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Abstract

In this paper we present a numerical method for solving a partial
integro-differential equation (PIDE) associated with ruin probability, when
the surplus is continuously invested in stochastic assets. The method uses
precalculated Gaussian quadrature rules for the numerical integration.
Except for the numerical integration part, the method is based largely
on the finite differences method used in Halluin et al. (2005) for a PIDE
associated with a more general option pricing problem. In our numerical
examples we use historical data for inflation and returns on U.S. Treasury
bills, U.S. Treasury bonds and American stocks. The log-returns of the
investments are adjusted for an assumed constant force of inflation. We
consider four different strategies for continuous investment: (a) U.S. Trea-
sury bills with a constant maturity of 3 months, (b) U.S. Treasury bonds
with a constant maturity of 10 years, and (c) the Standard and Poor 500
index and (d) another index of American stocks. For each of these strate-
gies a geometric Brownian motion process is fitted to the aforementioned
historical data. The results suggest that the ruin probabilities obtained
can vary substantially, depending on whether the models are fitted to data
for the last decade or for a longer time period. We also discuss numerical
solution of investment models with jumps.

1 Introduction

In the classical Cramér-Lundberg model the risk process of an insurance com-
pany at time t is assumed to be of the form

Yt = y + pt−
Nt∑

n=1

Sn.

Here y > 0 is the initial capital, pt is the accumulated premium income up to
time t, coming at a constant rate p. The sum

∑Nt

n=1 Sn is a compound Poisson
process with only non-negative jumps and whose counting process N has a
constant intensity λ. In the following we will follow the convention that∑0
n=1 = 0 and that Π0

n=1 = 1.

In Paulsen and Gjessing (1997) the classical model is generalized to possibly
include a scaled Brownian motion σPWP , where σP ≥ 0. In addition it is
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assumed that the surplus generated from the basic process

Pt = pt+ σPWP,t −
Nt∑

n=1

Sn, t ≥ 0, (1)

is continuously invested in risky assets that follow a jump-diffusion process

Rt = rt+ σRWR,t −
NR,t∑

n=1

SR,n, t ≥ 0.

In the above σR ≥ 0, r ∈ R, WR is a Brownian motion, and the sum
∑NR,t

n=1 SR,n
is a compound Poisson process whose counting process NR,t has a constant
intensity λR and a common jump size distribution FR. With these assumptions
and y as the initial capital, the risk process becomes

Yt = y + Pt +

∫ t

0

Ys−dRs, t ≥ 0. (2)

It is shown in Paulsen (1998) that the solution of this equation is

Yt = R̄t

(
y +

∫ t

0

R̄−1
s dPs

)
, (3)

where R̄t = exp
{(
r − 1

2σ
2
R

)
t+ σRWR,t

}
Π
NR,t

n=1 (1 + SR,n).

In Paulsen (1993) a third process I, representing inflation, is included in the
model. In this model inflation is assumed to have the same effect on both the
premium income and the insurance claim sizes. It is shown in Paulsen (1993)
that if inflation is a deterministic process then the effect on the risk process is
the same as if we substituted R with R − I. We will assume that there is such
an inflation process, with a constant force ı̄, i.e. at time t

It = ı̄t.

Let the R process be an inflation-adjusted return on investment process. This
corresponds to replacing the parameter r with r̄ = r− ı̄. In this context inflation
refers to geometric growth of both insurance claim sizes and premium rates. In
the numerical examples we let ı̄ be the geometrical mean of the inflation for
the corresponding time periods. The data for annualized inflation are taken
from inflationdata.com (2012).

For a risk process like the one defined above, the time of ruin is defined as
τ := inf {t : Yt < 0} and the probability of ruin in finite time is defined as

ψ(y, t) := P (τ ≤ t|Y0 = y). (4)

In this paper we will discuss a method for numerical computation of ruin
probability in finite time for these models, based on solving an associated partial
integro-differential equation (PIDE) using finite differences. In our numerical
examples in Section 4 we consider two different claim size distributions. In the
first example the claims follow a light-tailed standard exponential distribution,
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while in the second they follow a mixture of a standard exponential distribution
and a heavy-tailed standardized Pareto distribution with expectation 1. For
the standardized Pareto distribution part of the mixed distribution we choose a
parameter value based on the fitting discussed in chapter 6 in Embrechts et al.
(1997) of a Pareto distribution to data for Danish fire insurance claims.

We consider four different strategies for continuous investment: (a) U.S. Trea-
sury bills with a constant maturity of 3 months, (b) U.S. Treasury bonds with
a constant maturity of 10 years, (c) the Standard and Poor 500 index and (d)
another index of American stocks. We fit a geometric Brownian motion (GBM)
to data for annual return of bonds and stocks for the period 1928-2011, taken
from Damodaran (2012). In one example we use data for the entire time pe-
riod. In another example we only use data for 2000-2011. We also calculate ruin
probabilities based on data fittings of GBM models, and some jump-diffusion
models in Damodaran (2012), to the SP 500 index for the period 1962-2003.

2 Integro-differential equations for the ruin prob-
ability

In Paulsen (2008) a partial integro-differential equation (PIDE) is stated for the
survival probability φ(y, t) = 1 − ψ(y, t). First let L be the integro-differential
operator

Lh(y) =
1

2
(σ2
P + σ2

Ry
2)h′′(y) + (p+ r̄y)h′(y)

+ λ

∫ y

0

(h(y − x)− h(x)) dF (x)

+ λR

∫ ∞

−1

(h (y (1 + x))− h(y)) dFR(x),

(5)

where L is acting on the variable y, y and t are assumed non-negative, r̄ ∈ R
and σP , σR, p, λ and λR are assumed to be nonnegative. Then the PIDE is given
as

∂

∂t
φ(y, t) = Lφ(y, t). (6)

The initial condition is φ(y, 0) = 1 for every y > 0. Asymptotically the
solution must satisfy the condition limy→∞ φ(y, 0) = 1. When σP > 0 the
infinite variation of the Brownian motion WP implies that

inf {t : Yt < 0} = inf {t : Yt = 0} .

Hence in this case the survival probability must satisfy φ(0, t) = 0.

2.1 Regularity of solution

Consider the case when λR = 0, σP > 0, and either σR = r̄ = 0 or σR > 0. If an
additional weak condition on the probability measure F also holds it is shown
in Paper D that the integro-differential equation (6) has a classical solution
except at the origin. That is, a solution which is differentiable with respect to
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t, twice differentiable with respect to y on the inner domain, and continuous
at every point of the boundary except for the origin. It is also known that a
classical solution exists when the investment earns an interest with a constant
force, i.e., if σP = σR = λR = 0 (see Pervozvansky Jr. (1998); Paulsen (2008)).
To the author’s knowledge there are no known regularity results for other cases,
when σ2

P + σ2
R > 0. However, the behavior of the numerical solution in our

experiments suggests that letting σP = 0 or letting λR > 0 (adding the last
integral term in (5)) does not negatively affect the smoothness of the solution,
at least as long as the distribution functions F (x) and FR(x) are smooth.

2.2 Localization to a bounded domain and choice of coor-
dinates

The domain of equation (6) is unbounded in the space dimension, which of course
is not computationally feasible. Instead we introduce an artificial boundary
condition (see Section 12.4.1 in Cont and Tankov (2004)), namely that φ (y, t) =
1 for every y ≥ κ. The introduction of an artificial boundary condition leads to
an error generally referred to as a localization error. Let εκ be this localization
error and let (̄x) = 1 − F (x) be the tail distribution. In Paper D it is shown
that if σP , σR > 0, λR = 0, and for some c > 0

sup
x>0

xcF̄ (x) <∞,

then for some constant C
|εκ| < C (1 + κ)

−c

for any κ > 0.

In our numerical experiments we found it more numerically efficient (leading
to better accuracy) to make the change of variable z = ln (1 + y). In the fol-
lowing we rewrite the above integro-differential operator L in terms of the new
variable z. We also denote the finite time horizon by T . Since y = ez − 1, first
let

ρ(z, t) := φ (ez − 1, t) , (z, t) ∈ [0, ln (1 + κ)]× [0, T ] .

