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Abstract 
 

Marine fishes are subdivided into genetically separated units at various geographical scales. 

The mechanisms contributing to distinct populations may include year-round site fidelity or 

natal homing of juvenile and adult stages. Restricted dispersal of pelagic eggs and larvae, 

associated with ocean environmental conditions, can also enhance distinction between 

populations. In Norwegian waters, Norwegian coastal cod (NCC) and Northeast Arctic cod 

(NEAC) are managed as separate units, but increasing evidence demonstrates that the NCC 

may be structured into local populations on a surprisingly small scale, and that each single 

fjord population should be preserved for genetic diversity and population persistence. Until 

now, few studies have been done on ecological and physiological differences among local 

populations.  

This thesis was motivated by gaining increased understanding of how retention mechanisms 

of early life stages along the coast and fjord areas of Norway might contribute to the 

diversity in coastal cod population structure. A key factor here is believed to be egg 

buoyancy, i.e. the ability of the eggs to float naturally in seawater. Therefore, this thesis 

addresses how basic physical, chemical and biological properties influence egg buoyancy to 

ultimately understand population structuring of Atlantic cod. Specifically it is studied 

whether or not the phenotypes of egg specific gravity (ρegg), which is a key biological factor 

determining egg vertical distribution, are different among local populations. Regarding 

basic knowledge of egg buoyancy, it is examined what are physiological and physical 

determinants of ρegg, i.e., in light of the important roles of egg osmoregulatory capacity 

influencing ooplasm specific gravity and the chorion (eggshell) thickness and specific 

gravity, respectively. The data of ρegg are applied to model egg dispersal during the 

spawning season in Northern Norway. The modelling results are discussed in the context of 

metapopulation structure (defined here as a set of semi-independent local populations 

within a larger area, where typically migration from one local population to another is 

possible).  

The eggs used in this thesis were naturally spawned from broodfish and incubated under 

optimal condition in flow-through aquaria until hatching. In general terms, fertilized eggs 

showed a slight rise in ρegg until gastrulation (~4 days old) and then a gradual decline in ρegg 

was apparent until full development of main organs (~10 days old), but ρegg suddenly 
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increased just before hatching (~13 days old). This temporal trend during development 

seems to be typical for pelagic marine fish eggs. The long-lasting decline of ρegg was 

attributable to the changes in yolk volume. The initial value of ρegg before spawning was 

largely determined by the volume fraction of chorion in an egg. When the eggs reduced the 

specific gravity at later stages, adenylate nucleotides (ATP and ADP) significantly 

increased. The indicated higher content of energy source might reflect an improved ability 

for energy-demanding osmoregulation. There was no seasonal trend in ρegg within females, 

but considerable variation in ρegg was observed among females. Nevertheless, no significant 

difference was noted in ρegg among local populations. The mean ρegg of the NEAC was 

similar to that of the NCC, indicating that eggs from the two stocks should have similar 

vertical distribution under the same environmental conditions. The use of egg dispersal 

models led to the conclusion that the degree of egg retention is high in fjords, intermediate 

in coastal areas, and zero in offshore areas. Demographic exchange by egg dispersal could 

be low not only between fjords and coastal areas but also among neighbouring fjords. With 

the evidence of resident behaviour in NCC populations, each fjord population may evolve 

as a discrete population in a metapopulation context. 
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Introduction 
 

Early life stages, in many cases, are separated spatially from later stages, and they drift 

passively with ocean currents. The offspring grow, develop, and mature in appropriate 

nursery grounds to join their parental spawning populations, as described in the Migration 

Triangle Hypothesis (Harden Jones 1968). Sinclair (1988) proposes the Member-Vagrant 

Hypothesis that local retention of eggs and larvae by physical ocean structural features 

helps maintain marine populations. He refers to the individuals retained within appropriate 

habitat as “members”, and those lost to the local spawning population as “vagrants”. As 

seen in the two hypotheses, connections from one life stage to another is important to close 

life cycles, and ocean hydrodynamics are closely related to marine population dynamics. 

Knowledge of the vertical distribution of fish eggs and larvae is crucial for understanding 

transport patterns and potential survival. The vertical distribution is determined by 

interaction between biological (buoyancy and size) and physical (water density, viscosity, 

turbulence) factors (Sundby 1991). Sprat (Sprattus sprattus) eggs in the Baltic Sea show a 

seasonal decline in egg specific gravity during spawning season (May–June). Due to this 

variation in egg buoyancy, eggs are distributed mainly in the deep layers early in the season, 

occurring in and above the halocline during peak spawning and above the halocline towards 

the end of the spawning season (Nissling et al. 2003). It is also expected that if wind-driven 

currents transport eggs eastward into low salinity regions, the eggs would sink and die due 

to low oxygen conditions at depth (Petereit et al. 2009). In the Northern Benguela 

upwelling ecosystem, hake (Merluccius capensis) have developed a robust spawning 

strategy based on spawning depth and egg buoyancy, which bring the eggs and larvae 

inshore to beneficial survival areas of high prey concentration and prevent offshore larval 

loss (Sundby et al. 2001). Sardine (Sardinops sagax) eggs and larvae are well adapted to 

circulation systems in the Northern Benguela in a way that promotes retention of the larvae 

in inshore nursery areas (Stenevik et al. 2003). In the study of episodic wind effects on 

planktonic stages, Asplin et al. (1999) argue that fish spawning depth and egg buoyancy 

may have evolved to reduce dispersal of the early life stages. For example, the spawning 

season of coastal cod (Gadus morhua) in a fjord coincides with frequent winds from the 

south so that cod eggs tend to be retained under down-welling conditions. Paris and Cowen 

