
5.2 Solving Equation Systems by Agreeing and Learning 47

Solving Equation Systems by Agreeing

and Learning

Thorsten Ernst Schilling and H̊avard Raddum

Selmer Center, University of Bergen
{thorsten.schilling,havard.raddum}@ii.uib.no

Abstract. We study sparse non-linear equation systems defined over a
finite field. Representing the equations as symbols and using the Agreeing
algorithm we show how to learn and store new knowledge about the sys-
tem when a guess-and-verify technique is used for solving. Experiments
are then presented, showing that our solving algorithm compares favor-
ably to MiniSAT in many instances.

Key words: agreeing, multivariate equation system, SAT-solving, dy-
namic learning

1 Introduction

In this paper we present a dynamic learning strategy to solve systems of equa-
tions defined over some finite field where the number of variables occuring in
each equation is bounded by some constant l. The algorithm is based on the
group of Gluing-Agreeing algorithms by H̊avard Raddum and Igor Semaev[1, 2].
Solving non-linear systems of equations is a well known NP-complete problem
already when all equations are of degree 2; this is known as the MQ-problem
[3]. Finding a method to solve such systems efficiently is crucial to algebraic
cryptanalysis and could break certain ciphers that can be expressed by a set of
algebraic equations, such as AES [4], HFE [5], etc.

Several approaches have been proposed to solve such systems, among them
SAT-solving [6], Gröbner-basis algorithms [7] and linearization [4]. Since our
algorithm falls into the category of the guess and verify methods, we compared
our solving technique to a state-of-the-art SAT-solving implementation, namely
MiniSAT [8].

We adapt the two past major improvements to the DPLL [9] algorithms,
which are watching and dynamic learning [10]. During the search for a solution
the method obtains new information from wrong guesses and requires for many
instances much less or almost no guessing to obtain a solution to the equation
system. The method we present learns new constraints on vectors over some
finite field Fq and can therefore be seen as a generalization of the most common
learning method SAT-solvers use, which operates on single variables over F2. Like
in SAT-solving the learning routine of our algorithm runs in polynomial time.
Furthermore we show by experimental results that our approach outperforms

48 Scientific Results

MiniSAT for a certain class of equation systems, while there still is space for
improvement of the method.

The paper is organized as follows. In Section 2 we explain the symbol rep-
resentation of equations and the basic idea for agreeing. Section 3 introduces
the concept of pockets, and how pockets efficiently integrate with guessing and
agreeing. Section 4 shows how the solving technique can gather new (valuable)
information from wrong guesses, and Section 5 compares our proposed method
to MiniSAT. Section 6 conculdes the paper.

2 Preliminaries

Let
f0(X0) = 0, f1(X1) = 0, . . . , fm−1(Xm−1) = 0 (1)

be an equation system in m equations and n = |X| = |X0 ∪ X1 ∪ . . . Xm−1|
variables over some finite field Fq. Equations fi are often given in their ANF-
form using the variables in Xi, but here we will use symbol representation.

Definition 1 (Symbol). Let fi(Xi) = 0 be an equation over some finite field
Fq. We say that Si = (Xi, Vi) is its corresponding symbol where Xi is the set of
variables in which the equation fi is defined and Vi is the set of vectors over Fq

in variables Xi for which fi(Xi) = 0 is satisfied.

Following this definition the system (1) can be expressed by a set of symbols
{S0, S1, . . . , Sm−1}. The cost of transforming (1) to a set of symbols is clearly
dominated by the number of equations and the variables involved per equation.
Let l = max{|Xi| | 0 ≤ i < m}. Transforming the system (1) to a set of symbols
can be done in time O(mql) and we say that (1) is l-sparse. The examples in
this paper will only consider q = 2, which is the case for most equation systems
arising in practice.

