a linear mapping transforms the unit
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sphere into an ellipsoid. The SVD gives us the opportunity to compute the
main axes of this ellipsoid explicitly. More generally, the SVD of any linear
mapping A is its unique representation as

A = U · diag0(σ1, . . . , σr, 0, . . . , 0) · V ∗ (8)

where U and V are orthogonal matrices, r the rank of the matrix A, and
diag0 a block-diagonal matrix [51]. (·)∗ denotes the transposition operator. In
addition, the relation σ1 ≥ σ2 ≥ . . . ≥ σr > 0 holds. The columns of the
matrix U are in the direction of the axes of the ellipsoid which the unit sphere
is mapped to. The values σi are the lengths of its main axes and σ1 = ||A||op.
Fig. B.2(a) illustrates this for the linear map given by 1

4 ( 1 3
4 2 ). We see that

using the SVD to gain directional information about the local separation is a
straight-forward extension of the original considerations of Haller.

It is worthwhile noticing that an eigenvalue decomposition of the Cauchy-Green
tensor used in the standard presentation of FTLE will yield the columns of V ,
and not U . Unless the deformation is rotation free, these vectors will not co-
incide. However, the columns in V are mapped onto the columns of U . These
two different sets of axes are known as the principal material and principal
spatial strains, respectively. The principal spatial strains provide the informa-
tion on the shape of the ellipse resulting from the advection of the unit sphere
S2 by the flow. Therefore, the use of the principal spatial strains to gain the
directional information on the FTLE field is a straight-forward extension of the
geometric approach to FTLE provided by Haller in its original paper [59]. For
a thorough discussion of straining we refer to Mase [128] and Hayes [70].

Given the path line γ started in x0 at t0 and integrated to t = T , the direction
of the path line at any instant t is given by γ̇(t) = v(γ(t), t) and the corre-
sponding separation direction U−1(t) (i.e, the first column of U) is computed
from ∇ϕt

t0
(x0). Hence, we can use

1
T − t0

∫ T

t0

∣∣∣∣
〈

U−1(t),
v(γ(t), t)

||v(γ(t), t)||

〉∣∣∣∣dt (9)

as a measure for the directional difference between separation and path line
starting in (x0, t0). Notice that perfect alignment of the separation direction
and the flow direction, i.e., the situation we want to filter out, will cause the
integrand to be 1. The absolute value has to be used since SVD may invert
the orientation.

It is important to point out that this separation measure is not Galilean in-
variant, since it depends on properties such as velocity that are themselves not
Galilean invariant. The separation measure will therefore detect path lines,
that are locally parallel in the chosen frame of reference. Although Galilean
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invariance is an important property in general flow analysis, many interesting
situations with fixed frame of reference exist, e.g., fluid flow in a tube or air
flow inside of a room. Besides this, we also give an example of a separation
situation below, where a Galilean invariant separation measure would fail to
detect a separation that can easily be deduced from the visual inspection of
the path lines in the flow (see Sec. 4.1).

In practical computations, eq. (9) needs to be discretized. We now assume to
have N samples of the path line (γ(tn))N

n=1. Since the velocities could change
rapidly in direction, without actually affecting the perceived overall direction
of the path line much, γ(ti+1) − γ(ti) can be used instead of v(γ(ti+1), ti+1)
to robustify the measure. But even with this robustification, the local position
differences can deviate substantially from the perceived overall direction, as we
can see from Fig. B.2(b). We therefore choose γ(tN ) − γ(ti) instead. As the
approximation to the velocities, this expression is less sensitive to fluctuation
in the velocity along the path line. In addition, it uses our knowledge of where
the particle will end up. In this way we estimate the overall direction of the
remaining trajectory. As a convenient side effect, this estimation is also less
sensitive with respect to the chosen sampling of the path line (see Sec. 5).
With this considerations in mind, the discrete version of our measure for spatial
separation is:

1 −
1

N − 1

N−1∑
i=1

∣∣∣∣
〈

U−1(ti),
γ(tN ) − γ(ti)

||γ(tN ) − γ(ti)||

〉∣∣∣∣ (10)