(2004) indicate that larvae of coral reef fish have active swimming ability by which they 

can increase the chances of retention near the parental populations. These findings support 
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the view of common retention mechanisms of early life stages among marine species 

(Swearer et al. 2002). 

Recruitment from fish larvae to juveniles/adults is not easily studied owing to the small size 

and high mortality rates of the larvae. Traditional mark-recapture experiments have not 

been able to identify natal origins of marine fishes. However, recent advances in tagging 

techniques, such as archival tags and natural geochemical signatures in otoliths (ear bones), 

have lead to a wide consensus that marine fish species return to natal spawning grounds 

(‘natal homing’) (Thorrold et al. 2001; Svedäng et al. 2007). However, complete retention 

throughout the planktonic life stages is not necessary to guarantee genetic isolation of the 

adult populations, as long as older individuals have strong natal homing behaviour at any 

stage of their life (Svedäng et al. 2007). Petitgas et al. (2010) propose that learning behavior 

also is one of the determinants of life cycle closure. That is, once a fish has adopted an 

initial migration trajectory, population persistence could be reinforced by learning and 

social interaction because fish have sensory capabilities for communication. As for Atlantic 

herring (Clupea harengus), it is hypothesized that migration routes are learned and adopted 

by young and first-time spawning herring (i.e. recruit spawners) as they join older and more 

experienced spawning herring (i.e. repeat spawners) (McQuinn 1997). With its resident 

behaviour, Pacific cod (Gadus macrocephalus) lay a single batch of demersal eggs and the 

larvae remain near the bottom of the water column. Dispersal of the adult is limited by 

bathymetric and oceanographic (temperature or salinity) barriers (Cunningham et al. 2009), 

thus potentially all life history stages can be retained within geographically small areas. In 

dynamic ocean environment, these features of behavioural repertoires can be changed (Rose 

et al. 2011). Small pelagic capelin (Mallotus villosus) modify spawning locations and 

feeding areas in response to climate-driven changes in temperature (Huse and Ellingsen 

2008).  

A single fish species can occur over a wide area within which its distribution is essentially 

discontinuous. Subareas can have a characteristic population or set of local populations, 

either of which may be recognized as stocks (Iles and Sinclair 1982). Generally, stock is 

defined as an intraspecific group of randomly mating individuals with temporal or spatial 

integrity (Ihssen et al. 1981), and considered to be a management unit (Larkin 1972). In this 

thesis, the term ‘stock’ is only used when it refers to fisheries assessment entities, otherwise 

the term ‘population’ is used. A metapopulation concept has been embraced in conservation 
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biology and management (Hanski and Simberloff 1997). The metapopulation is broadly 

defined as a collection of local populations inhabiting discrete patches of suitable habitat, 

interacting through dispersal and persisting in a balance between stochastic extinctions and 

recolonizations (Hanski and Gilpin 1997). The present thesis addresses how egg buoyancy 

contributes to population separation during early life history stages and attempts to 

understand population structure in the context of the metapopulation.   

 

Motivation and study objectives 
 

Atlantic cod populations have diverged but intermingle during particular life history stages 

at spawning, nursery or feeding areas (Svedäng et al. 2010). In Norwegian waters, 

Northeast Arctic cod (NEAC) and Norwegian coastal cod (NCC) are managed as separate 

units. The two stocks can be distinguished from one another by differences in the structure 

of growth zones (Stransky et al. 2008), genetic structures (Sarvas and Fevolden 2005), and 

the number of vertebrae (Berg and Albert 2003). Also the two stocks have different life 

history characteristics. NEAC feeding areas are the Barents Sea and near Svalbard, but they 

perform a long distance of spawning migration from the feeding areas to the coast of 

Norway, partly co-existing in the same areas as NCC during spawning seasons. NCC 

inhabit coastal areas and fjords of Norway with short migration patterns, and spawn closer 

to inshore and in shallower regions than NEAC. Fjord-spawning NCC is more stationary 

than coastal-spawning NCC (Olsen et al. 2010). Recently, population genetic studies have 

shown that NCC may be structured into local populations on a surprisingly small scale 

(Pogson and Fevolden 2003; Dahle et al. 2006; Westgaard and Fevolden 2007; Knutsen et 

al. 2011). The spatial scale has been narrowed down to the level of individual fjords, so 

growing consensus is that there is a need to preserve spawning and nursery areas at a local 

scale in order to preserve genetic diversity and population resilience of the NCC (Jorde et al. 

