
Optimization Models for Turbine Location

in Wind Farms

Jan Kristian Haugland
University of Bergen
admin@neutreeko.net

May 24, 2012

Acknowledgements

I would like to thank my advisor, Professor Dag Haugland, for his sup-
port, guidance and tireless proofreading throughout the project.

I would also like to thank the Department of Informatics for providing
me with very good working conditions.

Contents

1 Introduction 3
1.1 Wake models . 4
1.2 Wind farm optimization . 5

2 Background 7
2.1 The Jensen model . 7
2.2 Other wake models . 8
2.3 Katić et al.’s wake combination model 9
2.4 Basic properties of the Jensen model 9
2.5 Wind conditions . 14

3 Wake model 15
3.1 The wake behind a single turbine 15
3.2 Multiple wakes . 18
3.3 Proposed wake model (summary) 20
3.4 Varying wind conditions . 20

4 Optimization methods 22
4.1 Complete mathematical models 22

4.1.1 Problem 1 . 22
4.1.2 Problem 2 . 23

4.2 Heuristic methods . 25
4.2.1 The Nelder-Mead optimization method 25
4.2.2 An alternative heuristic method for Problem 1 27
4.2.3 Problem 1: simple case experiments 31
4.2.4 1-dimensional case revisited 34
4.2.5 Heuristics for Problem 2 35
4.2.6 Problem 2: simple case experiments 37

5 Experiments 42
5.1 Overview of experiments . 43
5.2 Overview of cases . 45
5.3 Results . 46

5.3.1 Exact solutions to Problem 1 and Problem 2 46

1

5.3.2 Results of heuristic methods 48
5.4 Observations . 53

6 Conclusion 55

A GAMS code for 1-dimensional version 58

B GAMS code for Problem 1 60

C GAMS code for Problem 2 64

2

Chapter 1

Introduction

In a world with increasing demand for electrical energy, maximal production
of coal and other fossil fuels possibly being reached within decades, and
increased amount of extreme weather due to global warming, the use of wind
turbines as a source of electrical energy is more topical than ever before.

A number of wind farms are already in existence (confer [1]). Many of
the world’s largest onshore wind farms can be found in the United States,
but also in other countries like China and Australia. Smaller onshore wind
farms can be found in a number of different countries all over the globe. The
capacity of each farm can be anything up 720 MW (attained by the Alta
Wind Energy Center in the U.S.).

The largest offshore wind farms are found in Europe, particularly in
Denmark and Great Britain. The largest one is Walney off the coast of
Cumbria in England, with a capacity of 367 MW. In Norway, Vestavind
Offshore [2] is planning to build Havsul, a wind farm with a capacity of up
to 350 MW, which will cover the energy consumption of 50,000 households.

In this thesis we investigate how to design wind farms, onshore or off-
shore, so as to maximize the power output. The cost that is in the focus
of our attention is the wake effect, i.e., the fact that the wind velocity is
reduced downstream behind a turbine and causes a reduced power output
from the turbines thus located.

More specifically, we consider the following problems.

Problem 1: Suppose we are given an offshore region with some data on
the wind conditions, and a number of turbines that are to be placed within
the region. We would like to find the placement that returns the maximal
amount of power.

Problem 2: Similar to Problem 1, but now the number of turbines is not
fixed, and there are only a finite number of possible locations. We take the
cost of installing and running a wind mill into consideration, and maximize

3

the net present value of the wind farm.

These problems can be modelled along these lines:

Problem 1
Objective function: Total power output of the turbines, averaged over a
given distribution of wind directions and mean wind velocities.
Variables: Coordinates of the turbines.
Constraints: The region in which the turbines can be placed is bounded.
The distance between any two turbines is bounded from below.

Problem 2
Objective function: Net profit, i.e., power output (possibly converted)
minus costs.
Variables: Decision variables for whether a location should contain a tur-
bine.
Constraints: Constraints on the distances between turbines may apply,
depending on the procedure for generating the set of possible locations.

In order to handle these problems, we need a model for the wake effect,
and an optimization method.

1.1 Wake models

A method for estimating the wake effect which has become increasingly
popular in recent years is to solve some simplified version of the Navier-
Stokes equations. See, for instance, Heggelund and Skaar [3]. Moreover, a
wake effect tool called Fuga (confer [4]) developed at Risø solves linearized
Reynolds-averaged Navier-Stokes equations for farms with 200 turbines in a
matter of seconds. It is not publicly available currently.

Over the years, several wake models that are considerably simpler have
been proposed. Three well known examples are the Jensen model, the Frand-
sen model and the Larsen model. A brief description of each of these will
be given in Chapter 2.

In this thesis, we are going to consider a wake model, based on the Jensen
model, described by Katić, Højstrup and Jensen [5]. This model has been
used to this day, or at least until recently, by the Wind Atlas Analysis and
Application Program [6] (”a PC program for predicting wind climates, wind
resources and power productions from wind turbines and wind farms”).

Based on the contents of Katić et al.’s paper, we are proposing an im-
proved version which is still fairly simple, but appears to fit the measure-
ments better. This is the topic of Chapter 3.

4

1.2 Wind farm optimization

In the field of nonlinear programming, a number of computational opti-
mizations techniques are in existence, such as Newton’s method, conjugate
gradient methods, and variants of these. Nowadays, a natural approach to
an optimization problem is to apply commercial solver software.

However, exact optimization sometimes requires prohibitively long run-
ning time. When the task at hand is wind farm optimization, it is not
unreasonable to expect that this is the case. Assuming that local optimiza-
tion packages, which are often included in commercial solvers, are still not
good enough, we then have to develop our own heuristic methods.

Let us take a look at one of today’s perhaps most promising wind farm
optimization platforms.

There is an EU-project led by Risø called TopFarm that was reported
to be completed in the summer of 2011. The result is a simulation platform
that can optimize the total economic benefits.

The following is from Risø’s own web pages [7]:
”The core of the optimization tool consists of 5 calculation modules.

The first module consists of models (of varying complexity) that describe
the wind inside a wind farm. The second module is a detailed model of how
the wind affects each wind turbine in a wind farm. The input to this module
is the wind field from the first module and the result is production data and
load data from the individual turbines.

The third module comprises models of the control system at both wind
farm level and wind turbine level, while the fourth module contains cost
models, which make it possible to formulate the optimization problem in
economic terms.

The fifth and the last module is a package of optimization algorithms
that, with the input from the other four modules, generates the optimum
layout of a given wind farm. This is the module that gave rise in the case
story to the new location of turbines at Middelgrunden wind farm, as seen
on the picture.”

The paper by Réthoré et al. [8] gives more details.
TopFarm appears to be a powerful tool in wind farm optimization, and

its optimization method is in part a genetic algorithm, which belongs to the
class of metaheuristic methods. Although genetic algorithms are considered
to be the most popular approach in wind park optimization (confer [9]),
they can be rather slow (confer [10]). This opens up for the possibility that
it is worthwhile to consider simpler methods.

There are a number of heuristic methods in the literature (confer [11]).
Trying out all of them is beyond the scope of this thesis, and we will instead
compare three particularly simple ones. This is the topic of Chapter 4,
where we apply some rather simplified test cases. Chapter 5 deals with
experiments on a bigger variety of test cases, with the same methods (more

5

or less) as in Chapter 4.

6

Chapter 2

Background

The descriptions of the models given in Sections 2.1 and 2.2 are based in
part on [3].

2.1 The Jensen model

When wind with initial velocity v flows through the rotor of a wind turbine,
it will normally lose some kinetic energy to the rotor blades, and the wind
velocity immediately behind the rotor will be αv for some α, 0 < α < 1.
The exact value of α depends on the pitching of the blades. The power
coefficient, which denotes the ratio of the power that is extracted from the
wind by the turbine to the available power in the wind (assuming an ideal
massless rotor and no heat transfer), is given by

Cp =
1

2
(1 + α− α2 − α3)

which leads to Betz’ law [12]: The maximal value of Cp is 16
27 ≈ 0.593.

In the Jensen model [13], it assumed that this maximum is attained.
Since

dCp
dα

=
1

2
(1− 2α− 3α2) =

1

2
(1 + α)(1− 3α)

it follows that
dCp
dα > 0 for 0 < α < 1

3 and
dCp
dα < 0 for 1

3 < α < 1, so that
the optimal value of α must be 1

3 .
This is not necessarily optimal if there is more than one turbine involved,

due to the wake effect. For example, if two turbines (with the same blade
pitch) are located rather close to each other, and the wind direction is always
from the first turbine to the second one or vice versa, the total power output
is given by

P =
CpρA

2
(v3 + (αv)3) =

ρA

4
(1 + α− α2 + α4 − α5 − α6)v3

7

Figure 2.1: Linear expansion of the wake behind a single turbine

where ρ is the density of air, and A is the rotor area. Dividing off constant
terms and setting the derivative with respect to α to zero gives

1− 2α+ 4α3 − 5α4 − 6α5 = 0⇒ (1 + α)2(1− 2α)(1− 2α+ 3α2) = 0

and it follows that the optimal value of α in this case is 1
2 .

However, a much more realistic scenario is that turbines are placed some
distance apart, and that with wind directions distributed over a full rotation,
the wake effect will be small for most turbines at any given time. It therefore
makes sense to retain α = 1

3 , while the optimal value in any given case is
presumably at least slightly bigger.

With a fixed value of the power coefficient, it follows that the power
output of a single turbine is a fixed constant times v3. Thus for simplicity,
we will define the profit of a single turbine to be v3.

Furthermore, the Jensen model is based on a linear expansion of the
wake region (confer Fig. 2.1), and on mass conservation. This means that
the wind velocity in the wake a given distance d behind a turbine can be
expressed as (1− δ)v where δ, called the velocity deficit coefficient, must be
2
3 for d = 0, and is inversely proportional to the area of the corresponding
cross section of the wake region. It follows that

δ =
2

3

(
r

r + κd

)2

up to a distance r + κd from the centre line, where κ is the decay constant
(also called entrainment constant, e.g., in [14]).

2.2 Other wake models

Besides the Jensen model, two relatively simple wake models that occur
in the literature are the Frandsen model [15] and the Larsen model [16].
Like the Jensen model, they have mass conservation and a top hat-shaped

8

distribution across the wake, and the main difference between the three
models appears to be the expansion of the wake (which of course affects the
velocity deficit). The Frandsen model and the Larsen model both predict a
concave expansion.

The Frandsen model, which assumes a regular array-geometry of the
layout, says that the wake expansion has the form

r = r0 max

(
β, α

x

2r0

) 1
2

in which α and β are constants.
The Larsen model yields

r =

(
35

2π

) 1
5 (

3c2
1

) 1
5 (CTAx)

1
3

in which CT is the thrust coefficient, A is the rotor area and c1 is a constant
related to the mixing length.

With the development of simulation software (like Fuga), it may be pos-
sible in the near future to find a simple model that outperforms all of the
above models.

2.3 Katić et al.’s wake combination model

For multiple wakes, the combined deficit would logically appear to be the
sum of the individual deficits, under the assumptions. (We will refer to this
as Jensen’s model in its simplest form.) However, this estimate is known
to compare poorly with observations. In Katić et al.’s model, the combined
deficit is instead the 2-norm of the vector of individual deficits:

vj = v0 −
√

(δ1jv1)2 + ...+
(
δ(j−1)jvj−1

)2
where v0 is the initial wind velocity, vi is is the wind velocity experienced by
turbine i, and δij is the deficit coefficient at turbine j caused by turbine i’s
presence. The authors state that this formula is chosen so that the velocity
deficit from a line of turbines will quickly reach an equilibrium level, in
agreement with observations. They do not say why the 2-norm is chosen
over other functions with the same qualititive property (e.g., the ν-norm for
any ν > 1 with ν 6= 2).

2.4 Basic properties of the Jensen model

When placing turbines in a 2-dimensional region with varying wind condi-
tions, one can expect that local optima will contain one or several instances

9

of three or more turbines being placed more or less on a straight line. There-
fore, we will take a closer look at the 1-dimensional case in this section.

The reason why instances of several turbines being placed more or less
on a straight line are to be expected has to do with wake combination. First,
we consider three turbines A, B and C that are to be placed in the plane.
Suppose the distance between A and B should be a fixed length d1 and
the distance between A and C should be a fixed length d2 with d1 < d2.
Suppose furthermore that the wind direction is uniformly distributed (and
the wind velocity is constant or at least independent of the direction). There
is a certain probability that A will be in B’s wake at any given time, and a
certain probability that A will be in C’s wake. The expected velocity deficit
at A due to B’s presence depends on d1, but not on the direction from B to
A; and likewise for C and d2. But if B is located on the line between A and
C, A will experience one combined wake instead of two isolated wakes as the
wind direction varies. According to Katić et al.’s wake combination model,
the total deficit is smaller in the case of the combined wake. (In fact, since
the profit is the wind velocity raised to the third power, it can be shown
that this is profitable even in Jensen’s model in its simplest form.)

