
Computation of Treespan
A Generalization of Bandwidth to Treelike Structures

by

Markus Sortland Dregi

Thesis

for the degree

Master of Science in Informatics

Faculty of Mathematics and Natural Sciences
University of Bergen

June, 2012

Abstract

Motivated by a search game, Fomin, Heggernes and Telle [Algorithmica, 2005]
defined the graph parameter treespan, a generalization of the well studied
parameter bandwidth. Treespan is the maximum number of appearances of
a vertex in an ordered tree decomposition, i.e. a tree decomposition intro-
ducing at most one new vertex in each bag. In this thesis, we investigate the
computational tractability of the problem Treespan, which aims to decide
whether the treespan of a given graph is at most a given integer k. First we
introduce a new perspective to the problem, with an equivalent parameter
which we call adjacencyspan. It provides, in our opinion, a clearer under-
standing of the nature of the problem.

We provide structural results related to adjacencyspan, and combine these
with dynamic programming to solve Treespan in polynomial time for fixed
values of k and hence prove the problem to be in XP. Fomin et al. [Al-
gorithmica, 2005] asked whether Treespan is polynomial time solvable for
trees of degree higher than 3 as their final open problem. We solve this
problem by proving Treespan to be polynomial time solvable for trees of
bounded maximum degree d, for every fixed d. In the area of fixed parame-
ter tractability we give a polynomial kernel for Treespan parameterized by
both the required treespan and the vertex cover number of the input graph.

It is a classical result, first proven by Lenstra [Mathematics of Operations
Research, 1983], that p-Integer Linear Programming Feasibility is
fixed parameter tractable. In his book “Invitation to Fixed-Parameter Al-
gorithms”, Niedermeier specifically asks for more applications of this result.
In this thesis we provide another application by using it to obtain a fixed
parameter tractable algorithm for Treespan parameterized by the vertex
cover number.

The thesis do not only have theoretical implications, but we give algorithms
that by far outperform previously known algorithms in practical terms.

3

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor
Professor Pinar Heggernes for believing in me, encouraging me and being my
academic compass for the last year. Your always open door and willingness
to spend time on me and my questions when I needed it, never stopped to
amaze me. Thank you!

My deepest thanks to Dr. Daniel Lokshtanov for introducing me to the
beauty of algorithms and discrete mathematics in the first place. To Jing,
Torgeir and the rest of my fellow students at the University of Oslo for
making my years as a bachelor student unforgettable. To Pål1, Sigve and
Erik for warmly welcoming me to the study hall at the University of Bergen
and introducing me to various algorithmic concepts at the whiteboard. And
to all of the algorithm group for including me in the lot, in both academics
and at a personal level. I cannot express how much I have learned during
our discussions, Friday seminars and winter schools!

There is also a lot of people outside academia which deserves to be men-
tioned. My family and friends, in particular my parents Terje and Marita and
my siblings Nikolai and Sofie, for supporting me, challenging me and making
me laugh. All my fellow karatekas from Bergen Karate Klubb, which I have
shared so many great experiences with in the dojo. And to the girl who
mean the world to me, Anette, I cannot thank you enough. I will always be
grateful for your love and support, both when I am at home and when I am
working late.

I would also like to use this opportunity to express my gratitude to Nor-
way for providing excellent, free education and being such a nice place to
live.

1A bonus ? to Pål for reading my thesis and providing me with valuable comments.

5

Contents

I Preliminaries 9

1 Introduction 11
1.1 Graphs and algorithms, why? 11
1.2 Outline of the thesis . 19

2 General background 21
2.1 Notation and definitions . 21
2.2 Graph decompositions and parameters 22
2.3 Additional problems . 25

3 Complexity theory 27
3.1 Complexity . 27
3.2 Exponential time solvability 28
3.3 Parameterized problems . 28
3.4 Fixed k gives polynomial time algorithm 29
3.5 Fixed parameter tractability 30
3.6 The W-hierarchy . 31
3.7 Kernels . 32

II A fresh perspective 35

4 Adjacencyspan 37
4.1 Adjacency trees . 37
4.2 Adjacencyspan . 39
4.3 Branched adjacency trees . 42

III Algorithms 45

5 Adjacencyspan is in XP 47

7

8 CONTENTS

6 Trees 55
6.1 Trees of degree at most 3 . 55
6.2 Trees of bounded degree . 56
6.3 No locality . 56

7 Adjacencyspan parameterized 59
7.1 Double parameterization . 59
7.2 Parameterized by vertex cover number 65

IV Discussion and conclusion 73

8 Concluding remarks and open questions 75
8.1 Theoretical and practical implications of this work 75
8.2 Caterpillars with long hair . 76
8.3 Interval graphs . 77
8.4 General trees . 77
8.5 Exponential algorithm . 78
8.6 FPT vs W-hardness . 79
8.7 Further work parameterized by vertex cover 79
8.8 Treespan by other parameterizations 79

Part I

Preliminaries

9

Chapter 1

Introduction

1.1 Graphs and algorithms, why?

In this chapter we will explain and motivate key notions in the fields of
algorithms and graph theory. Our aim is that it will be both interesting and
manageable for the reader, independent of his or her background.

Less is more

Imagine that you and five others are hanging out. Some of them are your
friends and some you have never met before. By chance, you stumble upon
the Annual Team Competition, ATC. The prize being a boat trip, you see
this as a perfect opportunity to get to know each other better. The contest is,
as the name says, a team competition. You take a look in the ATC brochure
and in the rules section it says that the team must consist of exactly three
people. You read further to the tip section and it is written that former
years, teams consisting of only people who know each other or people not
knowing each other at all tend to do very well. They believe this is because
everybody is just as likely to communicate, as everyone knows each other
equally. We now claim that within your group there is such a good team of
size three.

But how can this be? You have some information, but none saying
anything about winning teams within your group. You know that there is
an Annual Team Competition, that there is a prize, a brochure consisting of
among others a rules and a tip section and that you are hanging out with
some people. But how can you use this information to deduce truths? To
state facts, like there being a homogeneous team of size three? To be able to
do this, we prefer to give a model. A model abstracts away some information
and by this, if you pick the right model, the interesting information becomes
clearer. We will use a well studied model called graphs, which dates back
to the time of a famous mathematician named Euler from the 18th century,

11

12 CHAPTER 1. INTRODUCTION

to describe our information. A graph can be seen as some dots, with lines
drawn between some of the pairs.

Figure 1.1: Two examples of graphs.

For each of the people in the group we will use a dot to represent her. And
between each two dots, we will draw a line if these two are friends. Hence
the left example graph in Figure 1.1 can be a model of six people hanging
out, while in the right example there would only be five people. We lose
sight of the brochure and prize, but maybe we still have the information we
need to gain the prize in the end. In the same fashion you could use graphs
to model your friends in some social network like Google+ or Facebook.
Even computers connected by ethernet cables or any other kind of objects
with some relation between them. Your navigation system uses graphs, with
weights on the lines, to model roads and intersections. Euler himself used
graphs to solve an old mathematical problem called the seven bridges of
Königsberg, where he used graphs to model islands and bridges. Further
into this thesis, we will refer to the dots as vertices and to the lines as edges.
For a formal definition of graphs, we refer to Chapter 2. But let us get
back to the team choosing process. We want to argue that there is some
good team within your group. The only information we have about your
friendship graph is that there are six dots. We actually know nothing about
the friendships.

Figure 1.2: The two types of homogenous teams.

From your point of view, you might know some people of the group and
not the rest. As there are five others in the group, you either have at least
three friends or at least three non-friends. Because, if you have at most two
of each of them, how can there be five people? To make a general argument,
we will now use the color red to describe the way you relate to the most of
the group (it might be friendships or non-friendships) and blue to describe
the other. Then the graph, from your point of view looks like Figure 1.3.

Note that if two of the dots you connect with in red also connect in red,

1.1. GRAPHS AND ALGORITHMS, WHY? 13

?

?

Figure 1.3: The graph from your point of view, with you on the left. The
two question marks are relations we do not need any information about.

you get a red triangle. This red triangle would either be a team of only
friends or non-friends, depending on what red represents. And hence we
would have a solution. Assume that none of these three relate in red. Then
they must all relate in blue and hence you get the situation in Figure 1.4,
a blue triangle. This completes the argument. No matter how you and the
rest of the group relate friendship wise, it is possible to pick a good team for
the competition. The best of luck!

?

?

Figure 1.4: A blue triangle occurs when we try to avoid the red ones.

It was not a coincidence that we asked you to imagine to be part of a
group of six people. Note that the right example in Figure 1.1 has neither
a team of friends nor non-friends. If we combine this observation with our
argument we see that graphs of size six are the smallest graphs we can give
this kind of guarantee for.

From now on, a set of vertices which are all pairwise connected by edges
will be called a clique. And those without any edges will be called indepen-
dent sets. Given a number k, the smallest number such that every graph
with this number of vertices contains a clique or an independent set of size
k is called R(k, k) or the diagonal Ramsey numbers. We have just proved

14 CHAPTER 1. INTRODUCTION

that R(3, 3) is 6. It is known that R(4, 4) is 18 [Bón06], while for R(5, 5) we
only know that it lies between 43 and 49 [Rad09]. This seems quite strange.
Since we are proving properties for finite, small graphs, could we not just
use a computer to generate all graphs of this size and check whether they all
satisfy this property or not? This brings us to our next topic, algorithms.

Algorithms

“Erdős asks us to imagine an alien force, vastly more powerful
than us, landing on Earth and demanding the value of R(5, 5) or
they will destroy our planet. In that case, he claims, we should
marshal all our computers and all our mathematicians and at-
tempt to find the value. But suppose, instead, that they ask for
R(6, 6). In that case, he believes, we should attempt to destroy
the aliens.”
– Joel Spencer [Spe94]

This quote says something about how fast problems can get hard to solve.
The limitation of the computation of solutions for these problems does not
lie in making a computer compute, but in the humongous amount of time
it would require. Most decent first year computer science students would
be able to write such a program. Generate all graphs of a certain size and
test whether they contain a clique or independent set of size k. Assume that
you build a computer, which has the computational power of the fastest
computer on earth multiplied with the number of particles in the universe
multiplied with the age of the universe. This computer would still require
more time than the age of the universe to generate all graphs on 30 vertices.1

There are more clever ways to do the computations, but still, they are not
good enough to decide the number R(5, 5).

This example should motivate us to care about the time complexity of
our computations. Because who has as much time as the age of the universe
but the universe itself? Before we can say anything about time complexity
though, we need to describe how we do computing. And even before this, we
must define how we aks questions. A question can be asked in so many ways,
but the questions of our concern will be the ones we can answer either with
a yes or a no: The decision problems. For solving decision problems we have
several models, two of them being the Turing machine and the equivialent
notion of algorithms. The Turing machine was introduced by Alan Turing in
1936 [Tur38] and consists of a tape, a head that can read and write on this
tape and a finite amount of different states the machine can take. As simple
as this device is, it is believed to be as powerful as any other mechanical

1The time is based on the K computer in Japan with particles and age estimates from
wikipedia.

1.1. GRAPHS AND ALGORITHMS, WHY? 15

procedure. And for any other device we know of, it is. This is known as the
Church-Turing thesis.

The Turing machine is a very useful construction, but gets cumbersome
very fast. Because of this, our computations will be described in the form
of algorithms. A higher level description of step-by-step mechanical work,
where each step would be possible to implement with a Turing machine.
This gives us a better overview and intuition about our computations and
also frees us from doing tedious and technical work when it is not needed.
When we analyze the running time of our algorithms, we will assume stan-
dard operations like arithmetic operations, comparing numbers and reading
numbers from a specific place in the memory to take constant amount of
time. This could be exploited by encoding of data in big numbers and then
do arithmetics. However we will not go down this path, but carefully enjoy
the ease of such analysis without careless use.

Tractability

As we have seen, for some problems there is as far as we know, no fast
algorithm that solves it. This has motivated the notion of complexity classes,
classifying problems according to the resources their solution consume while
being computed. In this text we will focus on time usage, as this often is
the most limited one. But it also makes sense to study the use of other
resources, like space. Two of the most widely known such classes are P and
NP. The problems in P we can solve in time bounded by some polynomial of
the input size. While the problems in NP have solutions that can be verified
in polynomial time. As verifying a solution seems much easier than actually
solving the problem, most scientists today believe that there are problems
in NP that we cannot solve in polynomial time. However, there exists no
proof of this. In fact, this problem is regarded so important that it is one of
the so-called millennium problems, i.e. eight problems picked in end of the
last millennium of great importance within mathematics. For each of these
problems, a prize of one million dollars is awarded for a solution, by the Clay
Institute.

The notion of NP-completeness was introduced2 by Cook in 1971 [Coo71].
A class of problems capturing the hardest problems in NP. If one of these
were to be solved in polynomial time, all problems in NP could be. The Cook-
Levin theorem states that Boolean Satisfiability is NP-complete [GJ79].
And after this many problems have been proved to be NP-complete, by re-
ducing already known NP-complete problems to them [Kar10, GJ79]. This
work is important for several reasons, among them the fact that many of the
natural, interesting problems are NP-complete. Polynomial time solvability
tends to draw the line between the problems we can solve in general in a

2Although the term NP-complete did not appear until later.

16 CHAPTER 1. INTRODUCTION

feasible amount of time and those we cannot. Hence, if you get to know that
a problem you are trying to solve is NP-complete, this will tell you something
about the huge difficulties you will face if you try to obtain a polynomial
time algorithm. It might not even be possible and thousands of researchers
world wide have already tried to do the exact same thing.

Coping with intractability

Many of the interesting problems that we would like a computer to solve are
NP-complete. So what do we do? The need to solve these problems does
not go away by the fact that they are hard. And in fact, solutions are being
computed for NP-complete problems every day. So how does this work? One
option is to relax the requirements on the solution. Maybe you do not need
an optimal solution; a somewhat good solution would be sufficient. This is
the area of approximation algorithms. Another option occurs when you are
interested in solutions only if they are small. Imagine that you have collected
data, some of which are wrong. You want to know how much data you would
have to remove to make it consistent. This is often only interesting if you
can remove few data points, because if you have to remove a big portion of
your data this reflects badly on all of the data. When this is the situation
we tend to algorithms which are polynomial if we fix parts of the input,
algorithms in XP or FPT. These topics will be discussed further in the thesis,
both in Part I and in the results later on. A third option would be to realize
that you do not need to solve the problem in its general formulation. If your
problem is a graph problem, there might be some specific structure in your
input. Your graph might be cycle free or without big cliques. Or maybe
each vertex has a limited amount of edges incident to it as it is unlikely that
hundreds of roads connect in the same intersection.

Graph parameters

This method of assuming extra structure on the input graph and try to
exploit it can be generalized to the concept of graph parameters. A graph
parameter gives us a measure of some property of a graph. For example, the
cycle-free graphs which we often call trees, form the basis for one of the most
famous graph parameters, namely treewidth. Treewidth gives us a measure
of how much a graph resembles a tree. Treewidth of a graph is 1 if and only
if the graph is a tree and grows bigger the further we move away from trees.
Many problems that are hard to solve on general graphs, become polynomial
time solvable on graphs of bounded treewidth. For the formal definition of
treewidth we refer to Chapter 2.

Another graph parameter is bandwidth. If we line up all the vertices
in a graph, the edge that is stretched over the largest number of vertices
gives us the bandwidth of that line up. The bandwidth of a graph is then

1.1. GRAPHS AND ALGORITHMS, WHY? 17

Figure 1.5: The graph on the left is not a tree, as it contains cycles. But,
if we contract every triangle into a vertex and connect two triangles if they
share an edge we end up with the tree on the right. As we only contract
small objects, the graph on the left actually has treewidth 2.

the minimum bandwidth over all such possible ways to line up our graph.
Bandwidth has many applications, but it is unfortunately hard to compute.
It is NP-complete even on trees of maximum degree 3 [GGJK78], it is hard
to approximate [Ung98, BKW97], and it does not admit a fixed parameter
tractable algorithm [BFH94] unless the W-hierarchy collapses. One of the
applications of bandwidth arises in sparse matrix computations. In the same
way as we find it easier to calculate 1 · 90131 than 467 · 193, even though the
result is the same, algorithms also prefer some representations over others.
For a symmetric matrix A, one would like to find a permutation of its rows,
and symmetrically its columns, such that in the permuted matrix all non-
zero elements lie close to the diagonal. This is equivalent to the bandwidth
problem and if one manages to find such a permutation, this can speed up
matrix operations like multiplication, inversion and Gaussian elimination
considerably [GHK+09].