2007; Olsen et al. 2008).  

Few studies have been done to elucidate spatially structured adaptive traits based on 

ecological and physiological differences among local populations of NCC. Local variation 

in total length and maturity at age has been found between cod from different fjords and 

coastal waters (Berg and Albert 2003) and along the Skagerrak coast (Olsen et al. 2004). 

Otterå et al. (2006, 2012) found different spawning time among four local populations 
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under identical environmental conditions. These findings may reflect genetic variations 

interacting across the local populations. Ciannelli et al. (2010) and Myksvoll et al. (2011) 

reported a retention mechanism of cod eggs within fjords in relation to fjord circulation 

patterns. In this sense, it is of interest to investigate whether local populations have 

hereditary characteristics in egg specific gravity selecting for vertical distributions that 

would contribute to local recruitment and separation of populations. Moreover, 

physiological features of egg specific gravity can provide basic knowledge for egg viability 

and realistic understanding of egg dispersal. 

In this thesis, the main focus is on physiological and ecological significance of egg 

buoyancy to ultimately understand population structuring of Atlantic cod. Specifically it is 

first explored theoretically and experimentally what determines egg specific gravity of 

Atlantic cod (Paper I), and how egg buoyancy is associated with osmoregulatory ability 

using biochemical components (Paper II). At the population level, it is studied whether or 

not the phenotypes of egg specific gravity are different among local populations by 

undertaking laboratory examinations (Paper III). The measurements of egg specific gravity 

are applied to model egg dispersal patterns during spawning seasons along the coasts and 

fjords in the northern Norway with regard to population connectivity in real local 

environments (Paper IV). With these results from four papers, the general discussion 

focuses on egg buoyancy, egg vertical distribution, maternal effects on egg viability, and 

spatial population structure in a metapopulation context. 

 

Summary of papers 
Paper I 

• This study examines what determines egg specific gravity of Atlantic cod (Gadus 

morhua L.) by measuring egg diameter, dry weight, water content, yolk volume, 

perivitelline space, chorion (eggshell) thickness, and egg specific gravity. Based on the 

physiological measurements, working hypotheses are (1) that egg specific gravity 

varies during embryonic development caused by changes in yolk volume and (2) that 

individual variability of initial egg specific gravity is determined by differences in 

chorion thickness and relative chorion volume fractions. For comprehensive 

understanding of the variability, the specific gravity of yolk plus embryo is calculated 

and discussed in detail. 



11 
 

• Main findings: in general terms, the specific gravity of fertilized eggs increases 

slightly until the completion of gastrulation and then gradually decreases, but with a 

sudden increase just prior to hatching. Yolk volume decreases as development 

progresses. Among individual egg batches, there is a significant relationship between 

egg specific gravity and chorion volume fraction, indicating that eggs with a relatively 

small fraction of chorion volume have low egg specific gravity, while eggs with a high 

fraction of chorion volume have high egg specific gravity. This study confirms that 

chorion material is a main contributor to the initial egg specific gravity. During 

development, it is expected that the simultaneous changes of volume increase and 

osmolarity decrease of the yolk plus embryo cause the eggs to be more buoyant at later 

stages.  

 

Paper II 

• Changes in egg specific gravity are partly due to impaired osmoregulation. This study 

examines universal cellular membrane “sodium-potassium ATPase pump” indirectly 

by relating ooplasmic content of adenylate nucleotides (ATP, ADP and AMP), 

coenzymes (FAD and NAD) and the resulting energy charge (EC) (EC = ([ATP] + 

0.5[ADP]) / ([ATP] + [ADP] + [AMP])) with the corresponding egg specific gravity. 

Working hypotheses are (1) that adenylate nucleotide content increases and egg 

specific gravity decreases as the embryo develops and (2) that energy charge influences 

egg specific gravity. 

• Main findings: egg diameter and egg dry weight decline during spawning season, 

while egg specific gravity is approximately constant between egg batches. Within each 

egg batch, the mean specific gravity at early stages decreases at later stages, 

accompanied by increased contents of ATP and ADP. The high content of ATP might 

reflect an improved ability for egg osmoregulation. Hence, a low level of energy charge 

is believed to have negative implications for egg buoyancy. This study demonstrates 

that egg buoyancy in Atlantic cod is a positive function of energy charge, egg size, and 

egg developmental stage. The eggs used in the study are regarded as good quality eggs, 

so cod eggs in nature are assumed to have similar trends in egg specific gravity and 

levels of nucleotides. 
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Paper III 

• Based on the increasing evidence of small-scaled geographical differentiations of 

local cod populations, the study objective is to examine if there are differences in egg 

specific gravity among local cod populations. It is hypothesized (1) that maternal 

attributes affect egg specific gravity and (2) that the phenotypes of egg specific gravity 

are different among local cod populations. 