Example 1 (Symbol). Let the equation

f0(X0 = {x0, x1, x2}) = x0 ⊕ x1x2 = 0

be given over F2. In order to construct S0 = (X0, V0) we need to know V0.
Every vector vi ∈ V0 represents by definition a solution to f0(X0) = 0 and by
searching over all 23 vectors in 3 variables and evaluating them we can compute
V0. Therefore the corresponding symbol is

S0 = (X0 = {x0, x1, x2}, V0 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}).

Throughout the paper a symbol S0 is represented in table-form for better read-
ability. For this example S0 it is

S0 0 1 2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 1 1

5.2 Solving Equation Systems by Agreeing and Learning 49

where the integers 0, 1, 2 in the first row indicate the variables x0, x1, x2 and
a0, . . . , a3 are identifiers of the vectors in V0.

2.1 Agreeing

In order to find a solution to (1) the Agreeing algorithm attempts to delete
vectors from symbols Si which cannot be part of a common solution. In the
following, the projection of a vector vk on variables A is denoted by vk[A] and
V [A] denotes the set of projections of all vectors vk ∈ V on variables A.

Given two symbols Si = (Xi, Vi) and Sj = (Xj , Vj) with i �= j we say that
Si and Sj are in a non-agreeing state if there exists at least one vector ap ∈ Vi

such that ap[Xi∩Xj] �∈ Vj [Xi∩Xj]. If there exists a solution to the system, each
symbol will contain one vector that matches the global solution. The vector ap
cannot be combined with any of the possible assignments in symbol Sj , hence
it cannot be part of a solution to the whole system and can be deleted. The
deletion of all vectors ap ∈ Vi and bq ∈ Vj which are incompatible with all
vectors in Vj and Vi, respectively, is called agreeing. If by agreeing the set of
vectors of a symbol gets empty, there exists no solution to the equation system.
The agreeing of all pairs of symbols in a set of symbols {S0, . . . , Sm−1} until no
further deletion of vectors can be done is called the Agreeing algorithm.

Example 2 (Agreeing). The following pair of symbols is in a non-agreeing state:

S0 0 1 2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 1 1

S1 0 1 3
b0 0 0 0
b1 1 0 1

.

The vectors a2, a3 differ from each bj in their projection on common variables
x0, x1 and can be deleted. Likewise, b1 cannot be combined with any of the ai
and can also be deleted. After agreeing the symbols become:

S0 0 1 2
a0 0 0 0
a1 0 0 1

S1 0 1 3
b0 0 0 0

.

2.2 Guessing

In the example above a further simplification of the equation system by agreeing
is not possible. One has to introduce a guess to the system. With Example 2,
that can be the deletion of vector a0. The system is in an agreeing state and
there exists only a single vector in V0 and V1 which gives us a local solution to
the equation system, namely the combination of a1 and b0, that is x0 = 0, x1 =
0, x2 = 1, x3 = 0.

Since practical examples of equation systems are fully or almost fully pair-
wise agreeing, a single run of the Agreeing-algorithm obtains no or little extra

50 Scientific Results

information about the solution to the system. Thus guessing a vector g ∈ Vi and
deleting all other v ∈ Vi, v �= g of a symbol and verifying the partial solution by
agreeing is a way to find a solution. If the guess was wrong the changes to the
equation system are undone and another guess is introduced.

3 Pocket-Agreeing

We introduce an improvement of the Agreeing algorithm based on the tuple
propagation by I. Semaev [11]. The Pocket Agreeing is closer to a potential
software implementation and offers some speed advantages and a simple learning
process.

The goal is to implement a software method to verify a guess fast. Another
aspect is fast backtracking. That means that when a guess is confirmed as in-
correct, the guess should be undone fast to avoid unnecessary overhead during
the computation.

Definition 2 (Pocket). Let Si = (Xi, Vi) and Sj = (Xj , Vj) be two pair-wise
agreeing symbols with Xi ∩ Xj = Xi,j and |Xi,j | > 0. For every projection
ρ ∈ Vi[Xi,j] one creates a pair of pockets

pα = ({a | a ∈ Vi and a[Xi,j] = ρ}, β), pβ = ({b | b ∈ Vj and b[Xi,j] = ρ}, α))

with α and β as unique identifiers or ∅. For the pocket pα = (A, β), we use the
notation V (pα) = A and I(pα) = β.