Many graph parameters naturally arise in various different applications.
Pathwidth and treewidth, for example, can be independently defined from
search games in graphs.

Graph searching

Imagine that we are the system administrators for a computer network.
Occasionally computer malware manages to pass through our fine firewall.
Then, between any two connected computers the malware can spread. When
it is detected, a cleaning protocol is initiated. A computer is cleaned by dis-
connecting it from the network and executing cleaning software. After this

18 CHAPTER 1. INTRODUCTION

it is connected to the network again when we decide it to be. It is not a
good idea to reconnect a computer if it is connected to an uncleaned part of
the network, as it might immediately become infected again. Hence a set of
computers separating the clean part from the infected part of the network
must be disconnected.

As services from this computer network are highly requested, we want the
number of disconnected computers to be as low as possible at any time. We
call the maximum number of simultaneously disconnected computers during
the protocol the protocol cost. We are to design such a virus searching and
cleaning protocol for the network and our employers will be very happy if
we manage to minimize the protocol cost. If G is the graph representing
the computer network, any optimal solution with respect to the protocol
cost requires exactly the pathwidth of G+ 1 disconnected computers during
the search [KP86]. The pathwidth of a graph is similar to treewidth, the
difference being that we want our graph to decompose into a path instead
of a tree. For many graph parameters, there is such a relation between the
parameter and these kinds of games in graphs. In fact, if our virus is inert,
meaning that it will only spread from a computer if that computer is about
to get cleaned, the number of disconnected computers needed to ensure a
full clean is related to the treewidth of the graph [DKT97]. See for yourself
if you manage to search through the graph in Figure 1.5 with only three
searchers, knowing that the virus is inert.

The cost considered above was the maximum number of disconnected
computers at any time. Let us instead consider the sum of how long each
of the computers are disconnected during the protocol as the cost, the total
disconnection time. Then an optimal solution with respect to this cost re-
lates to either the fill-in [FHT05] or the profile [FG00] of the network graph,
depending on whether the virus is inert or not. In this spirit, one can also
define the cost function, individual disconnection time, where we would like
to minimize the maximum total time a single computer is disconnected dur-
ing the protocol. For a standard virus this is equivalent to the bandwidth of
the graph [RS83].

The first cost, the protocol cost, can be motivated from wanting the
network to stay as responsive as possible by minimizing the number of com-
puters disconnected at any time. The second one fits a network which is
doing something continuously and the most important thing is how much
time can be spent on computations while doing the cleaning. The third cost
function can be motivated by each computer having certain tasks, or maybe
they are in different locations, and the time each task or location do not
have a computer available should be as small as possible while keeping the
system somewhat fair.

One piece is missing in the picture and that is a solution that minimizes
individual disconnection time when the virus is inert. This motivated the
definition of treespan by Fomin et al. [FHT05]. It generalizes the well studied

1.2. OUTLINE OF THE THESIS 19

notion of bandwidth from linear orderings to tree structures. This makes it
an interesting field of study and hence the computational tractability of this
parameter will be the topic of this thesis.

Note that when minimizing the protocol cost for both standard or inert
viruses, the total disconnection time for both types of viruses or the indi-
vidual disconnection time for a standard virus, one can prove that there is a
monotone optimal protocol [FHT05], meaning that no computer will be dis-
connected twice. However, Dereniowski [Der09] proved monotone protocols
to be non-optimal in the case of an inert virus when minimizing individual
disconnection time.

The problems discussed above are referred to as node searching games
in the literature. The name originates from the fact that we lift our clean-
ers between vertices in the graph. Other search games also exists, as edge
searching, where the cleaners are slided along the edges cleaning the edge
while moving. Another version is mixed searching, which is a combination
where both lifting and sliding are permitted. All of these variations fits
into the broader class of graph searching problems, which has been studied
extensively [AG02, Par78, Pet82, MHG+88, BS91, Mih10].

1.2 Outline of the thesis

In the rest of Part I we give the necessary background. In Chapter 2 we
provide notation and the definitions of basic concepts used throughout the
thesis. Chapter 3 provides an introduction to the complexity theory needed.
The rest of the thesis is original work, unless otherwise is stated.

Part II introduces the graph parameter adjacencyspan and proves it to
be equivalent to treespan. Furthermore we provide some structural results.

In Part III we provide numerous algorithmic results: In Chapter 5 we
prove Treespan to be polynomial time solvable for every fixed k. In Chap-
ter 6 we revise some work from Fomin et al. [FHT05] and answer one of their
open problems regarding Treespan on trees of maximum degree higher than
3. In Chapter 7 we prove Treespan to be fixed parameter tractable and
admitting a polynomial kernel when parameterized by both the vertex cover
number of the input graph and the requested treespan. Furthermore, we
provide a fixed parameter tractable algorithm for the case when the problem
is only parameterized by the vertex cover number.

In Part IV give a conclusion of our work and provide open problems and
a discussion around their possible solutions.

20 CHAPTER 1. INTRODUCTION

Chapter 2

General background

2.1 Notation and definitions

A graph G = (V,E) consists of a set of vertices V (G) = V and a set of edges
E(G) = E ⊆ V 2. Throughout the text n will denote the number of vertices
and m the number of edges in a graph. For readability we will denote the
edge (u, v) by uv. A graph is undirected if given any edge uv in G then vu
is also an edge in G and we will then consider uv and vu to be the same
edge. A graph is simple if there is no vertex v such that vv ∈ E. All graphs
in this text will be both undirected and simple unless otherwise is stated.
Two vertices are adjacent if there is an edge between them, and in that case
we call them neighbors. An edge is incident to a vertex v if v is one of its
endpoints.

For a vertex v in a graph G = (V,E), the open neighborhood of v is the
set of all neighbors of v and is denoted NG(v) = {u | vu ∈ E}. The closed
neighborhood of v is the open neighborhood and v itself, denoted NG[v] =
NG(v) ∪ {v}. For a set of vertices C ⊆ V , we define NG[C] =

⋃
v∈C NG[v]

and NG(C) = NG[C]\C. The degree of v is the size of its open neighborhood,
denoted dG(v) = |N(v)| and by ∆(G) we mean the maximum degree of any
vertex in G. When there is no risk of ambiguity we will omit subscripts.

A path P in a graph G is a sequence of vertices P = (p1, . . . , pk) such
that every pair of consecutive vertices in P are adjacencent in G. A cy-
cle is a closed path, meaning that p1 and pk are adjacent. A path or
cycle is said to be simple if it contains no vertex more than once. The
equivalence relation “there is a path from u to v in G” partitions V (G)
into its connected components. We call a graph connected if it has only
one connected component. The distance between two vertices u and v be-
longing to the same connected component in G, distG(u, v), is min{k − 1 |
(p1, . . . , pk) is a path in G from u to v}, (the length of a shortest path be-
tween u and v). The diameter of a graph G, diam(G), is the maximum
shortest distance between any two vertices.

21

22 CHAPTER 2. GENERAL BACKGROUND

A tree is a connected graph containing no cycles. A rooted tree (T, r) is
a tree T with a root r ∈ V (T). For every vertex v ∈ V (T) \ {r} we call the
unique vertex in N(v) closest to the root the parent of v, denoted ρ(v). All
other neighbors of v are called children of v. We say that u is an ancestor of
v if there is a simple path from r to v containing u, and if u is an ancestor of
v then v is a descendant of u. Vertices u and v have an ancestor-descendant
relationship if u is an ancestor or descendant of v. By Tv we mean the subtree
of (T, r) rooted in v.

For two graphs G and H we say that H is a subgraph of G if V (H) ⊆
V (G) and E(H) ⊆ E(G). Furthermore H is an induced subgraph of G if
V (H) ⊆ V (G) and E(H) = E(G) ∩ V (H)2. The induced subgraph of G
with vertex set C ⊆ V (G) is denoted G[C]. For a set of vertices V ′ ⊆ V (G)
we define G \V ′ as G[V (G) \V ′] and for a set of edges E′ ⊆ E(G) we define
G \ E′ as the graph (V (G), E \ E′).

We say that a graph is complete if every pair of vertices are adjacent and
edgeless if there are no edges in the graph. A clique K in a graph G is a set
of vertices such that G[K] is complete and an independent set I is a set of
vertices such that G[I] is edgeless. A set S of vertices in G = (V,E) is called
a vertex cover if every edge in G is incident to a vertex of S. Observe that
if S is a vertex cover in G then G[V \ S] contains no edges, hence is V \ S
an independent set. The vertex cover number of a graph G is the smallest
cardinality of a vertex cover of G.

A subset S of the vertices of the graph G is a uv-separator if u and v
belong to different connected components in G \ S. S is a separator if it is
a uv-separator for some u and v.

2.2 Graph decompositions and parameters

In this section we introduce several classical graph decompositions and re-
lated parameters, including tree decomposition, ordered tree decomposition,
treewidth, bandwidth and the parameter we will study in this thesis, namely
treespan. Each section will be supplemented by examples to give the reader
an intuition of how the decompositions and parameters behave. However,
this intuition should not be trusted blindly.

By Treewidth, Pathwidth, Bandwidth and Treespan we denote
the problems of, given a graph G and an integer k, determining if G has
treewidth, pathwidth, bandwidth or treespan at most k, respectively.

Tree decomposition and treewidth

A tree decomposition of a graph G = (V,E) is a pair (X,T), where T =
(I,M) is a tree and X = {Xi | i ∈ I} is a collection of subsets of V called
bags, such that:

2.2. GRAPH DECOMPOSITIONS AND PARAMETERS 23

1.
⋃
i∈I Xi = V ,

2. if uv ∈ E, then there is a bag Xi such that both u and v are in Xi and

3. for every vertex v ∈ V , {i ∈ I | v ∈ Xi} induces a connected subtree
of T .

For a tree decomposition (X,T) of a graph G, we define the width of (X,T)
as w(X,T) = max{|Xi| − 1 | Xi ∈ X} and the treewidth of G as:

tw(G) = min{w(X,T) | (X,T) is a tree decomposition of G}.

1

2

3 4

5

6

(a)
1

2

3 4

5

6

(b)

1

2

3 4

5

6

(c)

Figure 2.1: For the graph G in (a), (b) displays the trivial tree decomposition
with width 5 and (c) is an optimal tree decomposition demonstrating G to
have treewidth 2.

A path decomposition is a tree decomposition (X,T) such that T is a
path and the pathwidth of a graph G is:

pw(G) = min{w(X,T) | (X,T) is a path decomposition of G}.

Bandwidth

A linear ordering σG of a graph G is a bijection from V (G) to {1, 2, . . . , n}.
Let max{σG(u) − σG(v) | uv ∈ E(G)} be the cost of σG. The bandwidth of
G, bw(G) is then the minimum cost over all linear orderings of G.

Bandwidth
Input: A graph G and an integer k.
Question: Is bw(G) ≤ k?

Another definition of bandwidth is as follows. An ordered path decom-
position is a path decomposition (X,P) of G such that if we enumerate the
bags X1, X2, . . . , Xn from one leaf bag to the other, then |X1| = 1 and for
all 2 ≤ i ≤ n, we have that |Xi \Xi−1| = 1, meaning that exactly one new
vertex is introduced in each bag. Let l(v) be the number of bags in (X,P)
containing v and α(X,P) = max {l(v)− 1 | v ∈ V (G)}. It is easy to show
that bw(G) is the minimum α(X,P) over all ordered path decompositions
(X,P) of G.

24 CHAPTER 2. GENERAL BACKGROUND

1

2

3 4

5

6

(a)

3 2 1 5 4 6

(b)

1 2 3 4 5 6

(c)

1 21 3
2

1
43 54 64

(d)

Figure 2.2: For the graph (a), (b) is a linear ordering of cost 4, (c) is an
optimal linear ordering of cost 2 and (d) is an ordered path decomposition
representation of (c).

Treespan

Fomin et al. [FHT05] extended bandwidth to ordered tree decompositions,
thereby introducing the notion of treespan. An ordered tree decomposition
(X,T, r) of a graph G = (V,E) is a rooted tree decomposition with root
r ∈ I such that: |Xr| = 1 and for all i, j ∈ I such that j is the parent of i it
holds that |Xi \Xj | = 1. We say that the bag closest to the root containing
v introduces v in (X,T, r).

Let G = (V,E) be a graph and (X,T, r) an ordered tree decomposition
of G. Furthermore, let the span of a vertex v, denoted span(v), be the
number of bags containing v and ts(X,T, r) = max {span(v)− 1 | v ∈ V }
(the maximal number of occurrences of a vertex). The treespan of G is then
defined as

ts(G) = min{ts(X,T, r) | (X,T, r) is an ordered tree decomposition of G}.

Treespan
Input: A graph G and an integer k.
Question: Is ts(G) ≤ k?

2.3. ADDITIONAL PROBLEMS 25

0 1 2

3

4

5

6

7

8

9

(a)

0

40

4
1

0

4
3

1

3
2

1

52

65

72

87 97

(b)

Figure 2.3: An optimal ordered tree decomposition, proving that ts(H) = 2.
Note that that bw(H) = 3.

Note that any ordered path decomposition is an ordered tree decomposi-
tion, implying that ts(G) ≤ bw(G) for any graph G. The graph in Figure 2.2
is an example of a graph where ts(G) = bw(G). Rautenbach [Rau05] proved
that for a graph G and a subgraph H of G we have that ts(H) ≤ ts(G).
From the thesis of Watnedal [Wat05] we have the following two bounds,
ts(G) ≥ d∆(G)/2e and ts(G) ≤ n− 1. As the treespan of a graph G is equal
to the maximum treespan of its connected components, we will assume from
now on that G is connected.

2.3 Additional problems

For self containment we will give the definition of the other problems that
will be mentioned during this thesis.

Clique
Input: A graph G and an integer k.
Question: Does G contain a clique of cardinality k?

26 CHAPTER 2. GENERAL BACKGROUND

Independent Set
Input: A graph G and an integer k.
Question: Does G contain an independent set of cardinality k?

Graph Colorability
Input: A graph G and an integer k.
Question: Is there a function f from V (G) to {1, . . . , k} such that for

every edge uv ∈ E(G) it holds that f(u) 6= f(v)?

Vertex Cover
Input: A graph G and an integer k.
Question: Does G have a vertex cover of size at most k?

Diagonal Ramsey
Input: A graph G and an integer k.
Question: Does G contain a clique or independent set of size k?

Chapter 3

Complexity theory

3.1 Complexity

Our computations, as explained in Chapter 1, will be described and analyzed
in form of algorithms. We will assume that standard arithmetic operations
and relations like addition, multiplication and equality testing can be done
in constant time. Also memory lookup at specific indices is assumed to be a
constant time operation. By P we mean the problems which are computable
in polynomial time by a deterministic Turing machine and by NP the prob-
lems which admit polynomial time verifiable certificates. The NP-complete
problems are the hardest problems in NP with respect to polynomial time re-
ductions. If it turns out that one of these problems is solvable in polynomial
time then all problems in NP would be in P and hence P = NP. For more on
this topic we refer to the classical book by Garey and Johnson [GJ79]. This
chapter will be dedicated other complexity classes relevant for this thesis.

Time

Rather than giving the exact running time of an algorithm, we often use what
is called big O notation to denote how algorithms behave asymptotically.

Definition 3.1. For two real functions defined on some subset of N we write
f(n) = O(g(n)) if there exists n0 and c ∈ N such that

|f(n)| ≤ c|g(n)| for every n ≥ n0.

While big O says that f should not grow asymptotically faster than g,
we have another notation that says that f grows asymptotically slower than
g, namely the little o notation.

Definition 3.2. For two real functions defined on some subset of N we write
f(n) = o(g(n)) if for every positive ε there exists an n0 ∈ N such that

|f(n)| ≤ ε|g(n)| for every n ≥ n0.

27

28 CHAPTER 3. COMPLEXITY THEORY

Let TIME(f(n)) be the set of all problems solvable by a deterministic
Turing machine in O(f(n)) time, where n is the size of the input. By this
definition P =

⋃
c∈N TIME(nc).

3.2 Exponential time solvability

We have already defined the class of problems solvable in polynomial time.
But what about the problems outside of this class? Some of them are solvable
in exponential time and those, are contained in the class EXP. More formally,

EXP =
⋃
c∈N

TIME(2O(nc)).