• Main findings: the relationship between egg specific gravity and female total length is 

not significantly correlated, but a negative trend is noticed. The phenotypes of egg 

specific gravity are similar among local populations and the associated variability is 

greater at the individual level than at the population level. The noted gradual decrease 

in specific gravity during development seems to be a generic pattern for pelagic fish 

eggs. Due to no significant differences in egg specific gravity between Norwegian 

coastal cod and Northeast Arctic cod, the eggs from the two stocks should coexist 

locally with similar vertical distributions under the same environmental conditions. The 

study provides needed input to adequately understand and model fish egg dispersal. 

 

Paper IV 

• The Norwegian coast is populated by oceanic cod, coastal cod, and fjord cod. The aim 

of this study is to evaluate connectivity among different local cod populations in 

northern Norway, by analyzing dispersal patterns during egg stages. The working 

hypothesis is that physical environmental conditions influence egg dispersal. Moreover, 

the current results by a numerical ocean model are discussed in the context of 

metapopulation structure in Norwegian coastal cod.  

• Main findings: the spawning areas are classified into three egg retention regimes: 

large retention in fjords, intermediate in coastal areas, and no retention in offshore 

areas. The high retention in fjord systems is associated with subsurface distribution of 

the eggs caused by local salinity profiles. The intermediate retention is associated with 

small-scale eddies and friction in between the various small islands. Offshore areas are 

highly influenced by the northward flowing Norwegian Coastal current. With the 

previous studies of spawning-site fidelity of adult cod, the high egg retention in fjords 

supports the idea of substructuring NCC in a metapopulation context. 
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General discussion 
 

Egg buoyancy  
 

Definition, determinant, and variability 
 

Egg buoyancy is defined as the difference in specific gravity between the ambient water and 

the egg. Based on this principle, fish eggs can be described largely as pelagic, bathypelagic, 

and bottom eggs where their vertical distributions are determined by the balance between 

the buoyancy forces and the diffusive forces (Sundby 1991). Pelagic eggs have positive 

buoyancy due to lower specific gravity than ambient water of the upper mixed layer, and 

are consequently distributed with increasing concentration towards the surface. 

Bathypelagic eggs are intermediate in specific gravity between the upper mixed layer and 

the bottom layer, and are consequently distributed in the pycnocline with peak 

concentration at the depth of neutral egg buoyancy. Bottom eggs have negative buoyancy 

due to higher specific gravity than the bottom layer, and are consequently distributed with 

increasing concentration towards the sea bed (Page et al. 1989; Sundby 1983, 1991). 

Although buoyancy measurements of marine fish eggs have been made on a very limited 

number of species, we know that the majority of marine fish eggs are positively buoyant 

with increasing egg numbers towards the surface (Sundby 1983). Examples of pelagic egg 

distribution are eggs of North Sea mackerel (Trachurus trachurus) (Iversen 1973), North 

Sea place (Pleuronectes platessa) (Pommeranz 1973; Coombs et al. 1990), Northeast Arctic 

cod (Gadus morhua) (Sundby 1983), sardine (Sardina pilchardus) and anchovy (Engraulis 

encrasicolus) off the southern coast of England (Southward and Barrett 1983) and the Bay 

of Biscay (Coombs et al. 2004), and Benguela sardine (Sardinops sagax) (Stenevik et al. 

2001). Examples of bathypelagic egg distribution are found among eggs of Atlantic halibut 

(Hippoglossus hippoglossus) in the Norwegian fjords (Haug et al. 1984, 1986), Baltic cod 

eggs (Gadus morhua) (Nissling and Westin 1991), and fjord spawning populations of 

Norwegian coastal cod (Myksvoll et al. 2011). Examples of bottom egg distribution are 

eggs of saffron cod (Eliginus gracilis) in the northeast Pacific (Dunn and Matarese 1987) 

and capelin (Mallotus villosus) in the Barents Sea (Bakke and Bjørke 1973). In addition to 

the above examples of egg distribution in vertical equilibrium, there are also marine eggs 

that do not have a stable vertical distribution but change from fertilization until hatching 
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over the wide range of water depths as for example Cape hake (Merluccius capensis) eggs 

in the Northern Benguela (Sundby et al. 2001) and blue whiting (Micromesistius poutassou) 

eggs in the west of the British Isles (Ådlandsvik et al. 2001). All these different types of 

vertical distributions are results of a wide range of adaptation to the ambient ecosystems in 

order to optimize offspring survival (Sundby et al. 2001; Myksvoll et al. 2011). 

