
INFORMATION SCIENCE

Master thesis

Extracting Geographical Semantics
from Online News Articles

By: Aleksander Skjæveland Larsen

Supervisors: Bjørnar Tessem, Solveig Bjørnestad

June 1, 2012

Preface

The greatest thanks goes to my supervisors Bjørnar Tessem and Solveig Bjørnestad. You
have given me constructive feedback throughout the project, and helped me complete
this thesis. The monthly meetings helped setting a pulse for the progress of the project,
which have pushed me forwards. I am convinced I could not have finished this project
without your help and guidance, so thank you!

Thanks to Terje Hidle, chief engineer in the IT department, for helping with data ac-
quisition from Norge Digitalt. Thanks to the geographer—my wife, Matilde Skår—for
patiently answering my questions regarding map data, datums, coordinates and more.
You greatly bettered my basal knowledge within your own field, and I gained respect for
the complexities of geography. Thanks to the creators of the Oslo-Bergen-Tagger, whom
I had a nice email exchange with. Thanks to Eirik Stavelin, who also is using the Oslo-
Bergen-Tagger. You had some great ideas regarding usage and how to increase tagging
speed, which I shamelessly have stolen in my own library implementation. I would also
like to thank my parents, who always have supported me in my studies in Bergen. Also,
thanks to my friends in the Master’s course, for general sanity upkeep and preventing me
from becoming a hermit. And coffee.

i

Abstract

Several news articles on the web contain geographical locations as significant elements.
For the most part, these locations are not available in a format that is machine inter-
pretable. The machine can read in the text of an article, but not derive an understanding
of its content. This project aims to find techniques for detecting and extracting locations
from the plain text online news articles. The project is limited to articles written in Nor-
wegian, and published in the county of Hordaland. This is done by using methods from
design science, for the development and evaluation. A prototype is implemented as a
proof-of-concept system using the Clojure programming language. By text analysis, the
prototype is able to find mentions of locations in articles. The prototype system have been
made available as an open source project and as a Clojure library.

iii

Contents
Preface i

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problem . 2
1.3 Potential Uses . 4
1.4 Project Overview . 5

2 Literature 7
2.1 Previous Work . 7
2.2 Technology . 10

2.2.1 Gazetteer . 10
2.2.2 Part-of-speech tagger . 10
2.2.3 Map data . 11
2.2.4 Statens Kartverk . 12
2.2.5 Norge Digitalt . 13
2.2.6 Name data . 14
2.2.7 Programming Language . 16

3 Method 17
3.1 Design Research . 17
3.2 Evaluating with Information Retrieval . 20
3.3 Limitations . 22

3.3.1 Source Code and Licensing . 22
3.3.2 Social Aspects . 23
3.3.3 Data Sources and Copyright . 23
3.3.4 Language Barrier . 24
3.3.5 Working Conditions of the Prototype 25

4 Development 27
4.1 First Iteration . 28

4.1.1 Data Processing . 28
4.1.2 Central Place Name Registry . 29
4.1.3 Article Collector . 31
4.1.4 Corpus Construction . 32
4.1.5 Oslo-Bergen-Tagger . 33
4.1.6 Changing Premises . 38
4.1.7 Evaluation . 39

4.2 Second Iteration . 41
4.2.1 Finding Locations . 42

v

4.2.2 Candidate Words with Simplistic Grammatical Processing 43
4.2.3 Geographical Entities from Lookup Lists 44
4.2.4 Geocoder . 45
4.2.5 Personal Names . 48
4.2.6 Professions . 49
4.2.7 Addresses . 49
4.2.8 Evaluation . 50

4.3 Third Iteration . 52
4.3.1 Grammatical Processing . 52
4.3.2 Entity Recognition . 54
4.3.3 Tagger Web Service . 55
4.3.4 Web Service Client . 57
4.3.5 The Extraction Software . 60
4.3.6 Dropping Proprietary Data Sets . 62
4.3.7 Evaluation . 62

5 Evaluation and Discussion 63
5.1 Analytical Evaluation . 63
5.2 Descriptive Evaluation . 65

5.2.1 Tag Generation . 65
5.2.2 Construction of External Tools . 71
5.2.3 Semantic Applications . 72
5.2.4 Statistics and Metrics . 72

5.3 Discussion . 73

6 Summary and Conclusion 77
6.1 Conclusion . 77
6.2 Further Work . 78

Appendices 83

A List of Acronyms 83

vi

List of Figures

1 The Oslo-Bergen-Tagger Model . 34
2 Tagger Library (clj-obt) System Model . 37
3 Tagger Web Service (clj-obt-service) System Model 57
4 The Extraction Software (clj-egsiona) System Model 61
5 Demo Application Text Input . 66
6 Demo Application Tag Selection . 68
7 Demo Application Article View . 69

vii

List of Tables

1 File formats that constitutes the Norge Digitalt map data 14
2 Programs, libraries and namespaces used in first iteration 28
3 Programs, libraries and namespaces used in second iteration 42
4 Programs, libraries and namespaces used in third iteration 52
5 Evaluation by precision, recall and f-measure 64

ix

Listings

1 Example of PostGIS preparation statement 29
2 Example of SOSI node . 30
3 Parsed SOSI node . 31
4 Function wrapping the original OBT-script with full path 35
5 Output from the Oslo-Bergen-Tagger . 35
6 Example of tags with different lemmas . 36
7 Data from the Oslo-Bergen-Tagger parsed to Clojure data structure 36
8 Excerpt of todo items from my planner, an overview of priorities 39
9 Call to geocoder and response . 46
10 Call to geocoder with restricting phrase, and response 47
11 Automatic grammatical expansion of nouns 55
12 Command to start tagger web service . 56
13 URL encoding of text to be tagged . 58
14 Valid HTTP request to tagger service . 58
15 HTTP response from tagger web service . 59
16 Transformed HTTP response data into Clojure code 59
17 Running the demo application . 67

xi

1 Introduction

News articles often have geographical locations as significant information elements. Lo-
cations are often mentioned by plain text in news articles, relating the article to countries,
cities, regions, and more. The sheer multitude of news articles freely available to ev-
eryone with an Internet connection, means that automatic processing in order to extract
information can be useful for the reader. Unfortunately, news articles on the web rarely
have this sort of information in a machine interpretable format, which is required for this
sort of processing to be possible. Currently, it is our own understanding of the text that
provides us with this information.

Computers are not yet sufficiently proficient in natural language processing, and are not
capable of deriving the same set of semantics from a text as we humans are. The more
general problem in this context is machine analysis of natural language texts, where the
machine is able to understand the semantics in the text. In this project, the effort is fo-
cused on a smaller version of the general problem of extracting meaning from text, which
is extracting locations. It is the aim of this project to discover techniques we can use to
extract geographical semantics from online news articles, and implement these in a pro-
totype system using the Clojure programming language. The focus of the project will be
on the Norwegian county of Hordaland, by analyzing articles published in this county.

1.1 Motivation

There are multiple aspects of this project that interest me, and provide motivation to work
on it. Some of these motivations are related to the project matter in itself, locations and
natural language processing. Aside from this, my own interest in implementing soft-
ware and the technical challenge required to undertake this project, represents a major
motivational influence for me. The prototype system will be implemented in the Clojure
programming language, which is running on the Java Virtual Machine (JVM). A tech-
nical motivation is—perhaps self evidently—required to undertake an implementation-
oriented project. Another motivational force is an interest in semantic technologies and
the problems faced in this field.

1

Semantics used in information systems and on the web, brings information into machine
interpretable formats. A number of semantic technologies have emerged over the years,
the most visible trend being the rise of the semantic web, popularly dubbed Web 3.0. We
can understand the transition with the analogy of going from the old web of documents,
to a web of data (Bizer et al., 2008). In the current state of affairs, semantic technologies
rely heavily on human users and developers. In order for the machine to gain a semantic
understanding, a developer or user must supply the machine with ontologies and valid
statements within these ontologies. An ontology is a formal representation of knowledge
as concepts within a domain, and the relationships between these concepts. Multiple
ontologies can be aligned, in order to achieve correspondence between the concepts.

The system proposed in this project aims to extract geographical semantics automatically
by machine analysis alone. I wish to uncover the locations in news articles, in order to use
this data in various applications. This means I want to be able to provide machine inter-
pretable data without human intervention. The nature of this project is not only oriented
towards semantic technologies in themselves. The project is also interested in the utility
of the developed prototype system, and how it can be used in different applications. In
its most basic form, the functional prototype would take in news articles in the form of
plain text, perform processing and return the words that are locations. This output can
then be utilized in a number of different settings, which is discussed in section 1.3.

1.2 Research Problem

I want to answer the following research question: “How can we automatically detect geo-
graphical information in online news articles?”. In order to answer this, I will build a soft-
ware artifact iteratively, as a proof-of-concept system. In order to evaluate the progress
and measure the level of success, the following success criteria are proposed:

2

The system should be able to

1. detect possible locations by text analysis

2. represent complex1 locations

3. create mappings between an article and locations

4. provide accurate data while minimizing false positives

The geographical scope of the project will be limited to the Norwegian county Horda-
land. It is the third largest county by population, with over 490,000 inhabitants. The
implementation of the prototype system will be guided by a corpus of articles, collected
from online newspapers published in this area. Use of the corpus is discussed in detail in
section 3.2. The process of implementing the system will be iterative, where prototypes
are produced for evaluation throughout multiple iterations. Within the allotted time, per-
forming the development in three iterations seems reasonable. This is relevant to the first
success criterion, since it is restricting the possible number of articles to process.

The second success criterion assumes usage of geospatial map data in the form of shape-
files. A shapefile describes geometries using points, lines and polygons. This data format
is much richer than simple coordinate points. For example, where a coordinate point only
places a city on a map, a polygon can describe the entire outline of the city. The use of
such data is discussed in more detail in section 2.2.3.

The third criterion is concerned with the coupling of articles to the locations that are
found. When a location is found in an article, some mapping have to be created to repre-
sent the relationship between the location and the article. This is simple if the prototype
system return the locations if finds as plain text. It can however become more compli-
cated, if it supports complex locations as in the second criterion.

The fourth success criterion have taken some time to define rigorously. At first, it read
“provide correct data”, without defining what constitutes correctness. After working
with different definitions, I arrived at the current state. Still, a technical foundation was
missing. Precisely how would the accuracy of the data be measured? The other criteria

1Locations represented by non-primitive shapes like polygons

3

appear fairly straight forward, as they in a clear way are concerned with the implemen-
tation of the prototype system. A measurement of accuracy is less obvious than creating
a mapping between article and location. In order to satisfy the fourth criterion, methods
from the field of information retrieval (IR) will be used. Specifically, the measurements
precision, recall, and f-measure will be applied in order to provide a satisfactory answer to
the question of accuracy. Information retrieval, and its use in the project, is discussed in
section 3.2.

1.3 Potential Uses

The prototype system to be developed in this project can provide utility within a number
of different settings. These are explored and discussed shortly in this section, in order to
provide motivation and justification for the project. The prototype system can be exposed
as a software library, providing data for a number of different applications.

One potential use is as a plug-in for content management and other publishing systems.
Here it would analyze the text before publishing, extract the locations, and suggest geo-
graphical tags that can be added. Considering the laborious and relatively menial task of
manually typing in tags for articles to be published, this should be a suitable use for the
prototype system. This tag generation can be expanded to several other cases where we
want some sort of location tags, for example within semantic web. The output from the
software could be used as foundation for generating RDF statements according to some
given ontology.

Another area of interest is within tool construction that require training data. Using train-
ing data, it is possible to construct language processing tools by using frameworks like
the Stanford NLP. NLP stands for natural language processing, and is a concerned with
the interaction between computers and natural languages, like English or Norwegian. As
the focus of the project is on a particular Norwegian region, the prototype system may
perform worse on articles published in another region. If so, training data could be gen-
erated by the prototype, in order to train a more generalized location detection system.

4

The software can also be used within generation of statistics and metrics. One could
for instance analyze a collection of articles, grouped by news paper, and determine a
geographical focus—based on the statistics calculated from data found by the prototype
system.

1.4 Project Overview

This thesis document the work done in the project, and an overview is presented here.
Following the introduction is the literature chapter. Here previous work is discussed,
along with technology considering data and tools. After this, the research method is
discussed in relation to the project. Along with the method, evaluation and various limi-
tations to the project are also discussed.

The development chapter contains the three iterations, where the development of the pro-
totype have been documented. Each iteration contains sections on the various problems
faced, along with a short summary and evaluation. At the start of the iterations, there is a
table providing an overview of the different programming libraries, namespaces and pro-
grams used. After the development, the evaluation of the prototype system is performed
and the results are discussed. The thesis ends with a summary and conclusion, before
suggestion some further work.

5

2 Literature

Previous work have been reviewed, in order to find relevant literature and technology
solutions that can be applied to the project. After discussing the literature, its practical
application and the technological choices of this project are discussed.

2.1 Previous Work

The reviewed work is tangent or overlapping the project’s area of interest, with some
differences. The focus is not on these fields in themselves, but what there is to learn and
what is suitable to be used in this project. The first article reviewed is similar in that it
also finds locations in text.

The main interest of Fink et al. (2009) is detection of geographical focus in blogs. By ana-
lyzing all the posts from a single blog, they attempt to find the location which represents
the geographical focus of the entire blog. I noticed that my problem is somewhat differ-
ent, as I want to detect all locations in a piece of text. In order for Fink et al. (2009) to
resolve the overall focus, they do need to detect all the locations—which is where our
problem is aligned. For location lookup, they use a gazetteer as the data source.

A gazetteer is a collection of geographical locations, akin to a geographical dictionary.
It will typically provide additional relevant data on locations, which may include co-
ordinates, the location’s classification, the inclusion hierarchy, population number, and
possibly more. The location can be classified as a country, state, city, or as some other
meaningful class. An inclusion hierarchy is a hierarchical ordering of nested sets, for
example one city is a member of a particular state set, which in turn is a member of a
particular country set. Fink et al. (2009) use the gazetteer for location lookup, in order
to help resolving the geographical focus. After filtering the blog posts for matches in
the gazetteer, population sizes were used for filtering the matched locations. Topological
relationships were also used to filter and disambiguate matches.

Disambiguation is the process of resolving ambiguity in the meaning of words. For exam-
ple, upon retrieving legal documents, it is appropriate to eliminate documents containing

7

the word court as associated with royalty, rather than with law (Ide and Véronis, 1998).
Within the scope of finding locations, it is desirable to eliminate words that are used in an
inappropriate sense, where the location name may overlap in meaning with other words
or locations. The location’s inclusion hierarchy was used by Amitay et al. (2004) in dis-
ambiguation, in order to determine which location was the relevant one. If one location
name matches two different instances of a city, the inclusion hierarchy can help resolve
the ambiguity if another relevant region is mentioned elsewhere in the text. For example,
a non-ambiguous location might be mentioned, e.g. a region, which may contain one of
the ambiguous cities. If so, the ambiguous city names can be resolved by selecting the
city that is included within the hierarchy of another location.

Fink et al. (2009) discussed related work by performing a literature review of research
relevant to their problem. One of these studies was by Zong et al. (2005), who based
their system on a software package named GATE. The GATE software was developed
for extracting named entities, and is available as a standalone system and a software li-
brary. GATE consists of several built-in components, such as a tokenizer, sentence splitter,
part-of-speech tagger, and ontology matcher. Most of these tasks represent challenges to
overcome in this project, so the software may be of use in my project.

Adida et al. (2011, Chapter 3) discuss automatic annotation mainly in relation to seman-
tic annotation using ontologies. In the important disambiguation step, usage of part-
of-speech (POS) taggers are discussed. A POS tagger is software that process text in a
given language, in order to perform grammatical tagging. It is mainly concerned with
the grammatical and syntactical processing of text. The POS tagger will typically per-
form sentence splitting, tokenizing, and assignment of tags for parts of speech. These
tags will include noun, verb, adjective, and more (The Stanford Natural Language Pro-
cessing Group, 2012). POS usage seem to be the only directly relevant aspect of the work
done by Adida et al. (2011), as they are dependent on use of ontologies.

Amitay et al. (2004) worked with associating geography with web pages, and describe the
system they developed to determine a web page’s geographical focus. Two approaches
for disambiguation are discussed, mainly natural language processing (NLP) and use of
a gazetteer. Using NLP, locations are found by the structure and context of sentences and
words. The gazetteer approach is often simpler to use, but cannot find locations that are
not present in the list. The system they developed is using the gazetteer approach. For

8

future work, they suggest usage of a POS tagger, while noticing the performance impact
this will have on the system. In their survey of previous work, named entity recognition
was briefly mentioned.