From the definitions and the Cook-Levin theorem, we know that P ⊆ NP ⊆
EXP. From the time hierarchy theorem, it follows that P ⊂ EXP [Sip96].
Hence there are problems solvable in exponential time which are not solvable
in polynomial time.

Recall the situation in Chapter 1, where we had a set of data points
containing errors. We want to remove at most k data points such that
the data becomes consistent. We can model the problem with a graph by
representing each data point by a vertex and add an edge between a pair
of vertices if the two data points are non-consistent. The problem is now
reduced to remove k vertices from the graph such that there are no edges
left. This is the classical problem Vertex Cover and it will follow us
throughout this chapter in our examples.

Vertex Cover is trivially solvable in O(2nm) time and hence is in
EXP. For each vertex v, we branch on the two possibilities of putting v in
the vertex cover or not. When this has been done for all vertices one can
check if the vertex cover is of size at most k and then iterate over the edges
in the graph and ensure that each edge has at least one of its endpoints in
the vertex cover. In total this takes O(2nm) time. For more on exponential
algorithms we refer to the book by Fomin and Kratsch [FK10].

3.3 Parameterized problems

Many of the interesting problems we would like to solve are NP-complete. For
these problems it is quite likely that we will have to settle with exponential
time algorithms. But the exponential explosion in the running time does
not remove the need to solve these problems. This motivated the study
of parameterized problems. By considering not only the input size, but
also some other parameter of the input we divide the instance space into
slices, each containing instances of a fixed parameter value. We try to design
algorithms which behave polynomially when restricting the input to a specific
slice. And then, by assuming that the value of the parameter is not too

3.4. FIXED K GIVES POLYNOMIAL TIME ALGORITHM 29

big, we make specific large instances tractable. We adopt the notions and
definitions within parameterized complexity from the classical book in the
field by Flum and Grohe [FG06].

Definition 3.3. For a finite alphabet Σ, we define

• a parameterization over Σ∗ as a polynomial time computable function
κ : Σ∗ → N.

• a parameterized problem (over Σ) is a pair (Q, κ) consisting of a lan-
guage Q ⊆ Σ∗ and a parameterization κ of Σ∗.

For an example let Q be the pairs (G, k) such that G is a graph with a
vertex cover of size k and let the parameterization be κ(G, k) = k.

p-Vertex Cover
Input: A graph G and an integer k.
Parameter: k.
Question: Does G have a vertex cover of size at most k?

The p in the problem name will be used to differentiate the parameterized
from the classical version. In the next two sections we will present two
complexity classes which contain problems that get polynomial time solvable
when we fix the value of the parameterization. For completeness we also give
the definition of p-Treespan and p-Bandwidth.

p-Treespan
Input: A graph G and an integer k.
Parameter: k.
Question: Is ts(G) ≤ k?

p-Bandwidth
Input: A graph G and an integer k.
Parameter: k.
Question: Is bw(G) ≤ k?

3.4 Fixed k gives polynomial time algorithm

The class XP is the class of all the parameterized problems which admit
polynomial time algorithms when we fix the value of the parameterization.

Definition 3.4. A parameterized problem (Q, κ) is in XP if there exists
a function f , such that for every instance x we can decide if x is in Q in
O(|x|f(κ(x))) time.

30 CHAPTER 3. COMPLEXITY THEORY

Note that any algorithm with running time O(g(κ(x)) · |x|h(κ(x))) is an
XP algorithm as O(g(κ(x)) · |x|h(κ(x))) = O(|x|g(κ(x))+h(κ(x))) = O(|x|f(κ(x)))
for f = g + h. One can prove that p-Vertex Cover is in XP. Observe
that if there is a solution of size less than k, we can trivially extend this
to a solution of size k (assuming k ≤ n, otherwise the instance is trivial).
Hence we only search for a solution of size exactly k. There are O(nk) many
such sets of k vertices in a graph. For each of these sets one can verify in
O(m) time whether the given set is a vertex cover by iterating over all the
edges and checking that at least one of the endpoints is in the vertex cover.
In total this gives us a running time of O(nkm) = O(nk+2) and hence it
follows that p-Vertex Cover is in XP. In fact, most subset problems in
NP are trivially in XP when parameterized by the size of the subset. Another
example is p-Clique.

p-Clique
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a clique of cardinality k?

In the same manner as for p-Vertex Cover, we try all possible subsets
of size k. For each of these sets we check if it is a clique or not. This yields
an O(k2nk) time algorithm for p-Clique.

It seems like XP is a big class of problems. Later in this thesis we will
see that p-Treespan is in XP aswell, but this is not as trivial as our two
examples in this section. There are also problems in NP which are not in XP
under the assumption that P 6= NP. An example is Graph Colorability
parameterized by the number of colors, as this problem is NP-complete even
for k = 3 [Sto73].

3.5 Fixed parameter tractability

While the problems in XP are polynomial time solvable for every fixed k, the
polynomials can get quite bad as k increases. Imagine running an O(n100)
algorithm on any reasonable instance. We would therefore like to achieve a
running time, polynomial for any fixed k, such that the polynomial does not
get worse when the value of the parameterization increases. This leads us to
fixed parameter tractability.

Definition 3.5. A parameterized problem (Q, κ) is fixed parameter tractable
if there exist a function f and a constant c such that every instance x is
solvable in O(f(κ(x)) · |x|c) time. The class FPT is the set of parameterized
problems which admit fixed parameter tractable algorithms.

In this thesis the value of κ(x) will always be a part of the input x.
Hence we can see the input as a pair x = (y, k) where κ(x) = k. A fixed

3.6. THE W-HIERARCHY 31

parameter tractable algorithm will then be an algorithm with running time
O(f(k) · |y|O(1)). This is closer to the definition of Niedermeier [Nie06] and
will be sufficient for this thesis. Note that a parametrized problem (Q, κ)
solvable in O(g(k) + |x|O(1)) for any instance x also is in FPT since

g(k) + |x|c ≤ (g(k) + |x|c)2 = g(k)2 + 2g(k)|x|c + |x|2c ≤ (g(k)2 + 2g(k))|x|2c

under some reasonable assumptions about g(k), |x| and c.
It is well-known that p-Vertex Cover is fixed parameter tractable

[Nie06]. To see this, we observe that for every edge uv, at least one of u
and v must be contained in any vertex cover. Algorithm 3.6 is based on this
observation.

Algorithm 3.6 FPT algorithm for p-Vertex Cover
1: function hasVC(G, k)
2: if G is edgeless then
3: return true
4: if k ≤ 0 then
5: return false
6: Let uv be some edge in G.
7: return hasVC(G \ {v}, k − 1) or hasVC(G \ {u}, k − 1)

At each recursive step of the algorithm, checking if G is edgeless, finding
uv and removing u and v can be done in O(n) time with a reasonable graph
representation. At each recursive call the parameter k decreases and as we
stop if k reaches zero, the depth of our recursion is bounded by k + 1. At
each level we branch into two, implying that the size of our branching tree is
bounded by 2k+1. Hence, our algorithm runs in O(2kn) time and it follows
that p-Vertex Cover is in FPT.

3.6 The W-hierarchy

Recall that Graph Colorability is NP-complete for k = 3 and hence not
believed to be in XP. The same argument applies for the class FPT. So how
about the problems in XP? Are all of them in FPT or are there some problems
which does not admit fixed parameter tractable algorithms? In fact, we do
not know. But just as for P, we have problems that seem unlikely to belong
to FPT. In fact we have a hierarchy of classes which are all supersets of FPT.
We call it the W-hierarchy and it is displayed below.

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP.

If a problem is complete for some class in the hierarchy it is considered
unlikely that it belongs to any of its subclasses. p-Clique is known to be
W[1]-complete [DF95] and hence not believed to admit a fixed parameter
tractable algorithm.

32 CHAPTER 3. COMPLEXITY THEORY

3.7 Kernels

For years the computer science community has been using reduction heuris-
tics, meaning that one in certain cases reduces the size of the input without
changing the answer. But there has been no theoretical framework to analyze
how these heuristics perform. Instead performance of implementations have
been considered. Assume that for some NP-complete problem there is a set of
reduction rules applicable on any instance x in polynomial time such that the
new instance x′ has a size bounded by c|x| for some c < 1. Then by applying
these rules O(log |x|) times, we would get an instance of constant size. Hence
we could solve the problem in sub-exponential O(xO(log |x|)) = O(2O(log |x|))
time. As such a framework for NP-complete problems within traditional
complexity would imply all problems in NP to be solvable in sub-exponential
time, contradicting the exponential time hypothesis, it is considered unlikely
to exist [Woe03].

The notion of parameterized problems provides us with such a frame-
work, namely kernels. A kernel is a reduced instance of a parameterized
problem of size bounded only by the parameterization of the original in-
stance. Furthermore, it preserves the answer and should be computable in
polynomial time.

Definition 3.7. Let (Q, κ) be a parameterized problem over a finite alpha-
bet Σ. A function K : Σ∗ → Σ∗ is a kernelization algorithm or simply a
kernelization of (Q, κ) if there is a computable function h : N→ N such that
for every x ∈ Σ∗ and x′ = K(x) we have

(x ∈ Q⇔ x′ ∈ Q) and |x′|, κ(x′) ≤ h(κ(x)).

Furthermore K(x) should be computable in time polynomial in |x| + κ(x).
K(x) is called the kernel of x (under K) and the function h denotes the size
of the kernel. If h is a polynomial we say that the kernel is a polynomial
kernel.

Before we give any examples of kernels we will present the folklore result
of how FPT and the set of problems with kernels relate.

Lemma 3.8 (Folklore). A decidable parameterized problem is fixed parame-
ter tractable if and only if it admits a kernel.

Proof. Suppose the problem admits a kernel. Then there is a polynomial
time kernelization algorithm which transforms the instance x into an instance
x′ of size bounded by h(κ(x)) for some function h. Any algorithm applied to
the new instance will run in time O(f(κ(x))) for some function f and hence
the problem is fixed parameter tractable.

Now suppose the problem is fixed parameter tractable and hence solvable
in O(f(κ(x)) · |x|c) for some f and c. If |x| ≤ f(κ(x)), the original instance x

3.7. KERNELS 33

is a kernel. Otherwise |x| > f(κ(x)), but then the time required to solve the
problem is O(f(κ(x)) · |x|c) = O(|x|c+1). Hence we can solve the problem in
polynomial time and return an equivalent trivial instance as a kernel. This
completes our proof.

We revise the problem of Ramsey numbers from the introduction, stating
a formal definition of the parameterized diagonal Ramsey problem. Recall
that p-Clique and by this also p-Independent Set is W[1]-hard.

p-Diagonal Ramsey
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain a clique or independent set of size k?

By Ramsey [KAM30] we know that there is a function f(k) such that if
|V (G)| ≥ f(k) the answer is yes. From the proof we can obtain an upper
bound on f , lets call it f̄ . By this we get a trivial kernelization algorithm. If
the instance if bigger than f̄(k) the answer is yes and we return a trivial yes-
instance, otherwise the instance is bounded by f̄ and hence a kernel. As this
kernel is very big, one often tends to be more interested in polynomial kernels.
But by the paper on co-nondeterministic compositions by Kratsch [Kra12]
we know that this problem does not admit a polynomial kernel unless NP ⊆
coNP/poly, which is regarded to be unlikely. We will spend the rest of the
section giving the polynomial kernel for p-Vertex Cover by Buss [Nie06].

Rule 1: If a vertex v in G is isolated, let new instance be (G \ {v}, k).

Rule 1 is sound as clearly no isolated vertex will cover any edge and hence
it will not be in any optimal solution.

Rule 2: If a vertex v in G has degree at least k + 1, let new instance be
(G \ {v}, k − 1).

Observe that for every vertex v and vertex cover S, S must either contain
v or N(v), otherwise it will not cover all edges. Hence if the neighborhood
of a vertex is too big to be included in the vertex cover, we will have to pick
the vertex itself. It follows that Rule 2 is also sound. We now obtain a kernel
for p-Vertex Cover with k(k + 1) vertices and k2 edges. Assume that we
have applied Rule 1 and 2 exhaustively on our instance. We then argue as
following, any vertex has degree at most k and can therefore at most cover all
edges incident to k+ 1 vertices, the vertex and all of its neighbors. As every
vertex is incident to some edge and our vertex cover is of size at most k, this
implies that if our graph contains more than k(k+ 1) vertices the instance is

34 CHAPTER 3. COMPLEXITY THEORY

a no-instance. Furthermore any vertex can cover at most k edges and hence
if the graph contains more than k2 edges it is a no-instance. It follows that
p-Vertex Cover admits a kernel with k(k + 1) vertices and k2 edges. In
fact, Chen et al. [CKJ01] proved that by applying the classical theorem of
Nemhauser and Trotter one can obtain a kernel with at most 2k vertices and
k2 edges. Recently Dell and van Melkebeek [DvM10] proved the bound on
edges to be tight, meaning that there is no kernel with O(k2−ε) edges for
any ε > 0 unless NP ⊆ coNP/poly. For more on the topic of parameterized
complexity we refer to the books by Downey and Fellows [DF99], Flum and
Grohe [FG06] and Niedermeier [Nie06].

Part II

A fresh perspective

35

Chapter 4

Adjacencyspan

In this chapter, we introduce a new tree structure called adjacency trees and
a graph parameter called adjacencyspan which we prove to be equivalent to
treespan. In addition we prove that we can considered a strict subset of the
adjacency trees we call branched adjacency trees without losing all optimal
solutions with respect to adjacencyspan. This will be one of the main tools
for developing algorithm in the rest of the thesis.

4.1 Adjacency trees

Let (X,T, r) be an ordered tree decomposition of a graph G = (V,E). Fomin
et al. [FHT05] observed the following: the index set I of X is of size n, so
without loss of generality we can assume that I = V . In addition we can
index the bags such that Xr = {r} and Xv \Xρ(v) = {v}. From now on we
will assume the bags of an ordered tree decomposition to be indexed in such
a way. They continued this observation by proving the following lemma.

Lemma 4.1 ([FHT05]). Let T be a rooted tree on the vertex set of a graph
G = (V,E). There exists an ordered tree decomposition (X,T, r) of G if
and only if for every edge uv ∈ E, u and v have an ancestor-descendant
relationship in T .

The reason for every pair of adjacent vertices in G to have an ancestor-
descendant relationship in T is that otherwise two adjacent vertices could
be introduced in two separate branches of the tree, implying that no bag
contains them both, breaking the edge property of tree decompositions. We
will now follow up by giving these trees a name.

Definition 4.2. Given a graph G, an adjacency tree (T, r) of G is a rooted
tree on the vertices of G such that every adjacent pair of vertices in G have
an ancestor-descendant relationship in T .

37

38 CHAPTER 4. ADJACENCYSPAN

0

4

1

3

2

5

6

7

8 9

Figure 4.1: The corresponding adjacency tree of the graph in Figure 2.3.

Adjacency trees and elimination trees

A reader with a background in chordal graphs and elimination trees might
already have a feeling that adjacency trees and elimination trees somehow
relate to each other. Fomin et al. [FHT05] introduced a parameter on elimi-
nation trees which they proved to be equivalent to treespan, so in fact there
is already an established connection in the literature. In this section we will
prove that the set of elimination trees of a graph actually is a proper subset
of its set of adjacency trees. We give these results as structural results of
independent interest.

We say that a graph G is chordal if there is no subset C ⊆ V (G) such
that G[C] is a cycle of length at least 4. An elimination order of a graph
G = (V,E) is a mapping α from V to {1, . . . , n}. If we iteratively remove the
vertices of G in the order given by α and at each step turn the neighborhood
of the vertex to be removed into a clique, the graph we obtain by adding all
the edges you created in this process to the original graph G, denoted G+

α ,
will be chordal [FG64]. The elimination tree of a certain elimination order
is obtained by letting α−1(n) be the root, and for every other vertex v let
the parent of v be the vertex u ∈ NG+

α
(v) with the lowest α−1(u) larger than

α−1(v).

0 1 2

(a) A path P3 on three vertices.

2

0

1

(b) A tree on the vertex set of P3.

Figure 4.2: The tree on the right is an adjacency tree of the P3 on the left.