A similar argument applies if the wind direction is not uniformly dis-
tributed, as is normally the case.

So let us assume for now that the turbines are placed on a straight line
along the wind direction. More specifically, let us assume that the coordinate
of each turbine is restricted to the interval [0, 1], and that the wind direction
is from 0 to 1.

Placing two turbines under these assumptions is of course completely
trivial. Since the velocity deficit is a decreasing function of the distance, we
would like to maximize it, and so the turbines should be placed at 0 and at
1.

Placing three turbines, however, already is non-trivial. We can argue
that we must still put one at 0 and one at 1, but where does the middle one
go?

Let x denote the coordinate of the middle turbine. According to Jensen’s
model in its simplest form, the wind velocities at the three turbines are

v0, v1 = v0 − 2
3v0

(
r

r+κx

)2
, v2 = v0 − 2

3v0

(
r

r+κ

)2
− 2

3v1

(
r

r+κ(1−x)

)2

and the total profit is equal to

(v3
0 + v3

1 + v3
2) (2.1)

10

Observe that

r

rx+ κx
− r

r + κx
=

r (r − rx)

(rx+ κx) (r + κx)

=
r2 (1− x)

x (r + κ) (r + κx)
= O

(
r2
)

as r → 0 so that(
r

rx+ κx

)2

−
(

r

r + κx

)2

=

(
r

rx+ κx
+

r

r + κx

)
O
(
r2
)

= O
(
r3
)

(2.2)

Let u = 2
3

(
r

r+κ

)2
. By (2.2) we have

2

3
v0

(
r

r + κx

)2

= v0

(u
x2

+O
(
r3
))

= v0

(u
x2

+O
(
u

3
2

))
as u→ 0 and

2

3
v1

(
r

r + κ (1− x)

)2

= v0

(
1− u

x2
+O

(
u

3
2

))(u

(1− x)2 +O
(
u

3
2

))
= v0

(
u

(1− x)2 +O
(
u

3
2

))
which means that (2.1) is

v3
0

(
1 +

(
1− u

x2
+O

(
u

3
2

))3
+

(
1− u− u

(1− x)2 +O
(
u

3
2

))3
)

= v3
0

(
1 + 1− 3u

x2
+O

(
u

3
2

)
+ 1− 3u− 3u

(1− x)2 +O
(
u

3
2

))

= v3
0

(
3− 3u− 3u

x2
− 3u

(1− x)2 +O
(
u

3
2

))
(2.3)

as u → 0. If we simplify by dividing by v3
0, subtracting the constant term

and dividing by u, we are left with the task of maximizing a function of the
form

−3− 3

x2
− 3

(1− x)2 +O
(
u

1
2

)
(2.4)

In general, suppose g(x, u) has the form f(x) + O
(
u

1
2

)
as u → 0 and

that the maximum of g(x, u) for a fixed u ≥ 0 is given by x = x0(u). (We
will assume that the value of x0(0) is unique, while any global maximizer
will do for u > 0.) Let x0 = x0(0) and x1 6= x0 so that f(x1) < f(x0),

and let k be a sufficiently large constant such that g(x0, u) > f(x0) − ku
1
2

11

and g(x1, u) < f(x1) + ku
1
2 for all u (we may assume that u is bounded

from above). If u <
(
f(x0)−f(x1)

2k

)2
then g(x0, u) > g(x1, u). It follows that

limu→0 x0(u) = x0.
In view of this, one can verify that as u → 0, the maximizer of (2.4),

and therefore of (2.3), tends to 0.5. So the middle turbine goes in the centre
between the other two, as we might have expected. However, suppose now
that we introduce the ν-norm for the combined wake effect. Observe that
for any positive constant k we have

ν

√
k +O

(
u

1
2

)
= k

1
ν +

1

ν
k

1
ν
−1O

(
u

1
2

)
+

(
1
ν
2

)
k

1
ν
−2O (u) + ...

=
ν
√
k +O

(
u

1
2

)
as u→ 0, by Newton’s generalized binomial theorem. This yields

v2 = v0

(
1− ν

√
uν +

(
u

(1− x)2 +O
(
u

3
2

))ν)

= v0

(
1− u ν

√
1 +

1

(1− x)2ν +O
(
u

1
2

))

= v0

(
1− u

(
ν

√
1 +

1

(1− x)2ν +O
(
u

1
2

)))

= v0

(
1− u ν

√
1 +

1

(1− x)2ν +O
(
u

3
2

))

so that (2.1) is

v3
0

1 +
(

1− u

x2
+O

(
u

3
2

))3
+

(
1− u ν

√
1 +

1

(1− x)2ν +O
(
u

3
2

))3

= v3
0

(
1 + 1− 3u

x2
+O

(
u

3
2

)
+ 1− 3u ν

√
1 +

1

(1− x)2ν +O
(
u

3
2

))

= v3
0

(
3− 3u

x2
− 3u ν

√
1 +

1

(1− x)2ν +O
(
u

3
2

))

Simplifying as before and ignoring the O
(
u

1
2

)
term yields

− 3

x2
− 3 ν

√
1 +

1

(1− x)2ν

12

and setting the derivative with respect to x to zero gives

6

x3
− 6

(
1 +

1

(1− x)2ν

) 1−ν
ν 1

(1− x)2ν+1 = 0

⇒ x3 = (1− x)2ν+1

(
1 +

1

(1− x)2ν

) ν−1
ν

⇒ x3

(1− x)3 =
(

(1− x)2ν + 1
) ν−1

ν

⇒ x

1− x
=
(

1 + (1− x)2ν
) ν−1

3ν

⇒ 1− x
x

=
1(

1 + (1− x)2ν
) ν−1

3ν

⇒ x =
1

1 + 1

(1+(1−x)2ν)
ν−1
3ν

which can be solved numerically using recursion. That is, we can start with
a reasonable guess like x0 = 0.5 and apply

xi+1 =
1

1 + 1

(1+(1−xi)2ν)
ν−1
3ν

for i = 0, 1, 2, It turns out that the sequence (x0, x1, x2, ...) converges
rapidly. For ν = 2 we get limi→∞ xi = 0.502477754..., and hence we have

lim
u→0

x0(u) = 0.502477754...

For higher values of ν, the value of limi→∞ xi converges back to 0.5. Already
for ν = 3, we get the value 0.5008526344....

For a higher number of turbines, it is reasonable to expect, based on
these numbers, that the optimal placement is almost, but not quite evenly
spaced for ν > 1. We shall return to this matter in Section 4.2.4.

13

Table 2.1: Wind conditions at Oseberg A Platform

Direction Percentage

N 7%
NNE 6%
NE 2%

ENE 1%
E 2%

ESE 3%
SE 6%
SSE 13%

S 10%
SSW 7%
SW 7%

WSW 7%
W 5%

WNW 4%
NW 5%

NNW 7%

2.5 Wind conditions

Wind statistics is available on the ”Windfinder” web site [17]. For the test
cases of Chapter 4, we used the conditions at Oseberg A Platform outside
the coast of Norway, given in Table 2.1. Apparently, statistics on velocity
and direction simultaneously is unavailable.

14

Chapter 3

Wake model

In this chapter we propose a new wake model that we will use in the com-
putations.

3.1 The wake behind a single turbine

Our starting point is Katić et al.’s model. It is in turn based on the Jensen
model which was described in the previous chapter. Recall that the velocity
deficit coefficient is given by

δ =
2

3

(
r

r + κd

)2

(3.1)

up to a distance r + κd from the centre line. In [5], κ is set to 0.075.
(According to the Wind Atlas Analysis and Application Program [6], it may
be better to use the smaller value of 0.04 offshore, whereas 0.05 is suggested
in [18]. We have assumed κ = 0.075 for consistency.) If only a fraction ρ
of the rotor circle is in the wake, the deficit is multiplied by ρ (according to
[6]).

In their article, Katić et al. state that the aim of this simple model is not
to describe the velocity field accurately; a Gaussian distribution of the deficit
across the wake is more commonly assumed. A bell-shaped distribution is
also evident in Fig. 4 of the article. On this basis, and since a certain
level of accuracy in the velocity field description is required for our purpose,
we propose a wake model with a Gaussian distribution across the wake, and
mass conservation like in the original model. Immeditately behind a turbine,
the velocity deficit coefficient is 2

3 in a region with area πr2 according to the
Jensen model. Therefore, if the velocity deficit coefficient at a distance s
from the centre line is given by

δ = ξe−
s2

2σ2

15

Figure 3.1: Top hat-shaped wake model vs. Gaussian wake model with a
small d

where σ is some parameter corresponding to the standard deviation of a
normal distribution, and ξ is some quantity independent of s, then the mass
conservation equation becomes∫ ∞

0
2πsξe−

s2

2σ2 ds =
2

3
πr2 ⇒ 2πσ2ξ =

2

3
πr2

On solving for ξ, we get

ξ =
r2

3σ2

and the velocity deficit coefficient is given by

δ =
r2

3σ2
e−

s2

2σ2

If we also impose that δ should agree with (3.1) for s = 0, we get

r2

3σ2
=

2

3

(
r

r + κd

)2

yielding σ = r+κd√
2

which gives

δ =
2

3

(
r

r + κd

)2

e
− s2

(r+κd)2 (3.2)

In Figures 3.1 and 3.2 we can see how (3.2) compares with the original
model. If the distance d is much smaller than r, the Jensen model might
give a more realistic description of the wind velocity field than our variant.
In this case, we consider what portion of the rotor circle is in the wake; this
is of course less important to take into account for larger d. The angle in
Figure 3.3 is cos−1 |s|

2r , and the wind deficit coefficient is thus 2
3 times the

ratio of the gray area to the area of one circle, i.e.,

2

3

2 cos−1 |s|
2r −

|s|
r

√
1−

(
s
2r

)2
π

16

Figure 3.2: Top hat-shaped wake model vs. Gaussian wake model with a
somewhat larger d

Figure 3.3: Intersection of two rotor circles

Figure 3.4: Gaussian distribution vs. overlap

17

for |s| ≤ 2r. In Figure 3.4 we can see how this compares with (3.2) for
d = 0. It would appear that (3.2) is a plausible estimate for the wind deficit
coefficient when applied to other turbines whether d is large or small.

3.2 Multiple wakes

Now recall Katić et al.’s proposed formula for the velocity deficit in the case
of several overlapping wakes:

vj = v0 −
√

(δ1jv1)2 + ...+
(
δ(j−1)jvj−1

)2
Also recall that they assume κ = 0.075. However, later on they state that in
the case of two turbines, it would be better to set κ to 0.11 after the second
turbine, based on measurements done within 8 rotor radii. We propose
to use the 3-norm instead of the 2-norm for combined wakes to avoid this
inconsistency. If we consider three turbines with equidistant distribution on
a line in the wind direction, the velocity deficit coefficient in front of the last
turbine would be

2

3

√√√√(r

r + 2× 0.075d

)4

+

((
1− 2

3

(
r

r + 0.075d

)2
)(

r

r + βd

)2
)2

(3.3)

if we assume the 2-norm and an alternative value β for κ after the second
turbine, and

2

3
3

√√√√(r

r + 2× 0.075d

)6

+

((
1− 2

3

(
r

r + 0.075d

)2
)(

r

r + 0.075d

)2
)3

(3.4)
if we assume the 3-norm and the fixed value 0.075 for κ. As we can see in
Figure 3.5, these two intersect when d/r is near 5. For larger values, (3.4)
gets closer and closer to (3.3) with β = 0.075 - but so does the ∞-norm
(the maximum of the individual deficits), and there are no measurements
that suggest that the combined deficit should be smaller than the ∞-norm.
We conclude from this that using the 3-norm for estimating the deficit of
the combination of two wakes is consistent with Katić et al.’s observations.
And since it also generalizes in an obvious way to multiple wakes, we will
incorporate it in our model.

Altering the ratio between the distances gives us Figures 3.6 and 3.7.
The main characteristics are the same as in Figure 3.5.

18

Figure 3.5: Black curve: 2-norm, β = 0.075
Blue curve: 2-norm, β = 0.11
Green curve: 3-norm
Red curves: Individual deficits

Figure 3.6: Distances between the first two and last two turbines: 2d and d
respectively

19

Figure 3.7: Distances between the first two and last two turbines: d and 2d
respectively

3.3 Proposed wake model (summary)

We have arrived at the following wake model which we will apply from now
on.

If turbine i is located in front of turbine j in the downstream direction,
the velocity deficit coefficient at turbine j due to turbine i’s presence is given
by

δij =
2

3

(
r

r + κdij

)2

e
−

s2ij

(r+κdij)
2

where r is the rotor radius, κ = 0.075, dij is the length of the downstream
component of the vector from turbine i to turbine j, and sij is the length of
the orthogonal component.