Named entity recognition (NER) is software that classifies elements in the text into pre-
defined categories. Some examples of these categories can be addresses, personal name,
organizations, date and time, quantities, citations, monetary values, and more. We can
view the main concern of the NER as adding some semantic understanding to a text—
categorization of entities—where the POS tagger mainly is concerned with the syntactical
and grammatical understanding. Amitay et al. (2004) and Michael D. Lieberman (2007)
mentioned the use of NER software in the survey of previous work, while Amitay et al.
(2004) used it in their system.

The approach of Fink et al. (2009) can be broken down in three subtasks: named en-
tity recognition, disambiguation and determining geographical focus. The named entity
recognition task uses a NER software to extract locations from the text. It is not clear what
software they used or how it was applied. They barely mention the use of the NER, claim-
ing it is “widely studied and is too broad a topic to review (..)”. Instead of discussing the NER,
they focus on reviewing disambiguation and determination of geographical focus in pre-
vious studies. They find that use of a gazetteer is common among all the disambiguation
strategies. After reviewing the related work, they describe how their system process the
blog posts. For each post, the NER is used to extract location entities mentioned in the
text. Each entity name is then matched against a gazetteer, which gives them a list of to-
ponyms with coordinates and other relevant data. In order to filter out words that often
gives wrong locations, they used a list of stop places.

The list of stop places is akin to stop words in information retrieval, which are common
words that have little value in the retrieval process. These are kept in a list and excluded
from the vocabulary, in turn giving better results (Manning et al., 2008, p. 27). Simi-
larly, Fink et al. (2009) did this with a list of locations that were adding little value. Both
“Obama” and “Coca Cola” were added to the list, as they on occasion got tagged as loca-
tions. “Obama” is a city in Japan, and “Coca Cola” is a populated place in Panama, but
they turned out to give little value in determining the location.

9

2.2 Technology

Based on what was reviewed in the previous section, tools and data sources are located
and discussed. These will be put into practical use in the implementation of the prototype
system. The different technologies are discussed in the following subsections.

2.2.1 Gazetteer

Fink et al. (2009) used GeoNames (2011) as a data source in their research. GeoNames
provides data free of charge through web services or as a download. Their database
contains over 10 million geographical names. Amitay et al. (2004) use a number of other
data sources. One that contains data on Norwegian locations is WorldGazetteer (2011),
which “provides a comprehensive set of population data and related statistics”. Several
of the reviewed articles used gazetteers as a data source. It often serves both as a simple
lookup list of names, as well as a method of ranking different locations based on the
available data—such as population size and hierarchy. When examining the GeoNames
gazetteer, about 55,000 locations are found in Norway.

2.2.2 Part-of-speech tagger

Even though named entity recognition was suggested, used, and referenced in the related
literature, I have not been able to locate a Norwegian NER software package. This is
unfortunate, as it seems to provide great utility in the projects which have used it, and it
seemed relevant to the problems faced in this project. The focus have therefore been on
finding a suitable part-of-speech tagger instead.

While working with the literature and searching for Norwegian tools, mainly two ap-
proaches are identified in order to obtain a POS tagger. The preferred approach would be
to use a ready-made software package, which preferably would be free or open source.
There will be two main impediments to this, which is regarding programming language
support and Norwegian language support.

10

The software package may be offered as a library in another programming language. If
this is the case, some interface or new language bindings could be constructed. The more
likely impediment is the relatively poor selection of tools with support for the Norwegian
language. In the literature section, Zong et al. (2005) were using the the GATE software.
The usage of this was examined, but it quickly became clear it does not readily support
Norwegian language (GATE, 2012). Because of this fact, it is dismissed. If a suitable
system cannot be found, it is possible to construct the tagger from scratch, which is the
second approach.

In order to construct a tagger from scratch, access to training data is required. A sys-
tem which supports both approaches is the Stanford Log-linear Part-Of-Speech Tagger by
The Stanford Natural Language Processing Group (2012). This POS tagger have support
for several written languages, and there exists bindings for multiple programming lan-
guages. It is also possible to implement support for new languages, which would be
required if it is to be used with Norwegian texts—which is not supported out of the box.

However, implementing a POS tagger is probably a project of its own within the field of
computational linguistics. Not wanting to implement this from scratch, much effort was
spent searching for a suitable solution outside of the literature. A software package was
found, namely the The Oslo-Bergen Tagger (OBT) by UniComputing (2012). This is a free
software package which performs POS tagging on Norwegian texts. It is not tied to any
particular programming environment, as it outputs the tagged text directly to the shell.
Tools for further processing will be constructed.

2.2.3 Map data

While the gazetteer is a simple coordinate lookup list, modern map data contain a variety
of relevant data points concerning geography. A coordinate point consists of a latitude
and a longitude, which specifies a zero-dimensional point as a geographical location. The
coordinate point is zero-dimensional because it does not have height, length or width.
A richer representation of geographical data is the notion of shapes, which is defined
by vectors. A vector describes the outline of a geographical entity, or the curvature of a
road. Geographical polygons can measure perimeter and area of locations, giving more
to reason with than just placement of simple points.

11

Modern map data may help with geospatial reasoning, using a more complex represen-
tation of locations. This representation alone does not give any data, that helps differen-
tiating between geographical instances, like cities, villages, and regions. If a coordinate
based data set contains a location with 3 inhabitants, it is identical to a location with 3
million; they are both a simple point. Gazetteers may help in this respect, as they can
provide population numbers, which can be used in conjunction with the geographical
shapes to compare the locations. If both population data and a polygonal representation
of a city is available, population density could be calculated and used to rank locations.

In order to hold geographical data, a suitable database is required. An ideal candidate
is PostGIS, as this database support different geographical features. PostGIS is an exten-
sion to the PostgreSQL object-relational database. Using PostGIS, it is possible to query
based on coordinates and distance, which can support some of the challenges faced in
this project. Another use for the database is to hold the mappings generated between the
online news articles and the different locations, as well as other relevant data.

2.2.4 Statens Kartverk

The number one provider of geographical data from Norway is Statens Kartverk (the
Norwegian Mapping Authority), a public agency under the Ministry of the Environment
(Andersen, 2009). The University of Bergen participates in the project Norge Digitalt
(Digital Norway), which is “the Norwegian government’s initiative to build the national
geographical infrastructure” with the aim to “enhance the availability and use of quality
geographical information among a broad range of users, primarily in the public sector”
(Kartverket, 2011). Because of this participation, I am able to attain high quality map
data from Statens Kartverk that normally would be prohibitively expensive to use. It is
fortunate for me, but a blow regarding social aspects, since one normally has to purchase
access to the raw data.

As Statens Kartverk is a public agency, it is fair to say their largest source of income
is taxpayer money. Critics have argued they should make their data free to the public,
reasoning that the public already have paid for it. Another argument for free map data is
the success of free weather services, a notable example being Yr.no1.

1http://www.yr.no/

12

http://www.yr.no/

Yr.no gives their data away for free, both to end users through their web site and to
developers through an API. This helps Yr.no gain market share, without developing ap-
plications for the plethora of devices available. They are able to do this with the from
external developers that make applications using the free data. Note that these develop-
ers are probably not motivated to help Yr.no, but to make useful applications. This results
in benefit for the end users, who are able to choose from a wide variety of applications
for their devices. The result for Yr.no is making their services more widespread than they
would be able to achieve by developing applications themselves.

Free data is an asset both to the consumer and business entrepreneurs: a report from the
European Union suggests values totaling 400 billion NOK can be created by releasing free
public information in Europe (Noer, 2008). Brenna (2008) argues the money that Statens
Kartverk earn from sales is negligible in the grand total. In 2007 their total income was
757.1 million NOK, with 10 million from sales of analog products and 24.6 million from
sales of digital products. Brenna argues it is naïve to expect a public agency to perform as
well as top business people, and increase sales to a meaningful level.

In 2009 it was announced that Statens Kartverk would release their maps for free use. This
was met with great anticipation, but also skepticism considering the ongoing criticism. As
it turned out, the release only concerned pre-rendered maps, and not any underlying data.
Technical oriented critics want the actual data released, not mere pictures. With only pre-
rendered maps, one is not able to search for locations names, get coordinates and shapes
in machine readable formats, which is what is needed for technological innovation using
map data (Solstad, 2009).

2.2.5 Norge Digitalt

As described in the previous section, the University’s participation in Norge Digitalt have
provided this project with geospatial data. This data was delivered as shapefiles, a com-
monly used format for geographical data. The different file formats included is listed
table 1, with a description from Esri (2009). The files are specific to the shapefile standard,
which can be exported to the PostGIS database.

13

Upon examining the data received from Norge Digitalt, the map data has been provided
in three different groupings: N50, N250 and N500. These names corresponds to different
resolutions used by Statens Karverk2. The N50 data is in the scale 1:50 000, the N250 in
1:250 000, etc. The data is split into separate collections by municipality, in nested folders
with each data set contained in an archive file. For each resolution, there are unique
directories for over 30 municipalities, all of which containing files that need processing.
Not wanting to traverse and process this relatively large directory tree manually, a custom
tool should be constructed to extract and import this data into the PostGIS database.

Filetype Description

shp shape format; the feature geometry itself

shx shape index format; a positional index of the feature geometry to allow seek-
ing forwards and backwards quickly

prj projection format; the coordinate system and projection information

sbx, sbn a spatial index of the features

xml Metadata for ArcGIS; stores information about the shapefile

Table 1: File formats that constitutes the Norge Digitalt map data

2.2.6 Name data

Both the full names of people and other geographical locations are interesting data to
use in this project. Name data of geographical locations can be regions, counties and
municipalities, and they may exist in poorer data sets that does not contain coordinates.
Using these data, it is possible to construct simple lookup lists, which can be used in order
to perform filtering. Municipality names in Norway are public data, and is gathered from
norge.no3, a portal to public information.

Lists of personal names can be used in order to disambiguate locations. A major source
of ambiguity when it comes to finding geographical locations, is the naming convention
of using geographical locations as surnames.

2http://www.statkart.no/nor/Land/Kart_og_produkter/Kartdata/
3http://app.norge.no/kart/kommunerifylke/

14

http://www.statkart.no/nor/Land/Kart_og_produkter/Kartdata/
http://app.norge.no/kart/kommunerifylke/

The overlap of surnames and locations is normal in Norway, but this differs around
the world. If a similar project is done in for example Iceland, surnames will be a dif-
ferent problem—perhaps even not one at all. Icelanders use a patronymic (sometimes
matronymic) naming scheme, identifying the immediate father (or mother), not using
family names. Problems might still arise even here, as of immigration and people with
deviating surnames. Patronymic naming schemes exists all over the world, so a similar
prototype system in another language will have to take this into consideration.

Statistisk sentralbyrå (Statistics Norway, SSB) have published a list of surnames used by
200 people or more. This list is collected and put in a database for use by the prototype
system in disambiguation of possible location names. The purely list lookup approach
has some limitations. For example, the personal names collected only represent a sta-
tistical sample of names in active use. This means the collection only contains names
commonly used today. The selection is cut off at 200 people, meaning the collection do
not contain a name if only 150 people use it. The names we miss out on, may include
rare variations or plain deviations in spelling: “Trond” and “Trånn”, the former a common
male name, the latter an extremely rare spelling variant with the same pronunciation.
Some names are not present in the collection because they have become unfashionable or
inappropriate. Names of traitors and dictators often fall out of active use, but might still
be useful in analysis—depending on what types of text to process.

Some imported foreign names have become statistically common, such as “Ali” and
“Singh”. There might still be names that one would want in the collection, which does
not have sufficient mass to show often enough statistically. The Chinese surname “Ng”
comes to mind, which is not found in the SSB data sets. While such foreign names does
not represent Norwegian locations, it is still desirable to find them; people with foreign
names might have a Norwegian middle name. In addition to this, finding instances of
foreign names in a text will still help the disambiguation process, even though there does
not exist an overlap with Norwegian locations.

Some of the names with smaller syntactic differences actually have statistical represen-
tation, and is present in the collection: “Christer” and “Krister”; “Katrine”, “Kathrine”,
“Katherine” and “Cathrine”; “Mohammad” and “Mohammed”. An extended name recog-
nizer could implement some of these common patterns, in order to recognize names not
already in the list. In addition to this, there could be support for fuzzy name match-

15

ing. For example, typing “Alexander” one also want to match “Aleksander”. Working with
these problems in depth seem to be more related to building a name recognizer, rather
than a location recognizer. The focus in this project will be on getting good enough name
recognition for disambiguation use, and not work extensively on name recognition for its
own sake.

2.2.7 Programming Language

I will use the programming language Clojure4, which is a dynamic language that targets
the Java Virtual Machine (JVM). There is also support to target the CLR and JavaScript
platform. Clojure is a Lisp dialect, which enables interactive development and provides a
powerful macro system. It is mainly a functional language, with several immutable, per-
sistent data structures. Targeting the JVM provides excellent interoperability with Java.
Clojure compiles to JVM byte code to make Jar files. This enables me to use Java libraries
from Clojure, and in the opposite direction, providing Clojure projects as Java libraries.

The Clojure community have a central repository for open source libraries, akin to Maven
in the Java community. This is the Clojars5 repository, where nearly all Clojure libraries
are found. I choose to work in Clojure because of the great community, platform support
in the JVM, and because I like the flexibility of a Lisp language.

4http://clojure.org/
5https://clojars.org/

16

http://clojure.org/
https://clojars.org/

3 Method

For this implementation oriented project, using the research method of design research
is a suitable match. Design research is also referred to as design science in the literature.
The method contains several guidelines, which is discussed in relation to this project.
The evaluation will be performed using a descriptive method, as well as an analytical
one. After reviewing the research method, some limitations are discussed.

3.1 Design Research

The reason for design research being a natural choice for implementation oriented
projects, is because it allows us to build new systems in order to perform evaluations.
This is justified in the following quote:

“(. . .) without research efforts directed toward developing new solutions and
systems, there would be little opportunity for evaluative research.” (Nuna-
maker Jr and Chen, 1991)

Hevner et al. (2004) suggest seven guidelines for use in the design science research pro-
cess. They advice against mandatory use of the guidelines, and stress that it is the individ-
ual researcher that must determine when, where and how to apply each of the guidelines
in a specific research project. The guidelines are listed here, to discuss and determine
their relevance in the project:

1. Design as an artifact

2. Problem relevance

3. Design evaluation

4. Research contributions

5. Research rigor

17

6. Design as a search process

7. Communication of research

The first guideline—design as an artifact—will be at the core of the research project. I will
answer the research question by building a proof-of-concept system as an artifact result-
ing from the research process. The research process will—for the most part—in some
sense be concerned with or related to the development of this prototype system. Prepa-
rations with tools and data will be done in order to support the implementation, and the
evaluation will also be closely related to it.

The second guideline, considering problem relevance, is also relevant for the research ques-
tion. As discussed, uncovering semantics automatically is a problem, and it is hard to
perform without human intervention. This project tackles a specific case of the larger
issue of semantics, by focusing on geographical semantics. By focusing on this subset,
the scope of the project is limited to an appropriate unit of work within the time allotted.
There is a solid justification in this guideline, arguing for development of the prototype
system.

The third guideline considers the evaluation of the design. Various design evaluation meth-
ods are listed, which can be applied to software artifacts in the research process. The
methods suggested are observational, analytical, experimental, testing, and descriptive evalu-
ation. I will use a descriptive method, and construct detailed scenarios around the proto-
type system to demonstrate its utility. Hevner et al. (2004) write that “descriptive methods
of evaluation should only be used for especially innovative artifacts for which other forms
of evaluation may not be feasible”. By using descriptive evaluation, I am able to explore
the prototype’s utility for a number of different uses, outside the scope of other evaluation
methods. In addition to this, I will also be using an analytical evaluation method through-
out the development. This will be of the type dynamic analysis, and will determine the
prototype system’s performance. I will apply the dynamic analysis by using techniques
from the field of information retrieval, which is discussed in detail in section 3.2. Using
the metrics of precision, recall and f-measure, I can evaluate the prototype system based
on how it performs on a corpus of news articles.