The main separation direction is the left-singular vector associated with the
maximum singular value. The maximum singular value of the deformation gra-
dient tensor (or, equivalently, the maximum eigenvalue of the Cauchy-Green
tensor) is, however, not unique by definition. In fact, all singular values σi

might be the same, or almost the same. In addition, numerical errors may
cause the two largest singular values to be of the same order. In the original
definition of FTLE this does not create any problems since we are interested
in the maximum only. In contrast, when looking at the angle between the
associated left-singular vector and the flow vector, this situation needs special
consideration. From the SVD we know that those vectors are orthogonal to
each other. Hence, even if one of the vectors is almost parallel to the flow, there
is a direction of comparable distortion that is nearly orthogonal to the flow.
Therefore, we shall consider these points as if the main separation occurs at a
large angle to the flow direction. The consideration of the third singular value
is not necessary since its left-singular vector lies in the same plane orthogo-
nal to the first left-singular vector as the left-singular vector associated with
the second singular value. To account for this, we introduce a scaling factor
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(a) Illustration of the SVD (b) two path lines with the same perceived
“overall” direction (viewed from left to right)

Figure 2: (a) Illustration of the geometric interpretation of singular values and left-
singular vectors of a linear map: The unit circle (red) and its image (blue) under
a linear map. The black arrow correspond to the left-singular vectors of the map,
scaled by the respective singular values. (b) The figure shows the trajectories of two
particles moving from left two right. Although local velocities are very different we
perceive them as having the same overall direction.

1 − σ2(ti)
σ1(ti) for the single summands in eq. (10), and our final definition of the

separation measure sep becomes

sep(x0) := 1 −
1

N − 1

N−1∑
i=1

(
1 −

σ2(ti)
σ1(ti)

) ∣∣∣∣
〈

U−1(ti),
γ(tN ) − γ(ti)

||γ(tN ) − γ(ti)||

〉∣∣∣∣ (11)

Obermaier et al. [136] use the quotient of the smallest and the largest singular
value to measure the overall deformation of an advection. In two dimensions,
this measure coincides with the quotient in our scaling factor, the interpretation
is however slightly different, as the afore reasoning shows.

The basic concept of the filtering: Bringing all this together, the proposed
filter scheme can be set up by four computational steps:

1. Computation of the deformation gradient tensor: This step is generally
necessary in all FTLE-related algorithms and involves the integration of
path lines. We save the particle positions at some intermediate time
instances as well in order to compute the spatial separation. Further
details are discussed in section 5.

2. Computation of the SVD of the deformation gradient tensor: This step
leads both to the FTLE field and the main separation directions.

3. Computation of the spatial separation of the flow using eq. (11).
4. Focusing on regions of large angles: This focusing can be achieved by

thresholding or by smooth brushing [26].
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In a final step the filter is applied to the regions with high FTLE values. The
above described four steps comprise the main idea for our filtering approach.

The filter: The actual filter is then constructed by applying (smooth) brushing
to the field sep. This brush maps values of the separation measure sep to the
interval [0, 1] and describes the degree of being in focus. This then corresponds
to accordingly modulated opacity values in the 3D view (cf. Doleisch and
Hauser [26] for further details). Hence, we can formulate our filter as filter =
brush(sep)

Eventually, this filter is then applied to the FLTE values. This focusing is done
by smooth brushing as well. The overall feature characterization function fsep

with range [0, 1] (1 or near 1 for all locations in the flow which are considered
to be part of the searched separation structure), is therefore described by

fsep = brush(FTLE) · filter = brush(FTLE) · brush(sep) (12)

The function sep can also be thought of as a degree of “featureness” for the
feature “spatial separation”, or, as degree of interest (DOI), using another
terminology [26].

4 Case studies

In the following we present results from the extraction of separation structures
from different data sets. We demonstrate how our filtering scheme helps to
focus on regions which actually separate flow compartments that move into
different regions of the flow.