If the turbines are sorted downstream such that i < j implies dij ≥ 0,
the wind velocity deficit experienced by turbine j is given recursively for
j = 1, 2, ... by

vj = v0 − 3

√
(δ1jv1)3 + ...+

(
δ(j−1)jvj−1

)3
(3.5)

where v0 is the initial wind velocity.

3.4 Varying wind conditions

In order to deal with varying wind directions we introduce permutations
σθ that sort the turbines for any given wind direction θ, so that σθ(i) = j
if turbine no. j is the ith one in the downstream direction of θ. In more
mathematical terms, we require that with(

dij
sij

)
=

(
cos θ sin θ
− sin θ cos θ

)(
xσθ(j) − xσθ(i)

yσθ(j) − yσθ(i)

)
(3.6)

20

where the pairs (xi, yi) are turbine coordinates, we have dij ≥ 0 for i < j.
When appropriate, we can also require that σ0 is the identity permutation
in order to avoid ambiguity of the numbering.

In some cases it may be appropriate to represent these permutations by
binary matrices Aθij . With Aθij = 1 if σθ(i) = j and 0 otherwise, (3.6) be-
comes

dij =
n∑
k=1

(xk cos θ + yk sin θ)
(
Aθjk −Aθik

)
sij =

n∑
k=1

(−xk sin θ + yk cos θ)
(
Aθjk −Aθik

)
Of course, the identity permutation corresponds to A0 = I.

21

Chapter 4

Optimization methods

4.1 Complete mathematical models

With m denoting the number of distinct wind directions, we let θw = 2πw
m

for w ∈ {0, 1, ...,m− 1} and write A(w) instead of Aθw . Let R ⊂ R2 denote
the region in which the turbines are to be placed.

We present complete mathematical models that can be coded more or
less directly into commercial solver software.

4.1.1 Problem 1

Before arriving at the model in compact form, let us take a closer look at
some of the constraints involved.

(xi, yi) ∈ R for i = 1, 2, ..., n (coordinates for the turbines in region R)

n∑
i=1

Aik(w) =
n∑
j=1

Akj(w) = 1 for 1 ≤ k ≤ n (ensures that each row and

each column of A(w) contains exactly one positive entry)

We can rewrite (3.5) so as to eliminate the root sign, and obtain

(v0(w)− vj(w))3 =
∑
i<j

(δij(w)vi(w))3

22

In summary, we have the following model:

max
x,y,A,d,s,δ,v

∑
w<m

(
p(w)

n∑
i=1

vi(w)3

)
(xi, yi) ∈ R 1 ≤ i ≤ n
Aij(w) ∈ {0, 1} 1 ≤ i, j ≤ n, 0 ≤ w < m

A(0) = I
n∑
i=1

Aik(w) = 1 1 ≤ k ≤ n, 0 ≤ w < m

n∑
j=1

Akj(w) = 1 1 ≤ k ≤ n, 0 ≤ w < m

dij(w) =

n∑
k=1

(xk cos θw + yk sin θw) (Ajk(w)−Aik(w)) 1 ≤ i < j ≤ n, 0 ≤ w < m

sij(w) =

n∑
k=1

(−xk sin θw + yk cos θw) (Ajk(w)−Aik(w)) 1 ≤ i < j ≤ n, 0 ≤ w < m

δij(w) =
2

3

(
r

r + κdij(w)

)2

e
−

sij(w)2

(r+κdij(w))2 1 ≤ i < j ≤ n, 0 ≤ w < m

(v0(w)− vj(w))
3

=
∑
i<j

(δij(w)vi(w))
3

1 ≤ j ≤ n, 0 ≤ w < m

dij(w) ≥ 0 1 ≤ i < j ≤ n, 0 ≤ w < m

4.1.2 Problem 2

For Problem 2, most of the variables from Problem 1 can be pre-calculated
and inserted as constants in the solver code. Thus xk and yk for k = 1, 2, ..., n
are fixed (and possibly placed in a regular grid), and we introduce the binary
decision variables α1, ..., αn so that αk indicates whether or not there will
be a turbine in location (xk, yk). We also introduce a fixed cost c associated
with the installation of a single turbine; it would also have been possible
to consider cabling costs or other aspects. Note that a constant cost per
turbine makes no difference to Problem 1.

Since

(v0(w)− vj(w))3 =

∑
i<j

(δij(w)vi(w))3,
n∑
i=1

Ajiαi = 1

v0(w)3, otherwise

it follows that

(v0(w)− vj(w))3 =

(
n∑
i=1

Ajiαi

)(∑
i<j

(δij(w)vi(w))3

)
+

(
1−

n∑
i=1

Aji(w)αi

)
v0(w)3

23

⇒ v0(w)3−(v0(w)− vj(w))3 =

(
n∑
i=1

Aji(w)αi

)(
v0(w)3 −

∑
i<j

(δij(w)vi(w))3

)
Pre-calculated parameters:

w ∈ {0, 1, ...,m− 1}; θw = πw
16

xi and yi for i = 1, 2, ..., n (coordinates for turbines)

A(w) - binary n× n-matrix

A(0) = I

n∑
i=1

Aik(w) =
n∑
j=1

Akj(w) = 1

dij(w) =
n∑
k=1

(xk cos θw + yk sin θw) (Ajk(w)−Aik(w)) for 1 ≤ i < j ≤ n

sij(w) =
n∑
k=1

(−xk sin θw + yk cos θw) (Ajk(w)−Aik(w)) for 1 ≤ i < j ≤ n

δij(w) = 2
3

(
r

r+κdij(w)

)2
e
−

sij(w)2

(r+κdij(w))
2

for 1 ≤ i < j ≤ n

dij(w) ≥ 0 for 1 ≤ i < j ≤ n

Model:

max
α,v

(∑
w<m

(
p(w)

n∑
i=1

vi(w)3

)
− c

n∑
i=1

αi

)
αi ∈ {0, 1} 1 ≤ i ≤ n
v0(w)3 − (v0(w)− vj(w))3

=

(
n∑
i=1

Aji(w)αi

)v0(w)3 −
∑
i<j

(δij(w)vi(w))3

 1 ≤ j ≤ n, 0 ≤ w < m

24

4.2 Heuristic methods

An alternative to using exact methods is to implement heuristic algorithms
that require less calculation. We consider two different methods for Problem
1 and one for Problem 2.

As we go along, we are going to test the methods on a simple case in
order to get an idea of the performance. Based on these preliminary tests,
we make a selection of solution methods to undergo a detailed experimental
evaluation in Chapter 5. The case we will consider most frequently is the
following.

Region R0 = {(x, y)|0 ≤ x ≤ 10, 0 ≤ y ≤ 10}; rotor radius r0 = 0.1.

The wind directions are given in Table 4.1 and are based on those of Oseberg
(cf. Section 2.5). Recall that the data consisted of percentage numbers for
the distributions on 16 wind directions. As the numbers add up to 92%,
we suspect that all the numbers have been rounded downwards. Thus the
weights we will use in the implementations are 2× percentage + 1. We pre-
ferred a finer partition for the model and added a direction in the middle
of any two consecutive directions in the table, and simply set the weight for
that direction to be the mean of the weights for the two adjacent directions.

For simplicity, the mean wind velocity in any direction has been assumed
to be equal to 1.0 unit. (This ”mean” wind velocity should, strictly speaking,
be the cubic root of the mean value of v3.)

4.2.1 The Nelder-Mead optimization method

For Problem 1, it seems preferable to apply an optimization method that
is derivative-free. We have considered a well known method of the desired
type, namely the Nelder-Mead method.

The idea of the method is to keep track of n+1 points (simplex vertices)
simultaneously, and at each step, either improve on the ”worst” point along
the line through the center of the others, or shrink the whole simplex towards
the ”best” point.

Note that for our application, a single vertex of the simplex contains the
coordinates for all the turbines.

Algorithm 1 is the original Nelder-Mead method and is based on Nocedal
and Wright [19]. At each step, the n+ 1 vertices x1, ..., xn+1 of the current
simplex are ordered so that

f(x1) ≥ ... ≥ f(xn+1)

where f() is the evaluation function. The centroid of the best n points is

25

Table 4.1: Test case wind directions based on Oseberg Platform A data

Direction Given percentage Weight

N 7% 15
NNNE 14
NNE 6% 13

NENNE 9
NE 2% 5

NEENE 4
ENE 1% 3

EENE 4
E 2% 5

EESE 6
ESE 3% 7

SEESE 10
SE 6% 13

SESSE 20
SSE 13% 27
SSSE 24

S 10% 21
SSSW 18
SSW 7% 15

SWSSW 15
SW 7% 15

SWWSW 15
WSW 7% 15

WWSW 13
W 5% 11

WWNW 10
WNW 4% 9

NWWNW 10
NW 5% 11

NWNNW 13
NNW 7% 15

NNNW 15

26

denoted by

x̄ =
1

n

n∑
i=1

xi

Points along the line joining x̄ and the worst vertex xn+1 are denoted by

x̄(t) = x̄+ t(xn+1 − x̄)

and we let ft denote f(x̄(t)).
In order to handle constraints, we can either introduce a Lagrangian

multiplier, or alter the algorithm itself. For example, if the region is rect-
angular with sides parallel to the coordinate axes, we can add to f() the
term

−λ

(∑
xi<xmin

(xmin − xi) +
∑

xi>xmax

(xi − xmax)

+
∑

yi<ymin

(ymin − yi) +
∑

yi>ymax

(yi − ymax)

)

This was incorporated in the experiments with Algorithm 1 that we will
return to in Section 4.2.3.

Alternatively, we can perform a truncated binary search whenever an
infeasible vertex is encountered. That is, we incorporate a procedure
binsearch(x, y) which calculates z = x+y

2 and replaces x by z if z is feasible,
and replaces y by z otherwise. This is repeated until a minimal number of
iterations is exceeded and x has changed at least once, and the new value
of x is then returned. This results in Algorithm 2 where x̄(−1) is subject to
being assigned new feasible values, and x̄(−1

2) is adjusted accordingly (i.e.,

is set to x̄+x̄(−1)
2).

For both variants, it is assumed that the region is convex. Otherwise, it
is not clear how the case when x̄ is not feasible should be handled.

4.2.2 An alternative heuristic method for Problem 1

We present an alternative to Nelder-Mead - a simple heuristic optimization
method in the ”black box”-category. It is probably too primitive for having
received any attention in the literature, and is described in Algorithm 3. As
before, f() denotes the evaluation function.

The idea is to try out configurations where each turbine is moved at
random within a radius r (in the supremum norm, for simplicity) from its
current position, update the best configuration if the new one is found to be
better, and repeat with a slowly decreasing value of r.

An undesirable aspect of this algorithm is that after a considerable
amount of turbines have been drawn towards the edge of the region, many

27

Algorithm 1 The Nelder-Mead optimization method

Select n+ 1 vertices x1, ..., xn+1 at random inside the region
Sort vertices so that f(x1) ≥ ... ≥ f(xn+1)
while f(x1)− f(xn+1) > ∆ do

Compute x̄ = 1
n

n∑
i=1

xi

if f−1 > f(xn) then
if f−2 > f−1 > f(x1) then

Replace xn+1 by x̄(−2)
else

Replace xn+1 by x̄(−1)
else
if f−1/2 ≥ f−1 > f(xn+1) then

Replace xn+1 by x̄(−1
2)

else if f1/2 > f(xn+1) ≥ f−1 then

Replace xn+1 by x̄(1
2)

else
Replace xi by x1+xi

2 for i = 2, 3, ..., n+ 1
return x1; f(x1)

of the attempted next configurations to be tested will either be infeasible
(and rejected), or away from the edge again. If the region is rectangular
with sides parallel to the coordinate axes, then we can apply the variant
given in Algorithm 4, in which a turbine that is initially placed outside of
the region is moved to the border before the new configuration is evaluated.
In other simple cases, a similar approach may be worth considering.

In this chapter we will normally refer to the method as Algorithm 3,
even if Algorithm 4 applies, to avoid confusion.

It should be noted that this algorithm bears some similarity with the
method of simulated annealing [20]. The idea of simulated annealing is to
mimic annealing in metallurgy, which involves heating and controlled cooling
of a material so that the atoms get unstuck from their initial positions and
get more chances of finding configurations with lower internal energy. In each
iteration of the algorithm, a neighbour to the current solution is chosen at
random. The neighbour replaces the current solution with probability 1 if
it is better, and with some probability that depends on the evaluations, and
also of the time, otherwise. It is possible that for a suitable choice of the
function that computes the probability, the iterated solutions generated by
this method would behave more or less like those generated by Algorithm 3.
We have not experimented on this, but left it as a possible trail to pursue
in the future.