18

My main research contribution is the prototype system I will develop, which will attempt to
provide a possible solution to an unsolved problem. As Hevner et al. (2004) state, the “cri-
teria for assessing contribution focus on representational fidelity and implementability”.
My aim is to provide an instantiation of an artifact, and document how it was developed.
The purpose of this is to enable other researchers and developers to implement a simi-
lar solution, using both the prototype system and the research process as a foundation.
The prototype system can by itself be a starting point for further development, or as a
guideline for a completely new system. The various problems to be faced throughout
the research process is documented and discussed, as these can be helpful in designing
similar solutions.

Research rigor is represented both in the methodology in which the prototype system is de-
veloped, as well as in how it is evaluated. The end result is a working piece of software,
which is evaluated quantitatively using the metrics from information retrieval. The re-
search process will be documented and discussed thoroughly. Using both analytical and
descriptive analysis, I will show that the prototype system is applicable to the problem,
and generalizable to the problem domain.

The sixth point is viewing the development process as a search process, in order to discover
an effective solution to a problem. This guideline can be related to the project since I
will be developing the prototype system iteratively, while using information retrieval
metrics to evaluate the performance to guide development. This can be related to the
generate-test cycle Hevner et al. (2004) describes, by implementing the artifact in order to
test it. However, I do not consider this guideline an integral part of the project. I accept
the relationship between iterative development and the generate-test cycle, but will not
apply the guideline to the project.

Regarding the final point, communication of research, I primarily want to reach the tech-
nically oriented research audience. The technology and techniques to be discovered, are
interesting mainly for other researchers or developers that can build upon what is found.
The resulting prototype, implemented as a proof-of-concept system throughout the re-
search process, will not be a fully mature software package. This means it will not be in a
state acceptable for use in real world applications. Considering this, my research will not
need to be communicated to a wide audience outside the intended one. When—rather
if—the software matures to a point it is ready for use in an applied setting, a wider au-

19

dience might find it interesting. Primarily, it is this thesis that will act as a medium for
communicating the findings to the proper audience. The prototype system will neverthe-
less be available as a starting point for further development.

3.2 Evaluating with Information Retrieval

Information retrieval (IR) is the field of study concerned with searching for documents,
and information within documents. The documents can be of an unstructured nature,
usually text, without a semantically apparent structure. IR can be used to filter document
collections or further processing of a set of retrieved documents (Manning et al., 2008).

IR has some important performance and correctness measures, which will be used in this
project. These are the metrics precision, recall, and f-measure. These numbers will provide
some level of accuracy, from the prototype system’s performance on a corpus of news
articles. Manning et al. (2008) define precision as “the fraction of retrieved documents
that are relevant”, which is expressed in equation 1.

Precision =
relevant items retrieved

retrieved items
= P(relevant|retrieved) (1)

Recall, defined as “the fraction of relevant documents that are retrieved”, is expressed in
equation 2. It is trivial to achieve a high recall, simply by returning all the documents in
a query. In my case, I could simply classify every word as a location, in order to score a
high recall. If I do this, the precision will suffer.

Recall =
relevant items retrieved

relevant items
= P(retrieved|relevant) (2)

Precision and recall are measures that trade off each other. It is necessary to perform
the search or classification in a way that eliminates the erroneous result, giving higher
precision while maintaining recall.

20

The combination of these metrics can be evaluated with the f-measure, expressed in equa-
tion 3, which is the weighted harmonic mean of precision and recall.

F =
1

α
1
p
+ (1− α)

1
R

=

(
β2 + 1

)
PR

β2P + R
where β2 =

1− α

α
(3)

In these formulae, P represents precision and R represents recall. Van Rijsbergen (1979)
explains that “this measures the effectiveness of retrieval with respect to a user who at-
taches β times as much importance to recall as precision.” The default balanced F-measure
weights precision and recall equally. This means either making α = ½ or β = 1. I will use
β = 1, which will simplify the formulae to what is expressed in equation 4.

Fβ=1 =
2PR

P + R
(4)

In order to evaluate the prototype with these formulae, a corpus of data is needed. The
corpus should be constructed to cover a wide range of different news articles, which
should include different problems and challenges. Implementation-wise, the prototype
system should not be directly dependent on the corpus. It should not be over-specialized
on a given corpus, as this defeats the purpose of finding general techniques and ideas.

Extra data should not be added to the data sets, if only to tweak and tune the software’s
performance on the given corpus. An example of this would be the use of lists containing
personal names. These lists should be acquired from a source, and treated as a black box.
In this example, I should not add new names to the lists when the prototype returns
false-positives when processing the corpus. There will likely be special cases when the
spelling differs that are not represented in the lists. Also, rare and new names might not
have been added yet. It might be tempting to do add such data, in order to improve the
rating of the prototype system. This should be avoided, as it will lead to over-specializing
the prototype to the corpus. Over-specialization to one particular data set will not add
any real value in the software, when it is performing on real world data. Adjusting the
data in this way is intellectual dishonesty, and is to be avoided.

21

3.3 Limitations

Before the development is started, much thought have gone into considering issues and
problems that can arise. These concern the relevance, applicability and utility of the
project. The limitations are discussed in the following sections.

3.3.1 Source Code and Licensing

Upon reading research articles, I noticed that source code is rarely provided. There ex-
ists justifications both for and against providing source code with research projects. If
proprietary data or systems are being used in projects, releasing the source code can be
problematic. In other cases, it can even be in the best scientific interest to not release the
source code. This is due to the fact that every software system has its bugs. By allowing
reuse of the code, there exists a greater chance for the bugs to live on, if the code is not
scrutinized by whomever uses it.

If the code is used without being reviewed, bugs are less likely to be found. In contrast,
by only describing the algorithms, you force others to reimplement the system. Previous
bugs will not automatically be carried on, but new bugs can (and will) be introduced.
In certain cases, this aspect may be very important in order to achieve a high degree of
academic rigor. In this implementation oriented project, I do not think keeping the source
code closed has any merit. My particular sentiment in this case, is that buggy software
is better than no software. Providing the source code may lead to the software being
utilized, as ideas and techniques can be fully understood from the code. The argument of
replicating bugs can be used in the opposite direction, claiming instead that by making
the source code available, other people can help finding and fixing bugs instead of starting
from scratch.

In order to encourage reuse and further development of the prototype system, an open
source license will be applied to it. The software should be usable in other projects, so
the license should not be too restrictive. To allow reuse in a wide variety of settings, in
addition to protecting further development, I will apply a weak copyleft license to the
prototype system. This license class is commonly used for software libraries, as it allows

22

linking and redistribution without requiring the new software to be distributed under the
same license. Only direct changes to the library itself is required to be distributed with
the same weak copyleft license. I will use the Eclipse Public License (Eclipse Foundation,
2011), which is a weak-copyleft license. This enables others to use the software as they see
fit, even in proprietary settings. The code will be hosted on GitHub1, which kindly have
provided a free educational account for this project. GitHub provides web-based hosting
for software development projects that use the Git revision control system.

3.3.2 Social Aspects

There is a possibility the performance of the prototype system will depend on what data
sources are available at the time of implementation. Some data sources are freely avail-
able and open for public use, others require compensation or have restrictions on usage.
Because of this, it is not possible for everyone to use commercial data sources. It will also
be problematic to release the prototype system as an open source project if it is coupled
with a proprietary data set. This may carry social implications for the prototype system,
if it only operates on such data sources.

Hopefully everyone will be able to benefit from the findings that will be made, regardless
of social aspects and access to commercial data sources. I hope to discover techniques
that do not depend on a specific data source, but generally applies to those available.

3.3.3 Data Sources and Copyright

One issue to consider is the activity of crawling and storing data from the web. Con-
tent providers online usually have restrictions on usage of their material, and the content
is protected under copyright law. Some providers may provide free data as a service,
through an API, e.g. Yr.no.

In order to download the weather data as an XML feed, there are some guidelines and
restrictions one will have to comply with. These specify how often one can fetch data,
and how one may store and use it. The reasons for such limitations are both technical

1http://github.com/

23

http://github.com/

and commercial. Fetching data very frequently is not allowed, as this puts too much load
on the provider’s servers. Usage is often restricted to non-commercial applications, as the
providers have their own commercial interests in the data they serve. Such regulations are
something everyone using data sources on the web will have to consider, as conventions
and law might differ among providers and countries. If the web site does not offer the
data as a service, there are often restrictions as to how much data that can be stored.

Considering a search engine, the entire content of a web page have to be downloaded and
analyzed in order for the search engine to perform the indexing. Some search engines
even offer cached versions of the site, meaning that the entire page is stored in the search
engine’s database. This might be in direct violation of copyright law and usage terms, but
still happens. This legal gray area will have to be explored where such a project is to be
undertaken, if one wishes to stay completely within the boundaries of law. The software
developed in this project will at some point have to download entire web pages in order
to perform the analysis. However, the content should not be offered directly to the user.

3.3.4 Language Barrier

As the prototype system may rely heavily on specialized parsing for Norwegian texts,
there might arise a language barrier inherent in the software. Because of this, the overall
utility of the software can be reduced. A consequence can be that international users will
not find it useful as a library, since they probably do not need to analyze Norwegian texts.
The software can perhaps prove useful only as a guideline or inspiration in implementing
something similar. Taking these aspects into account, I want to minimize the effect of a
language barrier as much as possible. My interest is in finding general techniques and
ideas that can be implemented in multiple languages. The corpus used in this project will
be a set of Norwegian articles from online news sites. I limit the scope of this project to
analysis of Norwegian articles, as it is my first language. I certainly have more insight into
naming conventions in Norwegian than I would in any other language, without being a
domain expert by any measure.

24

3.3.5 Working Conditions of the Prototype

As the main focus is to find techniques and explore ideas, I must take care to focus on the
research aspect of the project rather than a large code base. The resulting artifact from the
research process will be a prototype, not a production ready system. As this is a Master’s
project, the focus will also be on the scientific contribution by developing and evaluating
the prototype system within the scope of design research methodology. To demonstrate
the prototype’s utility, I will make one or two demonstration applications to show some
potential uses. Ideally, the software will mature to a degree where it is possible to provide
it as a library, so it may be used in other projects.

25

4 Development

The main body of development work was done in three iterations. The early parts of the
development phase consists mostly of exploratory programming and work done in data
processing and conversion. Throughout the iterations, the main parts of the project was
separated out as separate libraries—with most of this exploratory, data processing and
transformation code omitted.

This means that the final version of the prototype system, which have been released as
a library, does not contain all the code that is discussed in the iterations. An example of
this is the SOSI parser (described in section 4.1.2), which is not used in the final library.
In order to give access to the omitted code, a separate branch have been introduced to
the git repository. It is available with the main extraction software from Github1. Use
the git checkout command on the branch thesis-dev. This will give an unpolished, but
complete access to all the code that is referenced in the discussions.

When a part of the prototype system is being discussed, the relevant location in the
thesis-dev repository will be referenced with namespace listings. A namespace repre-
sents the location of a file, in the Clojure project. Consider the following namespace:

Namespace: ogrim.parsers.sosi

This points to the file sosi.clj located in the folder src/ogrim/parsers/. Where rele-
vant, this will be listed at the start of the development sections. A table is provided at
the start of each iteration, which gives an overview of the different programs, libraries
and namespaces used and discussed in the current iteration. These different parts are ex-
plained when they are introduced in the text, so the tables are not used as a replacement
for a proper explanation and discussion. However, if it should be desirable to look up a
definition after it has been introduced, it might be faster to consult the table instead of
scanning through several paragraphs of text.

1https://github.com/ogrim/clj-egsiona

27

https://github.com/ogrim/clj-egsiona

4.1 First Iteration

The first tasks worked on was the installation of tools, getting familiar with technology
and data acquisition. Focusing on getting PostGIS up and running and learning about
geospatial data took a large portion of my time, in addition to working with the data
from Norge Digitalt. A major challenge was understanding the data and find ways to
apply it in the prototype system. The details of the implementation performed in this
iteration is discussed in the following sections.

Name Type Description

ogrim.parsers.shape2postgis Namespace Norge Digitalt extraction tool

ogrim.parsers.sosi Namespace SOSI parser

news-crawler Program Article collector for corpus construction

Enlive Library A selector-based (à la CSS) templating
and transformation system

clj-egsiona.corpus Namespace Corpus construction tools

clj-obt Library Interface to the Oslo-Bergen-Tagger

Table 2: Programs, libraries and namespaces used in first iteration

4.1.1 Data Processing

Namespace: ogrim.parsers.shape2postgis

This tool is concerned with importing the geographical data into a system that can be
used from the prototype. For this purpose I have used the PostGIS spatial database. Due
to the nested nature of the data from Norge Digitalt, I wrote code to automatically extract,
convert and insert all the data into PostGIS. This code can be useful for anyone that needs
to process similar map data.

Recursive extracting of archives containing the map data was performed with a custom
bash (a Unix shell) script. It traverses directories recursively, extracts and then deletes the
archive files. When the raw data had been extracted, the directories were traversed to find

28

all the relevant shapefiles to be inserted into the database. Only the .shp file, described in
table 1, needs to be specified in the command for the PostGIS insertion.

A function takes each of these files and generates database statements, one set for prepa-
ration2 and another for insertion. These statements are very similar, the only difference
being a parameter denoting the preparation-only with no insertion. This was done be-
cause the database had to be prepared first, in order to avoid any errors upon insertion.
An example of a generated preparation statement can be seen in listing 1.

shp2pgsql -p -s 32632 -W LATIN1
/home/ogrim/data/N50 -N5000_Kartdata/N50_Kartdata
/fylke_kommune /12 _Hordaland /1228 _Odda/UTM32_Euref89
/Shape /1228 _Arealdekke_lin.shp N50_Kartdata.arealdekke_lin |
psql -h localhost -p 5432 -d norge -digitalt -U postgres

Listing 1: Example of PostGIS preparation statement

There was generated one set of statements for each shapefile, in this case totaled 458 for
the N50 resolution, 374 for N250 and 360 for N500. By storing the statements in a single
file, they were executed one at a time with a bash command. The end result is a database
successfully populated with the geographical vector data available.

4.1.2 Central Place Name Registry

Namespace: ogrim.parsers.sosi

After working with the vector data imported in the previous section, some observations
regarding its applicability was made. Although geographical vector data can help in re-
trieval and geospatial processing, it did not offer data like location names—data needed
for this project. There was very little meta data included in the first batch of geographical
data from Norge Digitalt, so I inquired further and gained access to the Sentralt Sted-
snavnregister (central place name registry).

2creating tables and schemas

29

The Sentralt Stedsnavnregister (SSR) is the official registry of location names. It is admin-
istrated and distributed by the Norwegian Mapping Authority, but is proprietary data.
The SSR data set was also received from the Norge Digitalt project. The data set was de-
livered with the same folder structure described in section 2.2.5. In addition to this, there
was a single file containing all the location names from every municipality. The data
format was not shapefiles, but a distinctively Norwegian format named SOSI. This is an
acronym for “Samordnet Opplegg for Stedfestet Informasjon” (Coordinated Approach
for Spatial Information). Since 1987, SOSI have been developed and used by the Norwe-
gian Mapping Authority. Being a distinctively Norwegian data format entails little, or no
free tools to handle conversion of the data.

Due to the obscurity of the SOSI data format, custom tools had to be constructed to extract
the relevant data. Fortunately, the format is simple to parse because it is represented by
plain text. The SOSI format consists of nodes, an example of this can be found in listing
2. The number of full stops in the front of the words denotes hierarchy, followed by node
name and some optional data.

.TEKST 260999:

.. OBJTYPE SSRForekomst

.. NAVNTYPE 146

..KOMM 1259

.. DATAFANGSTDATO 20110919

.. OPPDATERINGSDATO 20051228

..SSR

...SSR -ID 1052969

... SNAVN "Dale"

... SNREGDATO 20051228

... SNFOREK VVEKA

..NØ
6753968 -54058

Listing 2: Example of SOSI node

A SOSI file is parsed by reading through it line by line, taking care to be efficient and
avoid holding on to lines unnecessarily in memory, because there are 3.7 million lines in
the largest SOSI file. For each TEKST node that is found, it is parsed by a function that
extracts the data and emits a Clojure data structure. The nodes that contain the relevant
data is KOMM, SNAVN and NØ. The SOSI node in listing 2 is parsed to the data in listing 3.