4.1 Synthetic test data

First we investigate four small analytic examples where the separation behavior
can be deduced directly from the equations

v1(x, y) = (y, 0)T , v2(x, y) = (y, 1)T (13)

v3(x, y) = (x − 1, 1)T , v4(x, y, t) = (x − t, 1)T (14)

Notice that the field v2 arises from field v1 under the Galilean transformation
(x, y, t) �→ (x, y + t, t). The field v4, in turn, arises from v3 using the Galilean
transformation (x, y, t) �→ (x+t, y, t). Hence, it is easy to deduce from the fields
v1 and v3 that the FTLE field is constant for all four fields. We investigate all
four fields on the upper half plane (i.e., y ≥ 0) and choose t0 = 0 and T = 1. All
computations for this example have been carried out using the MAPLE software
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(a) linear sheer (b) transformed linear sheer

(c) vertical separation (d) transformed vertical separation

Figure 3: Stream, resp. path, lines with the separation value as color field in the
background. The left column shows the original fields, the right a Galilean trans-
formed field. For the equations we refer to Sec. 4.1. The FTLE field is constant for
all four cases. In (a) and (b) we infer from the stream lines that no spatial separation
is present and the separation values are as expected close to zero (range [0, 0.02]).
In (c) and (d) the trajectories show clear spatial separation and again the separation
values coincide with the visually detected separation lines.

package. The flow map was computed using MAPLEs seventh-eighth order
continuous Runge-Kutta method dverk78. For estimation of the deformation
gradient tensor we used central finite differences in the coordinate directions
with spacing h = 0.01. For the first two fields, our separation measure sep
is in the range [0, 0.02]. Hence, we expect no spatial separation. Plotting the
respective stream lines of the fields shows that our filter handles both straight
parallel lines (as described in the thought experiment in the introduction) as
well as “locally parallel” trajectories. In contrast to the first two fields, we
expect to see a clear spatial separation in the remaining two. In the first field
this separation line is clearly x = 1, in the second field the separation line will
be located right of the y-axis. Its location depends on the integration time
and the speed of the observer, since this determines if particles starting on the
right side of the y-axis have “enough time to turn”. Our separation measure
shows the expected behavior and stream, respectively path, lines plotted as a
verification show the expected behavior at the separation line (see Fig. 3). The
field v4 is an example where a Galilean invariant measure for separation would
not give a response: fixing the integration time the observer speed determines
where the separation line is located, and it is easy to see that any parallel to
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(a) FTLE field (b) filtered FTLE field

Figure 4: The FTLE field of the double gyre with parameters t0 = 0 and T = 15 (i.e.,
1.5 periods). (a) The unfiltered field. (b) The filtered by setting FTLE values to 0
for sep(x) ≤ 0.5. Path lines confirm that the persistent ridge is indeed due to spatial
separation.

the y-axis can be achieved. Since the response would have to be the same for
all observer speeds, the field would have to be constant.

4.2 Double gyre

We demonstrate our approach in context of a well-known analytic two-dimen-
sional example, known as the “double gyre”. This has been used by Shadden et
al. to demonstrate the non-usability of vector field topology for time-dependent
flow [184], amongst others. For the analytic definition of the field, we refer to
the original paper by Shadden et al. [184]. Using the same notation as in their
paper, our parameter set is A = 1/10, ω = π/5 and ε = 1/4. The field is de-
fined on [0, 2] × [0, 1] ×R. All computations for this example have been carried
out using the MAPLE software package. The flow map was computed using
MAPLEs seventh-eighth order continuous Runge-Kutta method dverk78, for
estimation of the deformation gradient tensor we used central finite differences
in the coordinate directions with spacing h = 0.01. Fig. B.4(a) shows the FTLE
field with parameters t0 = 0 and T = 15, i.e., 1.5 periods. The filtering is emu-
lated by setting the FTLE value of points with sep(x) ≤ 0.5 to 0. We see that
the filtering produces sharper ridges as the original FTLE field, highlighting
in particular one ridge associated with rather low FTLE values. Seeding path
lines at both sides of the ridge shows that the highlighted ridge is due to the
desired type of separation, indeed.
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(a) Schematic overview (b) FTLE field

Figure 5: (a) Schematic overview over the flow domain, z being the streamwise direc-
tion. (b) The FTLE field of a simulation of a bursting dam with parameters t0 = 62
and T = 68. The FTLE values greater than 0.25 are brushed (smooth lower bound
0.2). We see that we can identify expected structures around the obstacle. The upper
rear part of the flow domain shows large regions with high FTLE values, presumably
induced by shearing.