For z ∈ [0, ln (1 + κ)] let

a2(z) :=
1

2

(
σ2
P e
−2z + σ2

R

(
1− e−z

)2)
, and

a1(z) := pe−z + r̄
(
1− e−z

)
− a2(z).

(7)

Now the operator L becomes

Lzg(z) = a2(z)g′′(z) + a1(z)g′(z)

+ λ

∫ ez−1

0

(g (ln (ez − x))− g(z)) dF (x)

+ λR

∫ ∞

−1

(g (ln (1 + (ez − 1) (1 + x)))− g(z)) dFR(x).

4



Making this change of variables and including the artificial boundary condition
gives the equation





ρ(z, 0) = 1, z ∈ (0, ln (1 + κ)) .

ρ(ln (1 + κ) , t) = 1, t ∈ (0, T ].
∂ρ(z,t)
∂t = Lzρ(z, t) on (z, t) ∈ (0, ln (1 + κ))× (0, T ].

(8)

Here Lz is acting on the variable z. When σP > 0 we have the extra boundary
condition

ρ(0, t) = 0, t ∈ (0, T ].

In the following we will also define that ρ (z, t) = 1 for every z ≥ ln (1 + κ) and
t ∈ [0, T ].

The rest of this paper is a discussion of numerical finite-difference methods
for solving (8), with some numerical examples for fitted models with investment
in U.S. Treasury bills, U.S. Treasury bonds and American stocks. In all our
examples the space grid will be equally spaced on [0, ln (1 + κ)]. An advantage
with this grid, compared with an equally spaced grid in the original coordinate
system, is that it gives a more numerically efficient distribution of grid points.
This is especially true for the case when σP > 0, since in this case the solution
is discontinuous at the origin. Having many grid points near the bottom of the
domain seems to give higher accuracy.

3 Numerical algorithm

The finite difference schemes discussed in this paper are adaptations of the
schemes developed in Halluin et al. (2005) to fit the problem (8). The basic idea
is to solve (8) using Crank-Nicolson time integration on an equally spaced two-
dimensional grid. To ensure numerical stability we follow the recommendation
in Giles and Carter (2005) and replace the first Crank-Nicolson step with four
quarter-timesteps of Backward Euler time integration. After explaining how we
do the numerical integration we discuss the difference equations associated with
these finite difference schemes.

3.1 Evaluation of the integrals

In the following we assume that both the claim size distribution and the distri-
bution of the jumps of the R-process are smooth. We denote their respective

densities as f and fR. In what follows let m be the grid size and h = ln(1+κ)
m

be the step size in the z grid. Thus the nodes in the z grid are zi = ih for
i ∈ 0, 1, . . .m. Let the nodes in the time grid be t0 = 0, t1, . . . , tn. Since
y = ex − 1 let yi = ezi − 1, for i ∈ 0, 1, . . . ,m− 1. Let

ρki = ρ (ih, tk) , i ∈ 0, 1, . . . ,m, k ∈ 0, 1, . . . , n,

Iki =

∫ yi

0

ρ (ln (1 + yi − x) , tk) dF (x), i ∈ 1, 2, . . . ,m− 1,

Jki =

∫ ∞

−1

ρ (ln (1 + yi (1 + x)) , tk) dFR(x), i ∈ 1, 2, . . . ,m− 1,

(9)
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and

Ĩki =

∫ yi

yi−1

ρ (ln (1 + x) , tk) fi(x)dx, i ∈ 1, 2, . . . ,m− 1.

where fi(x) = f (yi − x).

The sequence
{
Iki
}

defined above is a semi-discretization of the insurance
claim integrals

I (y, t) =

∫ y

0

(ρ (ln (1 + y − x) , t)) dF (x) on (y, t) ∈ (0, κ)× (0, T ].

Similarly, when λR > 0, the sequence
{
Jki
}

is a discretization of the investment
integrals

J (y, t) =

∫ ∞

−1

ρ (ln (1 + y (1 + x)) , t) dFR(x).

In Section 4.5 we discuss some examples with jumps in the investment process.
In these examples the Jki are calculated as

∫ ∞

−∞
ρ (ln (1 + yie

x) , tk) fR̃(x)dx, (10)

where
fR̃(x) = exfR (ex − 1) .

As we will see in Section 3.4, for each time step each integral in the sequence{
Iki
}m−1

i=1
must be computed more than once for every time step, as part of an

iteration method. When λR > 0 this also has to be done for each integral in

the sequence
{
Jki
}m−1

i=1
. Moreover, the integrands in the sequences

{
Iki
}

and{
Jki
}

depend on i. This means that the numerical complexity for numerical
integration based on such Newton-Coates quadrature methods as Simpson’s

rule would be O(m2) for just one calculation of
{
Iki
}m−1

i=1
. Fortunately there are

ways of avoiding this, as discussed below.

A popular model is to let the jump sizes be exponential distributed. Below
we first show how for this model it is relatively simple to compute the integrals
efficiently. We then return to general claim size distributions in 3.1.2.

3.1.1 Exponentially distributed jumps

For α > 0 let
fi(x) = αe−α(yi−x), i ∈ 1, 2, . . . ,m− 1.

In the special case of exponentially distributed claim sizes with parameter α we
observe that

∫ y

0

ρ (ln (1 + y − x) , t) f (x) dx = e−αy
∫ y

0

ρ (ln (1 + x) , t)αeαxdx.

Thus in this case the insurance claim integrals are dependent on y only through
the upper limit and a factor that can be taken outside the integral. Moreover,
we have the recursive relation
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Iki+1 = exp (−α (yi+1 − yi)) Iki + Ĩki+1. (11)

Here we are indebted to the discussion in Toivanen (2008). Due to (11) fast
evaluation of the sequence Ik1 , . . . , I

k
m−1 is much simpler when the claims are

exponentially distributed than in the general case.

As in Toivanen (2008) we approximate the integrand ρ
(

x
1+x , tk

)
in Ĩki by

linear interpolation. This gives the approximation

Ĩki ≈ ãki
∫ yi

yi−1

fi(x)dx+ b̃ki

∫ yi

yi−1

xfi(x)dx, (12)

where

b̃ki =
ρki − ρki−1

yi − yi−1

and
ãki = ρki − b̃ki yi.

Lastly, we have that
∫ yi

yi−1

fi(x)dx = 1− exp (−α (yi − yi−1))

and that
∫ yi

yi−1

xfi(x)dx =

(
yi −

1

α

)
(1− exp (−α (yi − yi−1)))

+ (yi − yi−1) exp (−α (yi − yi−1)) .

If the return on investment process R is like that in the Kou model (see Kou
(2002)), the jumps of the log-returns follow an asymmetric exponential distri-
bution. That is, for some parameters η1, η2 > 0 and a weight q ∈ [0, 1], the
probability density fR̃(x) of the jumps of the log-returns is

fR̃(x) = q1x>0η1 exp (−η1x) + (1− q) 1x<0η2 exp (−η2 |x|) .

In our context this corresponds to letting the investment jump integral in (8)
be of the form

∫ ∞

−1

ρ (ln (1 + y (1 + x)) , t) dFR(x) = qJ1 + (1− q) J2,

where

J1 =

∫ ∞

0

ρ (ln (1 + yev) , t) η1 exp (−η1v) dv

and

J2 =

∫ 0

−∞
ρ (ln (1 + yev) , t) η2 exp (η2v) dv.

Making the substitution w = v + ln (y) gives

J1 = yη1
∫ ∞

ln y

ρ (ln (1 + ew) , t) η1 exp (−η1w) dw,
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and

J2 = y−η2
∫ ln y

−∞
ρ (ln (1 + ew) , t) η2 exp (η2w) dw.