30

["Dale" 6753968 -54058]

Listing 3: Parsed SOSI node

Parsing the SSR data for Hordaland resulted in 265,029 locations. Several of these are
duplicates, where all the fields are identical. These were easily filtered down to 94,700
distinct locations. The data set still contained a lot of duplicate instances, of which none
were completely identical. The problematic locations had mostly identical fields, with
only the coordinate points being different. Upon examining some of these locations, it
became clear the coordinate points varied between 50 and 1000 meters. It is possible to
filter duplicate locations based on distance, but I wanted to avoid setting an arbitrary limit
on the minimum distance allowed between locations. Instead, the notion of one location
name per municipality was applied. This filtered down the remaining locations to 73,671
unique instances. Compared to the approximately 55,000 locations in the GeoNames data
set, which includes all of Norway, 73,671 is a very large number for a single county.

My interest having been sparked by writing this tool, I looked into more formalized
techniques of parser construction, where I found alternative approaches. In retrospect
it seems to have been more efficient to use parser generator tools, instead of writing the
parser from scratch. A formal way to do this is writing a BNF grammar, which the parser
generator uses to automatically construct the required parser. BNF stands for Backus
Naur Form, and is a notation technique for describing context-free grammars (Wirth,
1976, Chapter 5). There exists modern variants to parser generating, like ANTLR (AN-
other Tool for Language Recognition) by Parr (2007).

4.1.3 Article Collector

To facilitate corpus construction, I needed a tool to scrape articles off relevant news sites.
This was implemented very early in the iteration, and is available as a standalone project
at github3. The name is news-crawler, even though it is in fact a scraper. At first, it was
supposed to enter online news-sites and automatically find and extract the articles. How-
ever, I only needed it to construct the corpus, so it became mainly a scraper. There were

3https://github.com/ogrim/news-crawler

31

https://github.com/ogrim/news-crawler

several concerns in my mind while building it. For one, I wanted to avoid hammering
or flooding the sites being scraped. This was achieved by using random pause intervals
between each page download. Another Master’s student got his IP address banned when
scraping data for his project, thus my concern with this (Ruben E. Oen, pers. comm.).

In order to extract the article content, a system of matching HTML nodes was required.
One should never parse HTML with regular expressions alone, as this is a surprisingly
irregular format in practice (or in the wild). This is to say: web browsers are very forgiving
when it comes to correctness of the HTML. This makes it hard to parse regularly, so a
more generalized system is useful. For this I used Enlive, a selector-based templating
and transformation library for Clojure. In addition to regular expressions, Enlive gives
great flexibility to declare filters with ease and little code. This was done so the tool could
be directed at different online news sites without the need for large changes. The news-
crawler tool was used to collect articles for the corpus, which have been tagged manually
with the corresponding locations.

4.1.4 Corpus Construction

Namespace: clj-egsiona.corpus

Using the article collector over a period of time, 250 articles were collected from the 4th to
the 11th of November, 2011. The online news sites used was Bergens Tidene4 and Bergen-
savisen5.

An estimated 100 articles should be in the final corpus, with some overhead for reduction
and selection. The newspapers used are quite similar in content because of their overlap
in geographical focus. Furthermore, I also anticipated a large number of the articles to be
more or less duplicates; articles based on press statements and police reports.

Some custom helper functions were written to support the manual tagging of the arti-
cles, for example next-article and insert [tag]. When calling next-article, the article
is printed to console and an id counter is incremented. This ensures the tags inserted

4http://www.bt.no/
5http://www.ba.no/

32

http://www.bt.no/
http://www.ba.no/

with insert [tag] refers to the relevant article. These helper functions enabled me to
work quickly and with ease, directly in the console, without moving my hands off the
keyboard. This helped me complete the tagging within one working day. When perform-
ing the tagging, if the article was a near duplicate of a previous one, I would simply call
next-article which skipped the current article and dropped it from the corpus. Some
articles were also dropped on the basis that they had the wrong geographical focus, for
example articles regarding the economic situation in the EU region. Very few articles had
no geographical focus, but these were consequently dropped.

In the end, the 250 articles had been reduced to 113, with a total number of 593 tags. The
metrics—precision, recall and f-measure—was implemented in code, ready to be run by a
single command. This made it possible to continuously run the evaluation throughout the
development phase, to get instantaneous feedback on the effect of both smaller changes
and entirely new functions.

4.1.5 Oslo-Bergen-Tagger

The library developed for interacting with the Oslo-Bergen-Tagger was named clj-obt,
and have been made available as a standalone project at Github6 and from Clojars.org7.

Due to restrictions imposed by the JVM, it is not possible to change the working directory
after the JVM is started. Hence, I needed a method of calling the tagger independent of
the location where the prototype system is run from. Unfortunately, the launch script that
came with the tagger only works when calling it from the tagger program directory. This
makes it impossible to call the tagger from the working directory of the prototype system,
which is fixed at runtime. A workaround would be installing the tagger directly in the
project directory, but this is a hack to be avoided.

Upon inspecting the tagger’s launch script, I found that it is basically one rather com-
plicated bash command—and not a proper script. A representation of how it works can
be found in figure 1, with the different program names in the main boxes. The script
pipes together four commands, calling different programs in sequence and passing the

6https://github.com/ogrim/clj-obt
7http://clojars.org/clj-obt

33

https://github.com/ogrim/clj-obt
http://clojars.org/clj-obt

resulting output forward. It takes an input file and pass it to the mtag multitagger pro-
gram, which is a tokenizer, morphological analyzer, and compound analyzer. Then it uses
vislcg3 to perform constraint grammar tagging. If statistical disambiguation is selected,
it will use OBT-Stat8 to perform the disambiguation. Finally, a small perl script controls
printing of the results, but this is not an integral part of the tagger. This script contains
relative paths to most of these programs, which is a problem since the working directory
cannot be changed in the JVM.

mtag
Multitagger performing
tokenizing, morphological
and compound analysis

vislcg3 Constraint grammar
tagger

OBT-Stat Statistical disambiguation

perl

Output

Small perl script for
printing result

Input

Figure 1: The Oslo-Bergen-Tagger Model

The solution arrived at, was to create a function that emits the required script in a gener-
alized manner. This is possible by inserting fully qualified paths to the tagger program
into the script. As the script will need to be called from the command line, it is outputted
from the function to a temporary file. The Clojure function that generates this script, can
be seen in listing 4. There are three instances of obt-path, which are replaced with the full

8https://github.com/andrely/OBT-Stat

34

https://github.com/andrely/OBT-Stat

path to the tagger program directory. The temporary file is then made executable when
the clj-obt library is initialized, as you would with any other executable file on Linux.

(defn - script -content [obt -path]
(str "#!/ bin/sh\n"

obt -path "/bin/mtag -wxml < $1 | vislcg3 -C latin1 --codepage -input utf
-8 -g "

obt -path "/cg/bm_morf -prestat.cg --codepage -output utf -8 --no -pass -
origin -e | "

obt -path "/OBT -Stat/bin/run_obt_stat.rb | perl -ne ’print if /\\S/’"))

Listing 4: Function wrapping the original OBT-script with full path

When the tagger could be called programmatically, focus shifted to processing of the
output. The format the tagger emits, seen in listing 5, seems somewhat akin to XML.

<word>For</word>
"<for >"

"for" prep
<word>14</word>
" <14>"

"14" det fl kvant
<word>dager</word>
"<dager >"

"dag" subst appell mask ub fl
<word>siden</word>
"<siden >"

"siden" adv

Listing 5: Output from the Oslo-Bergen-Tagger

The original tagged word is enclosed in <word>-tags. In the next line the lowercase version
of the word is its own tag, the only problem being it is not a proper tag; it never closes—
and it is enclosed by quotation marks. What follow appears to make more sense: lemmas
and grammatical tags. In this example the lemma is identical to the original word, which
at first glance might seem like unnecessary duplication. This does however have its rea-
sons, as the lemma of a word can differ from the original form. In addition to this, if you
skip the disambiguator, there might be several lemmas with different meaning, as seen in
listing 6.

35

<word >vold </word >
"<vold >"

"vold" subst appell mask ub ent <<<
"volde" verb imp tr1 <<<

Listing 6: Example of tags with different lemmas

The parser reads the tagged output from OBT, and constructs a data format more usable
for Clojure—using native data structures. Each word gets its own map, with keys that
maps to the data values. A vector holds the tags. The data in listing 5 is thus parsed into
the data format seen in listing 7.

[{: tags ["prep"], :lemma "for", :word "For", :i 1}
{:tags ["det" "fl" "kvant"], :lemma "14", :word "14", :i 2}
{:tags ["subst" "appell" "mask" "ub" "fl"], :lemma "dag",
:word "dager", :i 3}

{:tags ["adv" "<<<"], :lemma "siden", :word "siden", :i 4}]

Listing 7: Data from the Oslo-Bergen-Tagger parsed to Clojure data structure

A bottleneck in tagging performance seems to be related to calling the OBT program. In
my experiments, I found that tagging an article of 1100 words took 1.5 seconds, while
tagging the four words “For 14 dager siden” took almost 1 second. My computer specifi-
cations are not important, rather the time difference in the example—indicating startup
time as relatively slow. Some domains might require better performance from the tagger
than mine. A problematic domain would be processing of short texts in large volumes,
since this would require the tagger to restart very often. A possible improvement to the
tagger itself, could be to make it work in some sort of server or daemon mode. It would
then run non-stop and would not have to be restarted for each piece of text it tags. This
change would require access to the source code, and without the code I do not know if
this is a feasible solution.

Another approach to reduce the impact of the startup time would be to tag more text
each time OBT is called. In discussion with a Ph.D. student, who also is using the Oslo-
Bergen-Tagger, I learned he was tagging multiple texts at once to get better performance
(Eirik Stavelin, pers. comm.). This can be achieved by concatenating multiple pieces of
text, such that OBT tags everything in one single invocation. For each piece of text that is

36

concatenated, one can discount the startup time from the total processing time—adding
in the overhead of tagging a larger volume of text.

Taking the concatenation idea into account, this was implemented in the library. The final
implementation of the clj-obt library is described by the system model in figure 2. This
diagram describes the data flow in the library, and shows the difference when using the
concatenation feature.

Setup Set path to tagger

Input String or collection of strings

Preprocessing Concatenate strings with
interleaved ID for separation

Collection of strings

Tagging

Postprocessing Resolve IDs and separate into
original collection

Tagging

String

Parsing
Apply parse function to single
string output, or map parse
function over collection output

Parsing

Output

Call the Oslo-Bergen-Tagger

Figure 2: Tagger Library (clj-obt) System Model

37

After some email exchange with the original authors of the Oslo-Bergen-Tagger, my library
was added to their website9 and Github10 page. Hopefully, this library will be of use to
others—not only within this project.

4.1.6 Changing Premises

Throughout this first iteration, the premises of the project shifted as I failed to utilize
the geospatial data to a meaningful degree. After working with the spatial data and
technologies, it seems I made little progress on solving the core problem of this project.
The work done to this point led me far in understanding spatial data, but my knowledge
is still too basal to be utilized to a satisfactory degree. Although I understood much of
the theory around map data—like coordinates, datums and the technology involved—I
faced problems putting this knowledge into practice. At the current level of experience, I
found it hard to solve many of these problems, some of which had no apparent solution.
Clean textbook examples are usually simple to understand, but real life problems tend to
be a little more confusing and less neatly defined. The amount of time spent to get to my
current level of knowledge seem to be too high, considering the problems still remaining.
It became clear to me I had to reprioritize and use my time more effectively.

I made a list of functionalities needed in the prototype and remaining work, as seen in
listing 8. This was then prioritized based on what would deliver the most value for the
software’s utility. Notice the [A],[B] and [C] markings, which indicates priority. The
items are marked with DONE as they are completed. After it became clear an item would
not be completed and should be dropped, I marked this with CANCELED.

9http://tekstlab.uio.no/obt-ny/lastned.html
10https://github.com/noklesta/The-Oslo-Bergen-Tagger

38

http://tekstlab.uio.no/obt-ny/lastned.html
https://github.com/noklesta/The-Oslo-Bergen-Tagger

* [A] fikse navnehåndtering
* [A] bruk navn i disambiguering
* [A] sjekk om lokasjoner er duplikater med genitiv s
* [A] forbedre navnesjekk ved å bruke addresse -gjenkjenning
* CANCELED bruker geocoder og fylker
* DONE [A] jobbe med gramatik
* DONE [A] skrive utfyllende om artikler
* DONE [A] skrive om kart
* [B] Lage demoapp til presentasjon
* DONE [B] skrive om datakilder
* DONE [C] fiks forsiden
* DONE lage tabell med data til evaluering
* CANCELED skriv spørring for intersecte geonames og ND
* CANCELED intersecte SSR og ND
* CANCELED regne ut TD-IDF

Listing 8: Excerpt of todo items from my planner, an overview of priorities

This list helped in figuring out that I was spending too much time on secondary function-
ality, and helped me identify my most important priorities. Some of the lower priority
features had been worked on for a long time without providing utility in the prototype
system. These features would not be properly utilized unless the basic functionality of
the prototype system were in place, primarily the location detection. I consider location
detection, even without geospatial processing, to be more important than other features.
To match this importance, I had to focus my efforts here instead. The prototype system
must first be able to perform text processing before applying the additional techniques
and data sets. I consider the use of spatial data to be secondary, mainly to be used for
improvement of the disambiguation process.

4.1.7 Evaluation

This iteration have been hectic, informative and educational. It has also helped me steer
the progress of the project and focused my efforts. Much time went into obtaining the
data sets required, working with tools and building knowledge. There were some faulty
assumptions, which impeded my progress. These were related to the applicability of the
geospatial data obtained. A considerable amount of work went into processing this map
data, before determining that I needed additional data—preferably with location names.
These were acquired fairly quickly, as I now had a contact within the correct department

39

at the university. It was problematic that this data was in the SOSI format, with little tool
support to be found online, but a parser was constructed.

From the literature review, I learned that a POS tagger was desirable for use by the pro-
totype system in processing news articles. When I obtained a proper Norwegian tagger,
a solid foundation for use within the development environment was built—in form of
a library. This library—clj-obt—is continuously being improved as new requirements,
bugs or quirks are discovered. The construction of the corpus was performed satisfactory
with ease and speed, much thanks to the tooling support constructed early on.

In retrospect, I have identified some areas where use of existing libraries and tools would
have saved me some time. In the article collector, time could have been saved by using a
HTML scraping library instead of processing the content on my own. Some time after the
news-crawler tool was constructed, I found the Java library boilerpipe11 which “provides
algorithms to detect and remove the surplus ‘clutter’ (boilerplate, templates) around the
main textual content of a web page”. The approach I would prefer now, would be to
construct my own software to find article nodes on the main page, while depending on
boilerpipe to extract the content. I also discussed an alternate approach for the SOSI
parser, by writing a BNF grammar to use with a parser generator. These were not the
largest impediments, which turned out to be problems regarding geospatial data and
technologies. This in turn forced me to revise my approach to the problem.

In summary, this iteration was not executed according to my initial expectations. I had
some problems and challenges, but I also succeeded and made progress. Too much time
was spent on simply acquiring the data, which took quite some time in the larger orga-
nization the University of Bergen constitutes. Time went into email correspondence—or
attempts thereof—finding the correct people and establish contact. When I at last found
the right—and very helpful—people, everything went smoothly as far as data acquisi-
tion was concerned. This effort was helped greatly by my advisor, Bjørnar Tessem, who
made some phone calls. When I finally had obtained the data, a large amount of work
went into determining the applicability to the project, which was hard to determine in ad-
vance due to my lacking experience. This could perhaps been avoided by better planning
and research into the spatial data formats ahead of time, or by cooperating with domain
specialists.

11http://code.google.com/p/boilerpipe/

40

http://code.google.com/p/boilerpipe/

There were also parts of the iteration that went smoothly, or at least with less problems.
The foundation built for using the Oslo-Bergen-Tagger in my programming environment
have been a great asset. This was implemented as a library, usable for others outside
the scope of this project. Corpus construction was also completed in a timely fashion.
Perhaps the most important lesson from this iteration is the adjusted expectations regard-
ing use of high-grade map data, as this proved more challenging than first anticipated.
I have discussed the problem faced, and how they were handled; changing focus away
from geospatial data—and to functionality that more quickly provides value and utility
in the prototype, which will be the focus of the next iteration.