The tree in Figure 4.2 is an adjacency tree of the graph, as every neighbor

4.2. ADJACENCYSPAN 39

in the graph have a ancestor-descendant relationship in the tree, but it is not
an elimination tree. The reason being that vertex 1 is the root and hence
was removed last, implying that G+

α = G and hence vertex 0 and vertex 2
is not connected in G+

α , contradiction the fact that vertex 0 is the parent of
vertex 2.

Proposition 4.3. For a graph G every elimination tree (T, r) is an adja-
cency tree of G.

Proof. For a contradiction, assume otherwise. Then there exists an edge uv ∈
E(G) such that u and v does not have an ancestor-descendant relationship in
(T, r). Without loss of generality, assume that α(u) < α(v) and let a = ρ(u)
and b = ρ(v). By definition we know that α(u) < α(a) and α(v) < α(b). If
a = b we get that α(u) < α(v) < α(b) = α(a), which is a contradiction as this
implies that v is preferred as the parent of u before a in the definition. Hence
we can assume that a 6= b. We can also assume that a and v do not have an
ancestor-descendant relationship, as if v is an ancestor of a it implies that u
and v have an ancestor-descendant relationship and if a is an ancestor of v
it implies that α(v) < α(a), which contradicts the fact that a is the parent
of u. Since u is removed before both a and v in the elimination order we
get that av ∈ E(G+

α). We iteratively apply this procedure n + 1 times, at
each step continuing with a and v. As α(u) +α(v) strictly decreases, we are
moving up in the tree, but we will never get to the case where one of them
is an ancestor of the other or they have the same parent. This gives us our
contradiction and completes the proof.

u v

a b

Figure 4.3: Illustration of last part of the proof of Proposition 4.3.

Consequently, we have proved that the set of elimination trees is a strict
subset of the adjacency trees. For further reading on elimination trees we
refer to Liu [Liu90].

4.2 Adjacencyspan

We will now introduce the parameter adjacencyspan and prove it to be equiv-
alent to treespan. This definition will in some sense close the circle, as we
went from the normal definition of Bandwidth to minimizing occurrences
in ordered path decomposition, lifting this to the generalized problem on

40 CHAPTER 4. ADJACENCYSPAN

trees, namely Treespan, for now to go back to orderings, but this time on
trees. But before we do this we need a definition.

Definition 4.4. Let G = (V,E) be a graph and (T, r) an adjacency tree
of G. For a vertex v ∈ V we define the minimal neighborhood tree, denoted
Tmv , to be the minimal subtree of Tv such that NG[v] ⊆ V (Tmv).

1

4

2

3

6

7

5

0

(a) A graph G

0

1

2

3 4

5

6 7

(b) An adjacency tree T of G

Figure 4.4: The solid edges in the tree display the minimal neighbor tree of
vertex 1, Tm1 .

Definition 4.5. Let G = (V,E) be a graph and (T, r) an adjacency tree of
G. We then define the adjacencyspan of (T, r), denoted as(T, r), as as(T, r) =
maxv∈V (|Tmv | − 1) and the adjacencyspan of G as

as(G) = min {as(T, r) | (T, r) is an adjacency tree of G} .

The adjacency tree in Figure 4.4 have adjacencyspan 5, and is not opti-
mal. In Figure 4.5 we display an optimal adjacency tree with adjacencyspan
3.

We will now spend the rest of this section proving Theorem 4.7, which
states that for any graph G, we have that as(G) = ts(G). Before we begin
the proof we need the following construction.

Construction 4.6. Given an adjacency tree (T, r) of a graph G we can
construct X in the following manner such that (X,T, r) is an ordered tree
decomposition of G:

1. Let Xr = {r} and otherwise let

2. Xv =
(
NG [V (Tv)] ∩Xρ(v)

)
∪ {v}.

Informally we “drag a vertex of the parent bag Xρ(v) with us down to Xv” if
it has a neighbor in the subtree Tv.

4.2. ADJACENCYSPAN 41

6

4

0

1

2 7

3 5

Figure 4.5: An optimal adjacency tree of the graph G in Figure 4.4 with
adjacencyspan 3.

6

4

0

1

2 7

3 5

(a)

6

4 6

0 4 6

0 1 4 6

1 2 4 0 1 7

1 2 3 0 5 7

(b)

Figure 4.6: (a) is the adjacency tree from Figure 4.5, the dotted edges rep-
resent the edges from the graph. (b) is the ordered tree decomposition we
get when applying Construction 4.6 to (b).

Theorem 4.7. For every graph G = (V,E) we have that ts(G) = as(G).

Proof. First we prove that ts(G) ≤ as(G). Let (T, r) be an adjacency tree of
G, and let the bags X be constructed from (T, r) as described in Construc-
tion 4.6. Since a vertex v only gets added to a bag Xu if v ∈ NG[V (Tu)] and
v is an ancestor of u, the set of bags that v is contained in is exactly the
set of bags indexed by Tmv . This implies that for every vertex v we get that
|Tmv | = span(v), and hence as(T, r) = ts(X,T, r). It remains to prove that
(X,T, r) is an ordered tree decomposition. SinceXv by construction contains
v, we know that the vertex property holds for the decomposition. Let ab be
an edge in E and assume without loss of generality that a is an ancestor of
b in T . Then, on the path from a to b in T , a ∈

(
NG [V (Tv)] ∩Xρ(v)

)
∪ {v}

42 CHAPTER 4. ADJACENCYSPAN

for every v by induction and hence a ∈ Xb and the edge property is main-
tained. As the bag Xv only contains vertices from Xρ(v) and v, it follows
easily that (X,T, r) satisfies the connectivity property of tree decomposi-
tions, and hence it is a valid tree decomposition. For it to be an ordered tree
decomposition, observe that by definition |Xr| = 1 and |Xv \Xρ(v)| = 1, and
this completes this direction of the proof.

Now we prove that ts(G) ≥ as(G). Let (X,T, r) be an ordered tree
decomposition of G. By Lemma 4.1 we know that (T, r) is an adjacency
tree of G. Assume for a contradiction that ts(G) < as(G). Then there is
some vertex v, such that |Tmv | < span(v), hence there is a u ∈ Tmv such that
v /∈ Xu. But since u ∈ Tmv we know that V (Tu) introduces a neighbor of v,
and hence (X,T, r) either fails the edge property or the connectivity property
of tree decompositions which gives us our contradiction and completes the
proof.

As a result of Theorem 4.7, for the rest of the thesis our work will be con-
centrated on Adjacencyspan, as this gives a more manageable perspective
both mathematically and algorithmically.

Adjacencyspan
Input: A graph G and an integer k.
Question: Is as(G) ≤ k?

4.3 Branched adjacency trees

Definition 4.8. Let G = (V,E) be a graph, and let (T, r) and (T ′, r′) be
adjacency trees of G. If there is a vertex v ∈ V such that T [V \ Tv ∪ {v}] =
T ′[V \T ′v∪{v}] and dT ′(v) > dT (v) we say that (T ′, r′) has a higher branching
than (T, r). If there is no adjacency tree with a higher branching than (T, r)
we say that (T, r) is a branched adjacency tree.

Lemma 4.9. Let G be a graph and (T, r) an adjacency tree of G. Then
(T, r) is a branched adjacency tree if and only if for every vertex v ∈ V (G),
the induced subgraph G[V (Tv)] is connected.

Proof. (⇒) Let (T, r) be a branched adjacency tree of G. Assume for a con-
tradiction that there is a vertex v in G such that G[V (Tv)] is not connected.
Let C ⊆ V be a connected component of G [V (Tv)] not containing v. Let
TV \C be the tree obtained from T [V \C] by letting the parent of every vertex
v ∈ V \C such that ρT (v) ∈ C be the vertex closest to v on the simple path
from v to r in T which is in V \ C. Construct TC in the same way from
T [C]. Note that TC will be a tree by this procedure, as otherwise there are
two different vertices u, v ∈ C such that there is no ancestor of u or v in T

4.3. BRANCHED ADJACENCY TREES 43

0

1

23

(a)

0

1

2

3

(b)

0

1

23

(c)

0

1

2

3

(d)

Figure 4.7: Let (a) be our graph and let (b), (c) and (d) be adjacency trees
of (a). Observe that (c) has an higher branching than (b), while both (c)
and (d) are branched adjacency trees.

contained in C. But then there can be no path between u and v in G[V (Tv)]
or otherwise the edge property or the ancestor-descendant property would
not hold, hence u and v cannot be part of the same connected component in
Tv, which is a contradiction. Let (T ′, r) be the union of TC and TV \C when
adding an edge between ρT (v) and the root in TC . Note that v cannot be
the root, as then G is not a connected graph and hence this construction is
well-defined. The only ancestor-descendant relationships that changed from
T to T ′ is the ones between vertices in C and Tv \ C, and as there are no
edges between these to sets (T ′, r) is an adjacency tree. Let u = ρT (v). Note
that dT ′(u) = dT (u) + 1 and T [V \ Tu ∪ {u}] = T ′[V \ T ′u ∪ {u}], which is a
contradiction and completes this direction of the proof.

(⇐) Suppose now that (T, r) is not a branched adjacency tree. Then
there exists an adjacency tree (T ′, r) such that T \ (V (Tv) \ {v}) = T ′ \
{V (T ′v) \ {v}} and dT ′(v) > dT (v) for some vertex v. Then there is two
children x and y of v in T ′ and a child w in of v in T such that {x, y} ⊂ V (Tw)
by the pigeonhole principle. Since T ′ is an adjacency tree there are no edges
from vertices in V (T ′x) to vertices in V (T ′y) in G and hence x and y must
be connected through v in T ′. This implies that Tw is not connected in G,
which is a contradiction and completes the proof.

Lemma 4.10. Let (T, r) be an adjacency tree of a graph G. Then there
exists a branched adjacency tree (T ′, r) such that as(T ′, r) ≤ as(T, r).

Proof. Let v be a vertex in T such that its degree can be increased in the way
described in the definition. Apply the algorithm in the proof of Lemma 4.9
to increase the degree of v by one and call this new tree T ′. Observe that
for any pair of vertices x, y in G it is not the case that x is an ancestor of y
in T and a descendant of y in T ′. This implies that |T ′mu | ≤ |Tmu | for all u,
and hence as(T ′, r) ≤ as(T, r). Continue this process until T ′ is a branched
adjacency tree. Clearly as(T ′, r) ≤ as(T, r).

44 CHAPTER 4. ADJACENCYSPAN

0

1

2

3

4

5

6

0

1

2

3

5

4

6

0

1

2

3

4

5

6

Figure 4.8: Illustration of the right direction of the proof of Lemma 4.9. G is
on the left, in the middle is T and on the right is TC and TV \C . The dotted
edge illustrates the edge added to get T ′.

By an optimal adjacency tree we mean an adjacency tree which is opti-
mal with respect to adjacencyspan. The next theorem follows directly from
Lemma 4.10.

Theorem 4.11. For every graph G there exists a branched adjacency tree
(T, r) which is optimal.

In the next part of the thesis, we will use the results of this chapter to
give algorithms for Treespan via Adjacencyspan.

Part III

Algorithms

45

Chapter 5

Adjacencyspan is in XP

As Fomin et al. [FHT05] proved Treespan to be NP-complete, we can-
not hope to find a polynomial time algorithm for general input under the
assumption that P 6= NP. In this section we will present a dynamic pro-
gramming algorithm solving Adjacencyspan in polynomial time for every
fixed k, proving that p-Adjacencyspan is in XP. Saxe [Sax80] presented
a dynamic programming algorithm for solving Bandwidth in O(f(k)nk+1)
time, building the solutions from left to right using the k previous vertices as
the states. Our algorithm will similarly use the previously inserted vertices as
states, but it will differ in several key aspects. While Saxe keeps track of not
only the k previous vertices, but also which vertices in their neighborhood
which are already inserted, we prove that we can manage with only these
k vertices and in some cases one additional, specific vertex. This shrinks
a factor of the running time from 4k to 2k + 1 and keeps the algorithm
cleaner. Also, since we are building trees, there is no easy way to know
when to branch the tree without the notion of branched adjacency trees,
Lemma 4.9 and Theorem 4.11, a problem not appearing in linear orderings.
Furthermore, a vertex contributes to the span in a much more involved way
in a tree than in an linear ordering. To handle this we divide the available
span among the branches in different ways and try to build a combined so-
lution by dynamic programming. It is even non-trivial that the algorithm
builds a valid adjacency tree. Before we continue, we give the definition of
p-Adjacencyspan:

p-Adjacencyspan
Input: A graph G and an integer k.
Parameter: k.
Question: Is as(G) ≤ k?

47

48 CHAPTER 5. ADJACENCYSPAN IS IN XP

Preparation

Definition 5.1. Let G be a graph and (T, r) an adjacency tree of some
induced subgraph H of G. We say that an adjacency tree (T ′, r) of G is a
k-extension of (T, r) into G if the following holds:

• (T, r) is an induced subtree of (T ′, r) and

• (T ′, r) has adjacencyspan at most k.

Furthermore we say that (T, r) is k-feasible in G if there exists a k-
extension of (T, r) into G.

Definition 5.2. Let (T, r) be an adjacency tree of a graph G. For a vertex
v in T let the k-root path of v, denoted Rk(v, T, r) = (v1 = v, . . . , vk), be the
k first vertices on the simple path from v to r in T . If the distance between
v and r is less then k, we take all the vertices on the path as the k-root
path. Furthermore, if it is clear from the context which adjacency tree is
considered we will use the simpler notation Rk(v).

In the definition of a root path, we considered it as a tuple. During this
chapter there will be several occasions where we would like to consider the
vertices in the root path as a set. We will then apply the set notation on the
tuple and it should be interpreted as the set notation on the set of vertices
within the tuple.

Lemma 5.3. Let G be a graph and (T, r) a branched adjacency tree of G
such that as(T, r) ≤ k. Let v be a vertex in G and

R =

{
Rk+1(v) if v and vk+1 are adjacent in G and
Rk(v) otherwise.

Let H1, . . . ,Hl be the connected components of G \ R such that Hi ∩NG(v)
is non-empty, then V (Tv) = V (H1) ∪ · · · ∪ V (Hl) ∪ {v}.

Proof. (⊆) Let u be a vertex in V (Tv) \ {v} and let H be the connected
component in G \R containing u. Assume for a contradiction that H 6= Hi

for every i, which implies that H ∩ NG(v) is empty. Then u and v are
not connected in G[V (Tv)] and hence G[V (Tv)] is not connected, which is a
contradiction to (T, r) being a branched adjacency tree by Lemma 4.9.

(⊇) Let u be a vertex in Hi for some i in [1, . . . , l] and assume for a
contradiction that u is not in Tv. By the definition of Hi there is a vertex
u′ ∈ Hi ∩ NG(v). As u′ and v are neighbors they must have an ancestor-
descendant relationship in (T, r). Assume u′ to be an ancestor of v. As u′

cannot be in R and u′ is a neighbor of v we know that the distance between
u′ and v in T is at least k+ 1 by the definition of R, which is a contradiction
to as(T, r) ≤ k.

49

If u′ is a descendant of v we consider a simple path from u′ to u within
Hi. Start in u′ and follow this path as long as it stays inside V (Tv). Since u
is not in V (Tv) it must at some point leave this set. Let pi be the last vertex
in V (Tv) and pi+1 the next vertex not in V (Tv) on the path. Since pi and
pi+1 are neighbors, pi+1 must be an ancestor of pi and hence also v, since
pi+1 /∈ V (Tv). Since pi+1 is in Hi it cannot be in R and hence the distance
between pi+1 and v is at least k. Note that as we considered a simple path,
v 6= pi. It follows that pi is a descendant of v and hence the distance between
pi and pi+1 is at least k + 1, contradicting as(T, r) ≤ k and hence our proof
is complete.

Let Sk be the set of all functions from [1, . . . , k] to [0, . . . , k+1] and let +
denote componentwise addition over Sk. Furthermore let <0 be the binary
relation over Sk defined as

{(f, g) ∈ S2k | ∀i ∈ [1, . . . , k], f(i) < g(i) ∨ f(i) = g(i) = 0}.

For a vertex v we will use functions in Sk to indicate how big Tv can be in
each of the minimal neighborhood trees of the vertices in R. The reason we
also allow g(i) = f(i) = 0 is that if there is no size to divide between the
subtrees than it should be fine for the children to all consume 0.