From these formulas one can derive a recursive relation given in Toivanen (2008)
and similar to (11). In this model the investment integrals can be evaluated in
a way similar to the method described above for the insurance claim integrals.

3.1.2 Computation of Gaussian quadrature rules

Returning to general smooth claim size distributions, we can evaluate the in-
tegrals in (9) using Gaussian quadrature methods. The main idea of an l-
point Gaussian quadrature rule is to find abscissas x1, . . . , xl and corresponding
weights w1, . . . , wl such that, for a known function ω(x) : [−1, 1]→ R, and given
function values of a continuous function g : [−1, 1]→ R,

∫ 1

−1

g(x)ω(x)dx ≈
l∑

i=1

wig(xi). (13)

In our numerical method these rules are calculated using the subroutines ‘dlancz’
and ‘dgauss’ from the Netlib package 726 ‘ORTHPOL’, developed by Walter
Gautschi. The package is an implementation of a Golub-Welsch algorithm.
For the integral (13) a Golub-Welsch algorithm (see Golub and Welsch (1969))
involves finding the roots of a sequence of polynomials p0(x), . . . , pl(x). The
polynomials in this sequence are required to be orthogonal in the following
inner product space, defined by

〈q1, q2〉 =

∫ 1

−1

q1(x)q2(x)ω(x)dx,

where q1, q2 are continuous functions.

Following this procedure it can be shown that the resulting Gaussian quadra-
ture rule is exact for polynomials of degree at most 2l− 1 (see Theorem 4.7.7 in
Cheney (2001)). In order to apply a quadrature rule it is necessary to evaluate
the solution at points that are not on the z-grid. We do this by means of linear
interpolation.

In our numerical method, m− 1 Gaussian quadrature rules are precalculated
for each Ik1 , . . . , I

k
m−1 before the actual finite differences method begins. The

obvious choice of weighting function for these rules is the density f(x). While
the weighting function is the same for every Iki , the integrals have upper limits
that increase with i. This makes it necessary to calculate a separate Gaussian
quadrature rule for each Iki . However, since the weighting function is the same,
we found that the rules were more rapidly and more accurately calculated when
a rule calculated for Ikk is used in the calculation of a rule for the next integral
Ikk+1. We also found that when the claim size distribution has a heavy tail it
has a positive effect on the accuracy to make the substitution v = ln (1 + x),
and calculate Iki as

∫ ln(1+yi)

0

ρ (ln (1 + yu − ev) , t) evf (ev − 1) dv.
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As is normally the case in numerical problems there is a trade-off between
the numerical complexity of the Golub-Welsch algorithm and the accuracy of
the results. To control the accuracy of the weights and abscissas, our method
first applies the routines ‘dlancz’ and ‘dgauss’ with a relatively low complex-
ity. Then the subroutines are called again with increasing resolutions until the
differences between succeeding weights and succeeding abscissas are small. In

the numerical integration of the
{
Jki
}m−1

i=1
integrals, only one quadrature rule

needs to be calculated with the Golub-Welsch algorithm. Denoting the weights
of this quadrature rule by wJ,1, . . . , wJ,m, and denoting the abscissa points by
xJ,1, . . . , xJ,mJ

, these integrals are calculated as

Jki ≈
mJ∑

j=1

wJ,jρ (ln (1 + yie
xJ,j ) , tk) .

In the special case of the Merton model the required quadrature rule corresponds
to Gauss-Hermite quadrature. Calculation of these rules is implemented in the
subroutine ‘gaussq’, also in the ‘ORTHPOL’ package.

3.2 Backward Euler time integration

As mentioned above we follow a suggestion in Giles and Carter (2005), the
numerical differentiation part of our method consists of computing the first four
time steps with backward Euler time integration, where each time step is of
length ∆t. The subsequent time steps are of length 4∆t and are computed
using Crank-Nicolson time integration.

Now let us look at the inner z-grid and time grid points. Here we discretize
the time derivative with backward Euler finite differences. In the z variable we
discretize both the first and second derivatives by means of central differences.
This yields the following set of difference equations, where as before
ρki = ρ (ih, tk).

ρk+1
i − ρki

∆t
= a2 (zi)

ρk+1
i+1 − 2ρk+1

i + ρk+1
i−1

h2
+ a1 (zi)

[
ρk+1
i+1 − ρk+1

i−1

2h

]

− λρk+1
i + λ

m∑

j=0

ci,jρ
k+1
j

− λRρk+1
i + λR

m∑

j=0

di,jρ
k+1
j .

In the above a1 and a2 are defined in (7). The sum
∑m
j=0 ci,jρ

k+1
j is related to

the evaluation of the integral Iki , while the sum
∑m
j=0 di,jρ

k+1
j is related to the

evaluation of the integral Jki . Since the ci,j ’s and di,j ’s are integral weights they
are non-negative constants.

If we let

λ̂ = λ+ λR,

ĉi,j =
λ

λ+ λR
ci,j +

λR
λ+ λR

di,j ,
(14)
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αi =
a2(zi)

h2
− a1(zi)

2h
, (15)

and

βi =
a2(zi)

h2
+
a1(zi)

2h
, (16)

then the difference equation above can be rearranged as

ρk+1
i

[
1 +

(
αi + βi + λ̂

)
∆t
]
−∆tβiρ

k+1
i+1 −∆tαiρ

k+1
i+1 − λ̂∆t

m∑

j=0

ĉi,jρ
k+1
j = ρki .

(17)
Now let us see what happens if we change definitions (15) and (16) a little. Let

αi =
a2(zi)

h2
, (18)

and

βi =
a2(zi)

h2
+
a1(zi)

h
. (19)

Then (17) corresponds to discretizing the first space derivative using forward
differences.

Another alternative is to discretize the first space derivative using backward
differences. This gives

αi =
a2(zi)

h2
− a1(zi)

h
,

and

βi =
a2(zi)

h2
.

Theorem 1. Assume that, for every i ∈ 1, . . . ,m− 1, αi ≥ 0, βi ≥ 0 and

m∑

j=0

ĉi,j ≤ 1.

Then the backward Euler scheme given in (17) is unconditionally stable in the
max norm. Moreover, for any given index i, at least one of the options for

discretizing ρ(z,t)
∂z given above, i.e, central differences, forward differences and

backward differences, gives min (αi, βi) ≥ 0.

Proof. This follows from Theorem 3.1 in Halluin et al. (2005).

In the rest of the paper we will assume that αi, βi ≥ 0 for every
i ∈ 1, . . . ,m − 1. Since discretizing the first space derivative with central dif-
ferences gives a second order convergence rate, whereas forward and backward
differences give only first order convergence, we choose central differences for
those nodes where this does not lead to negative αi or βi.
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3.3 Crank-Nicolson time integration

While the fully implicit scheme given in (17) is unconditionally stable, it has
the disadvantage of being only first order convergent in the time variable. An
alternative, suggested in Giles and Carter (2005) and mentioned above, is to
use backward Euler time integration only for the initial four quarter-steps, each
with length ∆t, and then continue with Crank-Nicolson time integration with
time steps of length ∆̂t = 4∆t. This approach results in the following set of
discrete equations for the Crank-Nicolson part:

ρk+1
i

[
1 +

(
αi + βi + λ̂

) ∆̂t

2

]
− ∆̂t

2
βiρ

k+1
i+1 −

∆̂t

2
αiρ

k+1
i−1

= ρki

[
1−

(
αi + βi + λ̂

) ∆̂t

2

]
+

∆̂t

2
βiρ

k
i+1 +

∆̂t

2
αiρ

k
i−1

+
1

2
λ̂∆̂t

i∑

j=0

ĉi,jρ
k+1
j +

1

2
λ̂∆̂t

m∑

j=0

ĉi,jρ
k
j .

Let
ρk :=

(
ρk0 , ρ

k
1 , . . . , ρ

k
m

)′

and define the matrix M such that

−
[
Mρki

]
i

= ρki

(
α+ βi + λ̂

) ∆̂t

2
− ∆̂t

2
βiρ

k
i+1 −

∆̂t

2
αiρ

k
i−1 −

1

2
λ̂∆̂t

m∑

j=0

ĉi,jρ
k
j .