4.2 Second Iteration

The transition to the second iteration was not as clearly defined as it may appear in writ-
ing. The largest problem from the first iteration was the challenges regarding geospatial
data. This is discussed extensively in sections 4.1.1 and 4.1.6. The problem existed in
parallel for some time throughout parts of the second iteration as well. Keep in mind
that I at first had given the geospatial data use a lower priority, rather than dropping it
completely. Throughout the iteration, it got more and more postponed as I focused on
more important functionality. This resulted in the geospatial features being put on hold
indefinitely, as I saw there would not be enough development time available.

In practice, I transitioned into the second iteration naturally as I gained ground on my
initial impediments. When my domain knowledge and the libraries matured, develop-
ment focus shifted from tooling to the actual problem at hand: location detection. Most
of the development work in this iteration is done to support the disambiguation process,
in order to improve the precision rate. This have been a very important aspect of the pro-
totype, since it is trivial to score a high recall rate. An overview of the programs, libraries
and namespaces used and discussed in this section is available in table 3.

41

Name Type Description

clj-egsiona.country Namespace Detecting geographical entities from lookup
lists, like counties, regions, municipalities, etc.

clj-egsiona.geocode Namespace Client to geocoding library

geocoder-clj Library Interface to geocoder service

clj-egsiona.profession Namespace Recognition of professions

clj-egsiona.address Namespace Detecting addresses

clj-obt Library Interface to the Oslo-Bergen-Tagger

clj-egsiona.name Namespace Detecting names

Table 3: Programs, libraries and namespaces used in second iteration

4.2.1 Finding Locations

In order to find words that are locations, a method of selecting candidate words was
needed. The candidate words are in turn filtered and disambiguated further, with the
goal to achieve the best possible results, i.e. a high precision and recall rate. A simplistic
method of selecting candidate words is by capitalization alone. Capitalized words may
denote a name of some kind—person, location or business—or it might just be the first
word in a sentence. However, relying on capitalization alone can be the source of several
problems.

There are many instances where the capitalization will be used incorrectly, not counting
typographical errors. One example of this is some online news articles that have subhead-
ings throughout the text. In some articles, I have observed subheadings written out in all
capital letters. It is of course simple to detect capitalization, but it is more challenging to
determine the semantics; is an all caps sentence really a subheading? The proper way to
mark up a subheading in the source HTML, is to assign the appropriate level of the H-tag,
e.g. <h3>, and use CSS to achieve the desired styling of the text. This leads to separation
of the content data and presentation, which is good practice. If done properly, it is very
simple to filter out any text contained in H-tags. It is therefore more problematic when
the markup is used in a convoluted manner, by mixing the presentation and content to
achieve stylistic effects.

42

In addition to high coupling between data and presentation, irregular use of markup is
a problem semantically. By not using the proper H-tags, the authors are not conveying
the actual meaning of the particular piece of HTML. It is for instance not helpful to blind
users that rely on screen reading software. The software reading the source HTML might
interpret and read the content wrongly, if the source code is not correct. Deeper discussion
of these issues belong in a project on interaction design or an accessibility study, so the
extent of my interest in these problems are limited to the processing of such texts.

To find possible locations, it is possible to rely on capitalization alone if no other means
of processing the text are available. Having access to a POS tagger, it is only natural to
use the output from this. The tagged text from the POS tagger is split into words, with
sentence separators.

In the prototype system, some functions are able to process the article without using a
selection of candidate words. This include functions that rely on lookup lists, like address
detection (discussed in section 4.2.7) and personal names detection (discussed in section
4.2.5. Other functionality which does requires a selection of candidate words, will find
the locations by disambiguation. One particular way selection of candidate words was
done, have been by simplistic use of grammatical processing, discussed in the following
section.

4.2.2 Candidate Words with Simplistic Grammatical Processing

To find possible locations, a method of selecting candidate words was needed. This was
achieved with some simplistic grammatical processing, which is described in this section.
At first, a coarse selection of candidate words was attained by capitalization alone. This
had some problems, and a better method of selection was required. By examining the
output from the prototype system, false-positives could be identified. It became clear
some features never could be locations, like typographical markings and symbols.

The problematic tags were put in a list, and filtered away in the selection process. This
removed all instances of commas, parenthesis, dashes, etc. Still having a number of er-
roneous words left, this list was expanded with additional tags that never seemed to
represent locations. Examples of these are verbs, prepositions, pronouns and conjectures.

43

It is true the typographical markings could be removed without the help from a POS
tagger, but the same is not true for the other word categories. Without the POS tagger,
this would be problematic to achieve in a generalized manner. The prototype system does
not need to encode the meaning of words, as the words are grammatically classified by
the POS tagger. Filtering away unwanted tags is a simple, but valid way to use the POS
tagger output.

Processing based on simple filtering only gives a precision of 24.1%, recall of 95.2% and
a f-measure of 36.9%. The recall is good, but this is trivial as returning all words would
give 100%. The f-measure is important here to give a balanced view between precision
and recall. It is weak, due to the poor precision. Precision currently seems to be the
challenge, so the focus should be on improving it.

4.2.3 Geographical Entities from Lookup Lists

Namespace: clj-egsiona.country

The use of lookup lists of names was discussed in section 2.2.6. In this section the focus is
on lists of various location names. Examples of the data in these lists are countries, coun-
ties, municipalities, and more. Following the list construction, functionality for querying
the lists was implemented. It is possible to find all mentions of locations in a given text,
where all matches are returned. Alternatively, it is possible to perform a boolean query,
to find whether a string is a location, i.e. exist in the lists.

Consider querying for countries. To find all mentions of countries, the find-countries

functions takes in a string, and returns a list of all the matches. The predicate operates
similarly, and gives a boolean answer to whether a string matches an instance in the
country list. The country? function takes a string and returns true or false. In total, this
namespace has data on, and is checking for, instances of countries, continents, regions,
counties and municipalities.

Not present in the clj-egsiona.country namespace, is the SSR data set which also can be
thought of as a lookup list. Since SSR contains all location names in Hordaland, it should
be able to be used in disambiguation. This would probably help the precision rating

44

substantially. Support for this was implemented in the clj-egsiona.core namespace,
and is being used to filter out possible locations not found in the data set. This improved
the precision, but the downside is tying the prototype to the proprietary SSR data set.

Upon performing the evaluation, the prototype scored 55% precision, 77.6% recall and
62% f-measure. This is better than the last f-measure of 36.9%, at the cost of worse recall.

4.2.4 Geocoder

Namespace: clj-egsiona.geocode

In the prototype system, there are mainly two important uses for a geocoder. One is as a
part of the disambiguation process, where the geocoder can be queried to find whether
a possible location actually exists, while the other is to get geographical data on location
names. In order to access a geocoder service, I used a library developed for this purpose:
geocoder-clj, available at Github12 and from the Clojars13 repository. This library is an
interface to several service providers, such as Google, Bing and Yahoo.

The default geocoder provider in the library is Google, so this was used without change.
Some terms of usage are present in the Google Geocoding API, which was desirable to
comply with. Among others, they restrict usage of the service to 2500 API calls per 24-
hour period. Misuse of this service will result in temporary or permanent banning, which
I of course wanted to avoid (Google, 2011). An interface layer was implemented between
the geocoder-clj library and the consuming code in the prototype system. This interface
layer restricts the usage by the limits Google have set. It does this by keeping track of
requests per 24-hour period, and limit the available API calls accordingly.

In section 4.2.3, the SSR data set was used as a filtering device in disambiguation. When
doing this, it simultaneously confirms the existence of a location and pairs the possible
location with a coordinate point. This coordinate can then be used for retrieval purposes.
Because the SSR data set is restricted and proprietary, an alternate method of pairing
locations to coordinates should be found.

12https://github.com/r0man/geocoder-clj
13http://clojars.org/geocoder-clj

45

https://github.com/r0man/geocoder-clj
http://clojars.org/geocoder-clj

After the geocoder support was implemented in the prototype system, I worked with
various techniques to use the result from querying the geocoder service. Unfortunately,
this proved to be problematic. Because of similar location names all over the world, the
scope of the lookup needs to be limited to a certain geographical region. This would be a
feature that is dependent on what functionality the service provider offers in the geocoder.
If not an explicit feature, the limitation can be worked around by concatenating the search
string with a restricting country or region clause. The geocoder is then limited to looking
up locations within the restricting region, reducing the scope of the search. In turn, this
lead to another issue, because the geocoder seem reluctant to return empty result sets. If
a location does not exist, the geocoder will return data on the restricting location instead.
Considering the geocoder call in listing 9.

(geo/geocode "festplassen ")

=>

({: city "Havndal",
:country {:name "Denmark", :iso -3166-1-alpha -2 "dk"},
:location #geocoder.location.Location{

:latitude 56.6538525 ,
:longitude 10.1971161} ,

:street -name "Festpladsen",
:street -number nil ,
:postal -code "8970" ,
:region "Central Denmark Region",
:provider "Google "})

Listing 9: Call to geocoder and response

The geocoder is queried for “festplassen”, a location in the city of Bergen, in Hordaland.
The geocoder returns a response with data on a location in Denmark, which have been
matched in the street name field. However, consider the geocoder call in listing 10, where
a restrictive clause is concatenated with the original query: “festplassen, hordaland”.

46

(geo/geocode "festplassen , hordaland ")

=>

({: city nil ,
:country {:name "Norway", :iso -3166-1-alpha -2 "no"},
:location #geocoder.location.Location{

:latitude 60.2733674 ,
:longitude 5.7220194} ,

:street -name nil ,
:street -number nil ,
:postal -code nil ,
:region "Hordaland",
:provider "Google "})

Listing 10: Call to geocoder with restricting phrase, and response

The geocoder apparently returned a positive match as a result from the query. Notice the
general lack of data in the fields like city, street name and postal code. This seem to
indicate it has matched “hordaland”, instead of “festplassen”. When checking the coordi-
nates in an actual map, the point is placed directly in the center of Hordaland county. This
property make the geocoder unsuitable as a simple filtering device in itself.

In order to use the geocoder for matching possible locations to proper locations, the query
result can be compared to any data already in possession. Alternatively, the lack of data
can also be informative, as in listing 10 where several of the fields are empty. Different ap-
proaches to use the geocoder data in disambiguation was explored, for example dropping
instances where the city field was empty. Some attempts were made to use a restricting
clause, like a region. In all instances, the use of the geocoder for disambiguation gave
worse results. It was therefore taken out, and is currently not in use by the prototype
system.

47

4.2.5 Personal Names

Namespace: clj-egsiona.name

Another useful feature in disambiguation is to identify personal names. It is discussed in
section 2.2.6 that surnames often overlap with geographical locations, so this functionality
is to be expected.

The proposed solution for this problem requires access to lists of names, preferably both
given names and surnames. When such data is available, identification is quick and
easy. While processing the possible locations, one simply queries the name database in a
boolean manner, determining whether a word is a name. In my solution, I have lists of
names stored in hash sets, allowing for quick lookup. There are 1089 given names and
3317 surnames available.

Identification of middle names have proved a little more ambiguous, as middle names
tend to overlap with both given names and surnames. A person might have a proper
given name as middle name, others have proper surnames. The total number of names
are may also vary, with some people seemingly having two middle names. In the writing,
middle names are sometimes abbreviated to a single capital letter. In order to properly
identify a middle name, I first check if a word is a given name or a surname. If neither
are true, I fall back to check the capitalization, which will allow for abbreviations, e.g.
“Aleksander S. Larsen”.

The algorithm that combines all these functions, starts by detecting the surnames. Next
step is expansion of the name in its entirety. This is done by recursively looking up pos-
sible middle names in reverse, so a surname-to-given-name expansion of the entire name
is achieved. When a name cannot be expanded further, the algorithm will perform val-
idation and reduction in the forward direction. This ensures that the first word in the
expanded full name is a valid given name, since the word will be dropped if it is not
valid.

After working with this functionality, evaluation of the prototype systems gives a preci-
sion of 62.6%, recall of 78.2% and f-measure of 67.4%. This is an improvement from using
SSR in the filtering, which had an f-measure of 62%.

48

4.2.6 Professions

Namespace: clj-egsiona.profession

While investigating the false-positives from the prototype system, I noticed that several
professions were reported as locations. Thinking of the stop words list from IR, a similar
construct was used by Fink et al. (2009): stop places. I consider that some types of entities
can be filtered out by a similar approach, in this case with a stop professions list.

The profession detection uses two approaches to match words. It looks for specific pro-
fessions, for example “lawyer” and “project manager”. It also looks at common suffixes
indicating a profession, like “officer”, “chief”, “doctor”, etc. Currently there are a mere 3
specific professions, and 9 suffixes.

This comes close to over-specialization to the corpus, so an attempt was made to im-
plement the functionality in a generalized manner. The professions detection can be ex-
tended with additional professions without considering the false-positives from the sys-
tem. This is in contrast with a traditional list of stop words, which is only extended after
finding problematic words in the results.

4.2.7 Addresses

Namespace: clj-egsiona.address

Some of the articles contain addresses in different forms. An assumption is made that an
address consists of at least the street name, followed by the optional street number. Street
names have certain properties which enables detection by simple processing. They often
have common suffixes, which indicates some sort of category describing the location. For
simple streets, there are multiple variations in English: road, drive, avenue and boulevard.
Where streets intersect, we can find names that include corner and square, and sometimes
even an alley. There exist numerous such examples, and collecting these for use in address
recognition is one approach. In Norwegian, we do not use word-division in the same
manner as in English. This is due to different rules regarding construction of compound
words. For example, consider the street name “Abbey Road”. For the words themselves,

49

“abbey” can be translated into “kloster”, and “road” into “vei”. However, the street name
“Abbey Road” would be translated into “Klosterveien” in Norwegian; a compound of
both words as well as changing the article of “vei” to the definite form “veien”.

Two approaches have been identified for using knowledge of Norwegian addresses in the
prototype system. One approach is to look for common suffixes in single words. Another
one is to look for certain stand-alone words that denote a street name. These approaches
can be used in combination. By stand-alone words, I refer to words that are not part of
compound street names. These stand-alone words are often preceded by personal names,
for instance “Magnus Barfots gate”. Sometimes street names are shortened, e.g. “gate”
(street) to “gt.” (st.). These special cases are only accepted if followed by a number, as
this represents a stronger indication of an actual address. If one were to look for these
special cases in every word in a text, normal words at the end of sentences would also be
matched, e.g. “Vi reiste langt.” (we traveled far). Because the translation of this example
does not make sense, a meaningful example in English would be “We traveled fast.”.
Of the non-compound words, some examples include smau (alley), haug (hill) and dal
(valley).

Using a list of street names14, I manually found many of these common suffixes and put
them in a list—totaling 75 entries. This list is then used by several functions to detect pos-
sible streets. After exploring various ways of using address detection for disambiguation,
while fixing bugs and quirks, the f-measure had risen to 73.9%.

4.2.8 Evaluation

While the first iteration largely was spent working with tools, data and getting familiar
with the domain, this iteration have seen more work on the core problem of the prototype
system. Formal evaluation with information retrieval metrics was started in this iteration.
Throughout the course of the development, the progress was closely monitored by the
metrics calculated from executing the prototype system on the corpus. This have proved
very useful, as it guided the development process by immediately revealing the effect of
newly implemented functions and features.

14http://no.wikipedia.org/wiki/Liste_over_Bergens_gater

50

http://no.wikipedia.org/wiki/Liste_over_Bergens_gater

After working with finding potential locations—selection of candidate words—some sim-
plistic grammar processing was applied. This lead to an f-measure rating of 36.9%, which
left lots of room for improvement on the behalf of precision, which was only 24.1%. Lists
of data was introduced, with personal names and geographical entities like countries, re-
gions, municipalities, and more. These were used for various lookup function for the dis-
ambiguation process. After applying the SSR data set as a filtering device, the f-measure
had risen to 62%.

Usage of a geocoder was explored, with hopes for useful functionalities, like location
validation and resolving coordinates. The prototype system performed worse with the
geocoder, due to various problems. A major problem was when querying with a restric-
tive clause, where the geocoder seems reluctant to return empty results. The geocoder
was therefore taken out of active use.

Usage of a list of personal names was discussed and explored. Support for detection of
middle names was implemented, and the functionality performed well. The f-measure
was increased to 67.4%. This was followed by a discussion of address detection, and the
problems faced in that respect. Using a list of street names, common suffixes were found
and put into a list. After implementing address detection in the disambiguation the f-
measure was at 73.9%. Not discussed in detail are mere bug fixes, and smaller problems,
which further improved the f-measure to 74.9%.