The purpose of pockets is to have a system that easily identifies vectors that
cannot be part of a global solution. Assume that all the vectors in a pocket p
are identified as incompatible with a global solution for the system in its current
state, and get deleted. Then we can immediately delete all vectors in pocket I(p)
since these have the same assignment of variables also found in p, and so must
be inconsistent with a global solution too. Also note that one particular vector
from a symbol will in general appear in several different pockets. When a vector
is deleted from one pocket it is also simultaneously deleted from all the other
pockets where it appears.

Example 3 (Pocket). Given the symbols S0, S1 from Example 2 after they are
pairwise agreeing, X0 ∩ X1 = X0,1 = {0, 1}. There exists only one projection
V0[X0,1] = {(0, 0)}, thus there is only one pair of pockets to create, namely

p0 = ({a0, a1}, 1)

p1 = ({b0}, 0).

3.1 Propagation

Given a set of pockets generated from symbols S0, . . . , Sm−1 one can run agreeing
through pockets. In order to do so efficiently one assigns a flag to each vector

5.2 Solving Equation Systems by Agreeing and Learning 51

in the problem instance instead of actually deleting them. The flag of a vector
ai can have three values: undefined, marked, and selected, where the flags of
all vectors are initially undefined. If a vector ai is marked, denoted by ai, it is
not suitable for extending the current partial solution, i.e. it is considered to be
deleted. If an ai is selected, denoted by a+i , it is considered to be part of the
current partial solution, and cannot be deleted. In other words a+i is guessed.

The main rule of propagating information in Pocket-Agreeing for the set of
pockets is: “While there is a pocket pq = (A, b) where all ai ∈ A are marked,
mark all vectors in the pocket pb, if b �= ∅.”

This method is analogous to agreeing, where vectors whose projection is not
found in another symbol are deleted. In Pocket-Agreeing equal projections are
calculated beforehand, stored as pockets, and instead of being deleted as soon
as they are not suitable for extending a partial solution, the vectors are flagged
as marked.

3.2 Watching

One technical improvement of the Pocket-Agreeing is the possibility to introduce
watches as done in SAT-solving. If one wants to implement the Pocket-Agreeing
one has to check constantly if all ai ∈ A are marked in a pocket (A, b). Experi-
ments show that this consumes a lot of time during the propagation.

In order to avoid this, one assigns in every pocket p a watch w ∈ V (p). Only
if the w gets marked it is checked if all the other ai ∈ V (p) are marked too. If w
gets marked there are two possible cases to distinguish:

1. All ai ∈ V (p) are marked, and by the propagation rule all vectors in the
pocket I(p) have to be marked, too.

2. There exists at least one ai ∈ V (p) which is not marked. This is then the
new watch.

This technique reduces the time used in the propagation phase. Also backtrack-
ing, i.e., undoing a guess in case it was wrong, is sped up. If at some point in
the program the conclusion is reached that the guess was wrong, one wants to
undo the changes - namely markings - caused by the last guess, in order to try
another guess.

To do so one just undoes the marking of vectors from the last guess, since
pockets were not changed. The watches can stay the same, since they were by
construction the last vectors which got marked in the pocket, or they are not
marked at all.

3.3 Guessing

The process of guessing starts with selecting one symbol Si where all but one
vector from Vi are marked. The remaining vector v+ gets flagged as selected
in order to remember that it is guessed to be part of a correct solution. Then
Pocket-Agreeing based on the latest markings is started.

Two possible outcomes of the agreeing are possible:

52 Scientific Results

1. Only non-selected vectors get marked. The system is in an agreeing state.

2. At some point the algorithm marks some g+, which is by the description
above the last vector remaining for some symbol. This is called a conflict.