4.3 A bursting dam

We apply our approach to the simulation of a bursting dam with a box-shaped
obstacle. The data set consists of 48 time steps, covering the time span [2, 120]
(seconds) non-uniformly. The burst occurs in the first time step. We expect a
recirculation zone in front (upstream) of the obstacle due to particles hitting
the wall and recirculating and others getting deviated to the left and right of
the obstacle. Furthermore we expect reflux on the backside of the obstacle
due to pressure differences, causing particles from the end of the box to be
sucked towards the obstacle, some of them ending up in front, some getting
incorporated by the main flow. Right behind the obstacle we expect to see
recirculation. A schematic overview of the flow can be found in Fig. B.5(a).
The SimVis framework [24] was used for this example. We calculated the FTLE
field for t0 = 62 and T = 68, using the optimal 4th order Runge-Kutta method
(sometimes referred to as the “3/8-rule”). For details we refer to Hairer et
al. [57]. The usage of a even higher order integration method (which is not
standard) was purely due to the fact the MAPLE software package readily
provides this method. The integration time was found empirically with the
aim that not more that 15 percent of the particles seeded leave the flow domain
before the end of the integration time. Fig. B.5(b) shows an overview over the
FTLE field. We filter the field brushing all points with a sep-value greater or
equal 0.45 (smooth lower bound 0.4). We will now investigate two regions in
the flow domain more closely: The region stream-wise in front of the obstacle
and the upper rear region.

In front of the obstacle: In front of the obstacle, we expect to detect a
separation structure upstream, due to particles passing on different sides of it.
We see that (Fig. B.6(a)) this expected separation structure is not detectable
from the original field. Applying our separation filter allows us to focus on
this spatial separation, even though the corresponding FTLE values do not
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(a) FTLE field (b) filtered FTLE field

Figure 6: The (a) FTLE and (b) filtered FTLE field upstream (right in the figures)
of the obstacle in top view. The FTLE values greater than 0.25 are brushed (smooth
lower bound 0.2), sep(x) < 0.45 (smooth lower bound 0.4) is used for the filtering in
(b). We see that the spatial separation structure stemming from particles passing on
different sides of the obstacle is not clearly discernible in the unfiltered field. While
adjusting the brush would not give the desired structure either, our filtering does.

(a) FTLE field (b) filtered FTLE field

Figure 7: A cross section of the (a) FTLE and (b) filtered FTLE field. The filtering
used is the same as in fig. 6. The ellipse (A) shows a region where the filter has a strong
impact. We see that the path lines are locally parallel and show little to no spatial
separation. In contrast, we see that the structure below the ellipse separates path
lines moving from the left to the right (above) from those moving in the opposite
direction (below). In the same fashion, the ellipse (B) indicates a structure that
separates particles coming from the left and passing over the obstacle, from those
moving back to the left end of the flow domain. This structure is persistent under
our proposed filter.

show up prominently in the original field. We added path lines to both figures
to confirm that the intuitively expected separation structure indeed exists and
coincides with the structure found by the filtering with our separation measure.

The upper rear region: In the overview in fig. B.5(b) we see a large region
with high FTLE in the upper rear part of the flow domain. Applying our
filtering reduces the region to a surface separating particles moving from the
back to the front (upper part) from those leaving the flow domain (lower part).
We seeded particles in a cross-section in order to validate the result from the
filtering. We see that the particles in the region delineated by the ellipse (A)
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in fig. B.7(b) show the expected locally parallel pattern. The structure at
approximately half height of the box captures the boundary between the two
essentially different particle behaviors described above. The structure in ellipse
(B) in fig. B.7(b) separates particles moving from the back to the front and
passing over the obstacle from those inverting their motion direction again.
This separation is again the type our filter aims to focus on.

5 Computational issues

Although the steps that are needed to compute the proposed filter are in theory
rather straightforward, the application to discrete data offers some challenges
we want to discuss. Namely, we address (a) the influence of the used sampling
of the path line, and (b) the computational cost of computing the FTLE field
following our suggestions compared to the standard algorithm.