In summary, the metrics have gradually been improved throughout this iteration. Only
recall has suffered, but this started at a high of 95.2%. Through all subsequent measure-
ments the precision and f-measure was improved. Several different avenues for disam-
biguation was explored, such as address detection, personal name detection and geocoder
lookup. In the end the geocoder was taken out from disambiguation, because the metrics
got worse when it was used.

51

4.3 Third Iteration

This iteration’s focus have mainly been on finalizing the prototype system, making it
runnable and easy to configure. At the start, the focus was still on improving the metrics,
by working on disambiguation and candidate word selection. This effort was then halted,
in order to complete the system. By exposing the prototype system as a library, its pro-
grammatic applicability have been tested by implementing a demo application. Not only
is this useful for the descriptive evaluation, but it also serves the purpose of demonstrat-
ing the utility of the prototype to an audience. By having a concrete demo application,
this utility can be communicated with greater clarity and efficiency.

Name Type Description

clj-egsiona.domain Namespace Domain name recognition

clj-egsiona.entity Namespace Entity recognition

clj-obt Library Interface to the Oslo-Bergen-Tagger

clj-obt-service Program Tagger Web Service

clj-egsiona.tagger-provider Namespace Implementation of client to web service
tagger

clj-egsiona Library The Extraction Software as a separate li-
brary

clj-egsiona.core Namespace Main entry point for prototype system

clj-egsiona.processing Namespace Contains functions related to processing
and disambiguation

Table 4: Programs, libraries and namespaces used in third iteration

4.3.1 Grammatical Processing

In the previous iterations, only simplistic grammatical processing was used. For example,
a list of unwanted tags was kept and used to filter the tagged text. At this point, more
sophisticated processing have been explored. Instead of filtering away unwanted tags, I
wanted to select candidate words directly.

52

When analyzing articles tagged by OBT, I noticed that prepositions often appear before
locations. This can be used to select possible locations, with subsequent disambiguation
to be performed. Locations are rarely followed or preceded by verbs, although we can
find examples of the contrary: “Bergen vokser i omfang” (Bergen grows in size). This rule
is not set in stone, as language is very flexible. It does however seem to be used rarely,
so I assumed words before verbs are not locations. If a valid location should erroneously
be filtered away by this rule, it might still be referenced multiple times throughout the
text. Hopefully this possible location is used in a sentence, in a manner so it is not filtered
away with the verb. After selecting candidate words based on the grammatical tags from
OBT, problem cases are filtered away. This include words that are numbers, contains less
than two characters, in all capital letters (per subheading problems discussed in section
4.2.1), not starting with capital letter, and if the next word is a verb.

Replacing the previous location-finding functionality with this method, the f-measure
got slightly worse to 73% from 74.9%. There was quite a substantial drop in precision,
which went from 73.1% to 64.5%. The f-measure did not suffer a greater degradation,
because the recall was increased 10.8%, from 82.5% to 93.3%. If only the f-measure is to be
considered, these results show that the previous method of selecting candidate words was
better. But analyzing the other metrics, it became clear that the precision can be improved
with better disambiguation. The recall rate cannot be improved if the potential location
is filtered away earlier in the process, so it is desirable to keep these locations and focus
on further improvement of the precision.

All aspects of the grammatical processing discussed in this section, may give the impres-
sion that the implementation was a neat, sequential process. In fact, several parts of the
prototype system was developed in parallel, or in chunks in between one another. After
implementing the grammar selection just described, some effort was focused on differ-
ent functionality to help in disambiguation. This lead to implementing the functionality
described in section 4.3.2, which in turn was incorporated in the grammatical disam-
biguation that belongs in this section. Chronologically, the grammatical disambiguation
belongs in its own section after the entity recognition section, but content-wise it is too
short to justify this. This explanation is now—ironically—longer than the actual content:

Disambiguation of the grammatical word selection is fairly simple. Given names are
filtered out, along with domain names and other entities. A more interesting problem

53

is nouns in the possessive case that cause false-positives. These words are sometimes
locations, but are problematic to report as such. Often, the prototype system will find a
location both in a neutral form and in the possessive case. It is desirable to only keep
the neutral form, so if the last character of the word is an “s” and the word is tagged as
possessive, it is filtered out.

4.3.2 Entity Recognition

Namespace: clj-egsiona.domain
Namespace: clj-egsiona.entity

The listed namespaces contains functionality to detect different types of basic entities.
These are problematic words, often being miss-tagged as locations. It is not completely
akin to a stop word list, as discussed in section 2.1, but an expansion in the disambigua-
tion part of the software. A list of stop words does necessarily not in itself convey any
meaning as to what a given stop word constitutes. In the prototype system, I am trying
to build a foundation for a generalized and extensible entity recognizer. Since there are
some form of semantics involved, it can be extended without directly considering false-
positives from the tagging process, as in section 4.2.6 with the professions recognition.

The domain name recognition is trivial, as it is just checking for known top-level domains
(TLD) at the end of words. For the moment, there is a small selection of 7 TLDs, but this
can easily be extended. This functionality removes both URLs and email addresses.

The functionality discussed in this section is also at risk of becoming over-specialization,
if not done in a specific and generalizable manner. The main entity detection, which lives
in the entity namespace, have the most in common with a list of stop words. It is the
perhaps least specific functionality, because it is a collection of problematic nouns. These
nouns are in conflict with other functionality detecting locations, for example address
detection. Recall in section 4.2.7, where address detection was discussed, common suf-
fixes of street names are put into a list. These are also causing trouble with ambiguous
words that is giving false-positives, which the entity recognition tries to disambiguate.
For example “plass” (place) is a suffix in the address recognizer that leads to several
false-positives: “parkeringsplass” (parking lot), “skoleplass” (school yard), “byggeplass”

54

(construction site), and more. The detection of problematic words was found by examin-
ing the output from the prototype system, which seem closely related to constructing a
list of stop words.

The more specialized part comes in with an attempt to introduce grammar handling in the
entities listed. In Norwegian, the article vary according to the gender of its noun. When
an entity is found, it is put into a list representing the noun’s gender in the indefinite form.
The nouns are then automatically expanded into the different forms, from the indefinite
to the definite article, both in singular and plural forms. An example of this expansion
can be seen in listing 11. Currently, only male and neuter words are supported, but there
is a separate list for irregular nouns that must be expanded manually upon insertion.

After this functionality has been incorporated into the disambiguation processes, the pro-
totype system was evaluated. Precision had increased to 69.1% from the last low of 64.5%.
The recall changed slightly to 93.6% from 93.3%. This gives an f-measure of 76.8% which
have been the highest yet.

male: "konvensjon" -> "konvensjonen" "konvensjoner" "konvensjonene"
male: "avtale" -> "avtalen" "avtaler" "avtalene"
neuter: "direktorat" -> "direktoratet" "direktorater" "direktoratene"
irregular: "senter" "senteret" "sentre" "sentrene"

Listing 11: Automatic grammatical expansion of nouns

4.3.3 Tagger Web Service

This project is available as a standalone project at Github15 and on the Clojars16 repository.
A system model is provided in figure 3.

After a longer bus trip while working in the Windows installation on my laptop, I decided
the situation regarding tagger platform dependency had to be resolved or somehow al-
leviated. The Oslo-Bergen-Tagger only supports Linux and Mac, and the clj-obt library
only supports Linux. If only the source code for the multitagger used in the OBT system

15https://github.com/ogrim/clj-obt-service
16https://clojars.org/clj-obt-service

55

https://github.com/ogrim/clj-obt-service
https://clojars.org/clj-obt-service

would be made available, a Windows version could probably be compiled. This could
potentially lead to supporting Windows in clj-obt.

Corresponding with the authors of OBT over email, I learned the release of the source
code had stalled due to copyright issues in parts of the code. After inquiring for the pos-
sibility of obtaining the source code, I was given positive signals for this to happen. This
effort unfortunately stalled, and I decided the fastest route to use the tagger in Windows
would simply be to implement a web service to expose the functionality through. This
would allow use of the prototype system on a wider range of platforms. If the prototype
is used on a non-Linux system, the tagger service can be hosted on a dedicated Linux ma-
chine somewhere on the network. Alternatively, it possible to use desktop virtualization
and host a Linux installation on a Windows or Macintosh computer.

Clojure made it very simple to implement both the server and the tagger library inter-
facing, demanding a mere 33 source lines of code. I choose to only support HTTP POST

requests, as GET requests are not suited for longer parameters. The text that will be sent
to the tagger can potentially be very long, which could cause problems. The server is
simple to run, because it was compiled to a standalone jar file. This requires only a Java
installation, with no knowledge of Clojure required. To start the server, simply issue one
command with the desired port number and the tagger location, for example as in listing
12.

java -jar clj -obt -service -0.0.3 - standalone.jar 8085 /home/ogrim/bin/The -Oslo -
Bergen -Tagger

Listing 12: Command to start tagger web service

Figure 3 is a model of the clj-obt-service system, describing how it is built. It can
return plain text or the json data format, which is selected by sending the POST request
to the appropriate endpoint. The service will then call the tagger on the input data, and
perform necessary encoding before returning the result. The client that consumes this
web service is discussed in the following section.

56

Setup Set path to tagger and specify
port number

IP:PORT/json
Accepts HTTP POST
requests to relevant URL
with URL-encoded data

Tagging

Encode json-encode content
and set HTTP header

Tagging

Response

IP:PORT/text

Using tagger interface
library, clj-obt

Result in HTTP body as
relevant content-type

Figure 3: Tagger Web Service (clj-obt-service) System Model

4.3.4 Web Service Client

Namespace: clj-egsiona.tagger-provider

The client code for the tagger web service have been built directly into the prototype
system. The optimal solution would be to include the client in a future version of the web
service library, since these parts work in unison.

In order to select the desired functionality—web service or local program—one simply
calls the appropriate function: set-obt-program or set-obt-service, providing the rel-
evant location as an argument. The user will not need to select this manually, as the
configuration functions of the prototype system will detect this automatically by exam-
ining the argument passed in. If the argument ends with a port number, the web service
function will be used. If not, the local program function is used.

57

In contrast with a local installation of OBT, using the web service requires slightly more
processing before and after the call to the tagger. This is negligible, as the largest source
of delay will be latency. Neither this should be a large issue, as plain text does not con-
sume much space. The server accepts of the HTTP POST requests, where the text to be
tagged must be in the data parameter in the HTTP body. The content-type should be
application/x-www-form-urlencoded and the service will return data with the encoding
ISO-8859-1. The encoding is due to the output from The Oslo-Bergen-Tagger. The text
that should be tagged must be URL encoded, which looks like the example in listing 13.
Notice that the client does this automatically, and the user never need know the data was
URL encoded—this is an implementation detail.

"Dette må tagges" => "Dette+m%C3%A5+tagges"

Listing 13: URL encoding of text to be tagged

The URL encoded text is used in the POST request. An example of a valid request can be
seen in listing 14, with implementation details specific to the HTTP handling library used
by the client. For example, the ISO encoding is specified, which makes the client assume
the return data is in this format.

{:body "data=Dette+m%C3%A5+tagges"
:content -type "application/x-www -form -urlencoded"
:as "ISO -8859 -1"}

Listing 14: Valid HTTP request to tagger service

The HTTP request in listing 14 is then sent to the appropriate URL using the POST request
method. The URL will be in the format “IP:PORT/node” where the node is either text or
json. The web service will then take the text from the data parameter, tag it, and send
back a response looking like the data in listing 15.

58

{:trace -redirects ["http :// localhost :8085/ text"], :status 200,
:headers {"date" "Tue , 13 Mar 2012 12:25:37 GMT",

"connection" "close", "server" "Jetty (6.1.25)"} ,
:body "[{: tags [\" pron\" \"nøyt\" \"ent\" \"pers\" \"3\"] ,

:lemma \"dette\", :word \"Dette\", :i 1}
{:tags [\" verb\" \"pres\" \"tr6\" \"pa4/til\"

\"<aux1/infinitiv >\"],
:lemma \"måtte\", :word \"må\", :i 2}

{:tags [\" verb\" \"pres\" \"inf\" \"pass\" \"tr1\"
\"<<<\"],

:lemma \"tagge\", :word \" tagges\", :i 3}]"}

Listing 15: HTTP response from tagger web service

The body of the response in listing 15 (in the :body key) consists of one string, which is a
identical to the output from the tagger. It is in the form of the Clojure data type map. In
order to use this string as an actual object, it is transformed with the built-in read-string
function. This function transforms the string from data to actual source code, making it
usable programmatically as a native data structure, as seen in listing 16.

[{: tags ["pron" "nøyt" "ent" "pers" "3"],
:lemma "dette", :word "Dette", :i 1}

{:tags ["verb" "pres" "tr6" "pa4/til" "<aux1/infinitiv >"],
:lemma "måtte", :word "må", :i 2}

{:tags ["verb" "pres" "inf" "pass" "tr1" "<<<"],
:lemma "tagge", :word "tagges", :i 3}]

Listing 16: Transformed HTTP response data into Clojure code

At this point, the client mirrored the tagger functionality, just as if the tagger was installed
locally on the machine. This effort was a success and has enabled the prototype to become
more platform independent.

59

4.3.5 The Extraction Software

Near the end of the development cycle, the prototype system was prepared for public
release. It is made available at Github17 and on the Clojars18 repository.

The finalizing steps have mainly been cleaning up the prototype system, refactoring to
expose a clean API, removing code no longer in use, and writing setup functions for
simple configuration. Even though this project have been developed in relatively short
time, compared to real life systems, it contained a surprisingly large amount of old code
that had fallen out of use. This can probably be attributed to the exploratory nature of
the project, with fast feedback from the corpus evaluation and the different techniques
explored. The finalized state of the code base have had most of this unused code removed.
This is mentioned shortly in the introduction to the development section, back in section
4, as some of the code discussed throughout the iterations is not present in the published
library. This is code that is related to processing and conversion of the data worked with
in the project, but have become irrelevant or obsolete.

In order to make the library simple to use, a readme file was written with explana-
tion of the configuration and some examples of usage. At the very least, the user will
need to configure the tagger software, either to the web service or a local installation.
There are also two examples of database configurations, using PostgreSQL and SQLite.
If a database is used, the tagger software will cache the tagged text. This improves
the processing speed, if a given text have been tagged previously. In order to present
a clean API to the user, some refactoring was done. An example of this was moving
out most of the processing related code from the core namespace (clj-egsiona.core),
into a new one: clj-egsiona.processing. The system model in figure 4 shows how the
data flows through the prototype system, giving an overview of how it is used. Both
the input text and the tagged text is used to find locations. Code related to the pro-
cessing and disambiguation steps shown in the system model, will be found in the new
clj-egsiona.processing namespace.

17https://github.com/ogrim/clj-egsiona
18https://clojars.org/clj-egsiona

60

https://github.com/ogrim/clj-egsiona
https://clojars.org/clj-egsiona

Set path to tagger and
set database
configuration

Setup

Input

Using local tagger
or web serviceTag-text

Find Regions,
Countries and

Counties

Disambiguate
Grammar

Output

String

Disambiguate
Address

Grammar
Processing

Possible
Address

Possible
Professions

Figure 4: The Extraction Software (clj-egsiona) System Model

61

4.3.6 Dropping Proprietary Data Sets

The SSR data set have been used as a filtering device in the disambiguation process. It
would prove problematic (and illegal) to release the prototype system with this data in-
cluded, since it is proprietary. When making the prototype ready for public release, this
had to be taken out of use. Interested in the current performance on the corpus, the eval-
uation was run one last time.

Without the SSR data set, the prototype system was able to score an f-measure of 76.2%,
dropping only 0.6%. This was a pleasant surprise, as the prototype now may be of use
without access to proprietary, high-grade data sets.

4.3.7 Evaluation

This iteration contained improvement of the prototype system’s ability to find locations,
as well as finalizing and exposing the project as a software library. Better grammatical
processing was introduced to find candidate words. This made the rating a little worse,
but improved the recall substantially. In order to bring up the precision, further work on
disambiguation was done.

Multiple instances of entity recognition was implemented, the most concrete being do-
main name recognition and profession recognition. A more generic entity recognition
was then implemented, which is a weakness in the disambiguation process, as it can
be viewed as a form of over-specialization. The entities added here is inspired by the
false-positives from the corpus evaluation, but an attempt to generalize this was made.
After the new functionality with the grammatical disambiguation was implemented, the
f-measure had risen to 76.8%.