28

Algorithm 2 The Nelder-Mead optimization method with binary search

Select n+ 1 vertices x1, ..., xn+1 at random inside the region
Sort vertices so that f(x1) ≥ ... ≥ f(xn+1)
while f(x1)− f(xn+1) > ∆ do

Compute x̄ = 1
n

n∑
i=1

xi

z ← 0
if x̄(−1) infeasible then
x̄(−1)← binsearch (x̄, x̄(−1))

if f−1 > f(xn) then
if x̄(−1) unchanged by binary search and x̄(−2) infeasible then
x̄(−2)← binsearch (x̄(−1), x̄(−2))

if x̄(−1) unchanged by binary search and f−2 > f−1 > f(x1) then
Replace xn+1 by x̄(−2)

else
Replace xn+1 by x̄(−1)

else
if f−1/2 ≥ f−1 > f(xn+1) then

Replace xn+1 by x̄(−1
2)

else if f1/2 > f(xn+1) ≥ f−1 then

Replace xn+1 by x̄(1
2)

else
Replace xi by x1+xi

2 for i = 2, 3, ..., n+ 1
return x1; f(x1)

Algorithm 3 A heuristic method for Problem 1, version 1

C ← {(x1, y1), ..., (xn, yn)} (random feasible configuration)
r ← r0 ≈ 1

2diameter(C)
e← f(C)
while r > rmin do
for i = 1 to N do
for j = 1 to n do

repeat
∆xj ← random value ∈ [−r, r]
∆yj ← random value ∈ [−r, r]

until (xj + ∆xj , yj + ∆yj) inside region
C ′ ← {(x1 + ∆x1, y1 + ∆y1), ..., (xn + ∆xn, yn + ∆yn)}
e′ ← f(C ′)
if e′ > e then
C ← C ′

e← e′

r ← r × 0.9
return C; e

29

Algorithm 4 A heuristic method for Problem 1, version 2

C ← {(x1, y1), ..., (xn, yn)} (random feasible configuration)
r ← r0 ≈ 1

2diameter(C)
e← f(C)
while r > rmin do
for i = 1 to N do
for j = 1 to n do

Generate ∆xj ,∆yj ∈ [−r, r] at random
if xj + ∆xj < xmin then

∆xj ← xmin − xj
if xj + ∆xj > xmax then

∆xj ← xmax − xj
if yj + ∆yj < ymin then

∆yj ← ymin − yj
if yj + ∆yj > ymax then

∆yj ← ymax − yj
C ′ ← {(x1 + ∆x1, y1 + ∆y1), ..., (xn + ∆xn, yn + ∆yn)}
e′ ← f(C ′)
if e′ > e then
C ← C ′

e← e′

r ← r × 0.9
return C; e

30

Table 4.2: Results of heuristic algorithms for Problem 1 on simple test case

Method Profit

Algorithm 1 (Nelder-Mead, Lagrangian with λ = 0.08) 19.3332
Algorithm 1 (Nelder-Mead, Lagrangian with λ =∞) 19.2905
Algorithm 2 (Nelder-Mead, binary search) 19.3119
Algorithm 3 (Alternative heuristic method) 19.4285

Figure 4.1: Placement generated with Algorithm 1, λ = 0.08
Profit = 19.3332

4.2.3 Problem 1: simple case experiments

We tried out Algorithms 1-3 on region R0 with r = r0 and n = 20. The
parameter ∆ was set to 10−7 for Nelder-Mead. Algorithm 1 was run with
λ = 0.08 and λ = ∞; the former was chosen because it consistently pro-
duced feasible placements whereas smaller values tended to produce infeasi-
ble placements. The lower bound for the number of binary search iterations,
T , was set to 5 in Algorithm 2, and rmin was set to 10−6 and N to 500 in
Algorithm 3. The best results after 30 runs of each algorithm are given
in Table 4.2. The best placement found with each algorithm is shown in
Figures 4.1-4.4.

Apparently, Algorithm 3 found the best results, but it was also the slow-
est: about 6 minutes for one run, while the Nelder-Mead variants took
around 1 minute. (This can be of course be adjusted by choosing a smaller
N in Algorithm 3, as we will do in the next chapter.) In view of the per-
formance of Algorithm 3, we also tried it out with R0 replaced by a circle

31

Figure 4.2: Placement of 20 turbines generated with Algorithm 1, λ =∞
Profit = 19.2905

Figure 4.3: Placement of 20 turbines generated with Algorithm 2
Profit = 19.3119

32

Figure 4.4: Placement of 20 turbines generated with Algorithm 3
Profit = 19.4285

of diameter 10, again taking the best out of 30 runs. This gave a profit
of 19.2070 for the placement shown in Fig. 4.5. Notice that many of the
turbines are placed on the perimeter, although at a couple of places they
”cut corners” in order to lie on a (more or less) straight line.

Can we give some plausible reason as to why the Nelder-Mead method
does not perform as well as Algorithm 3? One possible explanation is that a
placement given by the mean of two or more reasonably good turbine coor-
dinate vectors might tend to have the turbines somewhat lumped together
near the centre of the region, and not be very good at all.

A similar argument applies to a metaheuristic method known as particle
swarm optimization [21]. The idea of this method is to keep track of a set
(”swarm”) of different possible solutions (”particles”). In each iteration,
the ”velocity” of each particle is updated according to that particle’s best
position so far, and also according to the best position of any particle found
so far. Then, the position of each particle is updated according to its velocity.

We have not experimented on particle swarm optimization here. In ad-
dition to the apparent weakness that moving towards good solutions may
be inefficient for the placement of multiple turbines, we may also anticipate
that the constraints involved would be even more cumbersome to handle
than for the Nelder-Mead method. Like the method of simulated annealing,
however, this could be something to investigate further in a possible future
extension of this project.

33

Figure 4.5: Placement of 20 turbines generated with Algorithm 3
Profit = 19.2070

Table 4.3: Location coordinates suggested by Algorithm 3 applied to a 1-
dimensional case; n = 3 (cf. Section 2.4)

r = 0.1 r = 0.01 r = 0.001

x1 = 0.0000 x1 = 0.0000 x1 = 0.0000
x2 = 5.0225 x2 = 5.0095 x2 = 5.0086
x3 = 10.0000 x3 = 10.0000 x3 = 10.0000

4.2.4 1-dimensional case revisited

We also revisited the 1-dimensional case. It turns out that Algorithm 3
modified for the 1-dimensional case with a small number of turbines now
gives virtually the same results on every run. The results are given in Tables
4.3-4.6. We have assumed that the length of the wind farm is 10 units and
that the wind direction is always in positive x-direction.

For the smaller values of n, the figures were confirmed by the optimiza-
tion software BARON. The GAMS code is given in Appendix A. However,
while Algorithm 3 produced the same numbers to several decimal places on
repeated runs, BARON gave numbers that were slightly off since it stops
refining the results once the upper and lower bounds for the objective func-
tion are sufficiently close, and the limits can not be set smaller than 10−9.
(The initial wind speed in set to 1000 in the GAMS code, which gave higher
accuracy than lower values.)

We mentioned at the end of Section 2.4 that the optimal placement is

34

Table 4.4: Location coordinates suggested by Algorithm 3 applied to a 1-
dimensional case; n = 4

r = 0.1 r = 0.01 r = 0.001

x1 = 0.0000 x1 = 0.0000 x1 = 0.0000
x2 = 3.3788 x2 = 3.3396 x2 = 3.3385
x3 = 6.6663 x3 = 6.6749 x3 = 6.6741
x4 = 10.0000 x4 = 10.0000 x4 = 10.0000

Table 4.5: Location coordinates suggested by Algorithm 3 applied to a 1-
dimensional case; n = 5

r = 0.1 r = 0.01 r = 0.001

x1 = 0.0000 x1 = 0.0000 x1 = 0.0000
x2 = 2.5655 x2 = 2.5049 x2 = 2.5035
x3 = 5.0232 x3 = 5.0063 x3 = 5.0052
x4 = 7.4795 x4 = 7.5068 x4 = 7.5061
x5 = 10.0000 x5 = 10.0000 x5 = 10.0000

likely almost, but not quite, equidistant as u→ 0 regardless of what ν-norm
is used to model multiple wakes. These experiments appear to confirm this
for ν = 3 to some extent.

Thus, when we consider Problem 2, it makes sense to base the set of slots
on regular grids. Note that in the third column in each of these experiments,
all the turbines have moved slightly in the wind direction away from their
spot in an equidistant distribution. With shifting wind directions, this effect
would most likely be more or less eliminated - although not completely: an
example is given in Table 4.7.

4.2.5 Heuristics for Problem 2

Algorithm 5 gives an overview of a natural approach to Problem 2, and a
more detailed version is given by Algorithm 6. The parameter ~α denotes
the incidence vector of occupied slots among all the n slots. The condition
distance(i, j) ≤

√
5 assumes a regular square grid structure on the slots and

says essentially that only movements up to a knight’s move away in the grid
are considered. Alternative conditions to limit the number of possible moves
are of course possible.

35

Table 4.6: Location coordinates suggested by Algorithm 3 applied to a 1-
dimensional case; n = 21

r = 0.1 r = 0.01 r = 0.001

x1 = 0.0000 x1 = 0.0000 x1 = 0.0000
x2 = 0.6892 x2 = 0.5066 x2 = 0.5006
x3 = 1.1749 x3 = 1.0063 x3 = 1.0007
x4 = 1.6621 x4 = 1.5059 x4 = 1.5008
x5 = 2.1493 x5 = 2.0055 x5 = 2.0009
x6 = 2.6365 x6 = 2.5050 x6 = 2.5009
x7 = 3.1236 x7 = 3.0046 x7 = 3.0010
x8 = 3.6106 x8 = 3.5041 x8 = 3.5010
x9 = 4.0975 x9 = 4.0037 x9 = 4.0011
x10 = 4.5844 x10 = 4.5032 x10 = 4.5011
x11 = 5.0712 x11 = 5.0028 x11 = 5.0012
x12 = 5.5579 x12 = 5.5023 x12 = 5.5012
x13 = 6.0446 x13 = 6.0019 x13 = 6.0013
x14 = 6.5312 x14 = 6.5014 x14 = 6.5014
x15 = 7.0175 x15 = 7.0010 x15 = 7.0014
x16 = 7.5037 x16 = 7.5005 x16 = 7.5015
x17 = 7.9893 x17 = 8.0000 x17 = 8.0015
x18 = 8.4741 x18 = 8.4996 x18 = 8.5016
x19 = 8.9574 x19 = 8.9991 x19 = 9.0016
x20 = 9.4374 x20 = 9.4984 x20 = 9.5015
x21 = 10.0000 x21 = 10.0000 x21 = 10.0000

Table 4.7: Location coordinates suggested by Algorithm 3 applied to a 1-
dimensional case; n = 5 and wind uniformly distributed in both directions

r = 0.1 r = 0.01 r = 0.001

x1 = 0.00000 x1 = 0.00000 x1 = 0.00000
x2 = 2.54308 x2 = 2.49905 x2 = 2.49868
x3 = 5.00000 x3 = 5.00000 x3 = 5.00000
x4 = 7.45692 x4 = 7.50095 x4 = 7.50132
x5 = 10.00000 x5 = 10.00000 x5 = 10.00000

36

Algorithm 5 Overview of a heuristic method for Problem 2

Start with no installed turbines
repeat

Install turbines in most profitable vacant slot
until no improvement possible
repeat

Select most profitable action from:
– installing turbine in vacant slot
– deinstalling existing turbine
– moving turbine to nearby vacant slot

until no improvement possible
return best placement; net profit

4.2.6 Problem 2: simple case experiments

For a square-shaped, continuous region like R0, it is possible to incorporate
the heuristics for Problem 2 by way of Algorithm 7.

We ran an experiment with r = r0, cost per turbine c = 0.85, kmin = 10,
kmax = 30. The results are given in Table 4.8.

As we can see, the net profit peaked at k = 17.
We would like to compare the heuristic methods on Problem 1 and Prob-

lem 2. Algorithm 3 does not perform particularly well with more than 20
turbines, since it is rather unlikely that any given next step does not con-
tain some entries that point in the opposite direction of the the nearest local
optimum. We attempted to tackle this problem by first placing 10 turbines
using Algorithm 3 and fixing them, then placing 10 additional ones and so
on up to 50. For this experiment, we also incorporated the cost c = 0.85 per
turbine. The results are given in Table 4.9. (There was only one run since
it took more than one hour.)

The conclusion is that this modified version of Algorithm 3 does not
work very well, at least when compared with Algorithm 7.

Next, we tried a Lagrangian relaxation of the cardinality contraint; i.e.,
we adjusted the cost c in order for Algorithm 7 to find a placement com-
parable to our earlier experiments with 20 turbines. We did not succeed
in making it arrive at exactly 20 turbines: Values from 0.932 to 0.938 all
seemed to give 22 turbines, while values from 0.939 and upwards gave fewer
than 20 turbines.

In fact, all values of c from 0.932 to 0.936 that were tested gave the
exact same placement with profit 21.3027 (costs not included), while 0.937
and 0.938 gave a different placement with profit 21.3090. Both placements
had k = 19 and are shown in Figures 4.6 and 4.7.