Algorithm

We will describe our algorithm in a recursive fashion, and then, to obtain our
running time we will apply memoization on the function Feasible. Note
that we can find the connected components of G by a depth first search and
at the same time check that ∆(G) ≤ 2k in O(kn) time [Sax80]. If G is
not connected, Algorithm 5.4 should be applied on each of the connected
components, and the answer for G is yes if and only if it is yes for each of
the components.

• Feasible: Takes a graph G, an integer k, a root path R and a size
function s and returns true if and only if there is a k-extension of the
so far constructed adjacency tree T which also contains V (Tv).

• Neighbor-Components: Takes a graph G and a set R = (v, . . .)
as input and returns the connected components of G \ R having a
non-empty intersection with NG(v) (as described in Lemma 5.3).

• Valid: Takes a graph G, a root path R = (v = v1, . . . , vl), a size
function s ∈ Sk, a vertex u and a component H such that u ∈ H and
verifies that for every vi ∈ NG(u) ∩ R we have that s(i) ≥ 1 and that
(NG(vk)∩H)\{u} = ∅ (ensures that no vertex is inserted which makes
the minimal neighborhood tree of a vertex bigger than it should be and
that when a vertex is of distance k + 1 from u and hence has no more
span left all of its neighbors should be already inserted).

50 CHAPTER 5. ADJACENCYSPAN IS IN XP

• Add: Takes a root path R, a vertex u and a graph G as input. Creates
a copy R′ of R and adds u to the beginning of R′. If |R′| = k + 2, we
remove the last element of R′. After this, if |R′| = k + 1 and u is not
a neighbor of the last element, we remove the last element of R′. Then
we return R′ (We add u to the front of R, and turns it into the same
kind of R as in Lemma 5.3).

• Shift(s, c): Takes a function s ∈ Sk and a constant c. Returns s′,
where s′(i) = s(i− 1) for i > 1 and s′(1) = c.

Algorithm 5.4 Branch and build.
Input: a graph G and an integer k
Output: true if and only if as(G) ≤ k

1: for all r ∈ V (G) do
2: if Feasible(G, k, (r), (k, 0, . . . , 0)) then
3: return true
4: return false

5: function Feasible(G, k,R, s)
6: H ← Neighbor-Components(G,R)
7: if H = ∅ then
8: return true
9: Snow ← {the zero-function in Sk}
10: for all H ∈ H do
11: Sprev ← Snow
12: Snow ← ∅
13: for all sp ∈ Sprev and sn ∈ Sk such that sp + sn <0 s do
14: for all u ∈ H such that Valid(G,R, sn, u,H) do
15: if Feasible(k,G,Add(R, u,G),Shift(sn, k)) then
16: Snow ← Snow ∪ {sp + sn}
17: return Snow 6= ∅

The algorithm tries all possible roots and inputs them to Feasible one
after another. In Feasible we then retrieve the neighbor connected compo-
nents and solve them separately for each size function and each new vertex
to insert, before we try to combine them with a dynamic programming algo-
rithm. Note that the algorithm easily can be changed such that it stores the
adjacency tree it constructs and hence becomes a constructive algorithm.

Correctness

We start the program of proving correctness by a lemma stating that the
solutions constructed by the algorithm satisfies the same kind of property as

51

we proved branched adjacency trees to do in Lemma 5.3.

Lemma 5.5. Let H be a connected component found at some point by
Neighbor-components in Algorithm 5.4. If v ∈ H is inserted into the
solution by the algorithm and H1, . . . ,Hl is the connected components found
at the next recursion step after inserting v, then H = H1 ∪ · · · ∪Hl ∪ {v}.

Proof. Let (v, v2, . . . , r) be the vertices on the path from v to r in the so far
constructed solution by Algorithm 5.4. Let R be the root path considered
when H is found and R′ the new root path after v is added. Recall that H
is obtained from G \R and H1, . . . ,Hl from G \R′.

Let H ′1, . . . ,H ′l′ be the connected components intersecting NG(v) in G \
{v, v2, . . . , r}. Since Valid ensures that any vertex vi for i ≥ k + 2 does
not have any neighbors in H we obtain the same connected components if
we consider G \ {v, . . . , vk+1}. Observe that {v2, . . . , vk+1} ⊆ R and hence
we also obtain the same components by considering G \ (R ∪ {v}). Let u be
a vertex in H \ {v}. We know that there is a simple path P = (u, . . . , p, v)
from u to v in H. When we remove v from G \ R to obtain G \ (R ∪ {v}),
p clearly remains in the same connected component as u. This connected
component intersects NG(v) in p and is hence the component H ′i for some i.
This implies that u ∈ H ′i and it follows that H ⊆ H ′1 ∪ · · · ∪H ′l′ ∪ {v}. For
the other direction let u be a vertex in H ′i some i and let p be a vertex in the
intersection betweenH ′i and NG(v). Since u is connected to p in G\(R∪{v}),
u is also connected to p in G \R, implying that u is connected to v in G \R
as p is a neighbor of v. Hence u ∈ H and H ⊇ H ′1∪· · ·∪H ′l′ ∪{v}. It follows
that H = H ′1 ∪ · · · ∪H ′l′ ∪ {v}.

Finally observe that vk+1 only affects the connected components we ob-
tain if it is connected to v, as Valid ensures that it has no neighbors in
H \ {v}. In this case vk+1 ∈ R′ and hence we obtain the same connected
components H ′1, . . . ,H ′l′ intersecting NG(v) in G \ R′ as in G \ (R ∪ {v}).
Note that this is the definition of H1, . . . ,Hl and hence these components
are equivalent to H ′1, . . . ,H ′l′ and our proof is complete.

Lemma 5.6. Every solution the algorithm constructs is an adjacency tree.

Proof. Clearly the algorithm constructs a rooted tree if it terminates. It
remains to prove that the solution contains every vertex in G exactly once
and that is satisfies the ancestor-descendant property. Note that if the al-
gorithm inserts every vertex at most once, it will follow that the algorithm
terminates.

When the constructed tree is empty before the algorithm inserts a root,
every vertex is in the same component. Let u be a vertex in a component H
at some recursion step and let v 6= u be the vertex inserted at this step. It
then follows from Lemma 5.5 that there is a connected component H ′ such
that NG(v) ∩ H ′ 6= ∅ at the next recursion step such that u ∈ H ′ ⊂ H.

52 CHAPTER 5. ADJACENCYSPAN IS IN XP

Since H ′ is strictly contained in H it follows by induction that the algorithm
inserts u at some step if it manages to construct a solution and hence every
vertex will be inserted.

Since H1, . . . ,Hl are connected components they are trivially pairwise
disjoint. Hence the vertices in H \ {v} are partitioned among the branches,
and in branch i only vertices in Hi are inserted. It follows that no vertex is
inserted twice.

Let u and v be two adjacent vertices in the same connected component
H at some recursion step. If none of the vertices are added to the solution at
this step, they will trivially stay in the same component. Otherwise, assume
without loss of generality that v is added. Since u also is contained in H
it follows from Lemma 5.5 that it will be contained in a strictly smaller
component at the next step. It follows by induction that u will be inserted
as a descendant of v and satisfy the ancestor-descendant property and our
proof is complete.

Lemma 5.7. Every adjacency tree the algorithm constructs has adjacency-
span at most k.

Proof. Let v be any vertex in the solution (T, r). We will prove that for any
vertex u ∈ Tmv it holds that |Tu∩Tmv | ≤ su(v), where su(v) is the allowed size
of Tu in Tmv by the algorithm. If u is a leaf in Tmv , then we know from Valid
that su(v) ≥ 1 and hence |Tu ∩ Tmv = {u}| = 1 ≤ su(v). For our induction
step let w1, . . . , wl be the children of u in T vm and let sw1(v), . . . , swl(v) denote
how su(v) was distributed among u’s children. Assume that |Twi ∩ Tmv | ≤
swi(v) for every i and remember that sw1 + . . . swl <0 s from the algorithm.
Note that as wi ∈ T vm for every i we know that swi(v) 6= 0 and hence
sw1(v) + · · ·+ swl(v) < su(v). It follows that:

|Tu ∩ Tmv | = |(Tw1 ∪ · · · ∪ Twl ∪ {u}) ∩ T
m
v |

= |Tw1 ∩ Tmv |+ · · ·+ |Twl ∩ T
m
v |+ 1

≤ sw1(v) + · · ·+ swl(v) + 1

≤ su(v)

This completes our induction and hence |Tv ∩ Tmv | = |Tmv | ≤ sv(v) = k + 1
and our proof is complete.

Lemma 5.8. If a graph G has adjacencyspan at most k, then the algorithm
will return true.

Proof. Assume there is a branched adjacency tree (T, r) with adjacencyspan
at most k. Then at some point the algorithm will try r as a root. Assume that
for the vertex v the path from v to r is identical in the algorithm and in (T, r).
Then Feasible will find the exact same components to build the subtrees
from as in (T, r) by Lemma 5.3. And there is a step where the algorithm

53

will distribute the sizes exactly as in (T, r) as it is a valid distribution and
for each of the components it will then try the same vertices as the children
of v as in (T, r) and then for the children of v the path to the root equals
the on in (T, r) and this completes the induction and our proof.

Lemma 5.9. Algorithm 5.4 returns true if and only if the input graph G has
adjacencyspan at most k.

Proof. This follows directly from Lemmas 5.6, 5.7 and 5.8.

Running time analysis

Theorem 5.10. The problem Adjacencyspan is solvable in O(k3k+3nk+1)
time.

Proof. First we find the connected components of G and verify that ∆(G) ≤
2k in O(kn) time. Note that the worst case scenario for Algorithm 5.4 is if
the graph is connected and hence it will be analyzed accordingly. We apply
memoization to the function Feasible. This implies that the running time
of our algorithm will be O(nk + f(n, k)g(n, k)) where f(n, k) is the number
of different inputs Feasible can get and g(n, k) is the cost of the work done
in Feasible.

Each of the elements in R is a vertex in G and R is of length at most k+1.
Considering the first k elements of R there are O(nk) different possibilities.
As the k+ 1th element only appears if it is a neighbor of the first element in
the root path, there is at most 2k+ 1 different options for this last element,
either it is one of the 2k neighbors or it is not included. Hence there are
O(knk) different root paths to consider. Since there are O(kk) different
size functions and G and k are invariant through the algorithm we get that
f(n, k) = O(kk+1nk).

The complexity of Neighbor-Components is O(n+m) = O(kn) by a
standard depth first search, while both Valid, Add and Shift are of complex-
ity O(k). The dynamic programming procedure combining solutions in the
different subtrees takes O(|H| ·kk ·kk ·n ·k) time, as there are |H| many com-
ponents, O(kk · kk) many choices for values of sp and sn, at most n elements
in H and then we apply Valid, Add and Shift which contributes with a
factor O(k). Observe that the size of H is bounded by the degree of the first
vertex in R, 2k. It follows that g(n, k) = O(nk+2k·kk ·kk ·n·k) = O(k2k+2n).
And hence the algorithm runs in O(nk + f(n, k)g(n, k)) = O(nk + kk+1nk ·
k2k+2n) = O(k3k+3nk+1) time.

We end this chapter by giving some immediate results of Theorems 4.7
and 5.10.

Theorem 5.11. The problem Treespan is solvable in O(k3k+3nk+1) time.

54 CHAPTER 5. ADJACENCYSPAN IS IN XP

Corollary 5.12. The problem p-Adjacencyspan is in XP.

Corollary 5.13. The problem p-Treespan is in XP.

It follows from the definition of XP and Corollies 5.12 and 5.13 that both
Adjacencyspan and Treespan is solvable in polynomial time for every
fixed values of k.

Chapter 6

Trees

The goal of this chapter is to solve Adjacencyspan on trees of bounded
maximum degree in polynomial time. First we will revise the work of Fomin
et al. [FHT05], who proved Treespan, and hence Adjacencyspan, to be
solvable in polynomial time for trees of maximum degree 3. In their paper
they stated the problem of deciding Treespan for trees of higher degree as
their third and final open problem. Note that Bandwidth is NP-complete
on trees of maximum degree 3 [GGJK78].

6.1 Trees of degree at most 3

Lemma 6.1 ([Wat05]). A connected graph G has treespan 1 if and only if
G is a path.

If a connected graph has adjacencyspan 1, each vertex v has at most one
neighbor as a descendant and this vertex must be a child of v. It follows easily
that G must be a path. And clearly if G is a path, this path with one of the
degree 1 vertices as a root, will be a valid adjacency tree of adjacencyspan
1. It follows that a connected graph has adjacencyspan, and hence treespan,
1 if and only if the graph is a path.

Lemma 6.2 ([Wat05]). A tree of bounded maximum degree d ≥ 2 has
treespan at most d− 1.

Take any leaf in the tree as a root and let the rest of the tree hang
below. The rooted tree we obtain will be a valid adjacency tree. Every
vertex has every neighbor either as a child or as its parent. The maximum
degree d implies that the adjacencyspan is d − 1 for this composition and
hence at most d − 1. It follows that a tree of bounded maximum degree d
has adjacencyspan, and hence treespan, at most d− 1.

Lemma 6.3 ([FHT05],[Wat05]). If G is a tree of maximum degree at most
3, then Treespan is polynomial time solvable.

55

56 CHAPTER 6. TREES

We know from Lemma 6.2 thatG has treespan at most 2. From Lemma 6.1
we know that G has treespan 1 only if G is a path. Hence we can in linear
time decide whether the graph has treespan 1 and otherwise it is 2.

6.2 Trees of bounded degree

Fomin et al. raised the question of whether Treespan can be computed in
polynomial time for trees of maximum degree higher than 3. In his master
thesis, Watnedahl [Wat05] tried to solve the problem for trees of maximum
degree 4. He described 8 illegal subgraphs for such trees, but was never
able to complete the set and hence determine the adjacencyspan of a tree of
maximum degree at most 4. In this section we will prove that for any fixed
d, Adjacencyspan is computable in polynomial time for trees of bounded
maximum degree d.

Theorem 6.4. Given a tree G of bounded maximum degree d and an integer
k it is decidable in O(nd−1) time whether as(G) ≤ k.

Proof. If k ≥ d−1, we know from Lemma 6.2 that the answer is yes. Assume
that k ≤ d − 2. Then we from Theorem 5.10 that Adjacencyspan is
decidable in O(f(k)nk+1) = O(f(d− 2)nd−2+1) = O(nd−1).

The running time in Theorem 6.4 seems to be optimal, as for the case
d = 2 it runs in O(n) time. To be able to test if a graph of bounded
maximum degree is a path faster than in linear time is unlikely. The next
theorem follows directly from Theorems 4.7 and 6.4.

Theorem 6.5. Given a tree G of bounded maximum degree d and an integer
k it is decidable in O(nd−1) time if ts(G) ≤ k.

One might wonder if this technique is applicable to graphs of bounded
degree as well. It turns out that it is not. Observe that if a bag in an
ordered tree decomposition is of size k, then there must be one vertex in the
bag which has appeared in k bags since we are only allowed to introduce
one new vertex in each bag. This implies that tw(G) ≤ ts(G) for any graph
G. If the graph G is a big grid, it is known to have big treewidth [Die05]
and hence big treespan. But if G is a grid, ∆(G) = 4 and hence graphs of
bounded degree do not have bounded treespan.

6.3 No locality

For a graph of low adjacencyspan, we know by definition that there exists an
adjacency tree such that if two vertices are adjacent in G they are not too
far apart in the adjacency tree. But does there exist a similar relation the
other way around? Is there always an optimal adjacency tree such that if two

6.3. NO LOCALITY 57

v0

v5

v2

v3v4

v6

v1

u v

Figure 6.1: Construction in the proof of Proposition 6.6.

vertices are adjacent in the tree they are close in the graph? This might seem
reasonable, as two vertices far apart in the graph set no requirement about
being close in the adjacency tree in the definition. This would be a great
tool in the direction of discovering feasible algorithms for bigger classes of
graphs. However, Proposition 6.6 shows that this is not the case even when
we restrict our input graph to trees of bounded degree.

Proposition 6.6. There exist no function f(d, k) that satisfies the following:
Given a tree G of maximum degree d, there is an optimal adjacency tree (T, r)
of G s.t. if uv ∈ E(T) then distG(u, v) ≤ f(d, k).

Proof. Let G be the graph in Figure 6.1, where distG(0, u) = distG(0, v) = c
for some c ≥ 3. Figure 6.2 shows that as(G) = 2. We will now prove that u
and v have to be neighbors in any optimal adjacency tree. Note that two of
the neighbors of v0 should be under v0 and two of them should be above in
a solution.