If the system ends in an agreeing state, we pick another symbol, select one of its
vectors, mark the others and continue the propagation. In the case of a conflict
the extension of the partial solution with the previous guess(es) was not possible,
and we must backtrack.

4 Learning

During the computation of a solution to the input equation system, it is nat-
ural that wrong guesses occur. It is now interesting why these occur, since a
wrong guess implies that a wrong branch of the search tree was visited. Usually,
the implications that show a guess must be wrong only involve a subset of the
introduced markings. The purpose of this section is to identify exactly which
markings yield a proof of inconsistency for the system. By storing this informa-
tion the solver learns new facts about the system, and the overall number of
guesses needed to find the solution is reduced.

Definition 3 (Implication Graph). An implication graph G is a directed
graph. Its vertices are vectors which are marked.

For a marked vector ai the pocket P (ai) is the pocket where all vectors became
marked, and by propagation caused the marking of ai. If the marking of ai is due
to an an introduced guess then P (ai) = ∅. The set of directed edges E consists
of all markings due to propagation, i.e.:

(ai, aj) ∈ E if ai ∈ V (P (aj)).

Edges (ai, aj) are labeled by P (aj).

Example 4 (Implication Graph). Let the following pockets be given.

p0 = ({a0}, 1)

p1 = ({c0, c1}, 0)

p2 = ({b0, b1}, ∅)

p3 = ({c0}, 2)

Introducing the marking a0 would yield the following implication graph.

The implication graph is not unique and depends on the order in which empty
pockets are processed.

5.2 Solving Equation Systems by Agreeing and Learning 53

Fig. 1. Example Implication Graph.

4.1 Conflict Analysis

Let g+ be the vector which yielded the conflict, that is it was flagged as selected
and by agreeing became marked. The immediate source of the conflict is the
marking of all hj ∈ V (P (g+)). But for further analysis we are more interested
in vectors which caused the conflict by introducing a guess. These are hj ’s con-
nected to g+ in the implication graph, where P (hj) = ∅. By analyzing the graph
we can find the hj ’s recursively:

R(g) = {hj |hj ∈ V (P (g)) and P (hj) = ∅} ∪
⋃

hj∈V (P (g))

P (hj) �=∅

R(hj). (2)

R(g) will then be the set of marked vectors due to guesses, that caused g to be
marked. In other words, R(g) tells us exactly which of the introduced guesses
that are incompatible with g being part of the solution. This information can be
stored as a new pocket, as shown in the following.

4.2 Conflict Construction & Reduction

Assume the marking of g+ yields a conflict and we have found that R(g) =
{h0, h1, . . . , hr} are the marked vectors that imply the marking of g+. We can
now create a new pair of pockets with the implication

R(g)⇒ g,

i.e., if all vectors in R(g) are marked, then g must be marked. The pockets
expressing this are

ps∗ = ({h1, . . . , hr}, t)
pt = (g, ∅).

(3)

However, storing (3) for further computation does not give us any new infor-
mation, since it is a direct consequence of agreeing. We are more interested in
a reduced condition under which we can mark g and exclude it from a common
solution during the search process. The following lemma shows how to find a
reduced condition for when g can be marked.

Lemma 1. Let the pockets p = ({h1, . . . , hr}, q) and pq = ({g1, . . . , gs}, ∅) be
given. For any hj and gi, let Xgihj

be the set of variables that are common to both

54 Scientific Results

hj and gi. Let H be the set of vectors hj ∈ V (p) such that hj [Xgihj
] �= gi[Xgihj

]
for all i. Then marking all vectors in V (p) \ H implies marking all vectors in
V (pq).

Proof: Mark all vectors in V (p) \H and assume that some gi is part of the
solution to the system and should not be marked. Since any vector hj ∈ H
is different in its projection on Xgihj

from gi[Xgihj
], no vectors in H can be

combined with gi in a global solution, so all vectors in H must be marked. Then
the pocket p yields that gi must also be marked. This conflict shows that gi
cannot be part of the solution to the system after all, so all vectors in V (pq)
should be marked once the vectors in V (p) \H are marked. ��

Using this lemma, we delete from the vectors in R(g) all hj for which is true
that

hj [Xghj
] �= g[Xghj

],

and save the implication in a pair of pockets:

ps = ({hj |hj ∈ R(g) and hj [Xghj
] = g[Xghj

]}, t)

pt = (g, ∅).