Then we ran Algorithm 3 again, with n = 22. Out of the 30 runs, only
one run produced a profit above 21.3. It is shown in Fig. 4.8. The profit is

37

Algorithm 6 A heuristic method for Problem 2

~α← ~0, e← f(~α) = 0
repeat
e1 ← 0
for i = 1 to n do
if α(i) = 0 then
α(i)← 1
e2 ← f(~α)
if e2 > e1 then
u← i
e1 ← e2

α(i)← 0
if e1 > e then
α(u)← 1
e← e1

until e1 < e (no improvement found)
repeat
e1 ← 0, e2 ← 0
for i = 1 to n do
α(i)← 1− α(i)
e3 ← f(~α)
if e3 > e1 then
u← i
e1 ← e3

α(i)← 1− α(i) (install or deinstall)
v ← 0, w ← 0
for i = 1 to n− 1 do
for j = i+ 1 to n do

if α(i) + α(j) = 1 and distance(i, j) ≤
√

5 then
α(i)← 1− α(i)
α(j)← 1− α(j) (swap i and j)
e3 ← f(~α)
if e3 > e2 then
v ← i, w ← j
e2 ← e3

α(i)← 1− α(i)
α(j)← 1− α(j)

if e2 > e1 and e2 > e then
α(v)← 1− α(v)
α(w)← 1− α(w)
e← e2

if e1 > e and e1 > e2 then
α(u)← 1− α(u)
e← e1

until e1 < e and e2 < e
return ~α; e 38

Algorithm 7 Heuristics for Problem 2 on a square-shaped continuous region

for k = kmin to kmax do

S ←
{(

i
k−1 × l,

j
k−1 × l

)
: 0 ≤ i, j ≤ k − 1

}
Find net profit e of S with Algorithm 6
return n; no. of turbines; e

Table 4.8: Experimental results of Algorithm 7

k No. of turbines Net profit Running time

10 39 3.1990 26 s
11 38 3.3582 53 s
12 41 3.4043 50 s
13 43 3.4651 1 min 55 s
14 44 3.5015 2 min 48 s
15 44 3.5411 2 min 36 s
16 46 3.5731 4 min 50 s
17 48 3.5950 5 min 53 s
18 50 3.5651 7 min 56 s
19 52 3.5455 9 min 45 s
20 51 3.5023 17 min 9 s
21 44 3.5040 11 min 41 s
22 42 3.3566 10 min 42 s
23 41 3.4220 14 min 40 s
24 44 3.3799 29 min 42 s
25 43 3.3783 25 min 22 s
26 43 3.4292 43 min 28 s
27 42 3.4018 36 min 34 s
28 42 3.3692 49 min 22 s
29 41 3.3910 57 min 51 s
30 42 3.4238 70 min 48 s

Table 4.9: Experimental results of Algorithm 3 with increasing number of
turbines

No. of turbines Net profit

10 1.3941
20 2.3939
30 2.9494
40 3.2376
50 3.1236

39

Figure 4.6: Placement generated with Algorithm 7 for c = 0.934
Profit = 21.3027

Figure 4.7: Placement generated with Algorithm 7 for c = 0.938
Profit = 21.3090

40

Figure 4.8: Placement of 22 turbines generated with Algorithm 3
Profit = 21.3062

21.3062, between the two results found with Algorithm 7.
We believe these experiments favour Algorithm 7, since only one run of

Algorithm 3 out of 30 produced a profit on level with those of Algorithm 7.
This matter will be investigated further in Chapter 5.

Returning to the original experiment of this subsection, we observed that
many of the turbines in the placement found with k = 17 were placed near
the North and South edges. Therefore, we added slots along those edges only
(i.e., one extra slot midways between any two consecutive original ones). But
the result of this was that the net profit dropped to 3.5257. We concluded
that the idea of extra slots along the edges was not worth pursuing.

41

Chapter 5

Experiments

In the last chapter, we found mathematical models that should be possible to
implement with solver software, and we tried out various heuristic methods
on a rather simple case with a square-shaped wind farm. Our next task is
to bring the theory to life, so to speak; to actually do the implementations
of the mathematical models and to try out the heuristic methods on farms
of a more general shape.

One way of representing the area occupied by a wind farm is to provide
a set of linear constraints. This is suitable for the heuristic methods we
considered for Problem 1. In fact, both variants of Nelder-Mead as well as
the possible improvement of Algorithm 3, given by Algorithm 4, are easily
adapted to this situation. The most prominent disadvantage is that any
region thus defined is necessarily convex, but as we have already mentioned,
applying Nelder-Mead to non-convex regions would be problematic in any
case (confer Section 4.2.1).

A more general way to represent the area is by a binary matrix, in which
each entry corresponds to a ”pixel” in the farm that may or may not receive
a turbine. Algorithm 3 can easily be modified in a way that would work for
this representation, as seen in Algorithm 8. Algorithm 7 can run in the form
of Algorithm 9, which tries out various ways to place a regular grid. For
each row in the grid, the rightmost and the leftmost positive matrix entry is
added to the set of possible locations (if not already included), as well as the
uppermost and lowermost positive entry for each grid column. This is done
in order to make best possible use of the available area. In order to justify
this part, we can also run the algorithm without adding the endpoints and
compare the results.

It is not hard to modify Algorithm 9 so that it would handle linear
constraints instead of binary matrices. However, the emphasis is put on
comparing the various algorithms for Problem 1 with each other, to compare
Algorithm 3 with Algorithm 9, and to do the latter with the highest degree of
generality. Running Algorithm 9 on wind farms given by linear constraints

42

is therefore somewhat redundant.

Algorithm 8 A discrete version of Algorithm 3

C ← {(x1, y1), ..., (xn, yn)} random feasible configuration
r ← r0 ≈ 1

2diameter(C)
e← f(C)
while r > 1 do

for i = 1 to N do
for j = 1 to n do

repeat
∆xj ← random value ∈ [−r, r]
∆yj ← random value ∈ [−r, r]

until (xj + ∆xj , yj + ∆yj) inside region and
distinct from (xj′ + ∆xj′ , yj′ + ∆yj′) for all j′ < j

C ′ ← {(x1 + ∆x1, y1 + ∆y1), ..., (xn + ∆xn, yn + ∆yn)}
e′ ← f(C ′)
if e′ > e then
C ← C ′

e← e′

r ← [r × 0.9]
return C; e

5.1 Overview of experiments

Appendix B contains GAMS code written for the purpose of solving in-
stances of Problem 1. We will use the region R0 with r = r0, and consider
a rather simple case with 24 wind directions and only two turbines. (We
believe it would not be interesting to consider a smaller number of wind
directions since the turbines might be lined up in a direction with only an
insignificant deficit.)

Problem 2 should be computationally simpler. Therefore, we will try
nine (canonical) locations in R0, c = 0.5 and eight wind directions. The
code is given in Appendix C, and the results are discussed in Section 5.3.1.

Moving on to the heuristic methods, we introduce

Ω =
∑
w<m

p(w)v0(w)3

which is the mean profit of a single turbine, given the probability p(w) and
mean wind velocity v0(w)3 for each wind direction w. (Again (confer the
first part of Section 4.2), this should be the cubic root of the mean value of
v3.)

43

Algorithm 9 A heuristic algorithm for handling wind farm of arbitrary
shape, represented by binary m× n matrix

Read data from file
for k = kmin to kmax do
emax ← 0
for i = 0 to k − 1 do

for j = 0 to k − 1 do

(Add points from regular grid)
S ← ∅
for u = 0 to m− 1 do
if u ≡ i mod k then
for v = 0 to n− 1 do
if v ≡ j mod k and A(u, v) = 1 then
S ← S ∪ {(u, v)}

(Add column bottom and top points)
for u = 0 to m− 1 do
if u ≡ i mod k then
v1 ← min{v : A(u, v) = 1} ∪ {n− 1}
if A(u, v1) = 1 then
if v1 6≡ j mod k then
S ← S ∪ {(u, v1)}

v2 ← max{v : A(u, v) = 1}
if v2 > v1 and v2 6≡ j mod k then
S ← S ∪ {(u, v2)}

(Add leftmost and rightmost row points)
for v = 0 to n− 1 do
if v ≡ j mod k then
u : 1← min{u : A(u, v) = 1} ∪ {n− 1}
if A(u1, v) = 1 then
if u1 6≡ i mod k then
S ← S ∪ {(u1, v)}

u2 ← max{u : A(u, v) = 1}
if u2 > u1 and u2 6≡ i mod k then
S ← S ∪ {(u2, v)}

Find net profit e of S with Algorithm 6
if e > emax then

Store configuration S
emax ← e

return mask width k, best configuration found, emax

44

We have chosen to run Algorithms 1, 2 and 4 for 50 test cases given by
linear constraints (see Section 5.2) with n = 20 turbines, rotor radius = 1.5,
and record the best of 10 runs in each instance.

For the Nelder-Mead algorithms, we let ∆ = 10−7Ω, and the Lagrangian
coefficient in Algorithm 1 is set to 0.8Ω. For Algorithm 4, r0 is set to 50.0,
and rmin is set to 10−5. The parameter N is set to 100 in order to get a
running time comparable to the Nelder-Mead variants.

Next we are going to run Algorithm 9, with and without row and column
endpoints, for 50 test cases given by binary matrices (see Section 5.2). The
purpose of this is to prepare for a comparison with Algorithm 8. With
different wind conditions generated for each case and a fixed cost, inevitably
either no turbines will be suggested installed in some of the cases, or a rather
large number will be suggested installed in other cases. For our purpose,
the cost c is set to 60.0, because it was observed that with this value, Ω
would lie in the interval [c, 4

3c] in relatively many cases. We believe this is
suitable, based on the results of the experiments from the previous chapter.
The rotor radius is set to 1.0, and a pixel is set to 1.0× 1.0.

For the cases in which Ω > c, we will run Algorithm 8 with n determined
by the output from Algorithm 9. The search radius r starts at 50 and
terminates at 1. This yields fewer different values of r than in the continuous
case, and therefore, N has been increased to 1000.

Results from all the heuristic methods are given in Section 5.3.2.

5.2 Overview of cases

We generated 50 cases based on linear constraints in the manner given in
Algorithm 10. The wind data (contained in {p(i)}0≤i<m and {v(i)}0≤i<m)
are generated so that the difference between consecutive values is always
relatively small, when we take into consideration that m − 1 and 0 are
consecutive indices in this setting. For example, before the last scaling of

45

the p(i), we have

p(0)− p(m− 1) =p(0)− p(m− 2)−∆p(m− 1) +

m−1∑
j=0

∆p(j)

m

=p(0)− p(m− 3)−∆p(m− 2)−∆p(m− 1) + 2

m−1∑
j=0

∆p(j)

m
=(...)

=p(0)− p(0)−∆p(1)−∆p(2)− ...−∆p(m− 1)

+ (m− 1)

m−1∑
j=0

∆p(j)

m

=∆p(0)−

m−1∑
j=0

∆p(j)

m

An upper bound on the absolute value of the difference between consecutive
values is therefore given by

max{∆p(i)}+

∣∣∣∣∣∣∣∣∣
m−1∑
j=0

∆p(j)

m

∣∣∣∣∣∣∣∣∣ ≤ 1 + 1 = 2

A similar result holds for the v(i).
The cases can be found on the website [22], and are labelled lc01.txt, ...,

lc50.txt.
The same website also contains 50 cases based on binary matrices (bm01.txt,

..., bm50.txt), and the procedure for generating them is given in Algorithm
11.

5.3 Results

5.3.1 Exact solutions to Problem 1 and Problem 2

The programs in Appendices B and C were run with the solver software
BARON.

Unfortunately, even in our Problem 1 case of small size we did not get
useful results. The preprocessing apparently found a feasible solution with
profit just slightly greater than the trivial lower bound of v3

0, and the upper
bound was (trivially) 2v3

0. The program was set to run for 90 minutes. After

46

Algorithm 10 Procedure for generating wind farm test cases based on
linear constraints

(Generate linear constraints)
Start with no constraints
repeat
θ ← random value ∈ [0, 2π)
b← random value ∈ [20, 100]
Add linear constraint: (cos θ)x+ (sin θ)y ≤ b

until all integer points (x, y) with max{|x|, |y|} = 100 infeasible
Remove redundant constraints

(Generate wind direction probability distribution)
repeat
p(0)← random value ∈ [0, 5.0]
for i = 0 to m− 1 do

∆p(i)← random value ∈ [−1, 1]
s← p(0)
for i = 1 to m− 1 do

p(i)← p(i− 1) + ∆p(i)−

m−1∑
j=0

∆p(j)

m
if p(i) > 0 then
s← s+ p(i)

for i = 0 to m− 1 do
if p(i) > 0 then
p(i)← p(i)/s

else
p(i)← 0

until at least 3m
4 positive values

(Generate mean wind velocities)
v(0)← random value ∈ [0, 5.0]
for i = 0 to m− 1 do

∆v(i)← random value ∈ [−0.5, 0.5]
for i = 1 to m− 1 do

v(i)← v(i− 1) + ∆v(i)−

m−1∑
j=0

∆v(j)

m
for i = 1 to m− 1 do
if v(i) < 0 then
v(i)← random value ∈ [0, 1]

47

Algorithm 11 Procedure for generating wind farm test cases based on
binary matrices

(Generate binary matrices)
A← 0 (100× 100 matrix)
for k = 1 to 4 do
xk ← random integer value ∈ [26, 75]
yk ← random integer value ∈ [26, 75]

for i = 1 to 100 do
for j = 1 to 100 do
for k = 1 to 4 do
zk ← random value ∈ [152, 252]
dk ← (i− xk)2 + (j − yk)2

if dk < zk then
Aij ← 1

Generate wind direction probability distribution
and mean wind velocities: Confer Algorithm 10

48 minutes, the number of open nodes had passed 11,000, and the program
reported shortage of memory. The bounds had not improved visibly since
the first iteration at this point, and the program was terminated.