Egg specific gravity is determined during oocyte maturation processes inside maternal fish 

and finally by yolk hydration just prior to the egg release into the seawater (Craik and 

Harvey 1987; Kjesbu et al. 1992; Thorsen and Fyhn 1996). After the release, one additional 

change occurs due to the formation of perivitelline space between chorion and the vitelline 

membrane which is filled with ambient seawater (Davenport et al. 1981). Among the egg 

compositional materials, carbohydrates, proteins, free amino acids, and salts are denser than 

seawater and contribute to negative buoyancy. On the contrary, lipid and pure water content 

are the only two components less dense than seawater, and these components provide 

positive buoyancy (Craik and Harvey 1987). During the extensive hydrolysis of ovoplasmic 

proteins into free amino acids, a massive influx of water occurs and the swelled eggs 

contain water of 60-70 % of wet weight for demersal eggs and 90-92 % for pelagic eggs 

(Craik and Harvey 1987). The high water content is the principal cause of positive 

buoyancy in the eggs. Lipid makes little contribution to egg buoyancy in marine species 

(Thorsen et al. 1996; Riis-Vestergaard 2002). As a contributor to negative buoyancy, 

chorion material of fish eggs is made of proteins which harden when the eggs are fertilized 

(Kjørsvik and Lønning 1983). The specific gravity of wet chorion has been calculated as 

1.20 g cm-3 for Atlantic cod (Gadus morhua) eggs (Kjesbu et al. 1992) and 1.18 g cm-3 for 

Atlantic halibut (Hippoglossus hippoglossus) eggs (Mangor-Jensen and Huse 1991). The 

relative fraction of chorion volume in a cod egg has been revealed as a main factor 

determining individual buoyancy differences (Paper I). As lipids do, carbohydrates make 

little contribution to egg buoyancy due to relatively little quantity in an egg (Craik and 

Harvey 1987). 

During egg development, the specific gravity varies and has been observed for Atlantic cod 

eggs (Mangor-Jensen 1987; Nissling and Westin 1991; Anderson and deYoung 1994; 

Paper I, II, III), Atlantic halibut eggs (Mangor-Jensen and Waiwood 1995), Cape hake 

eggs (Sundby et al. 2001), and European anchovy eggs (Ospina-Álvarez et al. 2012). 

However, the reason why this specific gravity varies is much less understood. According to 
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Paper I, the simultaneous changes in the volume and specific gravity of yolk plus embryo 

govern significantly the developmental variability in total egg specific gravity. As for 

Atlantic cod, the fertilized eggs increase their specific gravity until gastrulation and then 

gradually decrease, but with a sudden rise just before hatching. Such temporal changes 

during development seem to be typical for pelagic marine eggs, and reflect a good function 

of egg osmoregulation (Paper II). 

 

 

Atlantic cod (Gadus morhua L.) 
 

Buoyancy-related egg vertical distribution 
 

Egg vertical distribution is determined by interaction between biological (i.e. egg buoyancy, 

egg diameter) and physical (i.e. seawater density, seawater viscosity, turbulence) factors 

(Sundby 1991). As seen in Table 1, Atlantic cod (Gadus morhua) populations seem to have 

a surprisingly similar range of egg specific gravity and egg size, except for the Baltic cod. 

For this reason, different types of egg vertical distributions will be more explained by 

spatial and temporal variability in water characteristics than the egg buoyancy. For example, 

the Northern cod eggs are pelagic and concentrated above the pycnocline (~1.026 g cm-3) at 

50 m depth on the northeastern Newfoundland shelf in June, but the egg distribution 

prolongs deeper on inner shelf than outer shelf because the inner shelf is characterized by 

colder, lower salinity of water than that of the outer shelf (Anderson and deYoung 1995). In 

contrast, when the study period is extended (March to August) in a Newfoundland fjord, the 

cod eggs show both pelagic and bathypelagic distributions (Knickle and Rose 2010). That is, 

the eggs are broadly distributed near the surface area during spring due to weak thermal and 

pycnal stratification in the upper mixed layer (constant at ~0 °C and ~1.026 g cm-3 from 

surface to 200 m depth). However, once the stratification gets stronger during summer due 

mainly to freshwater input, the eggs concentrate below the pycnocline at 10 m depth, and 

they are likely to be retained in the fjord.  
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Table 1 General range of specific gravity, equivalent salinity (ppt) of neutral buoyancy at the 
observed temperature (°C), and diameter (mm) for cod eggs from different local environments. 
The method of egg collection is different in the literature; N refers to ‘natural spawning in a 
tank’, P refers to ‘plankton ring net in the field’, S refers to ‘hand-stripped fertilization’, R refers 
to ‘recalculation from egg distributional depths together with water density and temperature, NI 
refers to ‘no information’.    

Cod origin Specific gravity Salinity Temperature  Diameter  

N
or

w
ay

 

Porsangen fjord1,N 1.024 - 1.025 30 - 32 6 1.26 - 1.44 

Tysfjord1,N 1.023 - 1.025 29 - 32 6 1.29 - 1.40 

Helgeland1,N 1.023 - 1.025 30 - 32 6 1.25 - 1.36 

Øygarden2,N 1.024 - 1.026 31 - 33 6 1.27 - 1.39 

Tvedestrand fjord3,P 1.021 - 1.026 27 - 33 4 - 

Barents Sea4,N 1.023 - 1.026 29 - 33 5 1.17 - 1.45 

Iceland5,S 1.023 - 1.026 29 - 33 6 1.24 - 1.58 

Newfoundland/Grand Banks6,N+S 1.022 - 1.026 28 - 33 8 1.20 - 1.60 

Northern Gulf of St. Lawrence7,R 1.024 - 1.026 30 - 33 2 1.35 - 1.44 

Georges Bank8,NI 1.025 - 1.026 32 - 33 4 1.50 

Baltic9,S 1.009 - 1.014 12 - 18 7 1.48 - 1.77 

1, Paper III; 2, Stenevik et al. 2008; 3, Ciannelli et al. 2010; 4, Paper II, 5, Marteinsdóttir and Begg 
2002; 6, Anderson and deYoung 1994, 1995; 7, Ouellet 1997; 8, ICES 2005; 9, Nissling et al. 1994 
 