(20)
Also let

B = [I −M ]
−1

[I +M ] .

Then (20) can be written either as

[I −M ] ρk+1 = [I +M ] ρk, (21)

or as
ρk = (B)

k
ρ0.

Theorem 2. Assume that for every i ∈ 1, . . . ,m− 1, β1 ≥ 0, αi ≥ 0 and

m∑

j=0

ĉi,j < 1.

Then the Crank-Nicolson discretization (20) is algebraically stable in the
sense that there exists a C such that for every n and every grid size

‖(B)
n‖∞ ≤ Cn

1
2 . (22)

The norm used above is the l∞ norm.

Proof. This follows from Theorem 4.1 in Halluin et al. (2005).
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In contrast to (22), the Lax-Meyer theorem states that strong stability, i.e.

‖(B)
n‖∞ ≤ C,

for some C independent of n, is a necessary condition for convergence for all
initial data. As noted in Halluin et al. (2005), the form of stability given in (22)
is clearly weaker than strong stability, and hence yields convergence only for
certain initial data. Some caution is thus in order, in particular for the case
σP > 0, where the exact solution is discontinuous at the origin. This is why our
method uses four quarter-time steps of backward Euler time integration for the
first time step, instead of using the Crank-Nicolson method there.

3.4 Fixed-point iteration method

As noted in Halluin et al. (2005), it is computationally very expensive to solve
the full linear system of the form (20) or (17), since this means solving a system
of linear equations whose numerical complexity grows as O(m2). Instead we will
follow Halluin et al. (2005) and solve the system using the fixed-point iteration
method described below. The main advantage with this iteration scheme is that
the integrals can be calculated using only the results from the previous time step
and the previous iteration. Hence, for a given iteration, the evaluation of the
integrals can be considered to be explicit. Thus we define the matrix M̂ such
that

−
[
M̂ρk

]
i

= ρki

(
αi + βi + r + λ̂

)
∆̂t− ∆̂tβiρ

k
i+1 − ∆̂tαiρ

k
i−1.

The only difference between M̂ and M is that M̂ does not include the inte-
gral terms. From the representation (21) it follows that the Crank-Nicolson
discretization (20) can be written as follows:

[
I − 1

2
M̂

]
ρk+1 =

[
I +

1

2
M̂

]
ρk +

1

2
λ̂∆t

m∑

j=0

ĉi,jρ
k+1
j +

1

2
λ̂∆t

m∑

j=0

ĉi,jρ
k
j . (23)

Using this notation the fixed-point iteration method in Halluin et al. (2005) is
described as follows:

Let
(
ρk+1

)0
= ρk.

Let ρ̂j =
(
ρk+1

)j
.

For j = 0, 1, 2, . . . until convergence

Solve
[
I − 1

2M̂
]
ρ̂j+1 =

[
I + 1

2M̂
]
ρk

+ 1
2 λ̂∆̂

∑m
j=0 ĉi,j ρ̂

j
j + 1

2 λ̂∆̂
∑m
j=0 ĉi,jρ

k
j .

If maxi

∣∣∣ρ̂j+1
i − ρ̂ji

∣∣∣ < tolerance, then quit.

EndFor

In Theorem 5.1 in Halluin et al. (2005) it is proven not only that the iteration
scheme above converges, but that the error ej = ρk+1 − ρ̂j has an upper bound

‖ ej+1 ‖∞≤‖ ej ‖∞
1
2 λ̂∆̂t

1 + 1
2 λ̂∆̂t

. (24)

We used an itegration algorithm very similar to the above algorithm for the
initial backward Euler timesteps. In our implementation the iteration is set to
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terminate when the maximal absolute difference between ρk+1
i -values of con-

secutive iterations is less than 10−8. We found that for good convergence of
this iteration scheme it was advantageous to choose time steps ∆̂t smaller than

1
λ+λR

.

4 Experimental results

In this section we will discuss numerical examples, where we first fit parameter
values for the risk models discussed in the introduction, and then calculate the
corresponding ruin probabilities by solving the PIDE (6). We will first consider
the case when the claim sizes follow the standard exponential distribution. Then
we let the claim sizes follow a mixture of a standard exponential distribution
and a Pareto distribution, standardized to have expectation 1. For both claims
processes we choose a value for the intensity λ based on data for inflation-
adjusted Danish insurance claims. In the examples where the claim distribution
is a mixture of a Pareto distribution and an exponential distribution, we let the
tail index of the Pareto distribution be the same as the fitted value in Embrechts
et al. (1997).

The Danish fire insurance data set consists of 2167 claims over a period of 11
years. We choose a year as the time unit, which gives a maximum likelihood
estimate for λ of 197 with a standard error of 4.26. In all our examples we let λ =
197, let the claims have expectation value 1, and let p = 216.7. This corresponds
to letting the premium be decided by the expected value principle, with safety
loading of 0.1. As already mentioned we adjust the returns of the investments
for a constant force of inflation ı̄. We use inflation data from inflationdata.com
(2012) to choose an ı̄ for each time period that we consider. These values are
given in Table 1.

For the investment return process we consider three different strategies. The
first strategy is to continuously invest in Treasury bills with a 3-month rate, the
second strategy is to continuously invest in 10-year Treasury bonds that also
earn coupons and price appreciation. The last strategy is to invest in American
stocks. We use a dataset from Damodaran (2012), which covers annual returns
on U.S. Treasury bills, U.S. Treasury bonds and American stocks for the period
from 1928 to 2011. For the S&P 500 data for 1962-2003, we use parameter
estimates from Ramezani and Zeng (2007) for a geometric Brownian motion
model, a Merton model and a Kou model.

4.1 Fitting of geometric Brownian motion to data

In a geometric Brownian motion investment model with drift parameter r and
diffusion parameter σ, the log-returns (log-differences) are normally distributed
with variance σ2t and expectation

(
r − 1

2σ
2
)
t. Let X0, X1, . . . , Xl be l + 1

observations of the index values at equally spaced times t0 = 0, t1, . . . , tl = lt1,

with one year as the unit of time. Let Z1 = ln
(
X1

X0

)
, . . . , Zl = ln

(
Xl

Xl−1

)
be the

log-returns.
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Period 1928 -2011 1963-2003 2000-2011
Force of inflation 0.03058 0.04406 0.02506

Table 1: The assumed constant force of inflation ı̄ fitted to different time periods.

Let Z̄ be the sample mean and let S2 be the sample variance of the Zi’s.
Since the log-returns are i.i.d. normal distributed N

((
r − 1

2σ
2
)
t1, σ

2t1
)
, the

method of moment estimator for σ is
√

1
t1
S2. We thus use

√
1
t1
S2 as our statis-

tic for σR. The method of moment estimator for r is 1
t1

(
Z̄ + 1

2S
2
)
. Since we

are adjusting the log-returns for an assumed constant force of inflation ı̄, we
use 1

t1

(
Z̄ + 1

2S
2
)
− ı̄ as the statistic for r̄. The resulting estimated parameter

values for r̄ and σR that we use in the geometric Brownian models are given
in Table 2. The confidence intervals for σR and the standard errors for r̄ are
based on the fact that l−1

σ2
R
S2 is χ2

l−1-distributed and that the sample mean and

sample variance of normal random variables are independent. The latter prop-

erty leads to a standard error for r̄ of

√
S2
(

1
l + 1

2
S2

l−1

)
. The standard error

for the r̄ parameter based on the daily S&P 500 data for 7/1962-12/2003 is the
same as the standard error given in Ramezani and Zeng (2007) multiplied with
252. This last multiplication is due to the standardization of the time dimen-
sion. Our estimates for U.S. Treasury bills, U.S. bonds and American stocks
are based on data for annual returns for 1928-2001 (83 observations for each
asset class) from Damodaran (2012). The estimates for S&P 500 are annualized
and inflation-adjusted versions of the parameter estimates given in Ramezani
and Zeng (2007). These estimates are based on 10446 dividend-adjusted daily
observations covering the period 7/1962-12/2003. The estimates for S&P 500
1/2000-11/2011 are based on 3000 observations. Our estimates for U.S. Trea-
sury bills, U.S. bonds and American stocks for the period 2000-2011 are based
on just 12 observations. To determine the force of inflation ı̄ we used historical
data from inflationdata.com (2012).