When we ran the Problem 2 code, a lower bound could be found by
taking α(k) = 1 for eack k. This yields a value near 8.6457 · 106 for the
objective function, and is optimal, since a trivial bound when one turbine is
removed, is given by (9 − 1)(v3

0) = 8.0 · 106. The program found this lower
bound already in the preprocessing. The upper bound, however, decreased
rather slowly. The earliest estimate was the trivial upper bound of 9.0 · 106.
After 5000 iterations (and almost 11 minutes running time), it had dropped
to approximately 8.86 ·106, and then to approximately 8.77 ·106 after 20,000
iterations (almost 40 minutes running time). The program terminated after
90 minutes running time, at which point the upper bound was still above
8.72 · 106.

5.3.2 Results of heuristic methods

Algorithm 1 occasionally produced infeasible solutions. Even though the
violations of the linear constraints were mostly very small, they were so rare
that that they were simply discarded.

An upper bound for the total profit can be found by dismissing the wake
effect completely, and is given by nΩ. The results of the experiments are seen
in Table 5.1. The columns with heading ”Rel. eval.” contain evaluations
relative to this upper bound, and the columns with heading ”Time” contain
the mean running time for the 10 runs.

48

For the cases based on binary matrices, Algorithm 9 was run with one
single mask width at a time from 7 down to 3, in order that the running times
could be compared. Next, we repeated the experiments with Algorithm 9
replaced by a version in which row endpoints and column endpoints were
not added to the grid. In the cases 1, 3, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17, 19,
21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 46
and 48, the algorithm suggested that no turbine be installed, due to the fact
that Ω ≤ c. The running time of Algorithm 9 in these cases varied from 3.3
to 8 seconds for mask width 7, 3.5 to 9 seconds for mask width 6, 4.4 to 11
seconds for mask width 5, 5.4 to 16 seconds for mask width 4, and from 8 to
24 seconds for mask width 3. When endpoints were not added, the running
time varied from 1.6 to 4.2 seconds for mask width 7, 2.1 to 5.1 seconds for
mask width 6, 2.6 to 6.7 seconds for mask width 5, 3.3 to 10 seconds for
mask width 5, and from 5.0 to 18 seconds for mask width 3. The results
from the remaining cases are given in Table 5.2 and Table 5.3. The first line
of each entry contains the best net profit and the corresponding number of
turbines, and the second line contains the running time.

Table 5.1: Best relative evaluation in 10 runs

Algorithm 1 Algorithm 2 Algorithm 4
Case Rel. eval. Time Rel. eval. Time Rel. eval. Time

lc01.txt 0.9410 63.7s 0.9442 65.5s 0.9534 75.4s
lc02.txt 0.9392 60.1s 0.9369 68.9s 0.9494 73.7s
lc03.txt 0.9332 53.8s 0.9362 88.4s 0.9447 74.2s
lc04.txt 0.9275 51.6s 0.9188 73.0s 0.9379 76.7s
lc05.txt 0.9522 59.7s 0.9530 66.3s 0.9591 71.8s
lc06.txt 0.9488 57.9s 0.9505 76.0s 0.9578 72.7s
lc07.txt 0.9541 72.9s 0.9545 81.2s 0.9640 77.7s
lc08.txt 0.9378 48.1s 0.9360 48.6s 0.9477 51.5s
lc09.txt 0.9400 50.5s 0.9414 60.8s 0.9515 66.3s
lc10.txt 0.9120 59.0s 0.9165 72.9s 0.9333 76.3s
lc11.txt 0.9206 43.4s 0.9210 45.2s 0.9360 57.3s
lc12.txt 0.9001 71.3s 0.8995 61.9s 0.9165 73.7s
lc13.txt 0.9172 42.2s 0.9116 48.8s 0.9291 58.3s
lc14.txt 0.9130 60.2s 0.9098 77.4s 0.9277 78.2s
lc15.txt 0.9242 51.1s 0.9236 44.0s 0.9383 62.8s
lc16.txt 0.9265 59.8s 0.9255 80.5s 0.9361 78.5s
lc17.txt 0.9515 66.1s 0.9467 75.9s 0.9586 80.8s
lc18.txt 0.9532 47.4s 0.9555 47.5s 0.9683 56.2s
lc19.txt 0.9449 54.4s 0.9497 59.3s 0.9640 67.6s
lc20.txt 0.9414 59.5s 0.9392 75.7s 0.9490 78.0s
lc21.txt 0.8627 52.3s 0.8767 63.0s 0.8955 64.7s

(To be continued on next page)

49

Table 5.1: Best relative evaluation in 10 runs (continued)

Algorithm 1 Algorithm 2 Algorithm 4
Case Rel. eval. Time Rel. eval. Time Rel. eval. Time

lc22.txt 0.9210 77.4s 0.9262 71.3s 0.9489 80.0s
lc23.txt 0.9432 49.6s 0.9455 59.1s 0.9538 61.4s
lc24.txt 0.9301 64.8s 0.9320 64.9s 0.9408 75.6s
lc25.txt 0.9222 52.2s 0.9217 64.3s 0.9335 73.2s
lc26.txt 0.9405 58.0s 0.9387 78.4s 0.9513 75.8s
lc27.txt 0.9092 59.7s 0.9107 58.6s 0.9316 69.1s
lc28.txt 0.9017 52.1s 0.9002 52.7s 0.9163 68.3s
lc29.txt 0.9581 67.4s 0.9599 66.9s 0.9671 69.8s
lc30.txt 0.9106 62.8s 0.9196 67.5s 0.9347 73.6s
lc31.txt 0.9250 59.9s 0.9305 77.4s 0.9440 78.8s
lc32.txt 0.9388 50.9s 0.9381 61.8s 0.9512 67.5s
lc33.txt 0.8318 57.4s 0.8426 75.2s 0.8692 71.9s
lc34.txt 0.9511 53.6s 0.9474 59.4s 0.9663 62.8s
lc35.txt 0.8848 56.2s 0.8911 61.6s 0.9108 66.6s
lc36.txt 0.9380 66.9s 0.9413 78.0s 0.9528 74.5s
lc37.txt 0.9120 63.7s 0.9193 71.2s 0.9308 81.0s
lc38.txt 0.9346 60.5s 0.9387 70.4s 0.9550 73.4s
lc39.txt 0.8691 47.7s 0.8647 69.6s 0.8853 68.7s
lc40.txt 0.9209 56.3s 0.9255 71.8s 0.9373 73.5s
lc41.txt 0.9153 48.0s 0.9153 57.0s 0.9259 60.6s
lc42.txt 0.9303 57.5s 0.9279 62.4s 0.9427 75.0s
lc43.txt 0.8957 46.1s 0.8953 68.1s 0.9120 66.7s
lc44.txt 0.9393 64.7s 0.9397 73.8s 0.9506 72.6s
lc45.txt 0.9222 61.5s 0.9230 80.4s 0.9348 76.7s
lc46.txt 0.9346 60.1s 0.9339 80.4s 0.9532 78.3s
lc47.txt 0.9268 48.2s 0.9246 65.2s 0.9472 63.1s
lc48.txt 0.9277 57.3s 0.9245 53.2s 0.9448 63.5s
lc49.txt 0.9189 61.0s 0.9167 65.5s 0.9319 71.7s
lc50.txt 0.8757 50.7s 0.8783 65.8s 0.8970 66.8s

Mean 0.9234 57.1s 0.9244 66.7s 0.9388 70.7s

Finally, the results of the last experiments are given in Table 5.4. The
column with heading ”n” contains the number of turbines, based on the
results given in Tables 5.2 and 5.3. The column with heading ”Evaluation”
contains the best profit found in 10 runs of Algorithm 8. The next column
with heading ”Net profit” contains the differences between the evaluations
in the third column and the costs nc with the values for n given in the second
column (recall that c = 60.0). These values can then be compared with the
entries in Tables 5.2 and 5.3. The last column contains the total running

50

Table 5.2: Experimental results of Algorithm 9

Case Mask w. 7 Mask w. 6 Mask w. 5 Mask w. 4 Mask w. 3

bm02.txt 328.6 (32) 338.3 (33) 338.1 (34) 338.2 (35) 352.3 (35)
7m48s 9m16s 10m5s 16m30s 34m55s

bm08.txt 105.8 (18) 106.8 (19) 107.1 (19) 107.0 (19) 107.9 (19)
2m37s 3m5s 5m9s 8m52s 14m4s

bm09.txt 1214 (66) 1225 (62) 1242 (64) 1286 (68) 1304 (69)
36m9s 43m10s 50m51s 72m25s 135m34s

bm10.txt 34.98 (11) 35.66 (11) 35.59 (11) 35.81 (11) 34.63 (10)
37s 40s 52s 1m35s 4m1s

bm13.txt 514.0 (37) 524.8 (40) 539.0 (41) 540.5 (43) 549.8 (41)
10m29s 12m55s 18m22s 29m47s 48m9s

bm18.txt 69.00 (15) 69.45 (15) 70.24 (15) 69.30 (16) 70.24 (15)
1m42s 2m18s 3m12s 6m38s 13m16s

bm20.txt 6208 (119) 6760 (151) 7191 (203) 7343 (216) 7523 (217)
83m48s 163m28s 399m16s 1091m21s 1889m57s

bm26.txt 0.1926 (2) 0.1903 (2) 0.1958 (2) 0.1903 (2) 0.1846 (2)
8s 8s 12s 16s 35s

bm29.txt 4624 (103) 4918 (131) 5079 (165) 5222 (156) 5293 (167)
49m42s 95m7s 230m12s 515m19s 763m37s

bm43.txt 53.14 (12) 52.80 (12) 53.57 (12) 53.40 (12) 54.97 (13)
46s 49s 1m6s 2m4s 4m11s

bm44.txt 713.0 (46) 729.6 (47) 739.5 (47) 750.8 (49) 762.1 (49)
15m3s 17m46s 23m35s 35m21s 62m14s

bm45.txt 14.36 (8) 14.66 (8) 14.43 (8) 15.14 (8) 14.75 (8)
36s 43s 1m7s 2m11s 4m25s

bm47.txt 2298 (84) 2337 (91) 2396 (89) 2519 (94) 2588 (99)
33m58s 56m53s 81m30s 129m1s 221m51s

bm49.txt 324.5 (35) 328.2 (34) 330.9 (35) 334.6 (36) 333.5 (34)
9m53s 11m50s 17m26s 24m51s 47m59s

bm50.txt 11.75 (7) 11.28 (7) 11.84 (7) 11.80 (7) 11.37 (7)
30s 34s 46s 1m37s 3m53s