These two pockets are then added to the list of pockets the system already
knows.

From the conflict described above we can also derive further new knowledge.
Up until now we have our reduced implication ps ⇒ pt, i.e. if all vectors in ps
are marked, mark the vector g ∈ V (pt). Also, it holds for any vector g that

g+ ≡ g1, g2, . . . , gr with gi �= g and g, g1, . . . , gr are all vectors in a symbol (4)

Thus g can become an implicit guess by marking all other gi’s in the same
symbol. From the pair of pockets ps, pt we can now further derive that if g is
guessed, at least one of the vectors in ps has to be selected. Otherwise all hj in
ps would be marked, and the pockets ps, pt would yield a conflict. We express
this with the following lemma.

Lemma 2. Let the pockets ps = (h1, . . . , hr, t) and pt = (g, ∅) be given. For any
symbol Sγ = (Xγ , Vγ) such that Vγ ∩ V (ps) �= ∅ the implication of the following
pockets must hold:

psγ = ({g1, . . . , gr|gi �= g} ∪ (V (ps) \ Vγ), tγ)

ptγ = (Vγ \ V (ps), ∅)

Proof: Let ps = ({au, . . . , av, bx, . . . , by}, t) where {bx, . . . , by} = V (ps) ∩ Vγ .
Then the condition g+, au, . . . , av implies that one of bx, . . . , by has to be selected
(guessed). Otherwise, if none of bx, . . . , by are selected all vectors in V (ps) are
marked, and g has to be marked too (by ps ⇒ pt). This would be a conflict since
g+ is implicitly selected. Guessing one of bx, . . . , by implies the marking of all
vectors in Vγ \ {bx, . . . , by}, which is exactly the set of vectors in ptγ . ��

By using Lemma 1, we should also reduce the condition for when the vectors
in V (ptγ) can be deleted by excluding vectors in V (psγ) that differ in projection
on common variables to all vectors in V (ptγ).

5.2 Solving Equation Systems by Agreeing and Learning 55

Remark 1 (Cycle-rule). Lemma 1 is an extension to the cycle-rule by Igor Se-
maev [12]. The cycle-rule states that through (4) it is possible to delete from
an implication a0, . . . , ar ⇒ h0, . . . , hs those ai which belong to the same sym-
bol as h0, . . . , hs. However, the cycle-rule is extended by removing vectors from
a0, . . . , ar which do not belong to the same symbol, but only differ in their pro-
jection from the vectors h0, . . . , hs. Note that if two vectors belong to the same
symbol, they always differ in their projection on common variables.

4.3 Non-chronological Backtracking

After the learning is completed the last guess should be undone and based on
the extended pocket database Agreeing should run again. If the system is now
in a non-agreeing state it can only be due to newly learnt pockets ps. Thus any
change to the system that does not involve vectors in V (ps) will necessarily result
in a conflict again. Therefore we can jump back to the tree-level at which the
last change in an ps occurred, depending on which pocket yielded the conflict.
This way we cut futile branches of the search tree and economize the search in
the number of guesses.

Example 5. Let the following equation system be given:

S0 1 2 3
a0 0 0 0
a1 0 1 1
a2 1 1 0
a3 1 1 1

,

S1 2 4 5 6 12
b0 0 1 0 0 0
b1 0 1 0 1 0
b2 0 1 1 0 1
b3 1 0 1 1 1

,

S2 4 7 8
c0 1 0 0
c1 1 0 1
c2 0 1 0
c3 0 1 1

,

S3 1 9 10
d0 0 0 1
d1 0 1 0
d2 1 0 0
d3 1 1 1

,

S4 10 11 12
e0 0 0 1
e1 0 1 0
e2 1 0 0
e3 1 1 1

,

S5 9 11 12
f0 0 0 1
f1 0 1 0
f2 1 0 0
f3 1 1 1

.