An alternative parameterization is to let r̃ = r̄ − 1
2σ

2
R. For this parameter

the natural statistic (for both method of moments and maximum likelihood) is

Z̄ − ı̄, where Z̄ is the sample mean of the log-returns. The fact that Z̄−ı̄−r̃√
S2

l

is

t-distributed can be used to construct confidence intervals. Estimates for r̃ as
well as 95% confidence intervals are given in the rightmost column in Table 2.

4.2 About the implementation and execution

4.2.1 Software and hardware

We implemented the algorithms described in Section 3 using R software. This
was augmented by some Fortran subroutines. In particular the Net lib ‘ORTH-
POL’ package 726 by W. Gautschi was used to calculate the Gaussian quadra-
ture rules.
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parameter r̄ σR r̃
U.S. T-bills 0.00534 0.02900 0.00492
1928-2011 (0.00316) (0.02518, 0.03419) (−0.00138, 0.01121)

U.S. T-bonds 0.02259 0.07131 0.02005
1928-2011 (0.0078) (0.06192, 0.08409) (0.00457, 0.03552)

U.S. Stocks 0.07815 0.19648 0.05885
1928-2011 (0.02165) (0.17060, 0.23169) (0.01621, 0.10149)
S&P 500 0.08194 0.15081 0.07057

7/1962-12/2003 (0.0252) (0.14879, 0.15288) n.a.
U.S. T-bills −0.00233 0.01941 −0.00252
2000-2011 (0.0056) (0.01375, 0.03296) (−0.01485, 0.00982)

U.S. T-bonds 0.04811 0.08367 0.04461
2000-2011 (0.0242) (0.05927, 0.14206) (−0.00855, 0.09777)

U.S. Stocks 0.00129 0.20551 −0.01982 .
2000-2011 (0.06001) (0.14558, 0.34894) (−0.15040, 0.11075)
S&P 500 −0.00125 0.21331 −0.02789

1/2000-11/2011 (0.00394) (0.20804, 0.21884) (−0.03553,−0.02026)

Table 2: Parameter estimates for the geometric Brownian motion investment
model with normally distributed inflation-adjusted log-returns. r̄ is r− ı̄ (nom-
inal return subtracted with the inflation force ı̄), while r̃ is defined as r̄ − 1

2σ
2
R.

The drift term for nominal log-returns (r) can be obtained by adding the corre-
sponding inflation forces in Table 1. All the asset returns except the S&P 500
returns for 1/2000-11/2011 include dividends or coupons. 95% confidence in-
tervals for σR and r̃, and standard errors for r̄ are given in parentheses.
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4.2.2 Grid sizes and tolerance values

In the implementations we let κ = 2000. We let the artificial boundary condi-
tion be at z = ln (1 + κ). Recall that ∆̂t is the length of the Crank-Nicolson
time steps. The error bound (24) and our experiments suggest that letting
(λ+ λR) ∆̂t be large may lead to poor convergence in the integral iteration de-
scribed in section 3.4. Our experience shows that to avoid excessive iterations
∆̂t should be less than 1

λ+λR
. In the case of exponentially distributed jumps

we calculated the integral terms as described in section 3.1.1. In the examples
where we illustrate the convergence rate, we use the same spatial grid sizes as
in Halluin et al. (2005). Unless denoted otherwise the space grid has m = 2K for
K ∈ 7, . . . , 12, for the results in the tables. As explained in Section 3.3, in the
time domain the first four time-steps have length 1

24m , while the rest of the steps
have length 1

6m . For the results in the tables the size of the space grid is mostly
m = 4096, or 212. For the examples with Pareto-distributed claim sizes, Gaus-
sian quadrature rules of length 2K are calculated before the finite-differences
method begins. In the example with the Merton model, a Gauss-Hermite rule
of length 24 is applied. As convergence criterion for the fixed-point iteration
method we required the max norm difference between two iterations to be less
than 10−8. In the tables containing the experimental results, the abbreviation
‘C.R’ refers to the convergence ratio, defined in equation (8.2) in Halluin et al.
(2005) as

C.R =

∣∣∣∣
ρapprox(h/2)− ρapprox(h))

ρapprox(h/4)− ρapprox(h/2)

∣∣∣∣ .

Here h is a given step size.

4.3 Exponentially distributed jumps

In the case of exponentially distributed jumps we can calculate the integrals as
described in Section 3.1.1. For the Cramér-Lundberg model with exponentially
distributed claim sizes, the ruin probability was calculated using an integral
formula given in Chapter IV in Asmussen (2000). We used this solution to check
the accuracy of the method. Table 3 shows the relative errors of the calculated
ruin probabilities using the method described in 3.1.1, with parameter vales
p = 216.7, λ = 197, α = 1 (standard exponential) and t = 1 (1 year). We
also used the case with exponentially distributed jumps to check the accuracy
of using Gaussian quadrature rules to evaluate the integrals. The results from
this test suggest that the errors from the numerical integration are small in
comparison to the errors from the numerical differentiation.

In order to avoid oscillations, αi and βi in (20) should be non-negative. For
this to be satisfied the derivative terms in the space variable have to be dis-
cretized using forward differences. The drawback of forward differences is that
it gives only first order convergence (i.e. consistency error O(h)) as opposed to
the second order convergence (i.e. consistency error O(h2)) we get with using
the central differences as in (15). So although the convergence of Crank-Nicolson
time integration itself is of second order, the overall convergence is only first or-
der. For models where σ2

R is not very small we can use central differences on
most of the domain without violating the conditions in Theorem 1 and Theo-
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m 128 512 2048 4096
n 105 408 1620 3237
y Exact Relative Relative Relative Relative

solution error error error error
0 0.90080 0.00018 0.00044 0.00014 0.00007
7 0.43782 0.07168 0.01502 0.00354 0.00175
15 0.18097 0.30361 0.06881 0.01667 0.00829
31 0.02474 1.67517 0.32926 0.07630 0.03766
63 0.00017 35.45299 2.40341 0.39177 0.18208

Table 3: Relative errors for the Cramér-Lundberg model with various values
of m. The parameter values are p = 216.7, λ = 197, and the claim sizes are
standard exponentially distributed. The units for y and p are the expected value
of a claim. λ corresponds to the expected number of claims per year. Hence
y = 63 corresponds to a starting capital equal to 32% of the expected annual
cost of claims.

rem 2. Thus for these models it is important to have an accurate method of
integration in order to utilize the accuracy of the differential terms.

For Treasury bonds the variance in the log-returns is not large enough to allow
use of central differences at more than a small minority of the grid points. There
the convergence rate seems to be very similar to what is was with the Cramér-
Lundberg model. For the log-return on stocks the volatility is higher, and for
the grids with space grid size m > 1000 central differences can be used at a
majority of the grid points. As seen in Table 4 this gives improved convergence.
Since convergence is slower when the diffusion term (in effect ellipticity) is small,
we used an even finer space grid (m = 8192) for the Treasury bond data.

Regarding ruin probabilities for models fitted to long term trends, we see
in Table 5 that in the case of U.S. Treasury bills the difference between the
classical Cramer-Lundberg model and the investment model fitted to annual
returns is very small. For the investment model fitted to annual returns of U.S.
Treasury bonds and the model fitted to daily returns of the SP 500 index, the
ruin probabilities are slightly lower. For the model fitted to annual returns of
American stocks the ruin probabilities are slightly higher than in the classical
model, especially for the highest intial capital (y = 63). Lastly, we note that
the increases in ruin probabilities flatten out after 5 years.