51

Table 5.3: Experimental results of Algorithm 9, endpoints not added

Case Mask w. 7 Mask w. 6 Mask w. 5 Mask w. 4 Mask w. 3

bm02.txt 279.6 (27) 283.5 (27) 292.0 (28) 306.0 (29) 315.6 (30)
1m53s 2m14s 3m1s 5m48s 15m18s

bm08.txt 98.14 (17) 97.63 (18) 101.9 (17) 103.0 (19) 103.2 (18)
51s 1m1s 1m33s 3m14s 9m24s

bm09.txt 1044 (53) 1065 (57) 1099 (58) 1142 (59) 1173 (62)
7m7s 11m41s 18m14s 28m26s 66m1s

bm10.txt 31.82 (9) 31.80 (10) 32.92 (10) 33.40 (10) 33.37 (9)
12s 15s 22s 38s 2m1s

bm13.txt 435.6 (33) 450.3 (35) 471.3 (35) 478.5 (38) 502.5 (40)
2m54s 3m39s 5m42s 10m20s 23m28s

bm18.txt 64.12 (14) 64.19 (13) 65.88 (13) 66.68 (15) 68.36 (15)
36s 44s 1m1s 2m15s 6m23s

bm20.txt 5000 (86) 5630 (115) 6224 (164) 6566 (188) 6868 (197)
17m52s 43m11s 124m44s 465m47s 1025m42s

bm26.txt 0.1880 (2) 0.1671 (2) 0.1760 (2) 0.1872 (2) 0.1780 (2)
3s 4s 5s 8s 17s

bm29.txt 3694 (72) 4104 (95) 4446 (130) 4704 (136) 4874 (151)
8m16s 19m54s 58m13s 191m17s 424m7s

bm43.txt 48.52 (11) 48.35 (11) 48.90 (11) 50.76 (12) 51.10 (12)
14s 17s 23s 43s 1m45s

bm44.txt 623.7 (41) 622.4 (39) 650.2 (41) 665.7 (44) 693.0 (44)
4m4s 5m27s 7m10s 11m37s 28m9s

bm45.txt 13.41 (7) 13.42 (7) 14.04 (8) 14.05 (8) 14.05 (7)
14s 17s 25s 49s 2m30s

bm47.txt 1863 (62) 1983 (72) 2063 (76) 2209 (81) 2371 (92)
5m12s 14m0s 27m28s 48m45s 113m59s

bm49.txt 294.1 (30) 292.0 (30) 294.5 (31) 307.5 (30) 315.6 (32)
2m55s 4m15s 4m59s 10m32s 27m18s

bm50.txt 10.53 (6) 10.69 (6) 10.64 (7) 11.15 (7) 10.76 (6)
11s 14s 21s 41s 2m0s

52

Table 5.4: Experimental results of Algorithm 8

Case n Evaluation Net profit Running time

b02.txt 35 2381.0 281.0 57m32s
b08.txt 19 1246.2 106.2 17m1s
b09.txt 69 5172 1032 213m5s
b10.txt 11 695.54 35.54 5m12s
b13.txt 41 2936.5 476.5 70m36s
b18.txt 15 968.88 68.88 10m49s
b20.txt 217 18913 5893 1959m25s
b26.txt 2 120.1963 0.1963 13s
b29.txt 167 14206 4186 1092m20s
b43.txt 13 834.23 54.23 7m19s
b44.txt 49 3570.6 630.6 109m20s
b45.txt 8 495.06 15.06 3m3s
b47.txt 99 7940 2000 386m58s
b49.txt 36 2461.2 301.2 63m35s
b50.txt 7 431.78 11.78 2m19s

times for the 10 runs.

5.4 Observations

Algorithms 1 and 2 performed almost equally well, while Algorithm 4 con-
sistently produced better solutions at a modest increase in computational
cost.

From the last line of Table 5.1 we can see that the mean running time for
Algorithm 2 was about 1

6 higher than that of Algorithm 1, while the mean
running time for Algorithm 4 was just slightly higher than that of Algorithm
2 (by about 6%). For a given algorithm, we would expect that the mean
running times for the individual cases be influenced by the number of linear
constraints, but initial configurations can probably also make an impact.
For example, for Algorithm 4, the case with the longest running time was
wf37.txt, which has only got four constraints.

Table 5.2 suggests that a smaller mask width usually (not always) gives
better results for Algorithm 9, but generally leads to a longer running time,
as one would expect.

From Tables 5.2-5.4 we can see that Algorithm 9 tends to give better
results than Algorithm 8, except in extreme cases with very few turbines,
such as bm26.txt and bm50.txt. With the same exceptions, the running
time of Algorithm 8 is of the same order of magnitude as that of Algorithm

53

9 with mask width 3. However, when the (optimal) number of turbines is
high, Algorithm 9 with larger mask width still outperforms Algorithm 8,
while being faster.

The running time of the simplified version of Algorithm 9 (Table 5.3) is
shorter than that of Algorithm 9 (Table 5.2) due to the smaller number of
possible slots for turbines. It appears that the running times in the second
last column of Table 5.2 (mask width 4, with endpoints) are close to the
running times in the last column of Table 5.3 (mask width = 3, without
endpoint). On comparing these two columns, we can see that the net profit
is generally higher in the former. From this, we conclude that it is better to
include endpoints than to reduce the mask width. This is presumably due
to the fact that even though the number of slots is roughly the same, they
are more spread out when endpoints are included.

Of course, the running time of Algorithm 8 can also be tuned, by us-
ing different values for N . The differences in the net profits are therefore
presumably the most noteworthy.

The large variations in the running times seen in Table 5.4 can be ex-
plained by the recursive nature of (3.5). This implies that the number of
calculations that must be carried out in each step of Algorithm 8 is O(n2).

54

Chapter 6

Conclusion

We started out by considering a simple wake model known as the Jensen
model. In Katić et al.’s paper, this model is refined and equipped with a
wake combination model.

Based upon the authors’ own comments and data, we proposed a further
improvement of their model. Then, we provided a complete mathematical
model for Problem 1 (with a fixed number of turbines), and one for Problem
2 (with a fixed and finite set of possible locations).

Finally, we set out to find a suitable optimization method. The main
focus was on heuristic methods. Exact methods were tried out, but the
convergence was very slow, even on very simple cases.

Among the different heuristic optimization methods that we tested, Al-
gorithm 9 seemed to be the most promising one. When there are many
turbines involved, it is probably advantageous to consider one turbine at a
time (as Algorithm 9 more or less does), instead of trying to move all of them
simultaneously (as the other algorithms tend to do). It is also an advan-
tage that a large number of the parameters can be pre-calculated, although
storage might become a problem on a large grid.

Experiments documented in this thesis suggest that the combination
of the abovementioned wake model and algorithm will be a useful tool in
designing wind farms.

55

Bibliography

[1] http://en.wikipedia.org/wiki/Wind farm

[2] http://vestavindoffshore.no/havsul

[3] Yngve Heggelund, Inge Morten Skaar, Fast evaluation of wind
farm flow for use in layout optimization, NORCOWE-RR-C-
10-WP4-001.

[4] http://www.ewec2011.info/fileadmin/ewec2011 files/images
/conference/Side Events/Research over from Risoe -
P.H. Madsen.ppt&ei=vR9GT6 QHoHd4QS0xbDiDg&

usg=AFQjCNHMgS6Dl6Weawk9IG4AUv 7eeHfw&sig2=
nlWBROq6sfG6lfVy 3w86g&cad=rja

[5] I. Katić, J. Højstrup, N. O. Jensen, A simple model for cluster
efficiency, Proceedings of EWEC’86, Rome, Italy (1986), 407–
410.

[6] http://www.wasp.dk/Products/WAsP/WakeEffectModel.html

[7] http://www.risoe.dtu.dk/News archives/News/2011/
0630 TOPFARM.aspx?sc lang=en

[8] Pierre-Elouan Réthoré, Peter Fuglsang, Gunner C. Larsen,
Thomas Buhl, Torben J. Larsen, Helge A. Madsen, TopFarm:
Multi-fidelity Optimization of Offshore Wind Farm, Proceed-
ings of the Twenty-first (2011) International and Polar Engi-
neering Conference, 516–524.

[9] http://windenergyresearch.org/2010/10/state-of-the-art-in-
wind-farm-layout-optimization

[10] http://en.wikipedia.org/wiki/Genetic algorithms

[11] http://en.wikipedia.org/wiki/Mathematical optimization#Heuristics

[12] http://en.wikipedia.org/wiki/Betz’ law

56

[13] N. O. Jensen, A note on wind generator interaction, Risø M
2411. Risø National Laboratory, Roskilde (Denmark), 1983.

[14] Hans Georg Beyer, Bernhard Lange, Hans-Peter Waldl, Mod-
elling Tools for Wind Farm Upgrading, Proceedings of the EU-
WEC, 1996, four unnumbered pages.

[15] S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen,
J. Højstrup and M. Thøgersen, Analytical modelling of wind
speed deficit in large offshore wind farms, Wind Energy 9(1-2):
39-53 (2006).

[16] G. C. Larsen, A Simple Wake Calculation Procedure, Risø M-
2760, Risø National Laboratory, Roskilde (Denmark), 1988.

[17] http://www.windfinder.com/windstats

[18] R. J. Barthelmie, L. Folkerts, G. C. Larsen, K. Rados, S.
C. Pryor, S. T. Frandsen, B. Lange, G. Schepers, Compar-
ison of Wake Model Simulations with Offshore Wind Turbine
Wake Profiles Measured by Sodar, Journal of Athmospheric and
Oceanic Technology, 23(2006), 888–901.

[19] Jorge Nocedal, Stephen J. Wright, Numerical Optimization,
Springer, 2006 (second edition), 238–240.

[20] http://en.wikipedia.org/wiki/Simulated annealing

[21] http://en.wikipedia.org/wiki/Particle swarm optimization

[22] http://www.neutreeko.net/wind.htm

57

Appendix A

GAMS code for
1-dimensional version

opt ion optcr = 1 .0 e−12;
opt ion optca = 1 .0 e−9;
opt ion r e s l i m = 360 ;

Parameter k2 ;
k2 = 0 . 0 7 5 ;

Parameter r ;
r = 0 . 1 ;

Parameter v0 ;
v0 = 1 0 0 0 . 0 ;

Parameter n ;
n = 11 ;

Set i /1∗11/;
a l i a s (i , j) ;

P o s i t i v e v a r i a b l e s x (i) ;
x . up (i) = 1 0 . 0 ;
x . l (i) = 10 .0 ∗ (ord (i) − 1) / (n − 1) ;

Var iab l e s d e l t a (i , j) , v (i) , obj ;

Equations orden (i , j) , d e f c o e f f (i , j) , v e l o c i t y (j) , pwr ;

orden (i , j) $ (ord (i) < ord (j)) . . x (i) =l= x (j) ;

58

d e f c o e f f (i , j) $ (ord (i) < ord (j)) . . d e l t a (i , j) =e=
(2 . 0 / 3 . 0) ∗ power (r / (r + k2 ∗ (x (j) − x (i))) , 2) ;

v e l o c i t y (j) . . power (v0 − v (j) , 3) =e= sum(i $ (ord (i) <
ord (j)) , power (de l t a (i , j) ∗ v (i) , 3)) ;

pwr . . obj =e= sum(i , power (v (i) , 3)) ;

opt ion minlp = baron ;

model wind1 / a l l / ;

So lve wind1 maximizing obj us ing minlp ;

59

Appendix B

GAMS code for Problem 1

opt ion optcr = 1 .0 e−9;
opt ion optca = 1 .0 e−9;
opt ion r e s l i m = 5400 ;

Parameter k2 ;
k2 = 0 . 0 7 5 ;

Parameter r ;
r = 0 . 1 ;

Parameter v0 ;
v0 = 1 0 0 . 0 ;

Parameter n ;
n = 2 ;

Set i /1∗2/ ;
a l i a s (i , j) ;
Set k /1∗2/ ;
Set w /0∗23/;

parameter p(w)
/0 0.041666667

1 0.041666667
2 0.041666667
3 0.041666667
4 0.041666667
5 0.041666667
6 0.041666667
7 0.041666667

60

8 0.041666667
9 0.041666667

10 0.041666667
11 0.041666667
12 0.041666667
13 0.041666667
14 0.041666667
15 0.041666667
16 0.041666667
17 0.041666667
18 0.041666667
19 0.041666667
20 0.041666667
21 0.041666667
22 0.041666667
23 0 .041666667/ ;

parameters cos (w)
/0 1 .0

1 0.965926
2 0.866025
3 0.707107
4 0 .5
5 0.258819
6 0 .0
7 −0.258819
8 −0.5
9 −0.707107

10 −0.866025
11 −0.965926
12 −1.0
13 −0.965926
14 −0.866025
15 −0.707107
16 −0.5
17 −0.258819
18 0 .0
19 0.258819
20 0 .5
21 0.707107
22 0.866025
23 0 .965926/ ;

parameter s i n (w)

61

/0 0 .0
1 0.258819
2 0 .5
3 0.707107
4 0.866025
5 0.965926
6 1 .0
7 0.965926
8 0.866025
9 0.707107

10 0 .5
11 0.258819
12 0 .0
13 −0.258819
14 −0.5
15 −0.707107
16 −0.866025
17 −0.965926
18 −1.0
19 −0.965926
20 −0.866025
21 −0.707107
22 −0.5
23 −0.258819/;

P o s i t i v e v a r i a b l e s x (k) , y (k) ;
x . up (k) = 1 0 . 0 ;
x . l (k) $ (ord (k)=1) = 1 . 0 ;
x . l (k) $ (ord (k)=2) = 9 . 0 ;
y . up (k) = 1 0 . 0 ;
y . l (k) $ (ord (k)=1) = 1 . 0 ;
y . l (k) $ (ord (k)=2) = 1 . 0 ;

Binary v a r i a b l e s A(i , k , w) ;

Var iab l e s d e l t a (i , j , w) , d (i , j , w) , s (i , j , w) , v (i , w) , obj ;
d e l t a . up (i , j , w) = 1 . 0 ;
d e l t a . l o (i , j , w) = −1.0;
d . up (i , j , w) = 1 4 . 2 ;
d . l o (i , j , w) = −14.2;
s . up (i , j , w) = 1 4 . 2 ;
s . l o (i , j , w) = −14.2;
v . up (i , w) = 1 0 0 . 0 ;
v . l o (i , w) = 0 . 0 ;