The impact of the sampling: Our sampling of the path line at 1
2 , 3

4 , 7
8 and

the full integration time puts emphasis on the end of the path lines. Visually,
this is intuitive, since we perceive path lines as parallel if their ends show this
behavior. We anticipate common “spatial fate”. Therefore will rather small
direction changes towards the end of the registered path lines intuitively be
read as diverging behavior, since we anticipate that the motion will continue
in the same direction.
We computed the separation measure for some of the data sets, namely the
time-dependent ones, for N = 2, 4, 6, 8, 10 and compared the results point-
wise, using the N=25 as reference value. Table 1 shows the average relative
error and the variance in the computed fields. We chose to investigate the
time-dependent data sets since this is most relevant in practice because FTLE
computations for steady fields are usually avoided using vector field topology
instead.

FTLE as eigenvalues of the Cauchy-Green tensor vs. singular values

of the deformation gradient tensor: Our filtering needs, in addition to the
FTLE field, the left-singular vectors of the deformation gradient tensor. This is
not a part of the usual algorithm to compute FTLE. However, the computation
of the deformation gradient tensor is. Therefore, we do an informal compari-
son of the expected computational cost. Essentially, the here used alternative
FTLE computation methods differ from the standard method in one aspect
only: the use of the SVD instead of the eigenvalue decomposition. Standard
algorithms for both decompositions are based on the same transformation in
the iteration steps and have therefore the same complexity order. The singular
matrices are an by-product of the SVD computation and do not need to be
computed separately. For details we refer to Gill et al. [46]. Hence, computing
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the FTLE plus left-singular vectors will not be substantially slower than the
usual computation of FTLE from the Cauchy-Green tensor. With the Maple
implementations of SVD and eigenvalue decomposition the ratio of the compu-
tation time using the SVD to the time used with the standard formula is in the
range [0.95, 1.06], i.e., the SVD-based method is in the worst case 6% slower
than the standard method on the double gyre data set. In SimVis we used
the linear algebra library JAMA (http://math.nist.gov/tnt/overview.html), which
gives a ratio of 1.12 for the bursting dam data set, i.e., a 12% computational
overhead. It is worthwhile noticing that our methods provides both the regular
FTLE field plus the additional information needed to perform the filtering at
once. Hence, ridge extraction algorithms may be applied as well, if wanted.

6 Discussion and future work

We examine the results from analyzing several different flow scenarios with
the here proposed filtering scheme. We assess the filtered structures by seeding
path lines in the unfiltered field and comparing the result of our filtering scheme
to the result that we would expect from the path lines. In all cases the paths
lines seeded in the filtered region show the expected locally parallel flow pattern
(which we see as a satisfying confirmation of our more theoretical considerations
with respect to the design of the proposed filter).

The computation of the flow map is, as expected, the bottle neck when applying
our filtering to data sets. A speed-up of this computation could be achieved by
exploiting the inherent parallel nature of path line computation and multi-core
architectures. AMR and advection based methods to speed-up computations
do not seem to be suitable at the first sight, since we are not extracting ridges
and we do not know whether the structures that our filtering reveals have
properties corresponding to material lines and surfaces. We intend to perform
computational experiments to assess this question.

Finally, we intend to assess the effects of combining our filtering with other
flow feature detectors. FTLE is known to miss out on some features as, for ex-
ample, vortices. Hence, the combination of feature detectors is a promising ap-
proach [7, 9]. We have implemented our filtering in the SimVis framework [24],
that is inherently suitable for the proposed investigation due to its combina-
tion of interactive visual analysis and 3D context visualization designed for flow
data.

FTLE based methods, and consequently also our filtering of the field, are known
to be heavily dependent on the choice of the integration length [43, 184]. Hence,
the search for separation measures that can handle diverging and re-converging
flow (as in flow around an obstacle) and similar behavior seems appealing.
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7 Conclusion and acknowledgements

In this paper we discuss two different types of separation and showed how to
distinguish them filtering finite-time Lyaponov exponents. Analyzing different
flow scenarios, we showed that this distinction indeed yields a deeper under-
standing of separation structures. Separation is an important aspect in flow
analysis and further classification of different types of this phenomenon seems
to be a promising research direction.
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