For years after 2000 the results are very different. In particular, at the highest
intial capital (y = 63) the ruin probabilities for models with stocks are 2 − 3
times higher than for models with bonds or with the classical model. Again the
increases in ruin probability flatten out after 5 years.

4.4 Heavy Tail Models

For regularly varying claim size distributions (defined below) we have the follow-
ing asymptotic result, based on Theorem 2 and Example 1 in Hult and Lindskog
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m 128 512 2048 4096
n 105 408 1620 3237

y=31
Value 0.06414 0.03222 0.02488 0.02444
C.R n.a. 2.44 1.36 7.06

y=45
Value 0.02261 0.00631 0.00367 0.00359
C.R n.a. 3.07 2.44 9.63

y=63
Value 0.00628 0.00071 0.00026 0.00025
C.R n.a. 4.54 6.29 8.86

Table 4: For standard exponentially distributed claim sizes, experimental results
showing convergence as the number of grid points increases. The model includes
a return on investment process, which is a geometric Brownian motion process.
The parameter values are σR = 0.19648, p = 216.7 (premium rate corresponding
to a safety loading of 0.1), r̄ = 0.07815 (real rate of interest) and λ = 197. The
data used is return on American stocks for the period 1928-2011.

Model Cramér- Geometric Brownian Motion
Lundberg

Data n.a. U.S. T-bills U.S. T-bonds U.S. Stocks S&P 500
Period n.a. 1928-2011 1928-2011 1928-2011 7/1962-12/2003

(annual) (annual) (annual) (daily)
T = 1

y = 31 0.02468 0.02503 0.02458 0.02444 0.02312
y = 45 0.00330 0.00342 0.00331 0.00359 0.00313
y = 63 0.00017 0.00018 0.00017 0.00025 0.00018

T = 2
y = 31 0.04188 0.04228 0.04110 0.04034 0.03765
y = 45 0.00897 0.00920 0.00874 0.00918 0.00787
y = 63 0.00103 0.00110 0.00101 0.00132 0.00095

T = 5
y = 31 0.05294 0.05330 0.05116 0.04989 0.04562
y = 45 0.01437 0.01465 0.01359 0.01407 0.01164
y = 63 0.00260 0.00273 0.00241 0.00301 0.00206

T = 10
y = 31 0.05423 0.05458 0.05220 0.05094 0.04627
y = 45 0.01516 0.01544 0.01422 0.01475 0.01202
y = 63 0.00294 0.00307 0.00267 0.00336 0.00222

Table 5: Ruin probabilities for the Cramér-Lundberg model and four fitted
models, with investment following geometric Brownian motion (GBM) fitted to
long term trends. The premium rate p is 216.7, λ = 197, and claim sizes are
assumed to be standard exponentially distributed. Again, y = 63 corresponds
to an initial capital equal to 32% of the expected annual claim cost. Note that
the increases in ruin probability flatten out after T = 5 years.
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Data U.S. T-bills U.S. T-bonds U.S. Stocks S&P 500
Period 2000-2011 2000-2011 2000-2011 1/2000-11/2011

(annual) (annual) (annual) (daily)
T = 1

y = 31 0.02534 0.02345 0.02830 0.02871
y = 45 0.00349 0.00306 0.00463 0.00478
y = 63 0.00019 0.00016 0.00038 0.00041

T = 2
y = 31 0.04300 0.03864 0.04898 0.04984
y = 45 0.00946 0.00790 0.01278 0.01323
y = 63 0.00115 0.00087 0.00225 0.00241

T = 5
y = 31 0.05453 0.04723 0.06490 0.06644
y = 45 0.01523 0.01188 0.02216 0.02316
y = 63 0.00291 0.00195 0.00628 0.00679

T = 10
y = 31 0.05595 0.04796 0.06832 0.07023
y = 45 0.01613 0.01230 0.02476 0.02608
y = 63 0.00330 0.00212 0.00793 0.00869

Table 6: Ruin probabilities for four fitted models, with investment following
geometric Brownian motion (GBM) fitted to data for 2000-2011. The premium
rate p is 216.7, λ = 197, and claim sizes are assumed to be standard exponen-
tially distributed. Note that the increases in ruin probability flatten out after
T = 5 years.

19



(2011).

Definition 1. A function L(x) is said to be slowly varying if

lim
x→∞

L(cx)

L(x)
= 1, for all c > 0.

A positive random variable S and its distribution are said to be regularly varying
with (tail) index α̂ if for some α̂ ≥ 0, the right tail of the distribution has the
representation

P (S > x) = L(x)x−α̂,

where L is a slowly varying function.

Theorem 3. Assume that the claim size distribution function F (x) is regularly
varying with index α.

(a) In the case of the Cramér-Lundberg model the probability of ruin before time
t is asymptotically given by

ψ (y, t) ∼ λtF̄ (y),

where F̄ (x) = 1− F (x) is the tail distribution.

(b) Consider a risk process of the form given in (2), with investment. Let

θ =
1

2
σ2
Rα

2 − α
(
r̄ − 1

2
σ2
R

)
+ λR

(
E (1 + SR)

−α − 1
)

and make the following additional assumptions:

(i) Either λR = 0 or, for some δ > 0, E (1 + SR)
−(α+δ)

<∞ .

(ii)
θ 6= 0.

Then the probability of ruin before time t is asymptotically given by

ψ (y, t) ∼ 1

θ

(
eθt − 1

)
λF̄ (y). (25)

Proof. We first consider the case when T = 1. As discussed in Section 1 the
inflation-adjusted risk process Y at time t is given as

Yt = R̄t

(
y +

∫ t

0

R̄−1
s dPs

)
, (26)

where R̄t = exp
{(
r̄ − 1

2σ
2
R

)
t+ σRWR,t

}
Π
NR,t

n=1 (1 + SR,n). At t = 1 the Lévy
process Pt, defined in (1) as a jump diffusion process with negative jumps

−∑Nt

i=1 Si, has Lévy measure ν (−∞,−u) = λF̄ (u). Consequently Theorem
4.1 in Hult and Lindskog (2011) can be applied, with P playing the role of
their Lévy process Y and the process

{
R̄−1
t

}
t≥0

playing the role of their cáglad

strictly positive process A. With these adaptations it follows from Theorem 4.1
and Example 3.5 in Hult and Lindskog (2011) that the stated results are valid
for T = 1.
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Assume that T 6= 1. Since P and R are Lévy processes, changing the pa-
rameters from p, σP , λ, r̄, σR, λR to pt, σP

√
t, λt, r̄t, σR

√
t and λRt corresponds

to changing the time horizon from time T to time 1, giving the stated results
when T 6= 1.

It is only for very large claim sizes that the Pareto distribution is intended to
be a good model, as discussed in Embrechts et al. (1997). This is formalized by
introducing a threshold u, which in the discussion in Chapter 6 on Danish fire
claims in Embrechts et al. (1997) is put to 10. The claim sizes which are larger
than u are called exceedances. The Pareto distribution is fitted using only this
part of the data. 109 of the 2167 claims in the data set are such exceedances.

In this section we let the distribution of the claim sizes be a weighted average
of a standard exponential distribution and a standard Pareto distribution. The
weight assigned to the Pareto distribution corresponds to the share of claims
that are exceedances, 109

2167 .

The standardized Pareto distribution has a density given by

f2(x) = (α̂− 1)α̂α̂(α̂− 1 + x)−(1+α̂), x > 0, α̂ > 1, (27)

and tail distribution function

F̄2(x) =

(
α̂− 1

α̂− 1 + x

)α̂
.

This form of Pareto distribution is called ‘standardized Pareto’, since the expec-
tation value is 1 for every α̂. This distribution is regularly varying with index
α̂. For λR = 0 asymptotic formulas for the ruin probability are given below.
Asymptotically the tail of the mixed distribution we use is dominated by the
Pareto part, and thus is also regularly varying.