 

Such retention phenomenon of cod eggs is also evident in Norwegian fjord systems. The 

fjords are characterized by shallow sills at the mouth and narrow entrances, functioning as 

sheltered areas (Asplin et al. 1999). Typically, fjords have three different water layers; a 

thin upper brackish layer, an intermediate layer, and a deep basin layer below the sill 

(Stigebrandt, 1981). Higher concentration of cod eggs occurs inside than outside fjords, and, 

in particular, fjords with shallow sills exhibit an abrupt reduction in egg number over the 

sill (Knutsen et al. 2007). Paper IV shows cod eggs spawned in fjords tend to be trapped 

inside and have low numbers of recruiting eggs from neighbouring coastal and fjord areas. 

The retention mechanism is caused by Norwegian coastal cod spawning near the head of 

fjords where the less saline brackish water is thick enough to let the eggs have subsurface 

distributions (Myksvoll et al. 2011). The majority of cod eggs will also have heavier 
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specific gravity than the upper brackish water. Under this condition, in-flowing intermediate 

water holds the eggs inside fjords (Stenevik et al. 2008; Myksvoll et al. 2011). Accordingly, 

spatial-temporal variations in estuarine systems play a key role in determining the egg 

distributions.  

Icelandic cod seem to have adapted reproductive strategies associating with egg buoyancy. 

Main spawning grounds are south and southwest coasts of Iceland. Additional spawning 

occurs also within fjords of the west, north and east coasts (ICES 2005). In the main 

spawning grounds, it is known that large cod spawn closer to the shore and small cod spawn 

in deeper water along the continental edge and banks (Marteinsdóttir et al. 2000). The eggs 

from large cod are likely to have heavier specific gravity (1.025 to 1.027 g cm-3) than those 

of small cod (1.023 to 1.025 g cm-3) (Marteinsdóttir and Begg 2002). Thus, inshore large 

cod may have evolved heavy eggs for retention, and offshore small cod develop light eggs 

for transport to favourable nursery grounds. 

The Baltic Sea is characterized by strong vertical stratification of salinity, temperature, and 

oxygen. A permanent halocline separates low saline water (6 to 8 ppt) on the surface from 

high saline deep water (10 to 20 ppt) (Fonselius and Valderrama 2003). Main spawning 

grounds of Baltic cod are the Bornholm Basin, the Gdansk Deep and the Gotland Deep in 

the eastern Baltic (ICES 2005). Optimal physical conditions for cod egg development in 

this region is salinity > 11 ppt, oxygen concentration > 2 mL L-1, and temperature > 1.5 °C 

(Wieland et al. 1994). As a result, the Baltic cod eggs neutrally buoyant at 12~18 ppt 

concentrate within and below the halocline from 60 m depth to the bottom in the Bornholm 

Basin (Nissling 2004). However, since the level of dissolved oxygen fluctuates widely and 

acute hypoxia is common on the bottom, it is essential to achieve neutral egg buoyancy at 

depths above the critical oxygen levels (Nissling and Westin 1991). 

 

 

Maternal effects on egg viability 
 

Reproductive potential represents the ability of a fish stock to produce offspring that may 

recruit to the adult population or fishery (Trippel 1999). Traditionally, the assumption that 

spawner biomass is directly proportional to total egg production by fish stocks has underlain 

spawner-recruitment relationships (Trippel et al. 1997; Marshall et al. 1998). However, 
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during the past decade a number of studies have found the reproductive potential varies 

with age, size and condition of spawning fish and spawning experience (e.g. Chambers and 

Waiwood 1996; Solemdal 1997; Marteinsdóttir and Steinarsson 1998; Marteinsdóttir and 

Begg 2002; Carr and Kaufman 2009), giving rise to studies of maternal effects on offspring 

viability for more realistic assessment of spawning stock biomass. 

Atlantic cod is a multiple batch-spawner, producing up to 20 egg batches within a single 

spawning season, and mean egg size becomes progressively smaller with increasing egg 

batches (Kjesbu 1989; Marteinsdóttir and Steinarsson 1998). Due to such batch sequence, 

the relationships between parents and offspring characteristics are difficult to detect in the 

Atlantic cod. In general, old fish produce larger eggs than young fish (Kjesbu et al. 1996). 