The intersection graph in Figure 2 indicates pairs of symbols from which
pockets are generated. The labled edges between symbols show intersections in
the sets of variables. No pockets are generated from the pair S1, S5 since changes
of variable x12 will propagate through the path S1, S4, S5 while agreeing.

Assume that by some heuristic the order of symbols to be guessed is S0, S1, S2,
S3, S4, S5. The partial solutions a

+
0 , b

+
0 , c

+
0 are selected in that order. This results

in the following equation system after agreeing:

S0 1 2 3
a0 0 0 0

,
S1 2 4 5 6 12
b0 0 1 0 0 0

,
S2 4 7 8
c0 1 0 0

,
S3 1 9 10
d0 0 0 1
d1 0 1 0

,
S4 10 11 12
e1 0 1 0
e2 1 0 0

,
S5 9 11 12
f1 0 1 0
f2 1 0 0

.

For a further extension of the partial guess one tries to extend the partial
solution by d0. The resulting implication graph after marking d1 is shown below.
Marking d1 causes e1 to be marked by pocket p18, which again causes f1 and
d0 to be marked by pockets p26 and p21. This is clearly a conflict, since d0 was
previously selected but should be marked now. Now we analyze the source of
the conflict in order to learn from it.

R(d0) = {a1, a2, a3, b2, d1}

56 Scientific Results

S0

S3 S5 S1

S4

S2

{1}
{2}

{4}

{12}

{12}{10}

{9}

{11, 12}

p0 = ({a0}, 1) p1 = ({b0, b1, b2}, 0)
p2 = ({a1, a2, a3}, 3) p3 = ({b3}, 2)
p4 = ({a0, a1}, 5) p5 = ({d0, d1}, 4)
p6 = ({a2, a3}, 7) p7 = ({d2, d3}, 6)
p8 = ({b0, b1, b2}, 9) p9 = ({c0, c1}, 8)
p10 = ({b3}, 11) p11 = ({c2, c3}, 10)
p12 = ({b0, b1}, 13) p13 = ({e1, e2}, 12)
p14 = ({b2, b3}, 15) p15 = ({e0, e3}, 14)
p16 = ({d0, d3}, 17) p17 = ({e2, e3}, 16)
p18 = ({d1, d2}, 19) p19 = ({e0, e1}, 18)
p20 = ({d0, d2}, 21) p21 = ({f0, f1}, 20)
p22 = ({d1, d3}, 23) p23 = ({f2, f3}, 22)
p24 = ({e0}, 25) p25 = ({f0}, 24)
p26 = ({e1}, 27) p27 = ({f1}, 26)
p28 = ({e2}, 29) p29 = ({f2}, 28)
p30 = ({e3}, 31) p31 = ({f3}, 30)

Fig. 2. The intersection graph and the resulting pockets. Dotted edges in the intersec-
tion graph are ignored.

Fig. 3. Implication Graph of guess a0, b0, c0, d0.

5.2 Solving Equation Systems by Agreeing and Learning 57

To create the reduced ps we compare projections of a1, a2, a3, b2, d1 in common
variables to projections of d0. We see that a2 and a3 have a different projection
than d0 on their common variable x1, so these vectors can be excluded from ps
by Lemma 1. d1 can obviously also be excluded since it belongs to the same
symbol as d0. After this reduction we get:

p32 = ({a1, b2}, 33)

p33 = ({d0}, ∅).