Some work on tooling was resumed, which helped making the prototype system usable
on more platforms. The tagger functionality was exposed as a web service, and client
support was implemented in the prototype. The software then underwent some cleaning
and refactoring, in order to be released to the public as a stand-alone library. Lastly, the
use of proprietary data sets had to be removed. Discovering that the f-measure only
dropped 0.6%, the prototype is usable without access to high-grade data sets.

62

5 Evaluation and Discussion

There are two distinct methods of evaluations used in this project: analytical and de-
scriptive. The analytical evaluation is the dynamic analysis of the tagging accuracy, using
metrics from information retrieval. The descriptive analysis constructs some scenarios
around the prototype system, in order to demonstrate its utility. This was done by imple-
menting a demo application, using the prototype system as a library. After reviewing the
evaluations, there is a discussion of the findings and the implications.

5.1 Analytical Evaluation

Throughout the development phase, the prototype was evaluated by the IR techniques
discussed in section 3.2. The metrics were collected, commented and put into table 5.
The earliest metrics are from the second iteration, where the prototype system started
taking shape and was able to find some locations. In the table, row 1 through 11 are
measurements from the second iteration. This leaves only 4 measurements, all from the
third iteration. There are significantly less data points from the third iteration, but this
reflects what was implemented in the respective iterations.

The first iteration consisted mostly of tooling and data related work, with no evaluation
performed. The second iteration consisted mostly of work relating to the core function-
ality of the prototype system, resulting in the largest amount of data points. The third
iteration consisted of some work on core functionality, in addition to the web service li-
brary and preparing the prototype for release.

The very first data point in row 1, has very weak results. At this point, only capitalization
and unwanted tags are filtered away. The recall is good, but the precision is terrible,
resulting in a poor f-measure. From this very first measurement, there are lots of room for
improvement. Already in row 2 the precision has been greatly improved. This is due to
use of the proprietary SSR data set, with 73 671 unique locations in Hordaland. The recall
suffers, as all locations not in Hordaland are filtered out. Still, the precision is greatly
improved, giving a much improved f-measure.

63

n Precision Recall F-measure Summary

1 24.1 95.2 36.9 Filtering based on capitalization and simplistic
grammatical processing

2 55.0 77.6 62.0 Using SSR data set
3 62.5 70.8 63.8 Name expansion
4 62.6 78.2 67.4 Finding middle names
5 63.1 82.1 69.1 Road detection
6 69.9 80.2 71.9 Handling first words in sentences
7 72.2 80.9 73.5 Handling professions in address recognition
8 72.7 80.8 73.7 Punctuation problems from OBT in names
9 72.7 81.2 73.9 Address validation

10 72.8 82.5 74.7 Handling sentences not split properly from OBT
11 73.1 82.5 74.9 Handling more punctuation in country.clj
12 64.5 93.3 73.0 Added grammar detection
13 66.5 94.0 75.0 Domain name and entity detection
14 69.1 93.6 76.8 Using entities in disambiguation
15 72.2 87.7 76.2 Removing proprietary data set (SSR)

Table 5: Evaluation by precision, recall and f-measure

The rest of the data points from the second iteration, row 3 through 11, are mainly not very
interesting or problematic. The main focus was on improving precision, to gain a better
f-measure. This was achieved in small steps, by implementing functionality regarding
disambiguation and by fixing smaller problems with false-positives. Row 6 is probably
the most interesting data point in this selection, even though it represents a small change.
The precision sees quite an improvement from 63.1% to 69.9%, just by handling the first
words in the sentences. The recall suffers from this, so the improvement in the f-measure
is nearly 3%.

The remaining data points, 12 through 15, are from the third iteration. The change from
row 11 to 12 is very interesting, as the f-measure gets worse. The change was kept in
the prototype system, which at first glance may seem counterproductive. The change is
kept due to the increased recall, at the cost of precision. This poorer result was accepted
because there was potential for improving the precision by working with the disambigua-
tion. If the recall is too low, there are limits to how much improvement in the f-measure

64

disambiguation can provide. In the rows 13 and 14, the precision was improved enough
to take the f-measure past the slight drop, and to a high of 76.8%.

Row 15 is crucial, as it also accepts lowering the f-measure when removing use of the SSR
data set. The prototype system was still able to perform acceptably without the propri-
etary SSR data set, which was unexpected. The importance of this is within social and
legal aspects, discussed in section 3.3.2. The social aspects is the access to high-grade,
possibly prohibitively expensive, proprietary data sets. Such data are not available for
everyone. The other aspect is legal concerns, regarding the publishing of the prototype
system with respect to the copyright of the proprietary data set. If the performance of the
prototype system was dependent on the SSR data set, it would imply a barrier to imple-
ment a similar solution. It would also prohibit the redistribution of the prototype system
as an open source project.

5.2 Descriptive Evaluation

As a method of evaluation within design science, descriptive evaluation is performed.
These descriptive scenarios have been a part of the motivation for working on this project,
and have been suggested as potential uses for the prototype system in section 1.3. In this
section the scenario is first described, before evaluating it based on the performance of
the prototype system.

5.2.1 Tag Generation

This usage is intended for writers and publishers, in order to help with location aware-
ness in tag generation. Looking at the results from the analytical evaluation, where the
prototype system is executing on the corpus, it is clear it does not yield perfect results. In
row 15 in table 5 the prototype was able to find about 87% of the locations, with about
72% precision. This indicates that relying on the prototype system alone is likely to pro-
duce a fairly large number of faulty tags. Having a human user as a filter, can reduce
the impact these tags. The manual labor involved in tagging text makes it a cumbersome
task, which the prototype system can help alleviate.

65

Figure 5: Demo Application Text Input

When the user have written a blog post or a news article, the software can be used to
automatically generate geographical tags. The user should be able to hit a single button,
e.g. “find locations”, which makes the prototype process the text and return detected lo-
cations. When the possible locations have been found, the user can select the appropriate
tags simply by clicking on them. The user interface for this activity should be some form
of buttons, in order to select and deselect all or some of the suggested tags. These opera-
tions should be implemented in order to support simplicity and efficiency. The user can
then accept all suggested tags or only select—or deselect—a few tags, enabling the user to
take the path of least resistance and be efficient. This frees the user from manually having
to type in all the locations that should be tags, and provides quick means of selecting the
appropriate tags. These specifications was implemented in a demo application, using the
prototype system as a library.

66

The demo application have been implemented as a webapp using Clojure as the program-
ming language. The demo application is runnable on the JVM, directly from the com-
mand line. It uses the geocoding code that was scrapped from the prototype system in
section 4.2.4, in order to retrieve coordinates and place the locations on a map. The map is
generated with the Google Maps JavaScript API, and requires an API key1. Three screen-
shots of the application in use have been enclosed (figure 5, 6 and 7), and the source code
is available at Github2 along with a runnable jar file3. The webapp is started with argu-
ments specifying port number, tagger location and Google Maps API key. The command
in listing 17 will start the webapp on port 8082, using the tagger hosted at localhost:8085
by clj-obt-service and will use an Google Maps API key generated for this thesis. The
key in the listing will stay active as long as possible, so an attempt to use it can be made. If
it does not work, please consult the Google Developer documentation to obtain a new key.

java -jar demoapp -1.0.0 - SNAPSHOT -standalone.jar
8082 localhost :8085 AIzaSyAH_DqRNhgdcTAR2jI_aQkPz6GC -qy7m7s

Listing 17: Running the demo application

In figure 5 the manual text input is being used. The demo application supports extracting
content automatically from an URL, or from the input in the text area. There is a simple
navigation menu on the top. The input text is processes by the prototype system upon
clicking the “Process text” button. In figure 6 the article have been processed, and the re-
sulting tags are marked up in the original text to make them stand out. All tags that were
found are listed in the right column, with buttons easy selection. Four tags are selected,
and these are highlighted in a different color in the original article. When hovering the
mouse over the tags in the right column, the corresponding words in the article light up
as well. This makes it easier to find the correct tags within the text. When the user is
happy with the tag selection, the button “Save selection” is clicked. This will save the
data, and display the article text with the selected tags only. A map view is shown with
markers on the corresponding locations. This can be seen in figure 7.

1https://developers.google.com/maps/documentation/javascript/tutorial#api_key
2https://github.com/ogrim/clj-egsiona-demoapp
3https://github.com/downloads/ogrim/clj-egsiona-demoapp/demoapp-1.0.0-SNAPSHOT-

standalone.jar

67

https://developers.google.com/maps/documentation/javascript/tutorial##api_key
https://github.com/ogrim/clj-egsiona-demoapp
https://github.com/downloads/ogrim/clj-egsiona-demoapp/demoapp-1.0.0-SNAPSHOT-standalone.jar
https://github.com/downloads/ogrim/clj-egsiona-demoapp/demoapp-1.0.0-SNAPSHOT-standalone.jar

Figure 6: Demo Application Tag Selection

68

Figure 7: Demo Application Article View

69

To discuss the problems with the use of the prototype system for tag generation, the arti-
cle used in the demo application figures will be examined. This article is available from
BT.no4. “Han er fraktet med luftambulanse til Haukeland” (he was transported by air am-
bulance to Haukeland) is referring to Haukeland as a proper noun, as it is a hospital in
the region. Similarly, the following sentence reads “(..) ifølge en pressemelding fra Helse
Bergen” (according to a press release from Bergen Hospital Trust). The prototype system
have tagged “Helse” as a location, but it is part of the proper noun “Helse Bergen”. In
both these examples, the proper nouns overlap in meaning with location names. This
classification can be ambiguous even for humans. In a very strict sense, the words should
not be tagged as locations since they are part of a proper noun. On the other hand, the
location in the proper noun still informs the reader to an actual location that is relevant to
the article. While reading about the Haukeland Hospital, the reader will probably know
where it is located—which provides the reader with some geographical semantics.

Another problem is in subdivisions of possible locations. The prototype system is sug-
gesting both “Sogn og Fjordane” and “Sogn” as possible locations. The demo application
have not highlighted “Sogn” in the article, as the word is contained within “Sogn og Fjor-
dane” and already have been highlighted. The demo application will highlight the words
in the sequence it gets the locations from the prototype system, and does not allow over-
lapping highlights. Since “Sogn og Fjordane” is in front of “Sogn”, this is highlighted first.
It is possible to only save the “Sogn” tag, which then would highlight this instead. These
aspects are problems—or features—in the demo application, while the prototype system
is the real offender. The prototype system could possibly be extended with some location
name overlap detection, with the goal to increase tagging precision.

Another related problem is the “retning hemsedal” tag. Hemsedal is an actual location, but
it have been grouped together with the noun “direction”. The direction is not a part
of the location name, making this an incorrectly tagged word. The problem is really
in the grouping, as the prototype system was able to find the location Hemsedal, but
grouped it together with a wrong word. A possible solution can be implemented in the
demo application: functionality for manually splitting and selecting subdivisions of the
suggested tags it gets from the prototype system.

4http://www.bt.no/nyheter/lokalt/n-fastklemt-i-ulykke-2698455.html

70

http://www.bt.no/nyheter/lokalt/n-fastklemt-i-ulykke-2698455.html

In this demo application the erroneous tags are not a big problem, as it is very easy to
select the correct ones. The largest issue is with incorrect grouping of tags, and in adding
new locations not found by the prototype system. These problems can be fixed in the
demo application, rather than the library providing the tags. Since there is a human user
which selects the appropriate location tags, this usage of the prototype system seem to be
a good match. The impact of the precision problems in the prototype is reduced due to
the human user, while providing utility and value.

5.2.2 Construction of External Tools

There are different uses for the prototype system in the construction of various external
tools. One example of this is within the use of existing frameworks, like the Stanford NLP.
Using the prototype system to generate training data, it can be possible to construct a gen-
eralized location recognizer with the Stanford NLP. This would at best perform equally
well as the prototype system, but the most likely outcome is worse performance. Using
data from one region, the recognizer could be generalized to perform better on articles
from another region.

One concern is the performance of the prototype system on online news articles pub-
lished in counties other than Hordaland. This was especially a concern while using the
proprietary SSR data set, with location names in Hordaland. After removing the SSR
from use, the performance dropped slightly, which indicates the dependency on the SSR
data set was not very strong. If the performance of the prototype system was dependent
on external data sets, it is likely it would perform worse on articles from another region.
Because we already have an acceptable result without external data, constructing a gen-
eralized location recognizer is probably not a very fruitful avenue to explore further. It
seems likely that the prototype can perform to an acceptable level on articles from other
regions as well.

There is another external tool that could be constructed from the prototype system. One
aspect that currently only is exploited internally, is the functions used for disambiguation.
The software is able to do name, address, profession and some entity recognition. This
information is never returned to the user, although this is something it very well could.
By using these functionalities, one could use the relevant parts of the prototype system to

71

serve as a foundation to implement a primitive named entity recognizer. Throughout the
literature reviewed, a NER was commonly used in the different projects. An open source
NER that supports Norwegian, would be a great asset to both developers and researchers
alike.

5.2.3 Semantic Applications

This use case is closely related to tag generation, only in a more formal sense. The main
difference is in the user interface, and additional processing regarding the use of ontolo-
gies. Given a specific ontology, the software can be used for generating RDF statements
about the news articles it processes. In the prototype’s current working condition, this
use case would generate a lot of faulty statements. Based on the domain in which the
generated RDF statements would be used, one could apply a human censor to select only
the statements deemed correct or necessary. The activity of selecting tags should, as in
the tag generation case, be available through a suitable graphical user interface.

Considering the discussion in the previous section, regarding named entity recognition,
there are opportunities to use the prototype in additional semantic fashions. If a NER is
developed from the prototype system, this functionality could be used to add other kinds
of semantic statements about the articles in addition to only the locations. In combination
with a POS tagger to use grammatical processing, it could be possible to derive additional
semantics regarding the content of the news articles. One approach would be to construct
a NER that detects personal names and quotes, and use grammatical processing with the
POS data in order to generate statements like “who said what” and more. This could
make the prototype system more powerful in uncovering additional semantics regard-
ing locations. An example would be to use the POS data to find adjectives and nouns
describing a location, and generate statements like “location X is a fun place”.

5.2.4 Statistics and Metrics

Another possible use of the prototype system is within generation of statistics and met-
rics. For this to operate autonomously, the article collector is required to be a more in-
tegrated part of the prototype system. It could also stand to be improved, which was

72

discussed in the evaluation of the first iteration (section 4.1.7). To achieve an autonomous
system to generate statistics over time, the prototype would have to be integrated with the
article collector by some logic to handle the scheduling of data collection and processing.

The main problem in this scenario is the quality of the data the system would generate.
The prototype’s f-measure on the corpus is about 76%, which most likely yields too noisy
data for many of the possible use cases for metrics. In environments where noisy data
can be handled, the software might be appropriate for use. One could perhaps also say
something akin to “We know X with 76% accuracy” when using data from this software, if
such an answer is good enough.

If the prototype system is set to process different regional news sites, it is possible to
get metrics and find different clusters. A possible use is applying an algorithm to de-
termine the different online news sites’ geographical focus. The algorithm to determine
geographical focus can be inspired by the survey of previous work performed by Amitay
et al. (2004) and by the algorithm they develop. It would be possible to use the prototype
in combination with another analysis method, in order to uncover patterns in the articles.
An example of this applying sentiment mining to the articles. Sentiment mining finds
negative and positive words, and classifies the text according to its sentiment. An example
of this is by Leetaru (2011) who was able to find a trend towards negative more negativity
in the press, before the Arab Spring revolutions. Using sentiment mining in combina-
tion with the prototype system, it would be possible to uncover negative or positive bias
towards particular locations, or by particular online news papers.

5.3 Discussion

With the evaluations in mind, the success criteria and research question will be revisited
and discussed to determine the level of success. The research question asked “how can
we automatically detect geographical information in online news articles?” with four success
criteria. Before answering the research question, the success criteria are examined.

73

1. detect possible locations by text analysis

2. represent complex5 locations

3. create mappings between an article and locations

4. provide accurate data while minimizing false positives

The first success criterion is detecting possible locations by text analysis. The whole im-
plementation of the prototype system does text analysis to find locations. Some of the
problems faced was use of external data sets, grammatical processing and disambiguat-
ing the possible locations. The data used was at first proprietary, but this was removed
without a large drop in accuracy. In the end, the prototype system was only using public
data, like countries and municipality names, in addition to lists of personal names. The
various components that constitutes the prototype system have been discussed through-
out the iterations, by referring to namespaces, libraries and programs. An important
external program have been the Oslo-Bergen-Tagger, which performs part-of-speech tag-
ging on the input text. Without this resource, grammatical processing would be a lot more
problematic. The analytical evaluation shows the prototype is able to detect the locations,
as it found 87.7% of the locations in the corpus. Along with the demo application, this
functionality have been demonstrated successfully. The first success criterion appears to
be fulfilled.