Recruitment of Baltic cod is significantly favoured by egg production from old fish since 

the old fish produce highly buoyant eggs with larger opportunities for survival (Vallin and 

Nissling 2000). Larger females produce larger eggs, and larger eggs hatch into larger larvae 

(Chambers and Waiwood 1996; Marteinsdóttir and Steinarsson 1998; Marteinsdóttir and 

Begg 2002). In the study of Icelandic cod, larvae from large eggs begin feeding earlier and 

experience a higher feeding success than those from small eggs (Marteinsdóttir and 

Steinarsson 1998). A similar study of Norwegian coastal cod shows that larvae given by 

early egg batches tend to have higher hatching success (Solemdal et al. 1995). Female 

condition is also positively linked to egg size (Chambers and Waiwood 1996; 

Marteinsdóttir and Steinarsson 1998). Ouellet et al. (2001) have found high hatching 

success in egg batches from high pre-spawning condition of females. Accordingly, all of 

these studies demonstrate a significant effect of maternal attributes on their egg viability. 

In addition to female age, length and condition, reproductive history also influences the 

offspring viability. First-time spawners breed for a shorter period, produce fewer egg 

batches, exhibit lower fecundity, and produce smaller eggs with lower fertilization and 

hatching rates than do second-time spawners (Trippel 1998). The longer spawning period of 

repeat spawners may be highly advantageous because the protracted release of eggs into the 

variable environment could improve progeny survival matching up with the time of 

abundant prey for the larvae (Trippel 1998). Similarly, the variation in egg specific gravity 

from repeat spawners is greater than recruit spawners (Kjesbu et al. 1992; Paper II). It is 

likely that the eggs from repeat spawners could be spread more vertically and less 

detectable by predators. Moreover, egg mortality is lower for repeat spawners (Solemdal et 
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al. 1995). Therefore, it seems that old repeat spawners contribute to more viable eggs than 

young recruit spawners. 

Regarding fishing pressure, cod populations across the entire north Atlantic have 

experienced declines in abundance and selective removal of older and larger spawners as a 

result of increased exploitation (Begg et al. 1999). According to Scott et al. (1999), when 

egg viability is considered, there could be up to a 3.3-fold difference in reproductive 

potential due only to differences in the age/size structure of the population. Presently, many 

scientists believe that we have to abandon the traditional use of spawning stock biomass and 

assess the functional relationships between female characteristics and egg viability (Trippel 

1999; Marteinsdóttir and Begg 2002, Scott et al. 2006).  

 

 

Spatial population structure in a metapopulation context 
 

A metapopulation is a set of local populations between which limited immigration and 

emigration occur (Hanski and Simberloff, 1997). If populations are sustained by 100% of 

self-recruitment (i.e. closed population, recruitment from their own offspring) or by a high 

number of recruits from other populations (i.e. open population, recruitment from a 

common larval pool), the metapopulation concept is not appropriate. However, if 

populations exhibit not only self-recruitment that largely dictate their population fate but 

also replenishment from outside the populations that affects population structure to an 

extent that it cannot be ignored, metapopulation concept is relevant (Kritzer and Sale 2004). 

Thus, primary empirical and theoretical approaches are a question of how demographically 

connected local populations are.  

Many marine species have great spatial dispersal during early life history, and hence 

dispersal and gene flow may be widespread. In this feature, they do not appear to fit 

metapopulations. However, we now know that traditionally recognized fish ‘stocks’ often 

possess metapopulation structure (Hanski & Gilpin, 1997). This concept has been applied to 

different marine fish species such as coral reef fishes (e.g. Kritzer and Sale 2006; Bay et al. 

2008), plaice (Pleuronectes platessa) (Hunter et al. 2003), Atlantic herring (Clupea 

harengus) (e.g. McQuinn 1997; Johannessen et al. 2009), and weakfish (Cynoscion regalis) 

(Thorrold et al. 2001). Metapopulation structuring in Atlantic cod (Gadus morhua) has also 
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been indicated in the North Sea and west of Scotland (Wright et al. 2006a; Heath et al. 

2008) as well as the Northwest Atlantic (Robichaud and Rose 2001; Smedbol and 

Wroblewski 2002; Rose et al. 2011), but this is still speculative because of the difficulty of 

estimating the exchange degree at all life history stages.  

As a common method for estimating population connectivity, genetic studies have found 

sub-structuring Atlantic cod over the North Atlantic ocean (e.g. Imsland and Jonsdottir 

2003), but genetic differentiation can be undetectable under low level of exchange (Palumbi 

2003). Accordingly, non-genetic approaches are needed to understand connectivity for a 

metapopulation theory. Svedäng et al. (2010) reported cod stock separation in the Kattegat 

and Öresund (eastern North Sea) using three independent methods: genetic surveys, tagging 

experiments and otolith chemistry analysis. Even though the genetic surveys showed no 

stock differentiation, tagging and otolith methods for migratory patterns identified discrete 

spawning groups at close distances (<100 km). A similar phenomenon that cod remain 

resident to particular areas and return to the same spawning site year after year (termed 

‘spawning site fidelity’) has been observed for sedentary cod populations inhabiting bay, 

coast and fjord areas (Robichaud and Rose 2004; Wright et al. 2006a, 2006b; Skjæraasen et 

al. 2011). The above mentioned studies illustrate that cod inhabiting these coastal areas do 

not move far offshore.  