Corollary 1. Assume that the claim sizes follow a mix of a Pareto distribution
with density, as in (27), and a light-tailed distribution. Assume that a weight 0 <
w ≤ 1 is assigned to the Pareto distribution and a weight 1−w is assigned to the
light-tailed distribution, i.e. a distribution whose moment-generating function
exists in a neighborhood around zero.

(i) Consider the Cramér-Lundberg model, with claim sizes following a mixed
distribution as described above. In this model the ruin probability is asymp-
totically given by

ψ (y, t) ∼ λwt
(

α̂− 1

α̂− 1 + y

)α̂
.

(ii) Consider a risk process with investment of the form given in (2), with claim
sizes following a mixed distribution as described above, and with λR = 0.

θ̂ =
1

2
α̂2σ2

R − α̂
(
r̄ − 1

2
σ2
R

)
6= 0.

Then the ruin probability is asymptotically given by

ψ(y, t) ≈ λw

θ̂

(
eθ̂t − 1

)( α̂− 1

α̂− 1 + y

)α̂
. (28)
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m 128 512 2048 4196

n 105 408 1620 3237

y=31

Value 0.0755 0.0436 0.0376 0.0367

C.R n.a. 2.42 2.15 2.08

y=45

Value 0.0298 0.0124 0.0100 0.0097

C.R n.a. 2.98 2.32 2.17

y=63

Value 0.0101 0.0036 0.0031 0.0030

C.R n.a. 4.09 2.61 2.30

Table 7: Convergence for the ruin probability in the Cramér-Lundberg model
with p = 216.7 (corresponding to a safety loading of 0.1) and λ = 197. The
claim distribution is a mixture of a standard exponential distribution and a
standardized Pareto distribution with parameter α̂ = 2.01. The weight assigned
to the Pareto distribution is 109

2167 .
.

As expected, the numerical results show that ruin probabilities based on a
heavy-tailed claim size distribution model are larger than when based on a
light-tailed claim size distribution. The most striking differences between the
results for the heavy-tail models, given in Table 8 compared with the results
for light-tailed models, given in Table 5 are found for T = 1 (one year). With
initial capital 63 (corresponding to 32 % of the expected annual claim cost) and
assuming the Cramér-Lundberg model, the ruin probability in the heavy-tail
case is 17.6 times larger than in the light-tail case.

For the stock models fitted to long-term trends the ruin probabilities are
about the same or even lower than for the Cramér-Lundberg models, which do
not include investment risk. On the other hand, when fitted to the period 2000-
2011, given in Table 9, the ruin probabilities for the stock models start to grow
quickly with increasing T , in particular for T > 2. Especially for large initial
capitals and T ∈ {5, 10}, the ruin probabilities for the stock models are almost
twice as high as the ruin probabilities with the Cramér-Lundberg model, given
in Table 8.

For the case of regularly varying claim sizes and large values of the initial
capital the formulas of Theorem 3 suggest the following: If θ > 0 the ruin
probabilities are higher than in the Cramér-Lundberg model. If θ < 0 the ruin
probabilities are lower than in the Cramér-Lundberg model. More precisely,
when θT << 0 the ruin probability on the time horizon T is close to − 1

θλF̄ (y).
When θT ≈ 0 the ruin probability grows approximately linearly as a function
of T for fixed (high) initial capitals. When θT >> 0 the ruin probability
grows exponentially with T . Our numerical experiments support this assertion.
Moreover, as can be seen from Table 8 and Table 9, the asymptotic formula
for the ruin probability seems to be quite accurate, at least as long as the ruin
probability from that formula is less than 0.002.
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Model Cramér- Geometric Brownian Motion
Lundberg

Data n.a. U.S. T-bills U.S. T-bonds U.S. Stocks S&P 500

Period n.a. 1928-2011 1928-2011 1928-2011 7/1962-12/2003
(annual) (annual) (annual) (daily)

θ 0 −0.0082 −0.03004 −0.04026 −0.09595

T = 1

y = 31 0.0367 0.0393 0.0359 0.0351 0.0337
Asym. (0.0095) (0.0095) (0.0094) (0.0093) (0.0091)

y = 45 0.0097 0.0107 0.0095 0.0095 0.0089
Asym. (0.0046) (0.0046) (0.0045) (0.0045) (0.0044)

y = 63 0.0030 0.0032 0.0030 0.0030 0.0028
Asym. (0.0024) (0.0023) (0.0023) (0.0023) (0.0022)

y = 100 0.0010 0.0010 0.0010 0.0010 0.0009
Asym. (0.0009) (0.0009) (0.0009) (0.0009) (0.0009)

T = 2

y = 31 0.0592 0.0587 0.0575 0.0554 0.0526
Asym. (0.0190) (0.0188) (0.0184) (0.0183) (0.0173)

y = 45 0.0198 0.0196 0.0191 0.0187 0.0171
Asym. (0.0092) (0.0091) (0.0089) (0.0088) (0.0083)

y = 63 0.0064 0.0064 0.0062 0.0063 0.0057
Asym. (0.0047) (0.0047) (0.0046) (0.0045) (0.0043)

y = 100 0.0018 0.0018 0.0018 0.0018 0.0017
Asym. (0.0019) (0.0019) (0.0018) (0.0018) (0.0017)

T = 5

y = 31 0.0767 0.0758 0.0734 0.0699 0.0653
Asym. (0.0047) (0.0465) (0.0441) (0.0430) (0.0377)

y = 45 0.0308 0.0303 0.0290 0.0278 0.0248
Asym. (0.0229) (0.0224) (0.0213) (0.0207) (0.0182)

y = 63 0.0120 0.0117 0.0111 0.0110 0.0094
Asym. (0.0118) (0.0115) (0.0109) (0.0107) (0.0094)

y = 100 0.0036 0.0036 0.0034 0.0034 0.0029
Asym. (0.0047) (0.0046) (0.0044) (0.0043) (0.0037)

T = 10

y = 31 0.0809 0.0799 0.0769 0.0729 0.0676
Asym. (0.0950) (0.0912) (0.0821) (0.0782) (0.0611)

y = 45 0.0342 0.0335 0.0318 0.0302 0.0266
Asym. (0.0458) (0.0440) (0.0395) (0.0377) (0.0294)

y = 63 0.0144 0.0141 0.0131 0.0127 0.0107
Asym. (0.0236) (0.0226) (0.0204) (0.0194) (0.0152)

y = 100 0.0049 0.0048 0.0044 0.0043 0.0036
Asym. (0.0094) (0.0090) (0.0081) (0.0077) (0.0061)

Table 8: Calculated and asymptotic ruin probabilities for the classical Cramér-
Lundberg model, plus four models with investment following geometric Brownian mo-
tion (GBM) fitted to long-term historical trends. The premium rate is p = 216.7, and
the expected number of claims per year is λ = 187. This corresponds to a safety load
of 0.1. y = 63 corresponds to an initial capital equal of 32% of the expected claim cost
per year. The claim sizes follow a mixture of the standardized Pareto distribution with
parameter α̂ = 2.01, as used in Embrechts et al. (1997), and a standard exponential
distribution. The weight assigned to the Pareto distribution is 109

2167
. Asymptotic ruin

probabilities are given in parentheses.
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Data U.S. T-bills U.S. T-bonds U.S. Stocks S&P 500
Period 2000-2011 2000-2011 2000-2011 1/2000-11/2011

(annual) (annual) (annual) (daily)

θ 0.00583 −0.07559 0.12539 0.14040

T = 1

y = 31 0.0368 0.0348 0.0394 0.0398
Asym. (0.0095) (0.0092) (0.0101) (0.0102)

y = 45 0.0098 0.0092 0.0110 0.0112
Asym. (0.0046) (0.0044) (0.0049) (0.0049)

y = 63 0.0030 0.0029 0.0034 0.0035
Asym. (0.0024) (0.0023) (0.0025) (0.0025)

y = 100 0.0010 0.0009 0.0011 0.0011
Asym. (0.0009) (0.0009) (0.0010) (0.0010)