Assume v1 to be the parent of v0 in some optimal adjacency tree. At
least one of the neighbors of v1 must be an ancestor of v1. Assume without
loss of generality that this is v5. But now we have used the two positions
right above v0, denying us to put another of the neighbors of v0 above v0, as
this vertex then will have span more than 2. This gives us a contradiction.

A similar case arise if v1 is an ancestor of v0, but not the parent of v0.
Hence the two positions under v0 must be taken by v1 and v2. Hence v3 and
v4 must be ancestors of v0. If we let v3 be the parent of v0, we run in to
the same kind of contradiction as we did when we tried to put v1 above v0
because of v6.

Hence v1, v2, v3 and v4 has to be positioned relative to v0 as in Figure 6.2.
And after this we have no choice regarding the rest of the tree above v0, each

58 CHAPTER 6. TREES

v0

v5

v2

v3

v4

v6

v1

u

v

Figure 6.2: Adjacency tree of the graph in Figure 6.1 of adjacencyspan 2.
The edges are the edges from the graph, while the structure of the solution
is displayed through the positioning of the vertices.

vertex will already have span 2 and must send its last neighbor upwards.
Hence we are forced to put u and v as neighbors in any optimal adjacency
tree. Since they have distance 2c in the graph for some c, and c is not
dependent on neither k nor d, there exist no such function f and our proof
is complete.

Chapter 7

Adjacencyspan parameterized

7.1 Double parameterization

In this section we prove that the problem Adjacencyspan admits a poly-
nomial kernel when parameterized by both the vertex cover number and the
requested adjacencyspan. The definition of parametrized problems do not
permit double parameterizations directly, however both parameters will be
bounded by the sum of the two and hence we can use this as a formal pa-
rameter to make it fit the definition. But to ease our work, we will consider
the problem to be parametrized by two numbers in the rest of this section.

From Chapter 3 we know that a problem is in FPT if and only if it admits
a kernel. However, since the kernel extracted from the proof is exponential,
one often tend to consider problems which admits polynomial kernels more
interesting from a kernelization point of view. After proving the polynomial
kernel, we will continue by giving two algorithms one can apply to the kernel.
Although a kernel implies the problem to be in FPT, the motivation for
presenting the additional algorithms is that they give much better running
times than applying brute force on the kernel. In addition, our first algorithm
will be a warm-up for the next section. Which of the two algorithms provides
the best running time depends on the size of the parameters.

p-Adjacencyspan/s+ k
Input: A graph G, the vertex cover number s of G and k.
Parameter: s and k.
Question: Is as(G) ≤ k?

In addition, we provide a definition of treespan parameterized by both vertex
cover number and required treespan for completeness.

59

60 CHAPTER 7. ADJACENCYSPAN PARAMETERIZED

p-Treespan/s+ k
Input: A graph G, the vertex cover number s of G and k.
Parameter: s and k.
Question: Is ts(G) ≤ k?

Polynomial kernel

Theorem 7.1. p-Adjacencyspan/s+ k admits a polynomial kernel with
s(2k+1) vertices, sk(2k+1) edges and maximum degree bounded by 2k. The
kernel can be computed in O(kn) or O(n+m) time.

v
...

...

...
...

...

S N(v) \ S

Figure 7.1: Illustration of the proof of Theorem 7.1.

Proof. Let S be a vertex cover of G of size s. Assuming that as(G) ≤ k we
know that the degree of any vertex in G is at most 2k and it follows that
|N(S)| ≤ 2sk. By the facts that G is connected and S is a vertex cover we
get that V (G) = N(S)∪S and hence |V (G)| is at most 2sk+ s = s(2k+ 1).
It follows from ∆(G) ≤ 2k and the handshaking lemma [BLW86] that the
number of edges is bounded by sk(2k + 1). Given G, s and k we return
a trivial no-instance if ∆(G) > 2k or n > s(2k + 1) or m > sk(2k + 1).
Otherwise our instance is a kernel and we return it. Recall from Chapter 5

7.1. DOUBLE PARAMETERIZATION 61

that we can verify that ∆(G) ≤ 2k in O(kn) time. If this is true m ≤ kn,
and hence the number of vertices and edges can also be counted in O(kn)
time.

Notice that as Vertex Cover has a 2-approximation [PS98] this result
can be applied efficiently even if you are not given s as part of the input.
From Theorems 4.7 and 7.1 we get the following result.

Theorem 7.2. p-Treespan/s+ k admits a polynomial kernel with
s(2k+1) vertices, sk(2k+1) edges and maximum degree bounded by 2k. The
kernel can be computed in O(kn) or O(n+m) time.

Generating trees

Borchardt [Bor61] proved that there are nn−2 trees on n labeled vertices,
which has later become known as Cayles’s formula in the literature. Fur-
thermore, Prüfer [Prü18] provided a bijection between {1, . . . , n}n−2 and
the trees on n labeled vertices. In addition, this bijection is known to
be linear time computable [MCD06]. Hence we can generate all rooted
trees on n labeled vertices in O(nn) time. This is done by for every ele-
ment in {1, . . . , n}n−2, pick an element r ∈ {1, . . . , n} and apply the bi-
jection to get the tree and let r be your root. Hence you obtain every
rooted tree in O(nn−2 · n · n) = O(nn). In addition, we can guarantee that
the trees generated are branched adjacency trees of treespan at most k in
O(nn−2 ·n·(n+n2+n2)) = O(nn+1). If we apply this algorithm on the kernel
from Theorem 7.1 we obtain an O(nk+ (2ks+ s)2ks+s+1) time algorithm for
p-Adjacencyspan/s+ k. This running time will be improved twice by the
next algorithms.

First algorithm

The scheme of our first algorithm will be to find an optimal vertex cover
S, try all adjacency trees over S and then insert the rest of the vertices
into this tree in every possible, valid way. Let G = (V,E) be a graph,
S an optimal vertex cover of G and (T, r) an adjacency tree of G[S]. We
say that a vertex v ∈ V \ S is of type N if N = type(v) = NG(v) ∩ S.
We define the neighborhood center of a vertex v ∈ V \ S of type N as the
vertex u furthest away from the root such that N ∩ Tu is non-empty and
N ⊆ Tu ∪ {w | w is on the simple path from u to r}.

Lemma 7.3. Given a graph G, a set S ⊆ V (G), an adjacency tree (T, r) of
G[S] and a vertex v ∈ V (G) \ S, the neighborhood center of v is computable
in time linear in |S|.

Proof. Mark all the vertices in S that are in type(v). Start in the root and
execute Algorithm 7.4.

62 CHAPTER 7. ADJACENCYSPAN PARAMETERIZED

1

2

3

4 5 6

7 8 9

v

Figure 7.2: Let the tree on the left be an adjacency tree of G[S]. The dotted
edges illustrate edges in G, hence the type of v is {1, 3, 6, 7, 8}. Note that
the neighborhood center of v is vertex 3.

Algorithm 7.4 Neighborhood center
1: function Neighborhood-Center(v, T , r)
2: if v is a leaf then
3: return v if v is marked and null otherwise
4: Let c1, . . . , cm be the children of v
5: For each i, let ui = Neighborhood-Center(ci, T, r)
6: if u1 = · · · = um = null then
7: return v if v is marked and null otherwise
8: if there is exactly one ui 6= null then
9: return ui
10: return v

Since the algorithm clearly runs in O(s) time, it remains to prove its
correctness. Let u be the neighborhood center of v and assume for a con-
tradiction that the algorithm returns u′ 6= u. In addition we can assume
that u and u′ have an ancestor-descendant relationship, as otherwise would
be a contradiction to the fact that u is the neighborhood center of v. If u
is an ancestor of u′, the algorithm must have returned u′ while processing
u. But this is only done if only one child of u returns something else than
null and hence exactly one of the subtrees below u contains elements from
type(v), which is a contradiction to the fact that u is the neighborhood cen-
ter. Hence u′ must be an ancestor of u. But now the only way the algorithm
can return u′, as u is a descendant of u′, is if several of the branches below
return something else than null. But this also contradicts the fact that u is
the neighborhood center and hence our proof is complete.

For a graph G, a set S ⊆ V (G) and an adjacency tree (T, r) of G[S], we

7.1. DOUBLE PARAMETERIZATION 63

define a k-embedding of G into (T, r) to be an adjacency tree (T ′, r′) of G
with adjacencyspan at most k, such that for u, v ∈ S we have that u is an
ancestor of v in (T ′, r′) if and only if u is an ancestor of v in (T, r). If there
is a k-embedding of G into (T, r) we say that (T, r) is k-embeddable with
respect to G.

1

2

3 4 5

6 7 8

(a)

1

2

3 4 5

6 7 8

(b)

Figure 7.3: An illustration of how a k-embedding (b) might look like com-
pared to the adjacency tree of G[S] (a) for some G, S and k. The dotted
vertices are the elements of V (G) \ S.

Lemma 7.5. Let G be a graph, S an optimal vertex cover of G and (T, r)
an adjacency tree of G[S]. If there is a branched k-embedding (T ′, r′) of G
into (T, r), then for every vertex v ∈ V \ S with u being the neighborhood
center of v, v is either on the k + 1-root path of u or u is the parent of v in
(T ′, r′). Furthermore, if u is the parent of v then Tu ∩ type(v) = {u}.

Proof. Assume that v /∈ T ′u. Then v must be an ancestor of u for (T ′, r′) to
satisfy the ancestor-descendant property, since Tu∩N(v) and hence T ′u∩N(v)
is non-empty. In addition, since type(v) ∩ T ′u is non-empty, the distance
between u and v is at most k since as(T ′, r′) ≤ k. It follows directly that v
lies on the k + 1-root path of u.

Assume that v ∈ T ′u. By the definition of u we know that either there
are two vertices a, b ∈ T ′u ∩ type(v) such that u is an ab-separator, or T ∩
type(v) = {u}. But if such an a and b exist, then v cannot have an ancestor-
descendant relationship with both a and b, which is a contradiction and
hence Tu ∩ type(v) = {u}.

Assume for a contradiction that v ∈ V (T ′u) and that v is not a child of u
in (T ′, r′). It follows that there is a child c of u such that v ∈ V (T ′c). From

64 CHAPTER 7. ADJACENCYSPAN PARAMETERIZED

Tu ∩ type(v) = {u} and that S is a vertex cover it follows that v has no
neighbors in T ′c and hence G[V (T ′c)] is not connected, which contradicts that
(T ′, r′) is a branched adjacency tree by Lemma 4.9. Hence v must be a child
of u if v ∈ V (T ′u).

Algorithm 7.6 Double parameterization
Input: a graph G and natural numbers s and k
Output: true if and only if as(G) ≤ k

1: Apply kernelization from Theorem 7.1.
2: Compute a vertex cover S of G of size s.
3: For every adjacency tree (T, r) of G[S]:
4: Find the neighborhood center for every vertex in V (G) \ S.
5: For every vertex v ∈ V (G) \ S:
6: Try every position of v above u within distance k.
7: If Tu ∩ type(v) = {u} try to set u as the parent of v.
8: If the tree has adjacencyspan at most k, return true.
9: Return false.

Lemma 7.7. The problem p-Adjacencyspan/s+ k can be solved in time
O(kn+ s2sk+s+5k3) by Algorithm 7.6.

Proof. We know from Theorem 4.11 that if as(G) ≤ k there is a branched
adjacency tree (T ′, r′) of span at most k. Then, at some point we will obtain
a tree (T, r) for the vertices in S at step 4, such that (T ′, r′) is a k-extension
of G into (T, r). Since V (G) \ S is an independent set, it follows from the
definition of the neighborhood center that the tree we construct will be a
valid adjacency tree. Furthermore, from Lemma 7.5 we will at some point
retrieve (T ′, r′) or another k-extension of (T, r) in step 6-8 and hence the
algorithm never will always find a solution if one exist. Since the algorithm
constructs valid adjacency trees and checks the span of the tree at step 9
it will never return true without actually finding a solution. Correctness
follows, and hence it remains to bound the running time of the algorithm.

• From Theorem 7.1 we know that the kernel can be computed in O(kn)
time.

• Recall from Chapter 3 that p-Vertex Cover is solvable in O(2sn)
time1.

• Recall that the adjacency trees of a graph on n vertices can be gener-
ated in O(nn+1) time, and hence step 4 can be done in O(ss+1) time.

1Chen et al. [CKX10] gives an O(1.2738s + n) algorithm for p-Vertex Cover, but
the O(2sn) version is more than sufficient for our purposes.

7.2. PARAMETERIZED BY VERTEX COVER NUMBER 65

• Step 5 is computable in O(sn) time by Lemma 7.3.

• By Lemma 7.5 there is at most s + 1 possibilities in steps 7 and 8 in
total. Hence the running time of steps 6, 7 and 8 is O((s + 1)n−s) =
O(sn−s).

• Step 9 is clearly computable in O(n2) time.

This gives a running time of O(kn + 2sn + ss+1 · sn · sn−s · n2) =
O(kn + 2sn + sn−s+s+2n3) = O(kn + sn+2n3). Exploiting the fact that
n ≤ s(2k+1) from step 3 and onwards we get O(kn+s2sk+s+2(s(2k+1))3) =
O(kn+ s2sk+s+5k3).

The next corollary follows directly from Theorem 4.7 and Lemma 7.7.

Corollary 7.8. The problem p-Treespan/s + k can be solved in time
O(kn+ s2sk+s+5k3).

Second algorithm

Lemma 7.9. The problem p-Adjacencyspan/(s + k) can be solved in
O(nk + 2kk4k+4sk+1) time.

Proof. Given an instance G, s and k apply the kernelization algorithm from
Theorem 7.1. From Theorem 5.10 we know that Adjacencyspan is solvable
in O(k3k+3nk+1), where n is the number of vertices and k is the adjacency-
span requested. After applying the kernelization algorithm, we know that
n ≤ s(2k+1) and hence O(k3k+3(s(2k+1))k+1) = O(k3k+3sk+12k+1kk+1) =
O(2kk4k+4sk+1). This results in the running time O(kn+ 2kk4k+4sk+1).

The next corollary follows directly from Theorem 4.7 and Lemma 7.9.

Corollary 7.10. The problem p-Treespan/(s + k) can be solved in time
O(nk + 2kk4k+4sk+1).

7.2 Parameterized by vertex cover number

In the previous section we proved that Adjacencyspan is in FPT when pa-
rameterized by both the vertex cover number and the adjacencyspan number.
In this section we continue this work by proving a theoretically stronger re-
sult, that Adjacencyspan parameterized only by the vertex cover number
is in FPT. Note though that f(s) will be doubly exponential in s and hence
more of a classification result than one of practical interest. One might ask
the question of why it is interesting to parameterize Adjacencyspan by
something like the vertex cover number. First of all, the two parameters
are incomparable, meaning that one can construct instances with arbitrarily

66 CHAPTER 7. ADJACENCYSPAN PARAMETERIZED

large adjacencyspan and with a constant size vertex cover and the other way
around. In some sense adjacencyspan will be low if the graph has has a
large diameter compared to the number of vertices, while this gives a high
vertex cover. This makes it possible to create instances where a fixed pa-
rameter tractable algorithm parameterized by the vertex cover number will
be significantly faster than most other algorithms. Also a fixed parameter
tractable algorithm proves that for a specific parameterization one can cap-
ture the explosion in the running time within this parameter, which can be
an interesting observation by itself.

p-Adjacencyspan/s
Input: A graph G, the vertex cover number s of G and an integer

k.
Parameter: s.
Question: Is as(G) ≤ k?

1 2 3 n. . . 0

1

2

3

4

5

6

n

Figure 7.4: Pn has adjacencyspan 1 and vertex cover number dn/3e. While
Sn has adjacencyspan dn/2e and vertex cover number 1.

p-Integer Linear Programming Feasibility (ILP)
Input: Matrices A ∈ Zm×p and b ∈ Zm×1.
Parameter: Number of variables p.
Question: Does there exist a vector x ∈ Zp+1 satisfying A · x ≤ b?

The classical result that ILP parameterized by the number of variables
is in FPT was first proven by Lestra [LJ83], a paper for which he received
the Fulkerson Prize in 1985. After this, several papers improving the run-
ning time of this problem has been published [Kan87, FT87]. Fellows et
al. [FLM+08] continued this work by proving Theorem 7.11. After which
they used this result to prove that several linear ordering problems admits
fixed parameter tractable algorithms parameterized by the vertex cover num-
ber.