62

obj . l o = 0 . 0 ;

Equations permmat1 (i ,w) , permmat2 (k ,w) , xcoord (i , j , w) ,
ycoord (i , j , w) , s i gn (i , j , w) , d e f i c i t c o e f f (i , j , w) ,

v e l o c i t y (j , w) , v e l o c i t y 2 (j , w) , pwr ;

permmat1 (i ,w) . . sum(k , A(i , k ,w)) =e= 1 . 0 ;
permmat2 (k ,w) . . sum(i , A(i , k ,w)) =e= 1 . 0 ;
xcoord (i , j , w) . . d (i , j , w) =e= sum(k , (cos (w)∗x (k)

+s i n (w)∗y (k)) ∗ (A(j , k , w) − A(i , k , w))) ;
ycoord (i , j , w) . . s (i , j , w) =e= sum(k , (− s i n (w)∗x (k)

+cos (w)∗y (k)) ∗ (A(j , k , w) − A(i , k , w))) ;
s i gn (i , j , w) $ (ord (i) < ord (j)) . . d (i , j , w) =g= 0 ;
d e f i c i t c o e f f (i , j , w) . . d e l t a (i , j , w) =e= (2 . 0 / 3 . 0)
∗ power (r /(r+k2∗d(i , j , w)) , 2) ∗ exp(−power (s (i ,
j , w) / (r + k2 ∗ d(i , j , w)) , 2)) ;

v e l o c i t y (j ,w) $ (ord (j) = 1) . . v (j , w) =e= v0 ;
v e l o c i t y 2 (j , w) $ (ord (j) >1) . . power (v0 − v (j , w) , 3)

=e= sum(i $ (ord (i) < ord (j)) , power (de l t a (i , j , w)
∗ v (i , w) , 3)) ;

pwr . . obj =e= sum(w, sum(i , p (w) ∗ power (v (i , w) , 3))) ;

opt ion minlp = baron ;

model wind2 / a l l / ;

So lve wind2 maximizing obj us ing minlp ;

63

Appendix C

GAMS code for Problem 2

opt ion optcr = 1 .0 e−9;
opt ion optca = 1 .0 e−9;
opt ion r e s l i m = 5400 ;

Parameter v0 ;
v0 = 1 0 0 . 0 ;

Parameter n ;
n = 9 ;

Parameter c ;
c = 0 . 5 ;

Set i /1∗9/ ;
a l i a s (i , j) ;
Set k /1∗9/ ;
Set w /0∗7/ ;

parameter p(w)
/0 0 .125

1 0 .125
2 0 .125
3 0 .125
4 0 .125
5 0 .125
6 0 .125
7 0 . 1 2 5 / ;

t a b l e A(i , k , w)
0 1 2 3 4 5 6 7

64

1 .1 1 1 1 0 0 0 0 0
1 .2 0 0 0 0 0 0 0 0
1 .3 0 0 0 1 1 0 0 0
1 .4 0 0 0 0 0 0 0 0
1 .5 0 0 0 0 0 0 0 0
1 .6 0 0 0 0 0 0 0 0
1 .7 0 0 0 0 0 0 1 1
1 .8 0 0 0 0 0 0 0 0
1 .9 0 0 0 0 0 1 0 0
2 .1 0 0 0 0 0 0 0 0
2 .2 0 1 1 1 0 0 0 0
2 .3 0 0 0 0 0 0 0 0
2 .4 1 0 0 0 0 0 0 1
2 .5 0 0 0 0 0 0 0 0
2 .6 0 0 0 0 1 1 0 0
2 .7 0 0 0 0 0 0 0 0
2 .8 0 0 0 0 0 0 1 0
2 .9 0 0 0 0 0 0 0 0
3 .1 0 0 0 0 0 0 0 0
3 .2 0 0 0 0 0 0 0 0
3 .3 0 0 1 0 0 0 0 0
3 .4 0 1 0 0 0 0 0 0
3 .5 0 0 0 0 0 0 0 0
3 .6 0 0 0 1 0 0 0 0
3 .7 1 0 0 0 0 0 0 0
3 .8 0 0 0 0 0 1 0 1
3 .9 0 0 0 0 1 0 1 0
4 .1 0 0 0 1 0 0 0 1
4 .2 1 0 0 0 1 0 0 0
4 .3 0 1 0 0 0 1 0 0
4 .4 0 0 1 0 0 0 1 0
4 .5 0 0 0 0 0 0 0 0
4 .6 0 0 0 0 0 0 0 0
4 .7 0 0 0 0 0 0 0 0
4 .8 0 0 0 0 0 0 0 0
4 .9 0 0 0 0 0 0 0 0
5 .1 0 0 0 0 0 0 0 0
5 .2 0 0 0 0 0 0 0 0
5 .3 0 0 0 0 0 0 0 0
5 .4 0 0 0 0 0 0 0 0
5 .5 1 1 1 1 1 1 1 1
5 .6 0 0 0 0 0 0 0 0
5 .7 0 0 0 0 0 0 0 0
5 .8 0 0 0 0 0 0 0 0

65

5 .9 0 0 0 0 0 0 0 0
6 .1 0 0 0 0 0 0 0 0
6 .2 0 0 0 0 0 0 0 0
6 .3 0 0 0 0 0 0 0 0
6 .4 0 0 0 0 0 0 0 0
6 .5 0 0 0 0 0 0 0 0
6 .6 0 0 1 0 0 0 1 0
6 .7 0 1 0 0 0 1 0 0
6 .8 1 0 0 0 1 0 0 0
6 .9 0 0 0 1 0 0 0 1
7 .1 0 0 0 0 1 0 1 0
7 .2 0 0 0 0 0 1 0 1
7 .3 1 0 0 0 0 0 0 0
7 .4 0 0 0 1 0 0 0 0
7 .5 0 0 0 0 0 0 0 0
7 .6 0 1 0 0 0 0 0 0
7 .7 0 0 1 0 0 0 0 0
7 .8 0 0 0 0 0 0 0 0
7 .9 0 0 0 0 0 0 0 0
8 .1 0 0 0 0 0 0 0 0
8 .2 0 0 0 0 0 0 1 0
8 .3 0 0 0 0 0 0 0 0
8 .4 0 0 0 0 1 1 0 0
8 .5 0 0 0 0 0 0 0 0
8 .6 1 0 0 0 0 0 0 1
8 .7 0 0 0 0 0 0 0 0
8 .8 0 1 1 1 0 0 0 0
8 .9 0 0 0 0 0 0 0 0
9 .1 0 0 0 0 0 1 0 0
9 .2 0 0 0 0 0 0 0 0
9 .3 0 0 0 0 0 0 1 1
9 .4 0 0 0 0 0 0 0 0
9 .5 0 0 0 0 0 0 0 0
9 .6 0 0 0 0 0 0 0 0
9 .7 0 0 0 1 1 0 0 0
9 .8 0 0 0 0 0 0 0 0
9 .9 1 1 1 0 0 0 0 0 ;

t a b l e d e l t a (i , j , w)
0 1 2 3 4 5 6 7

1 .1 0 0 0 0 0 0 0 0
1 .2 0 0 0 0 0 0 0 0
1 .3 0 0 0 0 0 0 0 0
1 .4 0 .0295 0 0 .0295 0 0 .0295 0 0 .0295 0

66

1 .5 0 0 .0168 0 0 .0168 0 0 .0168 0 0 .0168
1 .6 0 0 0 0 0 0 0 0
1 .7 0 .0092 0 0 .0092 0 0 .0092 0 0 .0092 0
1 .8 0 0 0 0 0 0 0 0
1 .9 0 0 .0049 0 0 .0049 0 0 .0049 0 0 .0049
2 .1 0 0 0 0 0 0 0 0
2 .2 0 0 0 0 0 0 0 0
2 .3 0 0 0 0 0 0 0 0
2 .4 0 0 0 0 0 0 0 0
2 .5 0 .0295 0 0 .0295 0 0 .0295 0 0 .0295 0
2 .6 0 0 0 0 0 0 0 0
2 .7 0 0 .0168 0 0 .0168 0 0 .0168 0 0 .0168
2 .8 0 .0092 0 0 .0092 0 0 .0092 0 0 .0092 0
2 .9 0 0 0 0 0 0 0 0
3 .1 0 0 0 0 0 0 0 0
3 .2 0 0 0 0 0 0 0 0
3 .3 0 0 0 0 0 0 0 0
3 .4 0 0 0 0 0 0 0 0
3 .5 0 0 0 0 0 0 0 0
3 .6 0 .0295 0 0 .0295 0 0 .0295 0 0 .0295 0
3 .7 0 0 0 0 0 0 0 0
3 .8 0 0 .0168 0 0 .0168 0 0 .0168 0 0 .0168
3 .9 0 .0092 0 0 .0092 0 0 .0092 0 0 .0092 0
4 .1 0 0 0 0 0 0 0 0
4 .2 0 0 0 0 0 0 0 0
4 .3 0 0 0 0 0 0 0 0
4 .4 0 0 0 0 0 0 0 0
4 .5 0 0 0 0 0 0 0 0
4 .6 0 0 0 0 0 0 0 0
4 .7 0 .0295 0 0 .0295 0 0 .0295 0 0 .0295 0
4 .8 0 0 0 0 0 0 0 0
4 .9 0 0 0 0 0 0 0 0
5 .1 0 0 0 0 0 0 0 0
5 .2 0 0 0 0 0 0 0 0
5 .3 0 0 0 0 0 0 0 0
5 .4 0 0 0 0 0 0 0 0
5 .5 0 0 0 0 0 0 0 0
5 .6 0 0 0 0 0 0 0 0
5 .7 0 0 0 0 0 0 0 0
5 .8 0 .0295 0 0 .0295 0 0 .0295 0 0 .0295 0
5 .9 0 0 .0168 0 0 .0168 0 0 .0168 0 0 .0168
6 .1 0 0 0 0 0 0 0 0
6 .2 0 0 0 0 0 0 0 0
6 .3 0 0 0 0 0 0 0 0

67

6 .4 0 0 0 0 0 0 0 0
6 .5 0 0 0 0 0 0 0 0
6 .6 0 0 0 0 0 0 0 0
6 .7 0 0 0 0 0 0 0 0
6 .8 0 0 0 0 0 0 0 0
6 .9 0 .0295 0 0 .0295 0 0 .0295 0 0 .0295 0
7 .1 0 0 0 0 0 0 0 0
7 .2 0 0 0 0 0 0 0 0
7 .3 0 0 0 0 0 0 0 0
7 .4 0 0 0 0 0 0 0 0
7 .5 0 0 0 0 0 0 0 0
7 .6 0 0 0 0 0 0 0 0
7 .7 0 0 0 0 0 0 0 0
7 .8 0 0 0 0 0 0 0 0
7 .9 0 0 0 0 0 0 0 0
8 .1 0 0 0 0 0 0 0 0
8 .2 0 0 0 0 0 0 0 0
8 .3 0 0 0 0 0 0 0 0
8 .4 0 0 0 0 0 0 0 0
8 .5 0 0 0 0 0 0 0 0
8 .6 0 0 0 0 0 0 0 0
8 .7 0 0 0 0 0 0 0 0
8 .8 0 0 0 0 0 0 0 0
8 .9 0 0 0 0 0 0 0 0
9 .1 0 0 0 0 0 0 0 0
9 .2 0 0 0 0 0 0 0 0
9 .3 0 0 0 0 0 0 0 0
9 .4 0 0 0 0 0 0 0 0
9 .5 0 0 0 0 0 0 0 0
9 .6 0 0 0 0 0 0 0 0
9 .7 0 0 0 0 0 0 0 0
9 .8 0 0 0 0 0 0 0 0
9 .9 0 0 0 0 0 0 0 0 ;

Binary v a r i a b l e s alpha (k) ;

Var iab l e s v (i , w) , obj ;
v . up (i , w) = 1 0 0 . 0 ;
v . l o (i , w) = −100.0;
obj . l o = 0 . 0 ;

Equations v e l o c i t y (j , w) , pwr ;

v e l o c i t y (j , w) . . power (v (j , w) , 3) − 3 ∗ v0 ∗ power (v (j ,

68

w) , 2) + 3 ∗ v0 ∗ v0 ∗ v (j , w) =e= (sum(k , A(j , k , w)
∗ alpha (k))) ∗ (power (v0 , 3) − sum(i $ (ord (i) < ord (j)) ,
power (d e l t a (i , j , w) ∗ v (i , w) , 3))) ;

pwr . . obj =e= sum(w, sum(i , p (w) ∗ power (v (i , w) , 3)))
− c∗sum(k , alpha (k)) ;

opt ion minlp = baron ;

model wind3 / a l l / ;

So lve wind3 maximizing obj us ing minlp ;

69