T = 2

y = 31 0.0595 0.0549 0.0649 0.0658
Asym. (0.0191) (0.0176) (0.0216) (0.0219)

y = 45 0.0199 0.0179 0.0234 0.0239
Asym. (0.0092) (0.0085) (0.0104) (0.0106)

y = 63 0.0065 0.0058 0.0080 0.0083
Asym. (0.0047) (0.0044) (0.0054) (0.0054)

y = 100 0.0019 0.0017 0.0022 0.0022
Asym. (0.0019) (0.0017) (0.0021) (0.0022)

T = 5

y = 31 0.0773 0.0689 0.0873 0.0889
Asym. (0.0482) (0.0396) (0.0660) (0.0688)

y = 45 0.0312 0.0263 0.0386 0.0398
Asym. (0.0232) (0.0191) (0.0318) (0.0332)

y = 63 0.0121 0.0098 0.0167 0.0174
Asym. (0.0120) (0.0098) (0.0164) (0.0171)

y = 100 0.0037 0.0030 0.0052 0.0055
Asym. (0.0048) (0.0039) (0.0065) (0.0068)

T = 10

y = 31 0.0817 0.0716 0.0945 0.0967
Asym. (0.0978) (0.0667) (0.1895) (0.2075)

y = 45 0.0347 0.0284 0.0449 0.0466
Asym. (0.0471) (0.0321) (0.0913) (0.1000)

y = 63 0.0147 0.0113 0.0215 0.0226
Asym. (0.0243) (0.0165) (0.0470) (0.0515)

y = 100 0.0050 0.0038 0.0081 0.0086
Asym. (0.0097) (0.0066) (0.0188) (0.0206)

Table 9: Calculated and asymptotic ruin probabilities for four models, with invest-
ment following geometric Brownian motion (GBM) fitted to data from 2000-2011. The
premium rate p = 216.7 corresponds to a safety loading of 0.1. The expected number
of claims per year is λ = 187. The claim sizes follow a mixture of the standardized
Pareto distribution with parameter α̂ = 2.01 (used in Embrechts et al. (1997)) and a
standard exponential distribution. The weight assigned to the Pareto distribution is
109
2167

. Asymptotic ruin probabilities are given in parentheses.
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4.5 Jumps in the investment process

Ramezani and Zeng (2007) discuss maximum likelihood estimation for the Mer-
ton model and the Kou model, as well as the geometric Brownian model (GBM).
In particular they fitted these models to the S&P for daily observations for the
period 1962-2003. In the previous section we used estimates from Ramezani
and Zeng (2007) for the GBM model.

In both the Merton model and the Kou model the returns follow a jump-
diffusion process. The Merton model was introduced in Merton (1976) and
consists of letting the jumps of the returns follow a log-normal distribution.
The Kou model was first discussed in Ramezani and Zeng (1998) and in Kou
(2002). In this model the jumps of the log-returns follow a double exponen-
tial distribution. The Merton and Kou models are discussed in more detail
in Ramezani and Zeng (2007) and in Chapter 4 in Cont and Tankov (2004).
Annualized and inflation-adjusted versions of the parameter estimates for the
Merton model fitted to the S&P 500 data are in Table 10, where µ and σ are the
parameters of the log-normal distribution. For the Merton model the θ defined
in Theorem 3 is given by

θ =
1

2
α2σ2

R − α
(
r̄ − 1

2
σ2
R

)
+ λR

(
exp

(
−αµ+

1

2
α2σ2

)
− 1

)
.

Similarly, annualized and inflation-adjusted versions of the parameter estimates
from Ramezani and Zeng (2007) for the Kou model are given in Table 11.
In Ramezani and Zeng (2007) it is assumed that the arrival times of ”good”
and ”bad” news (leading to positive vs. negative jumps) follow two different
independent Poisson processes. These have intensities λu and λd, respectively.
In Table 11 the parameter estimate for λR corresponds to the annualized value
of the sum of their estimates for λu and λd, while the parameter q refers to
the fraction λu

λu+λd
. η1 is the parameter of the exponential distribution of the

positive jumps in the log-returns process. η2 is the parameter of the exponential
distribution of the size of the negative jumps in the log-returns process. If η2 > α
then θ for the Kou model is given by

θ =
1

2
α2σ2

R − α
(
r̄ − 1

2
σ2
R

)
+ λR

(
q

1 + α
η1

+
1− q

1− α
η2

− 1

)
.

With the parameter estimates from Ramezani and Zeng (2007) we get

θ ≈ −0.11.

Again this suggests a smaller ruin probability than with the Cramér-Lundberg
model.

With these parameter estimates, values for the ruin probability in the Merton
and Kou models are shown in Table 12. The table shows that, for the S&P 1962-
2003 data, ruin probabilities do not differ much between models. This is not
the case if we consider investment in a single stock and use parameter values
from Ramezani and Zeng (2007), but this is a highly implausible strategy.
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r̄ σR λR µ σ θ
0.05674 0.127 18.5724 0.0005 0.0199 −0.06909
(0.0252) (0.0252) (2.6712) (0.0009) (0.0005) n.a.

Table 10: Parameter estimates from Ramezani and Zeng (2007) for the Merton
model fitted to daily returns of the S&P 500 1962-2003. Annualized standard
errors are in parentheses. θ is defined in Theorem 3.

r̄ σR λR q η1 η2 θ
0.15754 0.07302 237.8376 0.4521 173.91 185.98 −0.1054

n.a. n.a. (41.1516) n.a. (0.36) (0.38) n.a.

Table 11: Parameter estimates from Ramezani and Zeng (2007) for the Kou
model fitted to daily returns of the S&P 500 1962-2003. Annualized standard
errors are in parentheses. θ is defined in Theorem 3.

Model T = 1 T = 2 T = 5 T = 10
CL 0.0010 0.0018 0.0036 0.0049

GBM 0.0009 0.0017 0.0029 0.0036
Merton 0.0009 0.0017 0.0031 0.0036

Kou 0.0009 0.0017 0.0029 0.0039

Table 12: Ruin probabilities for the classical Cramér-Lundberg (CL) model and
three investment models fitted to daily observations of S&P 500 7/1962-2003.
The claim sizes follow a mixture of the standardized Pareto distribution with
parameter α̂ = 2.01 (used in Embrechts et al. (1997)) and a standard exponential
distribution. The weight assigned to the Pareto distribution is 109

2167 . The initial
capital is set to y = 100.
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5 Conclusions

The numerical experiments suggest that using precalculated Gaussian quadra-
ture rules is an efficient way of calculating the integrals in the numerical solution
of the PIDE (8). The dominant source of error seems to be the differential terms
rather than the numerical integration. From a numerical point of view the main
problem is the following: For the finite-difference method to be numerically sta-
ble the differential terms often have to be approximated using one-sided finite
differences rather than central differences. This gives a slower convergence, in
particular for moderately sized initial capitals and models where the diffusion
term is small.

As for the ruin probabilities for the fitted models, they can vary substantially
depending on which time period is selected for the data. The ruin probabilities
are also quite sensitive to the value of the θ defined in Theorem 3, and in
particular the sign of θ is critical. If θ > 0 (Table 9) the effect of investments on
the ruin probabilities is moderate on short time horizons, but more pronounced
for longer time horizons. Our numeric results suggest that the asymptotic result
in Theorem 3, based on Theorem 4.1 in Hult and Lindskog (2011), is rather
accurate for short time horizons. For long time horizons, in particular for T > 5)
the initial capital needs to very high for the formula to be a good approximation.

A possible topic for future research is to estimate inflation from the claim
sizes themselves. This might require new numerical methods. It might also
be interesting to approximate the small claims with a diffusion process. This
would increase the ellipticity and thus allow more nodes to be approximated with
central differences. Since the computation time is proportional to (λ+ λR)T
the ruin probability in such a model would be easier to compute efficiently.
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