7.2. PARAMETERIZED BY VERTEX COVER NUMBER 67

p-Integer Linear Programming Optimization (Opt-ILP)
Input: Matrices A ∈ Zm×p, b ∈ Zm×1 and c ∈ Z1×p.
Parameter: Number of variables p.
Question: Find a vector x ∈ Zp+1 that minimizes the objective function

c · x and satisfies A · x ≥ b.

Theorem 7.11 ([FLM+08]). The problem Opt-ILP can be solved using
O(p2.5p+o(p) · L · logMN) arithmetic operations and space polynomial in L.
Here, L is the number of bits in the input, N is the maximum of the absolute
values any variable can take and M is an upper bound on the absolute value
of the minimum taken by the objective function.

We will start in the same manner as in Algorithm 7.6 in the previous
section, by computing a vertex cover S of size s, build all trees on these
vertices and try to embed the rest of the vertices into this tree. The obstacle
is that there is no way to bound the number of vertices outside the vertex
cover any more. Hence we focus our work on proving more structure on
the solution tree itself. We will prove that between two vertices in the tree,
there is an embedding with a structure bounded by a function of s. After
this we will do brute force on how this structure looks like, before using
Theorem 7.11 to embed the rest of the vertices into the tree.

Preparation

Let G be a graph, S a corresponding vertex cover of size s, (T, r) a branched
adjacency tree of G[S] and (T ′, r′) a branched k-embedding of G into (T, r).
Let u, v ∈ S be two vertices such that u is the parent of v in (T, r). Since
(T ′, r′) is branched and S is a vertex cover we know that every internal vertex
on the simple path from u to v in (T ′, r′) is of degree 2 in (T ′, r′). We define
the uv-interval with respect to (T ′, r′) as P \ {u, v}, and denote it Iuv. We
will always let u be the vertex of the two closest to the root. Furthermore we
define the root interval Ir as {v | v is on the path from r to r′ in (T ′, r′)} \
{r}. For an interval I we define a sub interval as a connected sub path of I.

When we traverse an interval I or speak of an ordering of the vertices in
I, we will apply the natural ordering from one of the endpoints to the other.
For a type N for which a vertex of this type appears in I, let the start vertex
of N be the first vertex appearing in I of this type and the end vertex be
the last vertex of this type appearing in I. And let the sub interval from the
start vertex to the end vertex of a type N be called the safe interval of N .
Observe that moving vertices, as long as each vertex still lives in its original
safe interval, does not increase the adjacencyspan.

We adopt the notion of zones and zonal dimension of embeddings from
Fellows et al. [FLM+08]. We say that a sub interval is uniform if all ver-
tices in the sub interval is of the same type. A zone is then defined as

68 CHAPTER 7. ADJACENCYSPAN PARAMETERIZED

a maximal uniform sub interval. For an interval I in (T ′, r′) we define
the zonal dimension of I, denoted ζI(T

′, r′), as the number of zones in I.
And the zonal dimension of (T ′, r′), denoted ζ(T ′, r′), as max{ζI(T ′, r′) |
I is an interval in (T ′, r′)}.

Lemma 7.12. Let G be a graph, S a vertex cover of size at most s and
(T, r) an adjacency tree of G[S] such that there is a branched k-embedding
of G into (T, r). Then there exists a branched k-embedding (T ′, r′) of G into
(T, r) such that ζ(T ′, r′) ≤ 2s+1.

Proof. Let (T ′, r′) be any branched k-embedding of G into (T, r). We will
prove that for any interval I in (T ′, r′) we can rearrange I such that ζI(T ′, r′) ≤
2s+1, while all vertices stay within their safe zone.

Let I be an interval in (T ′, r′). Take the type N for which the safe
interval ends first. Rearrange the vertices in the safe interval such that the
vertices of type N comes first and keep the ordering internally between the
other elements. Clearly the ones of type N stay inside their safe interval and
as N was the type to end first all the others stay within their safe intervals
as well. Hence no element will be moved outside of its safe interval by this
operation. Remove the vertices of type N and connect the two vertices who
had neighbors of type N . This reduces the zonal dimension of the interval
by 2. Continue this process until the interval is empty. By going backwards
and inserting the types in the positions where they were removed we obtain
an interval who respects the old safe intervals. This interval has two times
the number of removals as zonal dimension. Notice that as |S| ≤ s there
is at most 2s different types and hence at most 2s removals. Which implies
that ζI(T ′, r′) ≤ 2s+1 and by applying this procedure on all intervals we get
ζ(T ′, r′) ≤ 2s+1 and hence our proof is complete.

Note that for a vertex v of type N , if u is a vertex strictly inside the
smallest subtree containing N , it does not matter if u is in N or not with
respect to the span of v. In Figure 7.2 it would not matter if the type of
v is {1, 3, 6, 7, 8} or {1, 6, 7, 8}. Hence one might believe that the bound in
Lemma 7.12 could be improved. But if (T, r) is a star with r as its center,
we have 2s+1 different types, proving that 2s+1 is optimal within a constant
factor.

Definition 7.13. Let G be a graph, s and k integers, S a vertex cover of
size s and (T, r) an adjacency tree of G[S]. Assume that we know the type of
each zone of every interval of a k-embedding (T ′, r′) of G into (T, r). Let the
variable xiI represent the size of zone j in interval I in (T ′, r′). And for each
type N such that v is the neighborhood center of N and N ∩ Tv = {v} let
the variable xNv be the number of variables of type N with v as a parent. Let
xspan be the span variable, representing the adjacencyspan of the solution we
find. Let (H, rH) be the tree we obtain when setting every variable to one

7.2. PARAMETERIZED BY VERTEX COVER NUMBER 69

and inserting the new vertices in (T, r). For a vertex u in H let xu be 1 if u
is an element of S and the value of the corresponding variable otherwise.

Span constraint
For a vertex v ∈ H we define the span constraint of v as:∑

Hm
v ≤ xspan + 1.

Type constraint
For a type N such that there is nN vertices of type N in V (G) \S we define
the type constraint as: ∑

Z(N) = nN , where

Z(N) = {x | the vertices x represents is of type N}.

Span-ILP
We define span-ILP as the following integer linear program:

min xspan
such that

every vertex in H satisfies the span constraint,
every type satisfies the type contraint and
every variable takes values in the interval [0, k + 1].

The span constraint ensures that no vertex, in S or outside, has a span of
more than xspan and the type constraint ensures that we embed all vertices
in G into the tree.

Algorithm

We are now ready to prove that p-Adjacencyspan/s is fixed-parameter
tractable when parameterized by the vertex cover number. The scheme of
our algorithm will start of as Algorithm 7.6. First we will find a vertex
cover S and then we exhaustively try tree structures of S. Then we try
every possible zone structure for every interval and derive an integer linear
program where each variable represents the size of a zone and solves it.

Theorem 7.15. The problem p-Adjacencyspan/s is in FPT since it can
be solved in time O(ss+24sn+ (s2s)2.5(s+1)2s+o(s2s) log k).

Proof. From Theorem 4.11 we know that if as(G) ≤ k there is a branched
adjacency tree (T ′, r′) of G with adjacencyspan at most k. If such an (T ′, r′)
exist, then it is clear that at some point at step 2, we will find an adja-
cency tree (T, r) of G[S] such that (T ′, r′) is a k-extension of G into (T, r).
By Lemma 7.12 step 4 and 5 will eventually find the zonal information for
some branched adjacency tree (T ′′, r′′) such that as(T ′′, r′′) ≤ as(T ′, r′).

70 CHAPTER 7. ADJACENCYSPAN PARAMETERIZED

v1

v2

v3 v4 v5

Figure 7.5: An example of how (H, rH) could look like. Note that there are
two types, {v2} and {v1, v2}, that has v2 as its neighborhood center such
that intersection between the type and T2 is v2. Hence v2 has 2 variables
not in an interval as children while v1 only has 1.

Algorithm 7.14 Parameterized by the vertex cover number
Input: a graph G and integers s and k
Output: true if and only if as(G) ≤ k

1: Compute a vertex cover S of G of size s.
2: For every adjacency tree (T, r) of G[S]:
3: For every number of zones in each interval
4: For every type of each zone:
5: Verify that (H, rH) respects the ancestor-descendant property.
6: Create the span-ILP.
7: Solve the span-ILP, return true if xspan is at most k.
8: Return false.

Then span-ILP will embed V (G) \ S into (T, r) in such a way that the
resulting branched adjacency tree has optimal adjacencyspan and hence has
adjacencyspan at most k. It follows that the algorithm will always return
true if the answer is true. From step 5 we know that every solution will
satisfy the ancestor-descendant property, from the type constraints we know
that every vertex will be embedded in the tree, and from the span constraints

7.2. PARAMETERIZED BY VERTEX COVER NUMBER 71

we know that every vertex will have span at most xspan. Hence the algorithm
will only return true if it found a valid solution and the correctness of the
algorithm follows.

Observe that there is s2s variables representing zones and 2s variables
representing vertices with the neighborhood center as their parent. Hence
there are (s+1)2s variables in span-ILP and the size of (H, rH) is (s+1)2s+s.
It remains to bound the running time of the algorithm.

• From Chapter 3 we know that step 1 is solvable in time O(2sn).

• Recall that we can find all adjacency trees in O(ss+1) time.

• The number of zones in each interval is bounded by 2s+1 by Lemma 7.12
and there is at most 2s different zones. Observe that there is s intervals
and hence we get a running time of O(s4s) for step 3 and 4.

• Let h be the size of (H, rh). Observe that (H, rh) can be generated
in O(h) time and verify that (H, rH) satisfies the ancestor-descendant
property in O(h2) time. And each span constraint can also be gener-
ated in O(h) time and as there is O(h) many span constraints, hence
all span constraints can be generated in O(h2) time. For the type con-
straints we first count the number of variables of each type in O(n)
time. Then we generate each type constraint in O(h) time and hence
generating all type constraints can be done in O(h2) time. This gives a
running time for steps 5 and 6 of O(h+h2 +h2 +n+h2) = O(h2 +n).
Recall that h = (s + 1)2s + s and hence the span-ILP can be created
in O(h2 + n) = O(((s+ 1)2s + s)2 + n) = O(s24s + n) time.

• Solving span-ILP can be done in O(p2.5p+o(p) · L · log(MN)) by Theo-
rem 7.11. We know that L = O(s24s),M,N ≤ k and that p = (s+1)2s.
Hence span-ILP is solvable in O(((s + 1)2s)2.5(s+1)2s+o((s+1)2s) · s24s ·
log k) = O((s2s)2.5s2

s+o(s2s) · log k) time. The s+ 1 goes to a s by the
following observation:

O(((s+ 1)2s)f(s)) =

O((s2s + 2s)f(s)) =

O((s2s)f(s) + (s2s)f(s)−1 · 2s + · · ·+ (2s)f(s)) =

O((s2s)f(s) + sf(s)−1(2s)f(s) + · · ·+ (2s)f(s)) =

O((s2s)f(s)).

In total we get the running time:

O(2sn+ ss+1 · s4s · (s24s + n+ (s2s)2.5(s+1)2s+o(s2s) log k)) =

O(2sn+ ss+416s + ss+24sn+ (s2s)2.5(s+1)2s+o(s23) log k =

O(ss+24sn+ (s2s)2.5(s+1)2s+o(s2s) log k).

72 CHAPTER 7. ADJACENCYSPAN PARAMETERIZED

Hence we have reached the goal of this section, to prove that Adjacency-
span admits fixed parameter tractable algorithms when parameterized by
the vertex cover number. Notice that by increasing the log k to log n, we
can solve the optimization version of the same problem. To complete this
section we provide the corresponding result for Treespan. It follows from
Theorems 4.7 and 7.15.

p-Treespan/s
Input: A graph G, the vertex cover number s of G and an integer

k.
Parameter: s.
Question: Is ts(G) ≤ k?

Theorem 7.16. The problem p-Treespan/s is in FPT since it can be solved
in time O(ss+24sn+ (s2s)2.5(s+1)2s+o(s2s) log k).

Part IV

Discussion and conclusion

73

Chapter 8

Concluding remarks and open
questions

8.1 Theoretical and practical implications of this
work

In this thesis we have provided a new perspective to Treespan and a seem-
ingly powerful tool for designing algorithms, in form of branched adjacency
trees. We have provided an XP-algorithm, a polynomial time algorithm for
trees of bounded degree, a polynomial kernel when parameterized by both
the vertex cover number and the required treespan, and a fixed parameter
tractable algorithm when parameterized by the vertex cover number only.
The last result applies a tool of which Niedermeier asked of more applica-
tions [Nie06]. We have hence started the work of deciding the limits of the
tractability of Treespan. However, several open questions remain, and we
list some of them in the next sections in this chapter.

Watnedal implemented an algorithm for solving Treespan in his master
thesis [Wat05]. He used dynamic programming to generate non-isomorphic
trees and test them as solutions. He also made a specialized version for
deciding if a graph has treespan 2. He reported that for a graph on 43
vertices, when labeling the vertices in the graph in a good way for the algo-
rithm, it terminated in about 13 hours. This is the best known implemented
algorithm solving Treespan. By Theorem 5.11 this problem is solvable in
O(n2(n+m)) time. As the running time O(k2k+5nk(n+m)) = O(k2k+5nk+2)
hides no big constants, an implementation of Algorithm 5.4 should run in
about 29 · 434/107 ≈ 175 seconds, or almost 3 minutes, assuming that the
computer is able to perform 107 not too heavy operations per second, which
is highly likely for even most 5 year old laptops. This a drastic decrease in
computation time compared to the implementation and hence this thesis can
be considered a practical contribution to the computation of treespan. It is
our hope that the algorithms in the thesis are given in a precise enough way

75

76 CHAPTER 8. CONCLUDING REMARKS AND OPEN QUESTIONS

so that they can easily be implemented and turned into working code.

8.2 Caterpillars with long hair

A caterpillar is a tree which contains a path such that every vertex in the
tree is at distance at most one from a vertex on this path. A caterpillar
of hair length l is the natural generalization where each vertex should be
at distance at most l from a vertex on the path. We adopt the notion
of the density of a graph G from Chinn et al. [CCDG82] as dens(G) =
(n − 1)/diam(G). Fomin et al. [FHT05] proved that if G is a caterpillar,
then ts(G) = bw(G) = max{ddens(H)e | H ⊆ G}. This is computable
in O(n log n) time by Assmann et al. [APSZ81]. In fact they prove that
bw(G) = max{ddens(H)e | H ⊆ G} also holds for caterpillars of hair
length 2 and that these also are solvable in O(n log n) time. Furthermore,
Monien [Mon86] proved Bandwidth to be NP-complete on caterpillars of
hair length 3.

We know that for a star G, bw(G) = ts(G). We can generalize this quite
easily to big stars, meaning trees with at most one vertex of degree more
than 2. One can prove this by the same kind of merging above the center
as in Figure 6.2 and Figure 8.1. The fact that bandwidth equals treespan
for both caterpillars and big stars might suggest that bandwidth is equal to
treespan for caterpillars with longer hairs. However, we provide a caterpillar
of hair length 2 below where this is not true. Let G be the caterpillar in

Figure 8.1: On the left, a caterpillar of hair length 2 where treespan is
not equal to bandwidth. On the right, an adjacency tree proving that the
treespan of the graph equals 2.

Figure 8.1. As

bw(G) ≥ dens(G) = d(n− 1)/diam(G)e =

⌈
9

4

⌉
= 3

we know that ts(G) 6= bw(G). This motivates our first open problem.

8.3. INTERVAL GRAPHS 77

Open problem 1. Given a caterpillar G of hair length l and an integer
k, for which values of l can it be determined in polynomial time whether
ts(G) ≤ k, and for which values is it NP-complete?

8.3 Interval graphs

A graph G = (V,E) is an interval graph if there exists a function f from
V to intervals in [0, . . . , n] such that uv ∈ E if and only if f(u) ∩ f(v) 6=
∅. The function f is called the interval representation of G. If there is
an interval representation of G such that no interval is a proper subset of
another we say that the graph is a proper interval graph. Kleitman and
Vohra [KV90] provided a polynomial time algorithm solving Bandwidth
on interval graphs. Fomin et al. [FHT05] proved that for any proper interval
graph G it holds that ts(G) = bw(G) and hence it follows that Treespan
is polynomial time solvable on proper interval graphs.