The second success criterion is representing complex locations, which are non-primitive
shapes like polygons. At the start of the project, high-grade geospatial data was attained,
and much effort went into applying it to the prototype system. Some tools were made
to process and import the data into the PostGIS database. The first batch of data did not
contain any location names, and more data was requested. After gaining access to the
SSR data set, the distinctly Norwegian SOSI file format had to be parsed and imported to
the database. Again, work was done in tooling to support this data type. At this point,
the prototype had location names paired with coordinates. However, coordinates are not
complex locations. The second criterion defines a complex location as one represented by
non-primitive shapes, like a polygon. The shapefiles first received are complex locations
by this definition.

5Locations represented by non-primitive shapes like polygons

74

Simply by using a geospatial database like PostGIS with high-grade map data, the pro-
totype was able to represent complex locations. This seems to fulfill the criterion, but
only in a superficial sense. As it was discussed in section 4.1.6, the use of the high-grade
geospatial made little progress around the second iteration. This was largely due to lack
of experience with geographical data, and inability to solve the problems faced. This ul-
timately led to dropping the use of high-grade geospatial data in the prototype system.
One can argue the second criterion is fulfilled by technology choice and data access alone,
but considering that use of this fell out during the second iteration, the argument is ren-
dered moot. The prototype system have not gained greater utility from this technology,
indicating failure to fulfill this criterion.

The third success criterion is creating mappings between an article and locations. This
have been trivial to achieve, since the locations are not complex shapes. The prototype
system creates the mapping by returning the found locations as plain text, which is a
rather loose mapping. The way the prototype system was used by the demo application,
discussed in section 5.2.1, shows the demo application using the plain text locations in
order to create the mappings. It highlights the relevant words in the original article, us-
ing simple text comparison. Without complex locations, creating mappings seem only
relevant for the application that is using the data from the prototype system. Had the
locations been represented by complex shapes, the mapping would have been more rel-
evant for the prototype system as well. The third criterion seem fulfilled to a sufficient
extent, even though the meaningfulness of this criterion is reduced without the usage of
complex map data.

The fourth success criterion is providing accurate data while minimizing false positives.
This have been measured using metrics from information retrieval. In order to perform
the evaluation, a corpus was collected and tagged manually. After implementing the
metrics in code, the evaluation could be run by calling a single function. The evalu-
ation was run after implementing new functionality, and was used as an indication if
a change or functionality was worth keeping. At the end of the third iteration, the f-
measure was about 76%. A better score had been hoped for, but development had to stop
due to time constraints. Smaller fixes could not help the score, without stooping to over-
specialization. The entity recognition already comes somewhat close to this. The fourth
success criterion seem fulfilled to some extent, considering the IR metrics achieved.

75

Having reviewed the different evaluations of the prototype system, there are both positive
and negative results. It is positive that the prototype system is not tied to a proprietary
data set, since the SSR data set was removed from use. This seems to indicate anyone
can implement a similar solution without prohibitively expensive data sets. The final
libraries and the tagger web service are also positive results, as they proved very useful
in implementation. The libraries have helped with greater platform independence and
with implementing the demo application.

The results that are more negative, is the current level of grammatical processing. I expect
the prototype system will perform better with help from proper computational linguists.
The most negative result was the failing to use the geospatial data, which lead to failing
to fulfill the second success criterion, and diminished the relevance of the third. The
prototype system would probably have different performance characteristics, if time was
not lost to working with geographical data that did not provide any utility.

With all four success criterion discussed, the main research question is at hand. This
entire thesis have documented the implementation of a prototype system able to detect
geographical information in online news articles. The system is usable, as demonstrated
with descriptive evaluation and the demo application. Using analytical evaluation, the
information retrieval metrics have shown the systems performance on the corpus. Only
the second success criterion have failed completely, while the third lost much of its rele-
vance as a result of this. The first and fourth success criterion appear to be fulfilled to a
satisfactory degree. In all, these factors seem to indicate the thesis is able to successfully
answer the research question of how to automatically detect geographical information in
online news articles. There are also some limitations, that needs to be considered.

Given that the prototype was developed with a corpus of online news articles published
in the county of Hordaland, the performance should be re-evaluated on an entirely new
corpus, published in another region. The analytical evaluation gave an f-measure of
76.2%, but this number will surely fluctuate when evaluating a new corpus. The devia-
tion should not be to great on a similar corpus, a new set of online news articles published
in Hordaland county. If the f-measure decreases substantially, it is an indication that the
prototype system have been over-specialized to the current corpus. The prototype should
also be evaluated on a more dissimilar corpus, preferably one consisting of online news
articles published in an entirely different region of Norway.

76

6 Summary and Conclusion

This thesis documents the development and implementation process of a prototype sys-
tem that finds locations in online news articles. At first, high-grade map data was at-
tempted to be used. The importance of geospatial data is reflected in the success criteria,
and the work done with tooling to support it. The largest problem in the project have
been in the application of such data. The effort stalled and failed, and the high-grade
map data was dropped in the second iteration.

There have been successful work in developing libraries, that have been used in the im-
plementation of the prototype system. This is the interface to the Oslo-Bergen-Tagger and
the tagger web service. The prototype itself has also been exposed as a library.

Large parts of the prototype system was developed in the second iteration, with much
positive result. The tagging performance was gradually increased through most of the
iterations. At end of the third iteration, the SSR data set was taken out of use without a
substantial drop in performance. A demo application was developed using the prototype
system as a library, which was used for descriptive evaluation.

6.1 Conclusion

There were several positive results, such as acceptable tagger performance in the pro-
totype. Another positive result was the removal of the proprietary SSR data set, which
degraded the performance less than expected.

There are also negative results from the project. The problem that had the most im-
pact, was the failure to use high-grade map data. Another problem is the possible over-
specialization with the entity recognition, used in the disambiguation. The tagging per-
formance, as measured by the analytic evaluation, is acceptable but could also be im-
proved.

The end result is restricted by the analytical evaluation, as the prototype was not able to
find all locations and had a limited precision. The prototype was still able to demonstrate

77

its applicability with the descriptive evaluation, particularly in the demo application. The
prototype system has limitations, but was nevertheless demonstrated to be useful.

The success criteria have been discussed, and there were varying results. The prototype
system is able to detect possible locations by text analysis, create mappings between an
article and locations, and to a certain extend provide accurate data while minimizing
false positives. Only the second success criterion failed completely, which also reduces
the relevance of creating mappings between articles and locations. The accuracy is mea-
sured analytically with information retrieval metrics, and the result was an acceptable
f-measure of 76.2%.

The research question asked was “how can we automatically detect geographical information in
online news articles?” Having discussed the different results, the findings seem to indicate
the thesis is able to successfully answer the research question. I therefore conclude that
the prototype system is able to extract geographical entities from online news articles,
published in Hordaland.

6.2 Further Work

Due to the failure to utilize the high-grade map data from Norge Digitalt, further work
in this avenue can be interesting. With help from domain specialists, like geographers,
the prototype can be extended to use more geospatial processing. One immediate avenue
of interest is in improvement of the disambiguation functionality. When the prototype
system find a location, it could be resolved to a coordinate pair using geocoding or high-
grade map data, in combination with geographical processing to determine the correct
location. Other higher geographical functionalities could also be explored, like the han-
dling of roads and directions.

A criticism of the prototype system is the limited use of grammatical processing. It is
probable computational linguists will have much to contribute in this area. There might
exist tools and techniques that would help in the prototype. In the literature section, the
use of named entity recognition was used in several projects. The prototype system could
benefit greatly from a robust named entity recognition, which should be constructed by
proper computational linguists. Greater knowledge of grammar and language would also

78

help in improving the selection of words that possibly are locations. This functionality is
currently only using limited grammatical processing.

79

References

Adida, B., S. Annotation, C. Commons, S. Francisco, et al. (2011, April). Handbook of
Semantic Web Technologies. Springer.

Amitay, E., N. Har’El, R. Sivan, and A. Soffer (2004). Web-a-where: geotagging web
content. In Proceedings of the 27th annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 273–280. ACM.

Andersen, R. (2009). About us. http://www.statkart.no/eng/Norwegian_Mapping_

Authority/. Accessed: 17/10/2011.

Bizer, C., T. Heath, K. Idehen, and T. Berners-Lee (2008). Linked data on the web
(ldow2008). In Proceeding of the 17th international conference on World Wide Web, WWW
’08, New York, NY, USA, pp. 1265–1266. ACM.

Brenna, A. (2008). Regjeringen sletter norge fra kartet. http://www.digi.no/790893/

regjeringen-sletter-norge-fra-kartet. Accessed: 09/12/2011.

Eclipse Foundation (2011). Eclipse public license 1.0. http://www.eclipse.org/legal/

epl-v10.html. Accessed: 09/05/2011.

Esri (2009). Geoprocessing considerations for shapefile output. http://webhelp.esri.

com/arcgisdesktop/9.3/index.cfm?TopicName=Geoprocessing%20considerations%

20for%20shapefile%20output. Accessed: 17/10/2011.

Fink, C., C. Piatko, J. Mayfield, D. Chou, T. Finin, and J. Martineau (2009). The Geolocation
of Web Logs from Textual Clues. In Computational Science and Engineering, 2009. CSE’09.
International Conference on, Volume 4, pp. 1088–1092. IEEE.

GATE (2012). Non-english langugage support. http://gate.ac.uk/sale/tao/splitch15.
html#x20-39000015. Accessed: 13/02/2012.

GeoNames (2011). Geonames. http://www.geonames.org/. Accessed: 10/05/2011.

Google (2011). The google geocoding api. http://code.google.com/apis/maps/

documentation/geocoding/. Accessed: 09/12/2011.

80

http://www.statkart.no/eng/Norwegian_Mapping_Authority/
http://www.statkart.no/eng/Norwegian_Mapping_Authority/
http://www.digi.no/790893/regjeringen-sletter-norge-fra-kartet
http://www.digi.no/790893/regjeringen-sletter-norge-fra-kartet
http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/legal/epl-v10.html
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Geoprocessing%20considerations%20for%20shapefile%20output
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Geoprocessing%20considerations%20for%20shapefile%20output
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Geoprocessing%20considerations%20for%20shapefile%20output
http://gate.ac.uk/sale/tao/splitch15.html#x20-39000015
http://gate.ac.uk/sale/tao/splitch15.html#x20-39000015
http://www.geonames.org/
http://code.google.com/apis/maps/documentation/geocoding/
http://code.google.com/apis/maps/documentation/geocoding/

Hevner, A., S. March, J. Park, and S. Ram (2004). Design science in information systems
research. Mis Quarterly 28(1), 75–105.

Ide, N. and J. Véronis (1998, March). Introduction to the special issue on word sense
disambiguation: the state of the art. Comput. Linguist. 24(1), 2–40.

Kartverket (2011). Norway digital - the national geographical infrastructure.
http://www.statkart.no/Norge_digitalt/Engelsk/About_Norway_Digital/. Ac-
cessed: 09/12/2011.

Leetaru, K. H. (2011). Culturomics 2.0: Forecasting large-scale human behavior using
global news media tone in time and space. First Monday 16(9-5).

Manning, C., P. Raghavan, and H. Schütze (2008). Introduction to information retrieval,
Volume 1. Cambridge University Press Cambridge, UK.

Michael D. Lieberman, Hanan Samet, J. S. . J. S. (2007). Steward: architecture of a spatio-
textual search engine. In Proceedings of the 15th annual ACM international symposium on
Advances in geographic information systems, pp. 25. ACM.

Noer, L. K. (2008). Rådyre kart fra staten. http://www.nrk.no/

helse-forbruk-og-livsstil/1.5824212. Accessed: 09/12/2011.

Nunamaker Jr, J. and M. Chen (1991). Systems development in information systems re-
search. In System Sciences, 1990., Proceedings of the Twenty-Third Annual Hawaii Interna-
tional Conference on, Volume 3, pp. 631–640. IEEE.

Parr, T. (2007). The Definitive ANTLR Reference: Building Domain-specific Languages. Raleigh:
Pragmatic Bookshelf.

Solstad, Ø. (2009). Kartverket frigir kartene sine. http://nrkbeta.no/2009/11/12/

kartverket-frigir-kartene-sine/. Accessed: 09/12/2011.

The Stanford Natural Language Processing Group (2012). Stanford log-linear part-
of-speech tagger. http://nlp.stanford.edu/software/tagger.shtml. Accessed:
13/02/2012.

UniComputing, U. . (2012). The oslo-bergen tagger. http://www.tekstlab.uio.no/

obt-ny/english/index.html. Accessed: 13/02/2012.

81

http://www.statkart.no/Norge_digitalt/Engelsk/About_Norway_Digital/
http://www.nrk.no/helse-forbruk-og-livsstil/1.5824212
http://www.nrk.no/helse-forbruk-og-livsstil/1.5824212
http://nrkbeta.no/2009/11/12/kartverket-frigir-kartene-sine/
http://nrkbeta.no/2009/11/12/kartverket-frigir-kartene-sine/
http://nlp.stanford.edu/software/tagger.shtml
http://www.tekstlab.uio.no/obt-ny/english/index.html
http://www.tekstlab.uio.no/obt-ny/english/index.html

Van Rijsbergen, C. J. (1979). Information retrieval. London: Butterworths.

Wirth, N. (1976). Algorithms + Data Structures=programs. Prentice Hall.

WorldGazetteer (2011). World gazetteer. http://www.world-gazetteer.com/. Accessed:
10/05/2011.

Zong, W., D. Wu, A. Sun, E.-P. Lim, and D. H.-L. Goh (2005). On assigning place names
to geography related web pages. In Proceedings of the 5th ACM/IEEE-CS joint conference
on Digital libraries, JCDL ’05, New York, NY, USA, pp. 354–362. ACM.

82

http://www.world-gazetteer.com/

Appendices

Appendix A List of Acronyms

This list contains an overview over the acronyms that are used throughout this text. Be-
fore an acronym is used, it is written out completely and explained if needed. For exam-
ple, POS is explained, but XML is not.

Acronym Definition
ANTLR ANother Tool for Language Recognition
API Application Programming Interface
BNF Backus Naur Form
CLR Common Language Runtime
DOM Document Object Model
HTML HyperText Markup Language
IR Information Retrieval
JVM Java Virtual Machine
NER Named-Entity Recognizer
NLP Natural Language Processing
OBT Oslo-Bergen-Tagger
POS Part-of-Speech tagger
RDF Resource Description Framework
SOSI Samordnet Opplegg for Stedfestet Informasjon

(Coordinated Approach for Spatial Information)
SSB Statistisk Sentralbyrå (Statistics Norway)
SSR Sentralt Stedsnavnregister (Central Place Name

Register)
TLD Top-level domain
URL Uniform Resource Locator
XML Extensible Markup Language

83

	Preface
	Abstract
	Introduction
	Motivation
	Research Problem
	Potential Uses
	Project Overview

	Literature
	Previous Work
	Technology
	Gazetteer
	Part-of-speech tagger
	Map data
	Statens Kartverk
	Norge Digitalt
	Name data
	Programming Language

	Method
	Design Research
	Evaluating with Information Retrieval
	Limitations
	Source Code and Licensing
	Social Aspects
	Data Sources and Copyright
	Language Barrier
	Working Conditions of the Prototype

	Development
	First Iteration
	Data Processing
	Central Place Name Registry
	Article Collector
	Corpus Construction
	Oslo-Bergen-Tagger
	Changing Premises
	Evaluation

	Second Iteration
	Finding Locations
	Candidate Words with Simplistic Grammatical Processing
	Geographical Entities from Lookup Lists
	Geocoder
	Personal Names
	Professions
	Addresses
	Evaluation

	Third Iteration
	Grammatical Processing
	Entity Recognition
	Tagger Web Service
	Web Service Client
	The Extraction Software
	Dropping Proprietary Data Sets
	Evaluation

	Evaluation and Discussion
	Analytical Evaluation
	Descriptive Evaluation
	Tag Generation
	Construction of External Tools
	Semantic Applications
	Statistics and Metrics

	Discussion

	Summary and Conclusion
	Conclusion
	Further Work

	Appendices
	List of Acronyms