The spawning site fidelity alone cannot represent discrete local populations if there are 

extensive egg and larval drift resulting in a large degree of mixing cross the populations 

(Grimm et al. 2003). Egg development time varies, depending upon ambient temperature, 

from one week at 12 °C to five weeks at -1 °C (Page and Frank 1989). As such, cod eggs 

having a long dispersal period must be considered for a connectivity study. In Paper IV on 

biophysical modelling, eggs were released from a wide range of inshore and offshore areas 

and showed three types of drift patterns: (1) eggs spawned offshore were transported long 

distances (named no retention in the paper), (2) eggs spawned coastal inshore had a small 

degree of retention (medium retention) caused by meso-scale meanders/eddies and friction 

force between various small islands, and (3) eggs spawned inside fjords had a high degree 

of retention (large retention) caused by tides/eddies and a semi-closed topographic 

condition. The high egg retention in typical fjord systems was also found by studies of 

Knutsen et al. (2007), Ciannelli et al. (2010), Knickle and Rose (2010), and Myksvoll et al. 

(2011). In addition to the eggs, larval cod also have a long pelagic life span, but the larvae 
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exhibit active vertical movement that affects their drift trajectories and temperature 

exposure (Vikebø et al. 2007). Øresland and André (2008) found that cod larvae collected 

inside a fjord differed genetically from those outside the fjord. Larval vertical behaviour 

might facilitate retention inside the fjord, opposing out-flow currents. Sarvas and Fevolden 

(2005) observed that cod larvae dwelling in fjords with a narrow entrance for currents were 

genetically separated from neighbouring local populations. Therefore, it is likely that typical 

fjord systems provide both spawning areas and nursery areas for the early life history stages. 

In addition to the movement during early life stages, it is also important to understand the 

connectivity between juvenile and spawning adult cod, because juvenile cod tend to exhibit 

a high degree of site fidelity within bays and see lochs, but wide dispersal in open nursery 

areas (Lough et al. 1989). Gibb et al. (2007) examined the degree of isolation of juvenile 

cod in a region where a number of resident adult congregations have been found, indicating 

little or no inter-mixing juveniles between nursery patches in the North Sea and west of 

Scotland. In the same study areas, Wright et al. (2006b) demonstrated that coastal spawning 

cod tend to originate from nearby nursery areas. Taken together, the geographical isolation 

during juvenile stages and strong spawning site fidelity are evidence for localized resident 

populations. Moreover, there is growing evidence that cod return to natal spawning areas 

(termed ‘natal homing’, Robichaud and Rose 2001; Svedäng and Svenson 2006; Svedäng et 

al. 2007; Svedäng et al. 2010). If the natal homing is a true property of Atlantic cod, it can 

maintain population integrity in spite of shared habitat with other populations at any life 

history stages. In particular, this feature seems to be crucial for population-separation 

mechanism between long-distance migratory and resident cod at the same places (Svedäng 

et al. 2007).  

Atlantic cod have diverse migratory behaviour from sedentary residents that exhibit year 

round site fidelity to dispersers that move and spawn in large geographical areas 

(Robichaud and Rose 2004). As discussed above, the evidence for spawning site fidelity, 

juvenile aggregation, and egg/larval retention characterizes metapopulation structuring, but 

has been observed mostly in resident coastal populations with a small home range. Probably, 

broadly dispersing cod populations such as the Grand Bank cod and the southern Gulf of St 

Lawrence cod may not be appropriate to metapopulation concepts. Regardless of whether 

Atlantic cod possess metapopulations, understanding spatial-temporal dynamics is an 

important first step for population conservation and management. As demonstrated by 
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Stephenson (1999), decline in Atlantic cod abundance may be attributable to the loss of 

spawning individuals and areas, therefore spawning areas and times must be preserved 

under a precautionary approach.  

 

 

Future perspectives 
 

Early life history stages have long been thought to be critical for successful recruitment to 

the parental population (e.g. Hjort 1914). The vertical and horizontal distributions of these 

early stages are commonly studied with numerical bio-physical models because direct 

observation in the field is limited by the feasibility of taking large numbers of sampling 

stations. The modelling also allows prediction of the spatial distribution under different 

environmental scenarios. With regard to dispersal variability of fish eggs, buoyancy is a key 

biological factor determining egg vertical positions (Sundby 1991). As demonstrated in this 

thesis, egg buoyancy of Atlantic cod changes during incubation, and the phenotypes of egg 

specific gravity vary greatly at the individual female level. This variability of egg buoyancy 

may be applicable to other pelagic fish eggs. For more realistic dispersal simulations, direct 

measurements of egg buoyancy must be performed to be added in the modelling studies. In 

addition, if it is clarified where is source (i.e. high contribution to overall egg production) 

and sink spawning regions (i.e. low contribution to overall egg production), the source local 

populations must be protected. This is because individuals strayed from the source can 

reinforce the abundance of the sink populations and prevent from the collapse.   
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