Open problem 2. Is bw(G) = ts(G) for every interval graph G? If not, is
there a polynomial time algorithm that decides whether an interval graph G
has treespan at most k given G and k.

We have failed to provide a counter example to this question and believe
that it is might be true that bandwidth and treespan in fact are equal also
on interval graphs. It is known that every interval graph has an optimal tree
decomposition which is a path such that every bag is a clique [GH03]. It
follows that every minimal separator in an interval graph is a clique. Note
that for a graph, an adjacency tree without any branching, meaning that the
adjacency tree is a path, is also a valid solution to the bandwidth problem.
Furthermore, observe that if an adjacency tree is to branch at some point,
the path from this point to the root must be a separator in the graph,
separating the branches. Hence if one proves that there exists an optimal
adjacency tree such that for every separator in an interval graph, one can
assume that one of the separated parts in the graph lives above the lowest
vertex of the separator, equality follows. We believe that this is a direction
that might lead to a complete proof.

8.4 General trees

While Bandwidth is proven to be NP-complete on trees of maximum degree
3 [GGJK78] we have provided a polynomial time algorithm in this thesis
solving Treespan on trees of bounded degree. This raises the interesting
question of whether Treespan is solvable in polynomial time for general
trees. Proposition 6.6 proves that one cannot assume vertices close in the
solution to be close in the input graph. As the construction from the proof
of the lemma can be generalized to any degree on the center vertex, this

78 CHAPTER 8. CONCLUDING REMARKS AND OPEN QUESTIONS

appears to motivate a construction for an NP-hardness reduction. But it
appears to be difficult to introduce choices in the solution while still forcing
the solution to maintain structure to express other problems. It is not clear
how to solve Treespan even on trees with all vertices except one of bounded
degree. This seems to be a case worthwhile to study as it is not known to
be polynomial time solvable and also captures some of the ideas we have for
an NP-reduction.

Open problem 3. Given a tree G and an integer k, is it polynomial time
decidable whether the treespan of G is at most k?

Note that such polynomial-time algorithms on trees often yield fixed
parameter tractable algorithms for general input parameterized by treewidth.
But as treewidth is bounded by treespan, this seems unlikely. This might
be an indication of non-existence of such an algorithm. Another interesting
problem is whether Treespan admits a fixed parameter tractable algorithm
on trees.

Open problem 4. Given a tree G and an integer k, is it decidable in
O(f(k) · nO(1)) time whether the treespan of G is at most k?

8.5 Exponential algorithm

We adopt the notion ofO∗ from the book on exponential algorithms by Fomin
and Kratsch [FK10]. We say that f(n) = O∗(g(n)) if there exists a poly-
nomial such that f(n) = O(g(n) · poly(n)). From the equivalence between
some measure on elimination trees and treespan by Fomin et al. [FHT05] it
follows that Treespan is solvable in O∗(2O(n logn)) time. An O∗(10n) algo-
rithm was provided for Bandwidth by Feige and Kilian [FK00], which was
later improved by Cygan and Pilipczuk [CP08] to O∗(5n). This raises the
question of whether Treespan admits such an algorithm.

Open problem 5. Given a graph G and an integer k, is it possible to decide
if G has treespan at most k in O∗(2O(n)) time?

The techniques used for Bandwidth do not easily translate to Treespan.
The algorithms are based on dividing the linear ordering into several inter-
vals of size depending on k and then handling the intervals more or less
separately. The first problem with applying this technique is that an adja-
cency tree might contain half of the vertices as leafs. Which implies that if
we divide our tree into blocks by the distance from the root, the size of our
blocks are not bounded by k. The other problem is that the vertices inter-
act in a much more complex way in an adjacency tree. It is exploit in the
algorithms for Bandwidth that one only cares about the neighbor furthest
away to the left in the ordering. A similar statement cannot be given for

8.6. FPT VS W-HARDNESS 79

Treespan as they might be in different branches and both contribute to
the span. We believe that these are two problems one will have to tackle for
successfully solving this problem.

8.6 FPT vs W-hardness

The problem p-Bandwidth was proven to be W[t]-hard for every t by
Bodlander et al. [BFH94]. The same question would be very interesting
to answer for p-Treespan. This was discussed at a Dagstuhl seminar in
2011 [FFKT11]. We leave it here as an open problem.

Open problem 6. Is p-Treespan parameterized by k W[t]-hard for some
t ≥ 1 or does it admit a fixed parameter tractable algorithm?

8.7 Further work parameterized by vertex cover

We proved in this thesis that Treespan parameterized by the vertex cover
number admits a fixed parameter tractable algorithm. In addition we pro-
vided a polynomial kernel for Treespan parameterized by both the vertex
cover number and the treespan. The celebrated tool of OR-decompositions [BDFH09],
designed to prove that polynomial kernels are not likely to exist for certain
problems, is conjectured to hold also for AND-decompositions in the same
paper. And a proof of this conjecture will be presented at a Dagstuhl semi-
nar this year [FGMS12]. If it holds, it implies that Treespan parameterized
by k is not likely to admit a polynomial kernel. This follows from the fact
that the disjoint union of instances of Treespan has treespan at most k if
and only if each of the original instances have treespan at most k. Hence it
would be very interesting to investigate if Treespan admits a polynomial
kernel parameterized by the vertex cover number.

Open problem 7. Is there a polynomial kernel for Treespan parameter-
ized by the vertex cover number of the input graph?

Our running time for Treespan parameterized by the vertex cover num-
ber is doubly exponential. It would be interesting to improve this.

Open problem 8. Is is possible to improve our running time solving Treespan
parameterized by the vertex cover number?

8.8 Treespan by other parameterizations

Another interesting path would be to investigate Treespan parameterized
by other parameterizations. Normally, a natural next step after the vertex
cover number would be the feedback vertex set number of the input graph.

80 CHAPTER 8. CONCLUDING REMARKS AND OPEN QUESTIONS

But as this leaves the rest of the graph as a tree and there is no known
algorithm solving Treespan on trees this seems highly non-trivial.

Open problem 9. Does Treespan admit a fixed parameter tractable al-
gorithm when parameterized by other interesting parameters?

By this we feel the most interesting, unresolved problems regarding treespan
have been stated.

Bibliography

[AG02] S. Alpern and S. Gal. The theory of search games and rendezvous,
volume 55. Springer, 2002.

[APSZ81] SF Assmann, GW Peck, MM Sysło, and J. Zak. The bandwidth
of caterpillars with hairs of length 1 and 2. SIAM Journal on
Algebraic and Discrete Methods, 2:387, 1981.

[BDFH09] H.L. Bodlaender, R.G. Downey, M.R. Fellows, and D. Hermelin.
On problems without polynomial kernels. Journal of Computer
and System Sciences, 75(8):423–434, 2009.

[BFH94] H.L. Bodlaender, M.R. Fellows, and M.T. Hallett. Beyond
np-completeness for problems of bounded width (extended ab-
stract): hardness for the w hierarchy. In Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing,
pages 449–458. ACM, 1994.

[BKW97] G. Blache, M. Karpiński, and J. Wirtgen. On approximation
intractability of the bandwidth problem. Citeseer, 1997.

[BLW86] N. Biggs, E.K. Lloyd, and R.J. Wilson. Graph Theory, 1736-
1936. Clarendon Press, 1986.

[Bón06] M. Bóna. A walk through combinatorics: an introduction to enu-
meration and graph theory. World Scientific Pub Co Inc, 2006.

[Bor61] C.W. Borchardt. Über eine Interpolationsformel für eine art
symmetrischer Functionen und über deren Anwendung. Dr. d.
Königl. Akad. d. Wiss., 1861.

[BS91] D. Bienstock and P. Seymour. Monotonicity in graph searching.
Journal of Algorithms, 12(2):239–245, 1991.

[CCDG82] P.Z. Chinn, J. Chvátalová, A.K. Dewdney, and N.E. Gibbs. The
bandwidth problem for graphs and matrices-a survey. Journal
of Graph Theory, 6(3):223–254, 1982.

81

82 BIBLIOGRAPHY

[CKJ01] J. Chen, I.A. Kanj, and W. Jia. Vertex cover: further ob-
servations and further improvements. Journal of Algorithms,
41(2):280–301, 2001.

[CKX10] J. Chen, I.A. Kanj, and G. Xia. Improved upper bounds for
vertex cover. Theoretical Computer Science, 411(40-42):3736–
3756, 2010.

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of
computing, pages 151–158. ACM, 1971.

[CP08] M. Cygan and M. Pilipczuk. Faster exact bandwidth. In
Graph-Theoretic Concepts in Computer Science, pages 101–109.
Springer, 2008.

[Der09] D. Dereniowski. Maximum vertex occupation time and inert
fugitive: Recontamination does help. Information Processing
Letters, 109(9):422–426, 2009.

[DF95] Rod G. Downey and Michael R. Fellows. Fixed-parameter
tractability and completeness ii: On completeness for w[1]. The-
oretical Computer Science, 141(1âĂŞ2):109 – 131, 1995.

[DF99] Rod G. Downey and R. Fellows. Parameterized complexity.
Monographs in computer science. Springer, 1999.

[Die05] R. Diestel. Graph theory. 2005. Grad. Texts in Math, 2005.

[DKT97] N.D. Dendris, L.M. Kirousis, and D.M. Thilikos. Fugitive-search
games on graphs and related parameters. Theoretical Computer
Science, 172(1-2):233–254, 1997.

[DvM10] Holger Dell and Dieter van Melkebeek. Satisfiability allows
no nontrivial sparsification unless the polynomial-time hierar-
chy collapses. In Proceedings of the 42nd ACM symposium on
Theory of computing, STOC ’10, pages 251–260, New York, NY,
USA, 2010. ACM.

[FFKT11] F.V. Fomin, P. Fraigniaud, S. Kreutzer, and D.M. Thilikos. The-
ory and applications of graph searching problems. In Dagstuhl
Seminar, number 11071 in Dagstuhl, 2011.

[FG64] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval
graphs. Technical report, DTIC Document, 1964.

[FG00] F.V. Fomin and P.A. Golovach. Graph searching and interval
completion. SIAM Journal on Discrete Mathematics, 13(4):454–
464, 2000.

BIBLIOGRAPHY 83

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts
in Theoretical Computer Science. Springer, 2006.

[FGMS12] M.R. Fellows, J. Guo, D. Marx, and S. Saurabh. Data reductions
and problem kernels. In Dahstuhl Seminar, number 12241 in
Dagstuhl, 2012.

[FHT05] F.V. Fomin, P. Heggernes, and J.A. Telle. Graph searching, elim-
ination trees, and a generalization of bandwidth. Algorithmica,
41(2):73–87, 2005.

[FK00] U. Feige and J. Kilian. Exponential time algorithms for com-
puting the bandwidth of a graph. Manuscript in preparation,
2000.

[FK10] F.V. Fomin and D. Kratsch. Exact exponential algorithms.
Springer Verlag, 2010.

[FLM+08] M. Fellows, D. Lokshtanov, N. Misra, F. Rosamond, and
S. Saurabh. Graph layout problems parameterized by vertex
cover. Algorithms and Computation, pages 294–305, 2008.

[FT87] A. Frank and É. Tardos. An application of simultaneous dio-
phantine approximation in combinatorial optimization. Combi-
natorica, 7(1):49–65, 1987.

[GGJK78] M.R. Garey, R.L. Graham, D.S. Johnson, and D.E. Knuth. Com-
plexity results for bandwidth minimization. SIAM Journal on
Applied Mathematics, pages 477–495, 1978.

[GH03] PC Gilmore and AJ Hoffman. A characterization of compara-
bility graphs and of interval graphs. Selected papers of Alan
Hoffman with commentary, 16:65, 2003.

[GHK+09] P. Golovach, P. Heggernes, D. Kratsch, D. Lokshtanov, D. Meis-
ter, and S. Saurabh. Bandwidth on at-free graphs. Algorithms
and Computation, pages 573–582, 2009.

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability,
volume 174. Freeman San Francisco, CA, 1979.

[KAM30] FP KAMSEY. On a pboblem of fokmal logic. 1930.

[Kan87] R. Kannan. Minkowski’s convex body theorem and integer pro-
gramming. Mathematics of operations research, pages 415–440,
1987.

[Kar10] R.M. Karp. Reducibility among combinatorial problems. 50
Years of Integer Programming 1958-2008, pages 219–241, 2010.

84 BIBLIOGRAPHY

[KP86] L.M. Kirousis and C.H. Papadimitriou. Searching and pebbling.
Theoretical Computer Science, 47:205–218, 1986.

[Kra12] S. Kratsch. Co-nondeterminism in compositions: A kerneliza-
tion lower bound for a ramsey-type problem. In Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 114–122. SIAM, 2012.

[KV90] D.J. Kleitman and R. Vohra. Computing the bandwidth of inter-
val graphs. SIAM Journal on Discrete Mathematics, 3(3):373–
375, 1990.

[Liu90] J.W.H. Liu. The role of elimination trees in sparse factoriza-
tion. SIAM Journal on Matrix Analysis and Applications, 11:134,
1990.

[LJ83] H.W. Lenstra Jr. Integer programming with a fixed number of
variables. Mathematics of operations research, pages 538–548,
1983.

[MCD06] P. Micikevicius, S. Caminiti, and N. Deo. Linear-time algorithms
for encoding trees as sequences of node labels. Congressus Nu-
merantium, 183:65, 2006.

[MHG+88] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C.H.
Papadimitriou. The complexity of searching a graph. Journal of
the ACM (JACM), 35(1):18–44, 1988.

[Mih10] R. Mihai. Games on graphs: searching and online coloring. PhD
thesis, University of Bergen, 2010.

[Mon86] B. Monien. The bandwidth minimization problem for caterpillars
with hair length 3 is np-complete. SIAM Journal on Algebraic
and Discrete Methods, 7:505, 1986.

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Ox-
ford Lecture Series in Mathematics And Its Applications. Oxford
University Press, 2006.

[Par78] T. Parsons. Pursuit-evasion in a graph. Theory and applications
of graphs, pages 426–441, 1978.

[Pet82] NN Petrov. A problem of pursuit in the absence of information
on the pursued. Differentsial’nye Uravneniya, 18(8):1345–1352,
1982.

[Prü18] H. Prüfer. Neuer beweis eines satzes über permutationen. Arch.
Math. Phys, 27:742–744, 1918.

BIBLIOGRAPHY 85

[PS98] C.H. Papadimitriou and K. Steiglitz. Combinatorial optimiza-
tion: algorithms and complexity. Dover Pubns, 1998.

[Rad09] S.P. Radziszowski. Small ramsey numbers. Electronic Journal of
Combinatorics, 1, 2009.

[Rau05] D. Rautenbach. Lower bounds on treespan. Information process-
ing letters, 96(2):67–70, 2005.

[RS83] A.L. Rosenberg and I.H. Sudborough. Bandwidth and pebbling.
Computing, 31(2):115–139, 1983.

[Sax80] J.B. Saxe. Dynamic-programming algorithms for recognizing
small-bandwidth graphs in polynomial time. SIAM Journal on
Algebraic and Discrete Methods, 1:363, 1980.

[Sip96] Michael Sipser. Introduction to the Theory of Computation. In-
ternational Thomson Publishing, 1st edition, 1996.

[Spe94] J.H. Spencer. Ten lectures on the probabilistic method, volume 64.
Society for Industrial Mathematics, 1994.

[Sto73] L. Stockmeyer. Planar 3-colorability is polynomial complete.
ACM Sigact News, 5(3):19–25, 1973.

[Tur38] A.M. Turing. On computable numbers, with an application to
the entscheidungsproblem. a correction. Proceedings of the Lon-
don Mathematical Society, 2(1):544, 1938.

[Ung98] W. Unger. The complexity of the approximation of the band-
width problem. In Foundations of Computer Science, 1998. Pro-
ceedings. 39th Annual Symposium on, pages 82–91. IEEE, 1998.

[Wat05] K. Watnedal. Avgjøre små treespenn. Master’s thesis, University
of Bergen, 2005.

[Woe03] Gerhard Woeginger. Exact algorithms for np-hard problems:
A survey. In Michael Jünger, Gerhard Reinelt, and Giovanni
Rinaldi, editors, Combinatorial Optimization - Eureka, You
Shrink!, volume 2570 of Lecture Notes in Computer Science,
pages 185–207. Springer Berlin / Heidelberg, 2003.