Using Lemma 2 we also derive:

p34 = ({d1, d2, d3, a1}, 35)

p35 = ({b0, b1, b3}, ∅)

p36 = ({d1, d2, d3, b2}, 37)

p37 = ({a0, a2, a3}, ∅)

After this learning process we agree the system again, with our newly ob-
tained knowledge. The pockets p32 and p33 cause d0 to be marked. This implicitly
selects d+1 , which immediately yields another conflict, without introducing any
new guess. Thus the guesses a+0 , b

+
0 , c

+
0 cannot all be right. We can immediately

read from p32 where to backtrack. We see from p32 that the guessing of c+0 was
not a cause for the conflict, otherwise there would be some ci-vectors in p32. This
tells us that if we now backtrack and select, say c+1 , we will end up in the very
same conflict again. Hence we can go back to the point where b0 got guessed
(and b2 marked) and try selecting another bj-vector. Bypassing the guesses on
all ci-vectors that would be due in a naive search algorithm saves a lot of time.

Figure 4 shows the decision tree until the first solution is found. Branches
not incorporating vectors from all symbols indicate conflicts. Connected to the
dotted lines are the newly learned pockets. In comparison the naive search tree,
without learning, is depicted in Figure 5.

4.4 Variable-based guessing

In the algorithm we have explained, we guess on which of the possible assign-
ments in a symbol that is the correct one. It may look more natural to guess
on the value of single variables as is done in SAT-solving. Given an instance
S0, S1, . . . , Sm in variables X there exists a simple way to realize variable-based
guessing. Instead of establishing a separate mechanism of introducing the guess
on a single variable one inserts new symbols of the form Sxi

= ({xi}, {v0 =
0, v1 = 1}) for every xi ∈ X before the pocket generation. These symbols con-
tain no information but can easily be integrated into the system. Assume one
wants to guess that xi = 0. From the newly inserted symbol one just marks v1
and propagates the guess by agreeing instead of keeping a separate table of all
vectors in which xi occurs as 1 and marking them. Another advantage is that
this way of introducing variable guessing integrates with the learning without
problems.

58 Scientific Results

Fig. 4. Search tree with learning.

Fig. 5. Naive search tree.

5.2 Solving Equation Systems by Agreeing and Learning 59

Of course this approach works for other fields than F2, too. Assume an equa-
tion system over Fq then one inserts for every xi ∈ X a symbol Sxi

= ({xi}, Vxi
=

{vj |vj ∈ Fq}).

5 Experiments

5.1 Results

In order to evaluate the strength of the proposed solving algorithm, several
experiments were made with random equation systems over F2. A software,
calledGluten, that implements the algorithm was developed. To get a comparison
with another solving technique we took a SAT-solver, namely MiniSAT since the
guess/verify technique to obtain a solution is similar. Furthermore SAT-solving
is a well researched field and MiniSAT among the fastest programs in this field.

Rather than comparing pure solving time we compare the number of vari-
able guesses needed until a solution to the system is obtained. During all the
experiments it holds m = n, i.e. the number of equations is equal to the number
of variables. We make sure the systems have at least one solution. The sparsity
l is also fixed to l = 5. The ANF degree for the equations we generate will be
randomly distributed, but will of course be upper bounded by the sparsity. Fur-
thermore every m = n was tested with 100 randomly generated instances and
the arithmetic mean calculated afterwards.

Figures which display both very large and very small values are log-scaled
for better readability.

5.2 Random Instances

In this experiment the expected number of roots for every equation is E(|Vi|) =
24 and binomially distributed, as would be the case when the symbols are ob-
tained from random ANF’s.

 10

 100

 1000

 10000

 100000

 60 80 100 120 140 160 180 200 220

G
ue

ss
es

Variables (m=n)

Gluten
miniSAT

Fig. 6. Gluten vs. MiniSAT (log-scale)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 60 80 100 120 140 160 180 200 220

G
ue

ss
es

Variables (m=n)

Error
Average

Fig. 7. Gluten average and error (log-scale)

60 Scientific Results

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50 60 70 80 90 100

G
ue

ss
es

Sample nr.

Gluten
miniSAT

Fig. 8. n = m = 200

 10

 100

 1000

 10000

 100000

 60 80 100 120 140 160 180 200 220

G
ue

ss
es

Variables (m=n)

Error
Average

Fig. 9. MiniSAT average and error (log-
scale)

In Figure 6 one can see that Gluten performs clearly better up til around
m = n = 170. Afterwards the average values for MiniSAT stay low while the
number of guesses for Gluten rise fast. Figure 7 shows that the error margin is
very high to the average in comparison to the error margin of MiniSAT, shown
in Figure 9. In other words, Gluten runs into a few cases where it makes an
extremely high number of guesses whereas MiniSAT is able to keep its number
of guesses not too far from the average.

To get a better comparison of both methods in Figure 8, the case of n =
m = 200 along with the sample number is given. For every of the 100 samples
the black bar indicates the number of variable guesses Gluten took to obtain a
solution and the grey bar shows the number of guesses MiniSAT took to find a
solution. In approximately 1/3 of all samples Gluten performs worse, in the rest
approximately equally or better.

5.3 Uniformly distributed number of roots

The case when the number of roots in the equations are distributed uniformly at
random was also investigated. That means that the size of Vi is taken uniformly
at random from [1, 2l − 1] for each symbol.

In this scenario Gluten performs much better on the whole spectrum of the
experimental data. As Figure 10 and 11 shows the number of guesses for Gluten
rise linearly while the curve giving the number of MiniSAT’s guessings seems to
be quadratic (the polynomial 0.0232n2 + 1.6464n − 15.4 fits the dashed curve
very well). The Gluten values are less than 50; note the different scalings in
Figure 10 and 11. It is also interesting to notice that Gluten only needs to make
very few guesses, even for systems with over 250 variables.

6 Conclusion & Further Work

We have shown how new knowledge about the equation system can be obtained
in polynomial time when guessing partial solutions and running the Agreeing

5.2 Solving Equation Systems by Agreeing and Learning 61

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200 250

G
ue

ss
es

Variables (m=n)

Gluten
miniSAT

Fig. 10. Gluten vs. MiniSAT

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 100 150 200 250

G
ue

ss
es

Variables (m=n)

Error
Average

Fig. 11. Gluten average and error

algorithm. New constraints on vectors defining partial solutions can be added
and using this, futile search-regions can be pruned. Our experiments show our
proposed algorithm performs better than SAT-solving in a large number of in-
stances. In particular, the experimental data shows that it is only necessary to
make a small number of guesses to solve systems where the number of roots are
uniformly distributed.

Several mechanisms are not yet introduced to our algorithm. Among them are
random restarts during the search process or random guesses. It is obvious that
a good guessing heuristic is crucial for the success of a solver of this kind. While
SAT-solving is well studied and a lot of different search-heuristics are available,
this is still an open field and topic for future research for the algorithm proposed
in this paper.

References

1. Raddum, H.: MRHS Equation Systems. Lecture Notes in Computer Science 4876

(2007) 232–245

2. Raddum, H., Semaev, I.: Solving Multiple Right Hand Sides linear equations.
Designs, Codes and Cryptography 49(1) (2008) 147–160

3. Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). Lecture Notes in
Computer Science 2612 (2003) 141–157

4. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. Lecture Notes in Computer Science 2501 (2002) 267–287

5. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization. In: CRYPTO ’99: Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology, London, UK, Springer-Verlag
(1999) 19–30

6. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. Journal of
Automated Reasoning 24(1) (2000) 165–203

7. Faugère, J.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3) (1999) 61–88

8. Een, N., Sörensson, N.: Minisat v2.0 (beta). Solver description, SAT Race
http://fmv.jku.at/sat-race-2006/ (2006)

62 Scientific Results

9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7) (1962) 394–397

10. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the 38th conference on Design automation,
ACM New York, NY, USA (2001) 530–535

11. Semaev, I.: Sparse algebraic equations over finite fields. SIAM Journal on Com-
puting 39(2) (2009) 388–409

12. Semaev, I., Schilling, T.: Personal correspondence (2009)

